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In this paper we present a detailed simulation study of the influence of quantum

mechanical effects in the inversion layer on random dopant induced threshold voltage

fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been

performed using a 3-D implementation of the density gradient (DG) formalism

incorporated in our established 3-D atomistic simulation approach. This results in a

self-consistent 3-D quantum mechanical picture, which implies not only the vertical

inversion layer quantisation but also the lateral confinement effects related to current

filamentation in the 'valleys' of the random potential fluctuations. We have shown that

the net result of including quantum mechanical effects, while considering statistical

dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering.

At the same time, the random dopant induced threshold voltage lowering partially

compensates for the quantum mechanical threshold voltage shift in aggressively scaled

MOSFETs with ultrathin gate oxides.

Index Terms - Dopant fluctuation, quantum effects, MOSFETs, numerical simulation,

3-D, threshold
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I. Introduction

MOSFET threshold voltage variation due to statistical fluctuations in the number

and position of dopant atoms [1],[2],[3],[4] becomes a serious problem when

MOSFETs are scaled to sub 100 nm dimensions [5],[6],[7],[8]. This is complemented

by a pronounced threshold voltage lowering [4], [8] associated with current percolation

through valleys in the potential distribution at the interface due to the random position of

dopants. At the same time the increase in doping concentration to above 1×10 TM cm 3,

and the reduction in the oxide thickness to below 3 nm in sub 100 nm MOSFETs [5],

result in a large surface electric field, even near threshold, and strong quantization in the

direction perpendicular to the channel [9],[10],[11], with a corresponding increase in

threshold voltage, and reduction in gate capacitance and drive [ 12],[ 13],[ 14],[ 15].

The realistic modelling of dopant fluctuation effects in deep submicron

MOSFETs requires a 3-D numerical simulation, with fine grain discretization, and a

statistical analysis of the results from the simulation of a statistical sample of devices [4],

[8], [16]. All previous 3-D simulation studies of random dopant fluctuation effects

[4],[7],[8],[16],[17],[18],[19],[20],[21] use a simple drift-diffusion or, in one case,

hydrodynamic [22] approximation, and, with the exception of [22], do not take into

account quantum effects. However, [22] does not explicitly demonstrate the role of the

quantum effects on MOSFET parameter fluctuations. Until now it was unclear to what

extent the quantum effects would affect the random dopant induced threshold voltage

fluctuations and lowering in aggressively scaled MOSFETs with ultrathin gate oxides,

and to what degree the threshold voltage lowering may compensate for the increase in

the threshold voltage associated with inversion layer quantization.

In this paper we study the influence of the quantum effects in the inversion layer

on the random dopant induced threshold voltage fluctuations and lowering in sub

100 nm MOSFETs. The quantum mechanical effects are incorporated in our established

3-D atomistic simulation approach [8], [16] using a 3-D implementation of the density-

gradient (DG) model [23]. This results in a self-consistent, fully 3-D, quantum

mechanical picture which accounts for the vertical inversion layer quantization, lateral
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confinement effects associated with the current filamentation in the 'valleys' of the

potential fluctuation, and, according to [24],[25], tunnelling through the sharp potential

barriers associated with individual dopants. The next section describes the 3-D

implementation of the DG model in an atomistic context, outlining the equations, the

solution domain, the boundary conditions and the numerical procedures. In Section III

we calibrate and validate the DG simulations with respect to comprehensive quantum

mechanical calculations based on the full band formalism [11], comparing the published

quantum mechanical threshold voltage shifts and inversion layer charge distributions

with the results of DG simulations. 3-D atomistic simulation results highlighting the

influence of the quantum mechanical effects on the random dopant induced threshold

voltage fluctuations and lowering are presented and analysed in Section IV.

