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INTRODUCTION:

This effort used a new and novel method of acquiring strains calied  Sub-pixel Digital Video Image Correlation
(SDVIC)  on impact damaged Kevlar/epoxy filament wound pressure vessels during a proof test. To predict the burst
pressure, the hoop strain field distribution around the impact location from three vessels was used to train a neural network.
The network was then tested on additional pressure vessels. Several variations on the network were tried. The best results
were obtained using  a single hidden layer.

SDVIC is a fill-field non-contact computer vision technique which provides in-plane deformation and strain data
over a load differential. This method was used to determine hoop and axial displacements, hoop and axial linear  strains, the
in-pkme shear strains and rotations in the regions surrounding impact sites in fikunent  wound pressure vessels (FWPV)
during proof loading by internal pressurization. The relationship between these deformation measurement values and the
remaining life of the pressure vessels, however, requires a complex theoretical model or numerical sirmdation.  Both of these
techniques are time consuming and complicated. Previous results using neural network methods had been successful in
predicting the burst pressure for graphite/epoxy pressure vessels based upon acoustic emission (AE) measurements in similar
tests (Walker, J. L., Hill, E. v. K., Workman, G. L., Russell, S. S., “A Neural Network/Acoustic Emission Analysis of Impact
Darnaged Graphite/Epoxy Pressure Vessels, “ American Socie~for  Nondestructive Testing, 1995 Spring National
Conference, 20-24 March 1995). The neural network associates the character of the AE amplitude distribution, which
depends upon the extent of impact darnage,  with the burst pressure. Similarly, higher amounts of impact damage are
theorized to cause a higher amount of strain concentration in the damage effected zone at a given pressure and result in lower
burst pressures. This relationship suggests that a neural network might be able to find an empirical relationship between the
SDVIC strain field data and the burst pressure, analogous to the AE method, with greater speed and simplicity than
theoretical or finite element modeling.

The process of testing SDVIC neural network analysis and some encouraging preliminary results are presented in
this paper. Details are given concerning the processing of SDVIC output data such that it may be used as back propagation
neural network (BPNN) input data. The software written to perform this processing and the BPNN algorithm are also
discussed. It will be shown that, with limited training, test results indicate an average error in burst pressure prediction of
approximately six percent,

SPECIMEN:

This study is part of a larger damage assessment program concerning impact damaged FWPV. The specimen
utilized for this study conform to ASTM standard D2585-68 (1985), and represent sub-scale simulated solid  rocket motor
casings or fuel storage vessels with a 14.6 cm diameter. The bottles were formed by a series of helical and hoop plies, with
the outermost being a hoop, as shown in Figure 1. At the NASA Marshall Space Flight Center’s Productivity Enhancement
Complex, DuPont Kevlar fibers were wet wound with Dow DPL862/W epoxy resin around an inner rubber bladder on a sand
mandrel and then rotisserie cured to form each specimen. The undamaged burst pressure was approximately 20.7 MPa.

APPARATUS AND PROCEDURE:

An air driven water pump was used to internally pressurize each specimen as shown in Figure 2. This ti=~re
illustrates the SDVIC data acquisition hardware. Approximately 6.45 cmz around the impact zone on each impacted bottle,
or at a random location on each un-impacted  bottle, was viewed by a CCD camera with illumination by two 500 watt halogen
quartz shop lamps. A random black and white speckle pattern was applied to the region of interest on each bottle by over-
spray from ordinary flat or low gloss spray paint to assist in the image correlation process. A PC based image digitization
board was used to acquire images during holds in the pressurization cycle. These images correspond to approximately 0,8,
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Figure 1. Specimen Geometry Figure 2. Data Acquisition Apparatus

17, 25, and 33 percent of the undamaged burst pressure for an un-impacted  bottle. To minimize vibration effects, five fr,ames
were averaged for each image.

The SDWC image processing software was used to correlate each non-zero image with the image acquired at O
pressure. This software utilizes a pattern recognition algorithm to determine with sub-pixel resolution the relative position,
and thus deformation, of small image subsets between two images. An automated routine repeats this process for a grid of
subsets covering the entire region of interest, resulting in tabulated and false color plotted full-field displacement and strain
data. Figure 3 and 4 are a false color plot of the hoop strains and a photograph of an impact damaged graphite/epoxy
pressure vessel respectively. The underlying hoop plies had ripped vertically as a result of the impact an a previous low level
pressurization. The SDVIC software package is available from NASA COSMIC.
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Figure 3. Hoop Strain in Gr-Ep Vessiel.

