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Abstract

The problem of coordination and control of multiple spacecraft (MS) moving in formation is con-
sidered. Here,  each MS is modeled by a rigid body with fixed center of mass. First, various
schemes for generating the desired formation patters are discussed, Then, explicit control laws for
formation-keeping and relative attitude alignment based on nearest neighbor-tracking are derived.
The necessary data which must be communicated between the MS to achieve effective control are
examined. The time-domain behavior of the feedback-controlled MS formation for typical low-
Earth orbits is studied both analytically and via computer simulation. The paper concludes with a
discussion of the implementation of the derived control laws, and the integration of the MS forma-
tion coordination and control system with a proposed inter-spacecraft communication/computing
network.

1 Introduction

Future use of multiple micro-spacecraft moving in formation for space exploration, constellation
space antennas and interferometers, and space-based global communication systems calls for novel
approaches to the design of spacecraft control systems. In particular in recent years, growing
emphasis is placed  on the concept of separated spacecraft interferometry  (SS1). The SS1 concept
envisioned the collecting apertures to be located on separate spacecraft while central combining
instruments to be located on yet another spacecraft. A virtual structure is therefore developed with-
bout the real need for maintaining the necessary structural rigidity. The SS1 provides measurements
unachievable with other techniques and allows long baseline lengths and orient ation  changes.

This paper focuses on the development of a control system architecture for the coordination and
cent rol of a fleet of micro-spacecraft moving in formation. Here, we are dealing with a collection
of systems which interact with each other in a cooperative manner to achieve a common objective.
Although control of a single spacecraft is based on well-established control theory concepts am-l
methodologies, the control systems for multiple spacecraft moving in formation require architectures
which differ from those of conventional single spacecraft control systems. To provide a desired
formation, basic mathematical models for controlled movement of rigid bodies in free space is
presented. The control laws for the coordination of spacecraft attitude during motion to achieve
a specified objective (e.g. orient each spacecraft along a given direction) is also developed. This
is followed by the derivation of control laws for formation keeping and relative attitude alignment,
The time-domain behavior of the feedback-controlled formation flying for typical low-Earth orbits
is studied both analytically and via computer simulation. Emphasis is placed on determining the
information exchange needed for achieving and maintaining a desired formation, and the conditions
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for ensuring formation stability in the presence of various types of perturbations. Other important
factors such as collision-avoidance, spacecraft failures, low of communication between spacecraft,
and also various constraints imposed by implementation and the physical size of the micro-spacecraft
are discussed.

2 Modeling of Multiple Spacecraft in Formation

To simplify the development, we consider only a spacecraft triad modeled by rigid bodies with
fixed centers of mass moving in free space under the influence of a gravitational field  and external
disturbances. We introduce the following coordinate systems in the three-dimensional Euclidean
space 3?3: (i) an inertial coordinate system .750 with orthonormal  basis ,?30 = {eX,  ey, ez}, and
(ii) a set of moving coordinate systems .EZ, i = 1,2,3 whose origins Oi are at the mass centers of
the spacecraft. Let B; = {eiz,  eiY,  ei. } denote an orthonormal  basis associated with the moving
coordinate system (abbreviated by “MCS’;  hereafter) fi, and [w] ~ the representation of the vector
w with respect to basis 13i,. The the basis vectors in 130 and Z3i are related by a linear t ransformat  ion
Ci defined by

elx = Ciex, eiv = Ciey$ eiz = C’aez, i=l,2,3 (1)

whose r~presentation  with respect to basis ~ is given by the direction cosine matrix C(qi) =

(~?4 – d W + 2%4: - 2wQ(k),  where

Q(&) ~

[-i-:+]; “+1

(2)

and qi = [~~, ~i4]~ denotes the unit quaternion  with q~j being the Euler symmetric parameters [5]
defined by qij = ~’jsin(@i/2),  ~ = 1,2,3; qiz = COS(#z/2), satisfying  the constraint  x~=lqj  =
1, i = 1,2,3 where ~~ is the principal angle and the eij’s are the components of the principal vector
of rotation & defined by 4?i = ~il er + .q2eY  + &i3eZ = sile~x  + e.i2e~V  + &~3e.~Z. The time clerivitive
of qij is related to the angular velocity ~i = Wixcix + wi,veiv + Wizeiz  of fi relative to the inertial
coordinate system .?O by

g
= (qizwi -  

Wi x 4’)/2,&=
dt -(Q , &)/2, }

(3)

where w x v and w “ v denote respectively the cross and scalar proclucts  of vectors w and v in
7?3.