II. Simulation Approach

A Hydrodynamic interpretation of the quantum mechanics and quantum

corrections to the fluid equations was proposed in the late twenties [26] and elaborated

further by several authors [27]. In a form similar to the form adopted in this paper,

density gradient quantum corrections have been used in 2-D hydrodynamic simulations

of MESFETs and HEMTs [28]. As demonstrated in [29], to lowest order, the quantum

system behaves as an ideal gradient gas for typical low-density and high-temperature

semiconductor conditions. Assuming a scalar effective mass, quantum corrections have

been included in the drift-diffusion set of semiconductor equations by introducing an

additional term in the carrier flux expression

( V2_-_, (1)F.=n/_.V_-DVn+2_V b. _/_ )

where b. = h2/(12qm*.), and all other symbols have the conventional meaning. The

quantum correction term in (1) is referred to as 'quantum diffusion' since its inclusion

yields a theory, that contains both quantum confinement effects and quantum-

mechanical tunnelling [24, 25, 29]. A robust approach has been proposed in [23] to

avoid the discretization of fourth order derivatives when using (1) in multidimensional
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numerical simulations. By introducing a generalised electron quasi-Fermi potential On

according to the expression F n = n/lnV¢ n, the unipolar drift-diffusion system of

equations with QM corrections, which in many cases is sufficient for MOSFET

simulations, becomes:

V. (eVI/t)= -q(p- n + N_ - NA )

2bn vZ_/-n _ + kT Inn
= __ __

q ni

(2)

(3)

V-(n#,,V¢,,) = 0 (4)

where gt, On and -,_ are independent variables. The right-hand side of (3) represents

the Boltzmann statistics for electrons and the left-hand side can be interpreted as a

quantum mechanical correction to the Boltzmann statistics. At the same time, (3) is a

nonlinear partial differential equation, which closely resembles the Schr/Sdinger equation,

and a microscopic expression for the macroscopic factor b, has been derived in [29]

based on this analogy.

Similarly to the approach outlined in [16], at low drain voltage, in linear mode of

MOSFET operation, we consider a constant quasi-Fermi potential in the simulations

which decouples (2) and (3) from (4). Therefore we solve self-consistently the 3D

Poisson equation (2) for the potential, and equation (3) for the electron concentration. In

the iterative solution process the electron concentration obtained from the solution of (3),

together with Boltzmann statistics for the hole concentration p, are used in the solution

of (2).

A typical atomistic simulation domain used in the simulation of a 30x50 nm

n-channel MOSFET with oxide thickness tox= 3 nm and a junction depth xj = 7 nm is

outlined in Fig. 1. The uniform doping concentration in the channel region

N o = 5x10 TM cm 3 is resolved down to an individual dopant level using fine grain

discretization with typical mesh spacing 0.5 rim, much less than the typical spacing

between impurities. The number of dopants in the random dopant region of each
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individual transistor follows a Poisson distribution. The position of dopants is chosen at

random and each dopant is assigned to the nearest grid node. By varying the mesh

spacing we have checked that the error associated with the charge assignment is less

than 1% for the devices simulated in this paper. More complex doping profiles in the

random dopant region of the device may be introduced using a rejection technique.

Standard boundary conditions are used for the potential in the Poisson equation

(2) with zero bias applied at the source and drain contacts according to the adopted

constant quasi Fermi level approximation. Dirichlet boundary conditions are applied to

electrons in the DG equation (3) at the contacts and Si/SiO 2 interface introducing charge

neutrality and vanishingly small values respectively, and Neumann boundary conditions

are applied at all other boundaries of the solution domain. One step Newton-SOR

iterations are used for solving both the Poisson (2) and the DG (3) equations [30]. At

the beginning of the self-consistent iteration, the nonlinear Poisson equation is solved

using Boltzmann statistics for both electrons and holes.