PATA REDUCTION:
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In the case of AE neural network analysis, the amplitude distribution is divided into a series of discrete categories,
with the population of each supplied as the input to the corresponding input layer neuron. The six deformation fields (in-
plane displacement and the inplane strains and rotations) generated by SDVIC processing are each composed from a grid of
134 x 134 measurements, for a total of 17,956 data points. It is not practical to attempt processing with this many input
neurons. Therefor, the tabulated SDVIC deformation field data is summarized by a group of distributions anaiogous  to the
AE amplitude distribution, With some qualitative foresight as to the failure characteristics of these specimens, the hoop
strain was chosen as the single parameter which most strongly represents the damage, and is the only input to the neural  net.

It is theorized that an increase in impact darnage severity, corresponding to a decrease in burst pressure, will cause
more of the strain field to contain higher strain values due to the strain concentrating effect of that darnage.  That is, at a
given internal pressure an un-impacted  bottle maybe expected to have a narrow distribution of hoop strain values about
some average. An impacted bottle with the pressure, field of view, and all image correlation parameters repeated should
have a lower and wider distribution due to a shift toward higher strain values. Figure 5. illustrates that a bottle with a burst
pressure of 17.9 MPa has a taller, narrower distribution than one with a burst pressure of only 11.7 MPa. From another point
of view, the area under this curve represents a strain x area product, which resembles a strain energy.

The minimum and maximum strain varies from specimen to specimen, and the neural network approach requires the
same number of inputs for each specimen. Thus, each individual strain field was converted to a strain distribution with the
same number of categories, but not necessarily the same category ranges. For example, if there are 20 strain categories and
input neurons, then the f~st input neuron always receives the number of data points which fall in the lowest  twentieth (or five
percent) of the strain distribution.

The hoop strain distributions used in this test are shown in Figure 6. in order of increasing burst pressure from front
to back. This set of nine specimen represent a range of impact damage levels from none to that which reduced the actual
burst pressure by approximately one quarter of the undamaged value. Seventeen strain categories and input neurons were
used. The data used here was obtained during a 6.89 MPa hold in the proof cycle, or at approximately one third of the
undamaged burst pressure. This level of pressurization should cause no damage to an un-impacted  specimen.

NEURAL NETWORK PROC ESSING:

A software program called VICNet  was written to convert the tabulated SDVIC strain field data into strain
distribution tables for the entire population of specimens at once. The program then input the strain distributions and actual
burst  pressures for three of the nine bottles, which had been designated as the trainiig  data set. The VICNet back
propagation neural network (BPNN) routine analyzed the training set to adjust internal weights and biases such that the
neurai network output was within an average of 5°/0 deviation from each actual burst pressure. In addition to the seventeen
input neurons and single output neuron, a hidden layer of 3 intermediate neurons were used. The results of this training,
which required only 85 iterations and less than 10 seconds, are shown in Table 1.
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Figure 5. Comparison of Strain
Distributions for Different Burst Pressuyes

Figure 6. VICNet Hoop Strain Distributions for BPNN Input
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Table 1. Training Results Table 2. Test Results
Actual Burst VICNet-BPNN 0/0 Error Actual Burst VICNet-  BPNN 0/0 Error

Pressure (MPa) output Pressure (MPa) output
15.4 15.9 3.4 15.9 15.1 -5.2
18.0 18.7 4.3 16.2 16.5 2.0
~1.1 19.5 -7.3 17.2 18.0 4.5

Average Magnitude Difference 5,0 17.9 19.2 7.2
19.7 18.2 -8.0
16.5 15.2 -8.2
Average Magnitude Error 5.9

The VICNet  BPNN routine then input the strain distributions for the remaining specimens which were designated as
the test data set. These distributions were processed by the neural network in a single pass using the internal weights and
biases determined from training, The actual burst pressures were in no way accessible to the software algorithm. The test
results are shown in Table 2. Multiple independent repetitions of this training and testing have yielded similar average
uncertainties.

CONCLUSIONS:

It has been shown that a back propagation neural network routine can, with some degree of accuracy, be trained to
predict the burst pressure of impact damaged structures based upon SDVIC strain field data collected from other similar
structures. In the case of the filament wound pressure vessels studied here, an average testing error of about six percent has
been demonstrated. To be completely thorough, future testing will be conducted in which this method is used to predict the
burst pressure of the specimen prior to actual  burst testing. It wiIl also be determined whether similar analysis at lower proof
loads will provide similar levels  of uncertainty. Further research will also be conducted to determine the extent to which a
neural network which has been trained on SDVIC data from one size of specimen may be used to predict failure of another
size of similar specimen. If this is successful, then a network which has been trained on an appropriate set of smaller, less
expensive specimen may be used to predict the failure of a larger, more expensive service article which may have sustained
some form of damage.
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