Let d/dto  and d/dtj  denote the time derivative operators with respect to 70 and .Z~ respectively;

and Di the time derivative operator d/dto  in 3~ defined by Vi w ~ dw/@, + ui x w for w e 733.
The angular velocities of the i-th spacecraft or 7i relative to 30 are given by the following Euler’s
equations relating that time derivative of the angular momentum liwi with respect to >0 to the
control torque 7&:

fo~ i = 1,2,3, where Ii is the tensor of inertia associated with the i-th spacecraft. The time
derivative of wi may also be taken with respect to .FO.

In formation acquisition and keeping, we are interested in the relative motion between any pair of
spacecraft labelled  by subscripts i and j. Let the MCS 7’ be .F~ as clefined  earlier (See Fig. 1), ancl
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pja denote the position vector of the j-th spacecraft relative to 2?i. The evolution of pji with time
is governed by

“) = (fc.i + fgj)m’!j’  – Uci + AJiw’fkMPjz (5)

where D? denotes the time derivative operator d2/dt~ in the MCS .Fi given by

(6)

3 Formation-Keeping Control Laws

The movement of spacecraft triad in formation can be achieved in marry ways. Here, we use a
simple approach proposed in [6]. Let the first spacecraft be designated as the leader,  and the
remaining spacecraft as jollowers,  The leader provicles  the reference motion r] = rl (t) (relative
to &) for the followers, and also two nonzero  deviation vectors hi(t), i = 2,3, such that the point
set T(t) = {rl (t), rl (t) + h2 (t), T-1(t) + h3 (t)} defines the desired formation pattern at time t. It
is assumed that the convex hull of P (t)is a simplex. We define the positional error for the i-th

follower relative to the leader as _Ei(t) ~ hi(t)  – pil(t),  i =2,3.

In what follows, we shall derive formation-keeping control laws assuming that each spacecraft in
the triad moves in a low Earth orbit (LEO), and the desired motions for the followers are given by
di(t)  = ri(t) + hi(t), z = 2,3. Using (5), we obtain the following differential equation for E.i:

where Ucj = f ~j/Mj.

(7)

Assuming a central Newtonian gravitational force field, the gravitational force acting on the i-th
follower has the form: $~i = –pMiTi/j[Ti  1[3, where p is the geocentric gravitational constant; ~.i
is the vector specifying the position of the mass center of the i-th spacecraft relative to the inertial
frame 3.; and II ri [/ the Euclidean norm of Tj. Let eri = ri/ I[ri II, We can write

Ti = llrj,ller~

= llT~ll{(eTi o f.?ix)eix + (f2r~ . e~y)~zv + (eri . (?~z)eiz}, (8)

where rj = ri + p~i. For LEO spacecraft triad moving in formation at approximately the same

altitude, we have II ri II / II rl II ~ 1. Thus, the components of (fgl/M1 – f~i/Mi)  in (7) with respect
to basis f3i can be approximated by

(fgl/”l - .’fgl/”i)ik = u~o{tlrill(eri  . e;~) – (l\riil/llrill)3(pl~~ + llr~ll(c+.i  . ej~))}
(v
= ‘~foplik? k=z,  y,.z, (9)

where U~O(t)  = p/ ~lri  (t) 113 is the orbital angular speed of the i-th spacecraft about the origin of .FO at
the time t. Substituting (9) into (7), making use of the identity Wi x (wi x Ei) = (~i.Ei)~i– Ilwi 112Ei,
and assuming WiO R W. (a positive constant) lead to
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To derive a formation-keeping control law for the i-th foll?wer, we consider the time rate-of-change
of the positive definite function U = (iYl& . I13i + ~~ “ l?~ )/2, Kli  >0. It can be verified [8] that
if we set

Ufj = 1,~1 (–LIJ~ X (IiWi)  + Tc-) X (hi – E.i)  + (W~ . ( hi – Ei))wi
. . . .