The current at low drain voltage is calculated by solving a simplified current

continuity equation (5), in a drift approximation only [16], in a thin slab near the Si/SiOz

interface engulfing the inversion layer charge:

V.,unnVV = 0 (5)

Dirichlet boundary conditions are applied for the 'driving' potential, V, at the source and

drain contacts, with V = 0 and V = V o respectively, and Neumann boundary conditions

are applied at all other boundaries of the slab. Drain voltage Vo = 10 mV is used in all

simulations. The current is extracted by integrating the drift current density

Jn = I'tn nVV along a cross section of the slab. The described procedure is equivalent to

calculating the conductance of the device. We have demonstrated [16] that at low drain

voltage, in the drift-diffusion approximation, the approach described above reproduces

with high accuracy the results obtained from the self consistent solution of the Poisson

and the electron drift-diffusion equation.
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The current criterion IT= IOSWeJLe::[A] is used to estimate the threshold

voltage, V r. Typically, samples of 200 microscopically different transistors are simulated

for each combination of macroscopic design parameters, in order to extract the average

threshold voltage, (Vr), and its standard deviation oVr. The corresponding relative

standard deviation of the extracted _Vr is _r=5% for all results presented in this

paper.

Fig 2 illustrates the potential distribution obtained from the self-consistent

solution of (2) and (3) in the solution domain outlined in Fig. 1 at gate voltage equal to

the threshold voltage. Strong potential fluctuations at the Si/SiO_ interface associated

with the discrete dopants can be observed. One electron equi-concentration contour

which corresponds to this solution is presented in Fig. 3. The equi-concentration

contour highlights the basic features of the quantum charge distribution. The quantum

confinement in the channel results in a maximum in the electron concentration which is

located approximately 1.5 nm below the interface. The 3-D solution of (3), within the

limitations of the scalar effective mass approximation, captures the lateral confinement in

current channels percolating through the 'valleys' in the fluctuation surface potential.

III. Calibration

Since the DG model accounts for lowest-order quantum effects, and equation (3)

can be considered only as an approximation to the Schr6dinger equation, the DG model

has to be carefully validated (and eventually calibrated) against a full, self-consistent

solution of the Poisson-SchrOdinger equation before being used further in our atomistic

simulations. To some extent such validation/calibration has already been carried out in

[23] in comparison with an ellipsoidal band Poisson-Schr6dinger solver, but only in

respect of C-V calculations. Here we are more concerned about correct prediction of the

threshold voltage shift and the quantum mechanical charge distribution in the inversion

layer, which will be affected further by the random dopant induced potential fluctuations.

The DG validation/calibration is a difficult task in 3-D, particularly in a complex

solution domain representing a MOSFET, and potential incorporating fluctuations from

discrete dopants. Therefore we validate the DG approach against rigorous full band
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Poisson-Schri3dinger simulations [11] in the 1-D case only, and for continuous doping.

The DG results for the quantum mechanical threshold voltage shift,

Vr(QM ) -Vr(ClassicaI ), shown in Fig. 4, using a value of electron effective mass,

m*= 0.19m o, as recommended in [23], are in good agreement with the shift reported in

[11]. The range of doping concentrations in this comparison corresponds to the channel

doping in properly scaled MOSFETs with channel lengths below 100 nm. Although the

above value of the effective mass is identical to the transverse electron mass in Si, there

is no physical reason for using the transverse electron mass in (3). Indeed in the [001]

direction considered here the interface confinement lifts the degeneracy of the sixfold

ellipsoidal (at low k) conducting bands of Si. The total electron concentration in the

inversion layer is composed of the electron concentrations in the subbands

corresponding to the two ellipsoids with longitudinal effective mass normal to the

interface (m*= 0.916m 0) and the four ellipsoids with transfer effective mass parallel to

the interface (m*=O.19mo). Although not only the lowest subband related to

m*= 0.916m o is occupied at room temperature and contributions from the subbands

corresponding to m*= 0.19m 0 can be expected, the effective mass needed to calibrate the

DG model is unphysical low and has to be treated as a fitting parameter. To illustrate

this point further, we present in Fig. 5 the dependence of the quantum mechanical

threshold voltage shift as a function of the value of m" used in the DG simulations for

doping concentration N A = 3x10 _8cm 3 and oxide thickness tog =4 nm. Exact agreement

with the shift predicted in [11] at this doping concentration occurs for m*= 0.175m o

which is even lower that the value suggested in [23].

