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SLIDING MODE CONTROL OF A SLEWING FLEXIBLE BEAM

David G. Wilson” Gordon G. Parkert Gregory P. St arr~ Rush D. Robinett  111$

Abstract

An output feedback sliding mode controller (SMC)  is proposed to minimize the effects of vibrations of
slewing  flexible manipulators. A spline  trajectory is used to generate ideal position and velocity commands.
Constrained nonlinear optimization techniques are used to both calibrate nonlinear models and determine
optimized gains to produce a rest-to-rest, residual vibration-free maneuver. Vibration-free maneuvers are
import ant for current and future NASA space missions. This stud y required the development of the non-
linear dynamic system equations of motion; robust control law design; numerical implementation; system
identification; and verification using the Sandia  National Laboratories flexible robot testbed.  Results are
shown for a slewing flexible beam.

Introduction

For NASA space applications, lightweight robotic manipulators are necessary to reduce launch costs,
power consumption, and storage volume of the robot. Slewing  structures with long flexible members, such as
the Shuttle Remote Manipulator System (RMS)  and the Space Station RMS,  can excite vibrations. These
vibrations can severely degrade the pointing accuracy, thus limiting the speed of rotation and productive
use of current and future robotic systems. To achieve good control performance and position precision with
current technology requires massive stiff manipulators. Since mass is the strongest driver of launch costs,
massive telerobotic  systems are unacceptable. Inherent flexibility for manipulator systems is a consequence
of launch mass minimization. Flexibility is difficult to model but without its inclusion in the dynamic
model, slewing performance will remain poor and cent rol marginally stable. The focus of this research is
the development of a robust control system that demonstrates residual-vibration suppression and robust
tracking using only colocated  joint sensors and actuators. The methodology includes development of the
dynamic system equations of motion; sliding mode control system design; optimized model matching and
gain calculation; and experimental verification using the Sandia  National Laboratories flexibIe  robot testbed.

To find a practical feedback control for flexible arms, many researchers have investigated various control
methods. A review of some of these techniques is given in Yeung  and Chen. 1 Yeung and Chen also demon-
strated successful feedback control of flexible arms using the sIiding-mode  technique. Nathan and Singh2
developed a design approach for the control of a flexible robotic arm using variable structure system theory
and pole assignment technique for stabilization. The closed-loop system was robust to variations in payload.
Qian and Ma3 have introduced variable structure sliding-mode technique for tip position control. The con-
troller performance was evaluated through simulations. Choi and Shin4 developed a sliding mode controller
for tip position control of a single-flexible link manipulator subjected to parameter variation. Their algo-
rithm showed fast and favorable system responses while maintaining low sensitivity y to imposed uncertainties.
Parker and Robinett5  developed an output feedback sliding mode control approach for nonlinear systems in
general, with applications to flexible manipulators. Asymptotically stable sliding surfaces are specified in the
output space. In addition, a constraint was derived, based on L Yapunov’s  direct method, ensuriw stability
of the closed-loop system. The results presented in this paper is a realization of the output
mode controller.
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Dynamic Model

The dynamic equations of motion for both the rigid body, 0 and the flexible body, qi(t) degrees-of-freedom
(DOF) are found using Lagrange’s equations;
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The Lagrangian is, L = T – V + WF, where the kinetic energy,
from external forces, WF are defined as
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where i and j = 1 are the number of flexible DOF and x is the location along the beam. Applying Lagrange’s
equations results in the following nonlinear equations of motion;

M(x)x + N(x,  k) + K(x, $c) = B(x)U (6)

y=cx (7)

where, x is an mz 1 vector of total DOF’S, M is a rum configuration dependant  mass matrix; N is a nzl
vector of Coriolis and centripetaI  acceleration terms; K is a rum configuration dependant  stiffness matrix
including centrifugal stiffening terms; B is a nxrn matrix of control weighting coefficients; U is a rmc 1 vector
of torque inputs; y is an rzl vector of measurable outputs, C is an rxn  matrix relating state variables to
measurable outputs.