+ (#$0 – llwil[2)(hi  – Ei)  + K1iEi + K2.iEi  + 2Wi X hi + hi + Ucl, (11)

where ~i = dhi/dti,  ki = d2hi/dt~, and K2~ is a positive constant, then dVil  /dt = –K2i [[fi.i 112<0.

The equation for [Ei] ~ corresponding to the feedback-controlled system is given by

Since Q([wi]i)  is slew-symmetric,
.

all solutions [E.i, Ei]i (t) ~ (O, 0)6R6  w t + co for any
Kli, _?12i >0.

Remarks. RI: The model-dependent Control law (11) corresponds to statefeedback linearization
controls which involve partial cancellation of the terms in (10). Assuming perfect cancellation,
there is no coupling between the equations for the tracking errors of followers given by (12). Since
perfect cancellation is not achievable physically due to inaccurate knowledge of the model parameter
values, sensor errors, act uator  saturation, and unmoclelled  external clist urbances,  it is of import ante
to determine the effect of imperfect cancellation on the behavior of the feedback-controlled system.
Here, we model this imperfection by introducing a persistent disturbance N in (12) as follows:

[~i]i + (K2i[I]  + 2Q([~i]i(t)))[fii].i + K1i[Ei]i

= ~(~, [Wi(t)]i  ‘ [/~jz(~)]i:  [%j(~)]i, [~i]i, [ki]i); (13)

and require that the zero state is totally stable [7]. Since B1 is a skew-symmetric matrix?  the zero
state of (12) is uniformly asymptotically stable for any fi’1~,  K2i >0. Then, total stability of the
zero state follows from a well-known theorem of Malkin [7].

R2:  The control laws (11) for the followers require the knowledge of its own attitude control law ~Cj
and the control law MCI of the leader. The latter information must be transmitted to the follower
spacecraft. Note also that control laws (11 ) can be rewritten as

The terms Uci and D~(hi) + u~Oh2  in (11’) correspond  to a feed-forward control. When the norms
of these terms are large, the norm of Uci is also large. This situation may be alleviated by replacing
the term by a suitable scaling depending on the norm of D? (hi) + w~Ohi.  In the important special
case where the spacecraft move in a nearl~ circular LEO and the deviation vector hi rotates about
the Earth’s center with angular velocity Wi ~ WiO,  then D: (hi) + w~Ohi G O or hi is close to a
solution of the simple harmonic oscillator equation d2hi/dt~ + ~&hi = O.

R3: It is evident that if each follower applies control law (11), then the clesired  formation pattern
P = P(i), t >0,  is asymptotically stable, i.e. given any real number e >0, there exists a 6>0
such that A(t) <6 ~ A(t) < c for all t ~ 0, Moreover, A(t) ~ O as t ~ co, where
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( )
1/2

A(t) =  ~{ali]pi(t)[lz +  CTzi[[fii(t)][z} , (15)
i=z

and Oli, 02i are specified positive weighting coefficients. Here, asymptotic stability is only local in
the sense that the convergence of A(t) to O as t ~ 00 is attained if the deviation of the initial
formation pattern at t = O from the desired one is sufficiently small. In physical situations, the
possibility of collision between spacecraft must also be considered.

R4: It has been shown recently [9] that under certain mild conditions, asymptotic stability of the
formation pattern F’= T(t) can be achieved using simplified versions of control laws (11’) given by

Uci = KuEi + Kzki + {%i + D;(hi) + u~Ohi}, i = 2,3, (16)

which correspond to proportional-plus-rate feedback plus feed-forward controls. The inclusion of
the feed-forward control is essential for asymptotic stability.

4 Attitude Control

Let the desired attitude and angular velocity of the i-th follower at time t relative to the inertial
coordinate system .FO be specified respectively by the MCS .F~ (t)and @(t), which may depend
on the attitude and angular velocity of the leader, eg. the desired attitude and angular velocity
of the i-th follower correspond exactly to .F1 (t) and u 1 (t) respectively. It is of interest to control
the rekztive  attitudes and angular velocities between the spacecraft. Here, we shall derive control
laws for the followers which are expressed in terms of their instantaneous attitudes and angular
velocities of relative to the inertial coordinate system .FO or to the MCS .F1.