Fig. 6 compares the electron concentration distributions obtained using the DG

model with a full band Poisson-Schr/3dinger simulation. The parameters in both

simulations are selected to allow a direct comparison with the results presented in [11].

Good agreement between the electron distributions obtained from the two models is

observed with an inversion charge distribution slightly narrower and a charge centroid

slightly closer to the interface in the DG simulation. Similar level of accuracy has to be

expected in the [010] and the [100] directions which are equivalent to the [001] direction
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in terms of band structure end the expected quantum confinement effects. In an arbitrary

direction we have to accept the limitation of the single effective mass in this first attempt

to incorporate quantum mechanical effects in the 3-D 'atomistic' simulation picture.

Although theoretically the DG approach also accounts for tunnelling [24][25],

which in our case may include the tunnelling through the Coulomb potential of

individual dopants, no attempt has been made to calibrate the DG approach in respect of

this phenomenon.

IV. Results and Discussion

In this section, we compare the results of DG atomistic

previously published, purely classical atomistic simulation results

simulations with

[8], in order to

highlight the influence of the quantum effects on the random dopant induced threshold

voltage fluctuations and lowering.

The dependence of the threshold voltage on oxide thickness, obtained from

classical and from quantum DG simulations, is presented in Fig. 7 for MOSFETs with

uniform doping concentration in the channel region N a = 5×10 _8cm -3, effective channel

length Le_ = 50 nm, channel width W_iI = 50 nm and junction depth xj = 7 nm. Results

for the average threshold voltage, (Vr), obtained from atomistic simulations, and for the

threshold voltage, VT0, obtained from continuous charge simulations are compared. For

completeness we provide here and in all following figures also results which take into

account the poly-Si depletion and the random dopant distribution in the poly-Si gate,

together with the quantum effects, in a manner described in detail in [31]. The poly-Si

doping concentration used throughout the paper is N o = lxl02° cm _. It can be noted

that for oxide thickness tog = 4 nm the quantum mechanical shift in the threshold voltage

obtained from full 3-D DG simulation of MOSFETs with continuous doping agree well

with the 1-D DG result presented in Fig. 4. As expected [11] the quantum mechanical

threshold voltage shift decreases with the reduction in the oxide thickness. The inclusion

of the poly-Si gate in the simulations results in additional increase in the threshold

voltage. Most importantly the random dopant induced threshold voltage lowering,

inherent to the atomistic simulations, and associated with percolation of the channel
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current through 'valleys' in the potential fluctuations, is enhanced in the quantum case.

This becomes clear from Fig. 8 where the threshold voltage lowering (Vr)- Vr0

extracted from the data presented in Fig. 7 is plotted as a function of the oxide thickness

and compared for the classical and quantum simulations. Although the magnitude of the

threshold voltage lowering decreases almost linearly with the reduction of the oxide

thickness in both cases, the relative quantum mechanical increase of the lowering

becomes larger than 50% for oxide thicknesses below 2 nm and reaches almost 100 %

for the limiting oxide thickness of 1 rim.

The dependencies of the threshoId voltage standard deviation, crVT, as a function

of the oxide thickness, extracted from classical and from quantum atomistic simulations,

are compared in Fig. 9 for MOSFETs with the same parameters as the devices in Fig. 7.