The dynamic equations of motion were developed using the method of quadratic modes.6 Figure 1 shows
a schematic of the slewing  flexible beam defining the mathematical geometry.
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Figure 1: Slewing Flexible Beam Schematic

An expression for the deformation of a point along the beam is

?l(z, t) = U=(z,  t)gl  + Y(Z, t);z
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where bi are unit vectors associated with a moving coordinate system attached to the hub. The ni unit
vectors are associated with an inertial coordinate system. Define the following relationships for axial and
transverse deflections aa

(9)

and co
y(x, t) = ~ ~~(z)q~(t)  . (lo)

i=l

Equation (10) is assumed to be separable into #i(x),  the mode shape basis functions and qi (t), the corre-
sponding time-dependent generalized coordinates. The following equation gives the velocity of each point
along the rotating beam’s length:

i(z, t) = : {[?’+ 2J)~ + il(z, t)} . (11)

Performing the mathematical expansions and substituting the expressions for the kinetic energy, strain
energy, and external work into Lagrange’s equations (1,2), we arrive at the following equations for beam
deflection and rotation, respectively.
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where ~ = p + Aftti(z  – L) and p is mass per unit length.

Cantilever mode shapes given by Blevins7, were used for this analysis and the quadratic modes for a beam
were defined as:

The final equations were arranged into the form of equations (6) and (7).

Sliding Mode Control

Sliding mode control provides an alternative to robot control with unknown parameters. The main advan-
tage of SMC is its robustness to input disturbances once the sliding surface is reached. SMC uses a strategy
whereby the active controI  law at any given time is chosen from a predefine set of control laws based on
the current state of the system. SMC takes advantage of control law switching to move a system from an
initial state to a prescribed surface in the state space. Once on that surface, a second control law is used
to keep the state from leaving the surface while moving toward the desired final state. Using Lyapunov’s
direct method, SMC has been shown to be stable5.  Furthermore, it is robust to model-~  arameter  uncertainty
and disturbances if bounds are known a priori. Sliding surfaces are identified for
output feedback control law. A thorough development of SMC including several
found in Utkin.s

The sliding surface may be chosen as

S= W(y–y~)+(j–jr)=Cl

where yr
elements.

each sensor leading to the
practicaI  examples can be

(15)

is the desired sensor output time history and W is a positive definite matrix with real valued
The equivalent control is found by enforcing a condition of stationarity  on the sliding surface,
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$=w(jr-  jr)+(y-yr)=o. (16)

substituting for y from the equations of motion equations (6) and (7), intos and solving for CM(x)- 1 B(x)U
yields;

CM(x) -lB(x)U  = CM(x) -%(x, i) + Ch’f(x)-lK(x,  i) + ~r – W(J – jr) (17)

All terms involving x will be approximated with +, such that

g = c*y (18)

where C* takes on a form of a psuedo-inverse,  In addition to substituting for the estimate of x the term
Atanh- 1 (/?s) is added to drive the output to the stable sliding surface ofs and the hyperbolic arctan is used
to eliminate chatter through a boundary layer whose slope can be adjusted with /3. This results in the final
output feedback sliding mode controller;

u = [CM(ji)-’B(jl)]  -l[CM(ji)-lN(ji,  k) + CM(ii)-’K(k,  i) + y, – W(j – j,) – Atanh-l(@)].  (19)

Inversion is ensured by setting m = r. Stability has been established by using Lyapunov’s  direct method.5
During the actual implementation of the SMC algorithm the following term was set to zero;

CM(k)  -lN(it,  ~) + CM(k)  -lK(@) = O. (20)

Optimization

A constrained optimization problem was formulated for the slewing flexible beam involving the physical
parameters of the previously derived model and an experimental response to the trajectory input. Solv-
ing the trajectory optimization problem involved the use of a recursive quadratic programming alogrithm
implemented in the MATLAB optimization toolbox.g  A cost function of the form

(21)

subject to a number of inequality constraints G(x) < 0 was used for both the model matching and the
optimized gain analysis.