Let the unit quaternion corresponding to @(t) relative to the inertial coordinate system .FO be
denoted by q$(t) = [~(t), q~4(i)]T. We assume that q$ and w: are consistent in the sense that

~. We introduce the deviations 8qi = qi – qi =they satisfy (3) and (4) with” control torque r
A d

[d - iii, @!4 - qi~]T  a n d @  ~ w? - u,. It can be verified that 6qi satisfies

&
=  (q24w: – qi4wi – w: x @ +W, x @J/z

+= }
(17)

_(@ . @ - w~ , @~)/2.

To derive an attitude control law, we consider the following positiye  definite function Vli.o=  Kqivli +
Vli defined on R7, where Kqi is a given positive constant and Vli = &#4 + @i . $@i;  Vli = (bi .
Ii6wi)/2.  The time derivative of Vli along the solutions of the equations for 6qi, hi is given by

(18)

Thus, if we set

where KWi is a positive constant, then dV1i/dt  = –KWiC5W2  . Ii6~i <0 and Vii(t) < Vli (0) for all
t >0 implying uniform boum.iedness  of Ilbwi  (t) II for all t ~ 0, By considering d2V1i/dt2,  and making
use of Barbalat’s  Lemma [10], we can deduce that (dV1i/dt)  (t) ~ O as t ~ 00, or w~(t)  ~ o~(t)  as
t ~ CO.  But it does not follow that 8qi4(t)  ~ O and 6~i(t) ~ O ss t ~ 00.

952



To proceed further, we make use of the fact that the quaternion  (A@i, Aqi4) of the desired attitude
or %f relative  to Xi is related to the quaternions  (q?, q$4) for %:, and (Qi, qi4) for 3, relative to the
inertial coordinate system 70 by

When .Fi coincides with @ (i.e. d~i = O and 6qi4 = O), we have A~i = O and A~i4 = 1. using
(18), control law (17) can be rewritten as

d – Wf X (Ii6wi)/2  + KL,iIi6ui. (21)Tti  = —Kqi A qi + Tci

Following an analysis similar to that given in [II], conclude that A@i and 6Ui(t) -0 as T + 00

for any positive Kgi and KWi.

5 Implementation of Control Laws

We observe that the implementation of control laws (11) and (19) for formation keeping requires
a knowledge of [l?i]~, [fii]~,  [~i].i;  [~Ci]i  and [u&]i at any time t. The quantities [IZi] ~ and [fii]i can
be determined from [Pli]j and [~li]i  which require measurement of the position and velocity of the
leader relative to the i-th follower spacecraft. These quantitiw  can also be obtained by transmitting
the position and velocity of leader to the i-th follower. Also, the control of the leader at any time
must also be transmitted to the i-t h follower spacecraft. When one or more spacecraft failure
occurs, one may adopt the following backup schemes for control law implement aiton depending on
the nature of ftii~ure:

(i) Inter-spacecraft Communicaiton  System Failure: One may obtain estimates of [plj]i and [~li]j
by using on-board optical range sensors, or by setting the relative position and velocity between
the failed and active spacecraft at their nominal values temporarily until the failure is recovered.

(ii) Overall Spacecraft Failure: Here the faiIure is sufficiently severe such that the failed spacecraft
is no longer useful. In this case, it should be removed from the formation by deorbiting  or by
manual retrieval, If the failed spacecraft is replaced by a backup spacecraft, then it is necessary to
reconfigure the formation, The control laws for steering the remaining active spacecraft from the
old to the new formation requires separate consideration. This aspect will be discussed elsewhere.

We note also that in the derivation of foregoing control laws, no constraints have been imposed
on the magnitude of the control variables. In the presence of bounded controls, one expects that
the rate of decay of [1( [IZi]i,  [fii]i)  (t) II and ]! (hi, &qi) (i) II to zero would be reduced by when one or
more of the control variables takes on its extreme values.

Finally, for a real mission, it is necessary to consider discrete-time versions of the proposed control
laws. In view of the limited fuel on-board, it is generally undesirable to have continuously acting
controls. Therefore, the system response corresponding to the cent rol laws derived here serves as
a basis for comparison between the idealized and the actual responses.