In the classical simulations crVT scales linearly to zero with the corresponding scaling of

tox, within the accuracy of the statistical estimations. This derives from the fact that a

Dirichlet boundary condition was applied at the gate electrode during the simulations,

keeping constant the value of the potential on top of the gate insulator. Such a 'metal

gate' boundary condition completely screens and flattens the potential fluctuations at the

Si/SiO 2 interface when the oxide becomes infinitesimally thin. This in turns kills the

threshold voltage fluctuations since the maximum of the classical inversion layer charge

distribution and channel current density occurs at the interface. The values of crVT

corresponding to the quantum simulations are shifted up with respect to the classical

simulations, and the shift increases slightly with the increase in the oxide thickness. This

shift can be partially explained by the fact that the inversion layer centroid in the

quantum simulations is below the interface and results in an increase in the effective

oxide thickness. Using a relatively crude approximation, this can be taken into account

simply by shifting the straight line approximating the classical dependence of crVT on

the oxide thickness along the oxide thickness axis by:

A = eoxz i / esi (6)
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where z, is the inversion layer centroid. According to [32], at doping concentration

N o = 5×10 t8 cm "3 the inversion layer centroid is zi = 1.12 nm which corresponds to a

shift of A = 0.37 nm. The classical aV r dependence shifted by this value lies below but

rather close to the values of aV T obtained from the quantum mechanical. This is an

indication that substantial fraction of the quantum increase of the threshold voltage

fluctuations can be attributed to the effective increase in the oxide thickness. Other

factors like the lateral confinement effects in the current channels and the quantum

mechanical broadening of the inversion layer charge have additional contributions.

It should be noted also that the inclusion of the poly-Si gate in the simulations

results in additional increase of aV T which, in combination with the increase associated

with the quantum mechanical effects, almost doubles the threshold voltage fluctuations

for oxide thicknesses below 2 nm.

The atomistically simulated average threshold voltage, (Vr), for a set of

MOSFETs with different channel lengths is compared in Fig. 10 with the threshold

voltage, Vr0, of devices with continuous doping. The devices have oxide thickness

tox= 3 nm, and all other parameters similar to the MOSFETs from Fig. 7. Both results

from classical atomistic simulation and simulations including DG correction for the

quantum mechanical effects are presented in the same figure. Let us focus first on the

classical and the quantum mechanical simulations with continuous doping. The quantum

mechanical shift in the threshold voltage exhibits a channel length dependence, and

decreases with the reduction in the channel length, from 292 mV at Leg= 100 nm to

271 mV at L,#= 30 nm. This can be interpreted as an increase in the short channel

effects in the quantum mechanical simulations as a result of an increase in effective

oxide thickness associated with the location of the inversion charge centroid below the

Si/SiO 2 interface. The inclusion of the poly-Si gate increases even more the effective

oxide thickness as a result of the poly-depletion and results in a further increase in the

short channel effects.

In order to interpret clearly the results of the atomistic simulations presented in

Fig 10 we compare in Fig. 11 the corresponding threshold voltage lowering, (V r) - Vro,
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in the classical and quantum case. The threshold voltage lowering in the quantum

mechanical atomistic simulations increases faster than the threshold voltage lowering in

the classical simulations with the reduction of the channel length. This can be interpreted

as an additional increase of the short channel effects in the quantum mechanical

atomistic case. Bearing in mind that the threshold voltage lowering results from an early

percolation of current through valleys in the potential fluctuations in the plane of current

flow we speculate that the increase of the threshold voltage lowering with the reduction

of the channel length has two aspects. Firstly the length of the percolation paths

decreases which reduces the percolation threshold. Secondly the discrete doping

distribution results in localized regions with higher and lower than the average doping

concentrations. In the regions with lower doping concentration the 2-D effects

associated with the penetration of the source/drain potential in the channel are stronger

and in interaction with dominant percolation paths this results in further threshold

voltage lowering when the channel length is reduced. In the quantum mechanical case

the increased effective thickness of the oxide increases further the influence of the

source/drain potential on the potential distribution and lowering in the channel region

and hence through the second mechanism increases the threshold voltage lowering. The

threshold voltage lowering, which reaches more than 110 mV in a 30 nm MOSFET,

compensates for a significant portion of the quantum mechanical threshold voltage shift.