The modeI  matching optimization errors were set up as el = (O~~M – O~~P ) and ez = (Goot  ~Odez – %.t..p ),

where crOOt  is the strain at the root of the beam. The first step involved setting the parameters belonging
to the mass and stiffness properties of the hub and flexible link, The weights were set to WI = 1.0 and
W2 = 0.0. The optimizer was allowed to formulate error predominantly during the rise time to = 0.0 to tj =
0.35 seconds. After sufficient iterations the parameters would converge to nominal values. The second step
was then to concentrate on the friction coefficients as parameters. The optimizer was set-up to work over
the settling time portion of the trajectory from to = 0.35 to -tJ = 0.6 seconds until the parameters would
converge to a nominal value. The third step used a representative set of parameters from both steps one
and two. This set of parameters was allowed to only vary between +20 percent. The optimizer worked over
the combined time range of the trajectory from to = 0.0 to tf = 0,6 seconds. Upon successful convergence
of these parameters, the rigid body portion of the single flexible link system is identified. The final step
included setting W2 > 1.0 and investigating parameters directly associated with the strain location and
beam coefficients. This resulted in closer agreement to the experimental setup but was considered only a
second-order effect.

For the controller optimization the errors are specified as el = (6C – 6) and e2 = (0.0 – c.OOt) where both
variables # and c,OOt  are from the simulation model. The optimizer was set up for the hub angle from to = 0.0
to tf = 0.6 seconds and for the root strain from to = 0.4 to -tf = 0.6 seconds. The cost associated with the
root strain is for after the maneuver is completed to minimize residual vibration. For all runs WI = 1.0 and
W2 = 10. To start out, large steps were taken to identify possible minimums. Starting with these minimums
the step size was reduced until convergence. These gains were then implemented on the hardware to obtain
experiment al responses,
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Experimental and Numerical Results

The Sandia  National Laboratories flexible robot testbed consists of modular flexible link/motor/hub
mounting assemblies; elect ric DC motors and amplifiers; incremental encoders; bending strain gauges; and
a dSPACE1°  real-time control computer and data acquisition system. The slewing  flexible beam parameters
are given in Table 1.

Parameter Symbol Value Unit
Length L 48.42 em
Width w 7.62 cm

Thickness t 0.1574 cm.
Hub Radius r 8.89

Mass Density pm 2700 k~/mm3
Tip Mass Mt 0.0 kg
Beam Stiff EI 0.176 kg . m2

Motor Inertia J~ 6.92-3 kg . m2
Viscous Damp bvf 1 . 3 7-4 kg . m2/s

Table 1: Slewing  Flexible Beam Physical Parameters

A numerical simulation was developed that realized the mathematical models developed earlier. MATLAB
was used to implement the differential equations. The dynamics of the plant were treated as continuous states,
while the control laws were treated as discrete states. All sampling was performed at 1000 Hz.

The reference motion trajectory of the hub is generated from a spline fit of the initial hub angle, equal to
–90° to the final hub angle, equal to 90°, for the single flexible link case. The time for all the trajectory
runs was specified as AT = 0.35 seconds.

Model Calibration/Matching

The goal of this section was to identify a model that best captured the dynamics of the actual system.
A simple PD controller was used to slew the beam. By following the steps outlined in an earIier section,
the following plots show the match between the model and the experimental set-up. Using empirically
determined gains Figures 2 and 3 show the calibration plots for hub angle, hub velocity, root strain and
mid-span strain, respectively.
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Figure 2: Hub Angle and Velocity Calibration Results
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Figure 3: Root and Mid-Span Strain Calibration Results
Optimized Gains for Controllers

The calibrated model was used to predict the performance of the experimental set-up by using the gains
determined from the constrained nonlinear optimization design. The results for the sliding mode control,
where the W and A gains were optimized are shown in Figures 4 and 5, for the hub angle, hub velocity,
root strain and mid-span strain, respectively.
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Figure 4: Hub Angle and Velocity Optimized SMC Results

Conclusions

A sliding mode controller was successfully demonstrated to minimize the effects of vibrations of slewing
flexible beams. Optimization techniques were successful employed to determine meaningful nonlinear time
domain models and optimized gain determination. In turn the optimized gains were used to predict flexible
beam performance during large angle slews. These optimized gains were experimentally verifed  on the Sandia
National Laboratories flexible robot testbed. The SMC architecture showed minimum residual-vibration
suppression and robust tracking using only colocated joint sensors and
the use of 1) piezoceramic strain sensors and actuatorsll~12  to enhance
and 2) the use of a two DOF planar flexible manipulator.

actuators. Future work will involve
st abiIity  and tracking performance,
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Figure 5: Root and Mid-Span Strain Optimized SMC Results
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