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Abstract

The dynamics of an ensemble of linear disturbances with a known probability distribution

associated with the initial mode amplitudes are studied in boundary-layer flows through an

analysis of the transport equations for the mean disturbance kinetic energy and disturbance

energy dissipation rate. Effects of adverse and favorable pressure-gradients on the distur-

bance dynamics are also included in the analysis. Unlike the fully turbulent regime where

nonlinear phase scrambling of the fluctuations affects the flow field in proximity to the wall,

the laminar regime fluctuations studied here are influenced across the boundary layer by

the solid boundary. In addition to the low Reynolds number, early stage transition regime,

the dynamics of these disturbance fields can be related in some respects to the near-wall

dynamics of the fully turbulent regime.



1 Introduction

A current challenge in the prediction of wall-bounded turbulent flow fields within the realm of

single-point closures is the inability to consistently predict the (upstream) transitioning flow field

dynamics. While such transition models exist in the literature, (Dhawan and Narasimha, 1958;

Solomon, et al, 1995; Steelant and Dick, 1996; Warren and Hassan, 1998), their development has

been based more from empirical grounds rather than from first principles. As such, their range

of applicability is confined to flows containing the same dynmaic features as the "calibration

flows" the models were designed for.

In order to develop a general linkage between the transitioning laminar flow and the turbulent

flow in a developing boundary layer, for example, it is necessary to have a common mathematical

framework from which the disturbances in both regimes can be described. In previous studies

(Thacker, Grosch and Gatski, 1999a and 1999b) such a framework was developed by coupling a

deterministic description of the evolution of disturbances in the laminar regime with an analysis

of an ensemble of such disturbances. The approach is based on the observation that, even in the

laminar regime, every flow is subject to an inevitable uncertainty in initial conditions. There-

fore, although each individual disturbance evolves deterministically, a probability distribution

must be introduced for the calculation of ensemble mean properties. This approach is similar

to rapid distortion theory (RDT) in that it is based on linearized disturbance equations; how-

ever, the realm of application is different. The probability distribution associated with the each

initial disturbance mode is given and from that a statistical database of such a distribution of

disturbances is developed. These previous studies of disturbance dynamics focused on homoge-

neous flows (Thacker, et al, 1999a), shear flow (Thacker, et al, 1999b) in order to develop the

methodology and to form a linkage with corresponding turbulent boundary free flows.

The mathematical methodology developed previously is extended to a spatially developing

boundary layer with zero, adverse and favorable pressure gradients. The (mean) boundary-layer

flow in all cases is extracted from the Falkner-Skan family of solutions, and the disturbance

field is a superposition of three-dimensional disturbance modes that are solutions of the Orr-

Sommerfeld and Squire equations. A probability distribution that is Gaussian in spanwise

wave number and uniform in frequency, describing a white noise spectrum, is assigned to the

initial mode amplitudes and used to calculate various correlations such as the ensemble mean

disturbance kinetic energy and dissipation rate. With this disturbance database, an analysis of

the corresponding kinetic energy and dissipation rate transport equations can be performed and

closure models developed for higher-order disturbance field correlations.

2 Analysis

At the outset, a fiat, solid-walled boundary located in the (x*, z*) plane at y* = 0 is considered (*

variables are dimensional quantities). The incompressible flow analysis focuses downstream away

from any leading edge effects. Linear disturbance fields are generated which are deviations from

an ensemble-mean boundary-layer velocity field given by the Falkner-Skan family of solutions



applicableto flowfieldswith zero,adverseandfavorablepressuregradients.Standardboundary
layerscalingis usedsothat the U& is the velocity scale, and L* = [(2 -/3)ux*/U_c] 1/2 is the

length scale. The effects of pressure gradient are introduced through the parameter/3: /? = 0,

zero pressure gradient;/3 < 0, adverse pressure gradient;/3 > 0, favorable pressure gradient.