Finally, Fig. 12 compares channel length dependence of the standard deviations

in the threshold voltage crVr calculated using classical and quantum mechanical atomistic

simulations. The quantum mechanical increase in crVv is more pronounced at the shorter

channel lengths and ranges from 23% at the 100 nm MOSFETs to 25% at transistors

with 30 nm channel length. The inclusion of the poly-Si gate in the simulations

increases gV r by another15% over the whole range of channel lengths.

V. Conclusions

In this paper we have presented a 3-D atomistic Density Gradient simulation

approach for determining the threshold voltage in aggressively scaled MOSFETs, which

takes into account both the discrete random dopant distribution in the channel region
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and the quantum effects in the inversion layer. It accounts for random dopant induced

threshold voltage fluctuations and lowering, and quantum mechanical threshold voltage

shift in a self consistent manner.

We have demonstrated that the introduction of quantum effects in the previously

published 3D statistical atomistic simulations results in an increase in both threshold

voltage fluctuations and lowering. The quantum increase in the threshold voltage

fluctuations amounts to more than 50% in MOSFETs with oxide thicknesses below

1.5 rim, expected near the end of the Silicon Roadmap [5]. If, in addition, the poly-Si

depletion and the discrete random dopants in the poly-Si gate are taken into account, the

increase reaches 100% in devices with ultrathin gate oxides. At the same time, the

quantum mechanical increase in the threshold voltage becomes partially compensated by

the threshold voltage lowering due to atomistic effects. This compensation varies from

16% in 100 nm MOSFETs up to 40% in 30 nm devices.

The combination of quantum mechanical and random dopant effects, which are

closely interlinked and may enhance or compensate each other, becomes very important

in sub 100 nm MOSFETs and poses serious challenges for the development of the next

generation of simulation tools.
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Figure Captions

Fig. 1 Typical atomistic simulation domain and dopant distribution used in the

simulation of a 30x50 nm n-channel MOSFET with oxide thickness to_ = 3 nm, junction

depth x i = 7 nm and channel acceptor concentration NA = 5×1018 cm -3.

Fig. 2 Potential distribution at threshold voltage obtained from the atomistic DG

simulation of a 30×50 nm MOSFET with design parameters given in Fig. 1.

Fig. 3 One equi-concentration contour corresponding to the potential distribution in

Fig. 2. The inversion charge distribution peaks below the Si/SiO 2 interface.

Fig. 4 Quantum mechanical threshold voltage shift as a function of the doping

concentration. A comparison between 1-D DG and full band Poisson-Schr0dinger

results [11] at oxide thickness to, = 4 nm.

Fig. 5 Quantum mechanical threshold voltage shift as a function of the electron effective

mass m*, in 1-D DG simulation for acceptor concentration N A= 3×10 _8cm 3 and oxide

thickness to, = 4 nm.

Fig. 6 Comparison of the 1-D charge distribution obtained from DG and full band

Poisson-Schrrdinger simulations for acceptor concentration N A = 5×1017 cm 3, oxide

thickness to×=4 nm and inversion charge density 1.67×10 _1cm 2.

Fig. 7 Threshold voltage as a function of the oxide thickness in a 50×50 nm MOSFETs

with channel doping concentration NA=5XlO_Scm -3 and poly-Si gate doping

N o = 1×10 20 cm "3.

Fig. 8 Threshold voltage lowering as a function of the oxide thickness extracted from

the data in Fig. 7.

Fig. 9 Threshold voltage standard deviation as a function of the oxide thickness for

devices with the same parameters as in Fig. 7.

Fig. 10 Threshold voltage as a function of the effective gate length for MOSFETs with

channel width W_lr=50nm, channel doping concentration NA=5xl0_Scm -3, oxide

thickness tox=3 nm and poly-Si gate doping N o = 1×10 :° cm -3.

Fig. 11 Threshold voltage lowering as a function of the effective channel length

extracted from the data in Fig. 10.
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Fig. 12 Threshold voltage standard deviation as a function of the effective channel

length for devices with channel doping concentration N A = 5x10 _scm 3 and poly-Si gate

doping N o = lxl0 2° cm -3.
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