6 Fleet Coordination

For a fleet of spacecraft, one may require complete autonomy in each spacecraft in the sense that
all the decisions for determining its future behavior are made on-board without the assistance
of external agents. Although this approach provides enhanced operational reliability, it may not
be cost effective since each spacecraft must contain all the essential hardware and software for
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coordination and control. An alternative approach is to require each spacecraft to have only the
basic hardware and software for attitude control and orbital nameuvering.  The more complex tasks
in fleet coordination and control are shared by all the spacecraft in the fleet. Moreover, some of
the spacecraft may be equipped with special hardware and software to perform particulm  tasks for
the entire fleet.

The fleet coordination is achieved with the aid of an inter-spacecraft communication network (eg.
radio or optical links). This network has the following basic functions:

(i) Communicating the necessary data for fleet formation-keeping and relative attitude control;

(ii) Linking the computers in the spacecraft to form a distributed computing network thereby
increasing the computational capability of the fleet for more computational intensive tasks such as
on-board interferometer data processing,

In the realization of the first function, each ffeet leader broadcasts its position and attitude
with respect to a specified inertial frame, and the follower spacecraft broadcast their positions and
velocities relative to their leader to achieve formation alignment.

7 Simulation Studies

Extensive simulation studies have been made to determine the performance of the proposed control
laws for formation keeping and attitude regulation in the presence of actuator saturation, variations
in spacecraft parameters, and loss of communication between spacecraft. Only typical results will
be presented here.

We assume that the leader of the spacecraft triad moves along an inclined circular orbit 01 about
the Earth with inclination angle (7r/2 – pi..)  and ascending node along the Y-axis. For convenience,
we introduce a geocentric fixed cartesian  coordinate frame >0 with origin O at the Eart h’s center
along with a spherical coordinate system (r, 0, ~) wit h orthonormal  basis {er,  eO, ed }. Its motion
in spherical coordinates is given by

rl(t) = ro, (91 (t) = Cos-l{cos(pirnc)  cos(eo  – (.4@)},

#l(t) =  tfm-~{–tan(tlo  –  wet)/si?7(qinc)}, (22)

where TO is a given orbital radius, and LOO  = m. Here, for simplicity, we have set the desired
orbit al radius for all spacecraft to rO,

The desired motions for the second and third spacecraft correspond to two circular orbits with
the same inclination angle (p/2 – pin. = 8.2p/180 racl., but with ascending nodes at (r, 0, d) =
(rO, p/2,  A@) and (TO,  p/2,  - A ~) respectively, where Ad = 9.5p/180 rad. We adopt the simplified
control law ( 11“ ) for formation keeping, where the deviation vector h2(t) is given by

Iq(t) = ro{(–cos(A@)sin(  q~m)cos(P(t))  + sin(Af#)sin(i(t)  )e~

+ (sin(A#)sin(p~n,c)  cos((7(t))  + cos(AO)sin((7(t))  – szn((?o – wot))ey

+  (cos(pj,nc)cos(P(t)  – N) – COS(OO  – wot))ez. (23)

where ~(t) = 190 – wOt – N. The deviation vector h3 (t) has the same form as (21) except with L@
replaced by – A ~. Evidently, hi(t) satisfies d2h; (t)/dt~ + w~hi (t) = O for all t and z = 2,3. To
specify the desired attitude of the i-th follower, we introduce the (l-2-3)  Euler angles (Eli, Wi, @i)
corresponding to a rotation of ~i about the X-axis followed by a rotation of !Pi about the rotated
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Y-axis, and a rotation of @~ about the rotated Z-axis. The desired Euler angles for the followers
are given by:

Q$j(t) = eg(t) = P(t), I@(t) = I@(i) = ~i~~,
q(t) = A@, q(t)= – A @ (24)

Thus, the desired attitude of the i-th spacecraft can be expressed in terms of the following quater-
nions:

qj4(~) =  {1+ cos’(&b)cos(~im)  – sin(A@)sin(pin.)  sin(~(t))

+ cos(@))(cos(A#))  + COS($2~nc))  }$ /2; (25)

qjl (t)  =  {sWN$S~TZ(pinJCOS(@))  +  S~~(~(~))(COS(@)

+ cos(y9inc))}/(4qjJt))  ; (26)

d2(0  =  {s~~(%nc)(l  +  co@@@(~))) –  SWV@@(~))}/(4q$4(  t)); (27)

q$3(0 =  {cos(&WZ(PinWZ(~( ~))