The three-dimensional, laminar disturbance modes under consideration are bounded solu-

tions of the linearized Navier-Stokes equations. These velocity and pressure disturbance modes

can be written as

[ _ti(y, ka,w, Re) ] ei(kx-_t)15(y, k3, w, Re) (1)

where Re(= U_cL*/u ) is the Reynolds number based on streamwise location, k(Re, w) =

(kl(Re, w, k3), 0, ka) is the wave vector in coordinate directions (x, y, z) associated with the most

unstable mode, with kl complex and ka real, and w is the (real) frequency. These modes are the

solutions of the continuity and momentum equations given by

with

du2
iktftl + -_u + ikafz3 = 0 (2)

(._y) 1(-iw + iklU)_l + dU a2 = -ikl lS + -_e [/:_l] (3)

1
(-iw + ikl U) _2 - d15 + [£a2] (4)

dy Ree

1
(-iw + iklU) _3 = -ika _ + _ [£a3] (5)

d2 d2
£- (k_ + k_)- lC_ (6)

dy 2 dy 2

where U is the streamwise velocity. These equations are combined to obtain, first the Orr-

Sommerfeld equation for the wall normal velocity component u2 with complex eigenvalue kl

£2_2 = ire (kt U - co) £u2 - ikl Re \ dy 2 ] u2

and second, the Squire equation for the normal component of vorticity,

_2 = ik3_l -- ikl_,3.

(r)

(8)

d2_---_2dy2 -1- [iRe (co - klU ) - ](72] _2 --ik3Re _y _2 (9)

Equations (7) and (9) are solved subject to the boundary conditions/t2 = (d_2/dy) = O, _2 = 0

at y = 0, and g: --+ 0, _2 --+ 0 as y --+ ec. The Orr-Summerfeld equation is solved using

the compound matrix algorithm employing a fourth order Runge-Kutta integrator combined

with an iteration on the eigenvalue. Once the eigenvalue, kl, and eigenfunction, u2, are found,

the Squire equation can be solved for _2. The Squire equation is quite stiff so it is solved by

an implicit method; the second derivative is approximated by a fourth order stencil and the



resultingpenta-diagonalsystemis solvedby a generalizedThomasalgorithm. With u2 and _2

known, Eqs. (2) and (8) are solved simultaneously for _;1 and g3. Finally, with the velocity field

fi known, the pressure is found from (3).

The velocity and pressure disturbance fields can be constructed from these disturbance mode

solutions by considering an ensemble of linear superpositions of modes with initial mode ampli-

tudes ti(w, k3) so that

. 1. __i( kldx+ _t)ui(x,t) = dw dk3 _(w, k3)£ti(y,w,_3jc f k3z - (10)

p(x, t) ----/ dw dk 3 tiP(w, k3)iS(y, w, k3)ei(f klax+ k3z - _t) (11)

This ensemble is described by a probability distribution of (I)(w, k3) so that its mean, (ti(w, k3))

is zero, and its covariance is homogeneous (z-direction) and stationary,

(ti*(w, k3)(I)(J, k_)} -- 5(w - w')5(k3 - k_3)T_(w, k3).

In addition, the probability density P(w, k3) is partitioned as

(12)

with

v(w, k3) = (13)

--ak2

P(k3) = _/_e 3 (14)

(15)

1 w L < w < WH
7'(w) = wH --'L (16)

0 otherwise

The probability density associated with the wavenumber k3 assumes a Gaussian form with

the mean spanwise extent of the initial disturbance field. The probability density associated with

frequency assumes a flat (white noise) spectrum where WE and WH are chosen to encompass the

region of disturbance growth computed from linear stability theory.

3 Results

Figure 1 shows the growth rate contours obtained from the linear stability analysis for the

zero pressure gradient case. The disturbance field with k3 = 0 is a two component, (ut, u2),

two dimensional, i.e. independent of x3, field. With k3 > 0 the disturbance flow field is a

three component, three dimensional, one. The wider the range of values of k3 the more three

dimensional the flow. However, from these plots of the growth rate contours one sees that the

modes with the larger values of ka have, at any Re, a smaller range of unstable frequencies and

a smaller maximum growth rate as compared to the range and maximum growth rate of modes

with k3 = 0.



It isnowpossibleto easilyformthesecond-momentcorrelationsfromthedisturbancevelocity
andpressurefieldsgivenin Eqs. (10)and (11). For example,the disturbancestresstensoris
givenby

andthe disturbanceisotropicdissipationrate is givenby

1 /Ouj c3u;}_(x,y) - Re \ Ox_ axk

-- Rel / dw dk3 #(w, ka)e -2 f zm(kl)dz

(17)

× jklj2+ k;) + dy (is)

Figures 2 and 3 show the variation of the total disturbance kinetic energy, K, and isotropic

dissipation rate, e, as a function of streamwise distance from the initial position where the

disturbance field was generated. Initially (small x - x0) K decreases because the flow is stable

at the initial position but thereafter at locations were the mean flow is unstable the kinetic

energy grows rapidly with increasing streamwise distance. At x0 the dissipation rate, e, is quite

large. Similarly to the behavior of K, e decays initially but at a much greater rate than the decay

of K. The minimum in e coincides with the downstream location where K = 1 and thereafter e

grows with increasing x. Despite the growth of e, it is clear that the production of K outweighs

the dissipation because there is overall growth in the kinetic energy.

Figures 4, 5, and 6 show the variation of the scaled disturbance kinetic energy and isotropic

dissipation rate across the boundary layer at different streamwise locations. As shown the

variables are in terms of wall units such that K + = K*/(u_.) 2, e+ = ¢*/((ur)4/_, *) and y+ =

y*ur/_*, with the friction velocity determined from u_. = v/_21w where Ti'2 is that of the mean

flow, i.e. T_2 = dU*/dy*. Scaling with u r is straightforward. The mean profile, U(y), is obtained

from the solution of Falkner-Skan equation with pressure gradient parameter/_, y = y*/L* and

U = U*/U%. From the definitions

and

(19)

\ ,* ] _ \ u* ] _ =(S°Re)t/2Y (20)

with both So and Re functions of/_.

Figure 4 shows that shape of the kinetic energy distribution in y+ is approximately the same

at each downstream location with only the peak values growing in the region where the boundary
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layeris unstable.Also, asshownin Figure4, the majority of the kinetic energyis contained
within the innerregionof the boundarylayer,with y+ < 80, independently of the downstream

location. The results shown in Figures 5 and 6 show that the dissipation rate is maximum at the

wall. This occurs because the disturbance flow field velocity gradients are maximum at the wall.

In fact, as can be seen from Figure 5, almost all of the dissipation occurs where y+ is less than 2

or 3. As the energy increases with increasing downstream distance so does the magnitude of c at

the wall. Figure 6 shows the distribution of c with y+ across the boundary layer. Outside of the

immediate neighborhood of the wall the distribution of ¢ with y+ up to about y+ = 50 is nearly

constant and independent of streamwise position. These results suggest that the distribution of

K and ¢ with y+ approximately scale with the total value of the kinetic energy at all of these

locations.

Another useful variable to examine, that is directly derivable from Eq. 17, is the anisotropy

tensor bij,

bij- Tij 5ij (21)
2K 3

Because the mean flow is a two component, two dimensional flow the symmetry imposed on the

disturbance velocity field requires that b13 --- b23 _- 0. Also, the trace of the anisotrophy tensor

must vanish. In these calculations all components of the anisotropy tensor and its trace are

computed and it is found that b13, b23 and the trace are zero to within machine error.

Figures 7 and 8 show the variation of two of the components of the anisotropy tensor bij

across the boundary layer at different streamwise locations. In the inner region, y+ < 50, b22

(Figure 8) is close to -1/3 because the boundary conditions on u2 require that both u2 and

Ou2/Ox2 be zero at the wall. Thus, the ul and u3 are the dominant components in this region.