+  sin(A@)cos(~(t))  + cos(pi.W))}/(4&(t)). (28)

The quaternions  corresponding to the desired attitude of the third follower have the same form as
(23) except with Ad replaced by – A+. We require every spacecraft to spin about its z-axis with
constant angular speed w~.  Thus, the desired angular velocity for the i-th follower is given by

~d _
i— wocos(pinc)ex  + wosin(p~n,c)ez  + w~efz = w~efx + w~e~z, (29)

~ d } corresponds to the basis of the body coordinate system %#’ associated with thewhere { e~z,  eiv eiZ
i-th follower with the desired attitude.

Figure 4 shows a typical time-domain response of the MS fleet with the simplified formation-
keeping control law(ll” ) and attitude control law (19) in the presence of actuator saturation, The
spacecraft parameter values used in the simulation study are given in Table 1. The corresponding
time-domain response of the MS fleet with the [~JC1]i  term in (11”) set to zero (to simulate the
loss of communication between the MS) was also determined. The results do no differ significantly
from those shown in Fig. 4. Next, the effect of inertia pertrubations  on the time-domain response
of the spacecraft triad was studied. It was found that the qualitative behavior of the response is
essentially identical to that of the unperturbed case.

8 Concluding Remarks

In this paper, control laws for a spacecraft triad moving in formation have been derived using a
simplified model for a rigid spacecraft. These control laws require the knowledge of the relative
displacements and attitudes of the spacecraft and its neighbors. Simulation results based on a
generic spacecraft model showed that the derived control law are effective in formation and rela-
tive attitude alignment provided that the magnitude of the initial deviation from the desired state
is sufficiently small so that collisions between the spacecraft do not occur. Finally, in this work,
important factors such as data processing timedelay and time discretization  arising in physical
implementation have not been taken into consideration. Nevertheless, the results reveal the basic
structure of the control laws and the required inter-spacecraft data required for their implemen-
tation. Finally, the problems associated with the physical implementation of the control laws in
terms of the state-of-the-art hardware and fuel consumption for control are not considered here,
and they require further study.
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Mi mass of MS 10kg.

Iiz moment of inertia about x-axis 0.3646 kgm2.

ILfl moment of inertia about y-axis 0.27’34kgm2.

Ii. moment of inertia about z-axis 0.3125 kgm2.

rO desired orbital radius of MS 7.13814 X 10%z

~/(.Jo= plg orbital angular speed of fleet leader 0.001  rad./sec.

w~ desired spin speed about z-axis O. Olrad./sec.

p~nc = T/2 inclination angle of reference orbits 8.2x/ 180rad.

Ad azimuthal angle associated with the ascending node of reference orbits 0.2ra,d.

A9 MS separation angle 7r/120rad.

Table 1: Values of microspacecraft  and orbital parameters for simulation study,
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Figure 3. Time-domain response of the spacecraft triad with
simplified formation-keeping control law (11”) and attitude
control law (19) with K11=0.5,  KZ1=2.0, Koi=l .5, ~i=0.4,
1=2,3, in the presence of actuator saturation, and with initial
states:

[E,(@,~2(0)l,  =[52 -5, 00 O];
[CO,(o)], = [0.02 0.02 0.02];

q, (0)= [0.3 0.10.20.927261 8];

[EJO)&Ol, = [-I 2-1, 00 01;
[03(0)13 = [-0.01 0.015- 0.01];
q,(o) = [+.2 0.20.3 0.910433];
The Follower spacecraft 2 is shown with solid lines and the
follower spacecraft 3 is shown with dashed lines; Saturation
levels:
lfCijl S 1 N; l~Cijl S 0.05 N.m, 1=2,3; j=x,y,z.

/“

.sO “ ’ 1
5 10 15

mm?(wlc)

Tkiw fwcl

I
%

J
5 70 15

me (*

Figure 3a. Positional tracking errors (m) vs. time.
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Figure 3b. Angular velocities (m/see) vs. time.
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Figure 3d. Control forces (N) vs. time.
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Figure 3c. Quaternions  vs. time.
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Figure 3e. Control torques (N.m) vs. time.