Further from the wall, b11, b22 and b33 (not shown) are all close to zero indicating an equipartition

of the kinetic energy among all three of the velocity components. Still further from the wall

there is a region in which bll is approximately -1/3 showing that u2 and u3 are the dominant

components in this region. Finally, in the outer reaches of the boundary layer the disturbance

flow field has an approximate equipartition of the kinetic energy.

The variation of b12 across the boundary layer at different streamwise locations is shown in

Figure 9. Note that the production of kinetic energy term in the energy balance is proportional

to -712 so that negative values of b12 indicate production of kinetic energy. At all streamwise

locations b12 is predominantly negative with very small positive values for y+ > 100. This is as

expected from the growth K with downstream distance. Although the magnitude of the peak

value of b12 decreases slightly with increasing x - xo, the range of y+ over which it is negative

increase so that integral of b12 over the boundary layer, a measure of the total production of

kinetic energy, increases with increasing x - xo.
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4 Summary and Conclusions

This research establishes a unified mathematical framework is found for describing disturbances

in both the transitioning and turbulent regimes. The transitioning regime is modeled by an en-

semble of deterministic solutions of the linearized Navier-Stokes equations described by a proba-

bility distribution that accounts for the uncertainty in disturbance initial (upstream) conditions.

This yields an upstream kinetic energy spectrum associated with probability distribution of ran-

dom mode amplitudes of disturbances calculated from the linearized Navier-Stokes equations.

In addition using this methodology, transport equations for the disturbance moments were de-

rived. This methodology as applied to stochastic disturbance field, was used to model the early

stage of a transitioning boundary layer. The second-moment disturbance velocity correlations

and isotropic, disturbance energy dissipation rate were calculated.

It was found that, in a boundary layer in which the disturbance velocity field was growing,

that (1) the majority of the disturbance kinetic energy was confined to an inner layer, y+ <

60; (2) almost all of the energy dissipation occurs at and very close to the wall where the

disturbance field is predominantly a two (Ul,U3) component one; and (3) the production of

kinetic energy occurs further from the wall, 50 < y+ < 100, where the disturbance flow field is a

three component one and there is near equipartition of the kinetic energy among the components.

Further research will involve the study of the production, transport, and destruction terms

in mean disturbance kinetic energy and dissipation rate equations with the view to modeling

the complex behavior observed in the results of these calculations.
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Figure 1: Growth-rate contours Ira(k1) of the zero pressure gradient boundary layer for several

values of k3, the spanwise wave number.
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Evolution of the disturbance kinetic energy as a function of the streamwise location.

10



5

4

3

1

O I I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
X-X o

Figure 3: Evolution of the disturbance isotropic dissipation rate as a function of the streamwise
location.

11



3

2

1

0 I

0

\

\

\

40 80 + 120 160 200
Y

Figure 4: Distribution of the disturbance kinetic energy across boundary layer at various stream-

wise locations. The curves are labeled with the values of x - x0.
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Figure 5: Disturbance isotropic dissipation rate distributions across the inner portion, y+ _< 10,
of the boundary layer at various streamwise locations. The curves are labeled with the values
of x - x0.
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Figure 6: Disturbance isotropic dissipation rate distributions across the boundary layer at vari-

ous streamwise locations. The curves are labeled with the values of z - zo.
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Figure 7: Distribution of b11, one component of the velocity second-moment ansiotropy tensor,
across the boundary layer at various streamwise locations. The curves are labeled with the

values of x - x0.
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Figure 8: Distribution of b22, one component of the velocity second-moment ansiotropy tensor,

across the boundary layer at various streamwise locations. The curves are labeled with the

values of x - x0.
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Figure 9: Distribution of b12, one component of the velocity second-moment ansiotropy tensor,

across the boundary layer at various streamwise locations. The curves are labeled with the

values of x - x0.
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