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Abstract

Three techniques are introduced to determine the order and control weighting for

the design of a generalized predictive controller. These techniques are based on the

application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an

optimal search on specific performance indexes or objective functions. Fuzzy logic is

found to be feasible for real-time and on-line implementation due to its smooth and quick

convergence. On the other hand, genetic algorithms and simulated annealing are

applicable for initial estimation of the model order and control weighting, and final fine-

tuning within a small region of the solution space. Several numerical simulations for a

multiple-input and multiple-output system are given to illustrate the techniques developed

in this paper.
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Introduction

Adaptive predictive feedback control has been successfully used to suppress plate

vibrations for acoustic noise reduction as presented in Ref. 1. The adaptive predictive

controller consists of an on-line identification technique coupled with a control scheme.

The basic design variables used in generalized predictive control (GPC) include

autoregressive exogeneous (ARX) model order for on-line identification and control

weighting for computing control force. They must be determined before on-line

implementation. The values of these variables are typically obtained by experience or

trial-and-error methods. Therefore, an experienced engineer is needed to perform the

tuning process. Also, the optimal performance might not be achieved.

An on-line tuning method using fuzzy logic rules will be developed. Starting with

a set of proper initial values for the design variables, GPC performance can be gradually

improved. The required data are collected and then sent to the higher level. At the

higher level, the fuzzy logic rules are used to adjust the design variables. The procedure

is repeated until some stopping criterion is met. However, the stability of the GPC

controller cannot be guaranteed.

To solve the aforementioned problem, an optimization problem is formed. An

objective function is defined, which includes a term to reflect performance and a

controller stability penalty term. A genetic algorithm or simulated annealing is adopted

to perform optimal search for control weighting and ARX model order. Both methods

need to evaluate the objective function over the solution space, which means that poor

performance may be presented during the search process. Therefore, this method is

suitable for the initial tuning and the fine-tuning of the control weighting. During the

initial tuning, the objective function evaluation should use an identified system model

instead of on-line experimental data. However, during the fine-tuning, the range of

solution space is limited so that only the acceptable performance will occur. Therefore,

on-line tuning is feasible in the latter case.

Generalized Predictive Control

Consider the predictive matrix equation as defined in Ref. (1)
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Ys (k) = Tu s (k) + ®Vp (k - p) (1)

The vectors ys(k)and us (k )consist of current and future output and input data,

respectively, from the current time step k to a desired future time step k+s-1,

Ys (k) = y(k + 1) and u s (k) = u(k + 1)
i

y(k + s - 1)J u(k + s - 1)J

(2)

and vp (k - p) contains past input and output data from time step k-p to k-l,

vp (k - p) =

-y(k - p)-

y(k -1)

u(k - p)

u(k-1)

(3)

The matrixT is a Toeplitz matrix which is formed from the pulse response sequence. The

matrix @ is a rectangular coefficient matrix. The integer p is the order of the identified

model and s is the prediction horizon.

The goal of the predictive control is to compute the control force us(k) that

minimizes the cost function

J(k) = 1 {y(k)- _y(k)]rs[y(k) - y(k]+ Us(k) r Aus(k)} (4)



where A is a positive-definitematrix to weight the force vector us(k). Taking the

derivative of the resulting equation with respect to u s (k) with the aid of Eq. (1) yields

us(k ) = -[TrT + Al-lTr[®v_ (k - p) -_(k) ] (5)

The first r values of the force vector u, (k) are applied to the r control inputs, the

remainder is discarded, and a new control sequence is calculated the next time step. In

order to carry out the above process, the desired outputs in the vector Ys (k) must be

given. In the regulation problem, the desired plant output is zero. Taking the first r rows

with zero desired outputs results in

u(k) = First r rows of {-[TrT + A] -_ T r }®vp (k - p) (6)

When A is a zero matrix, the closed-loop system will be unstable for non-minimum

systems because the matrix T is rank deficient. The quantity A must be carefully tuned to

make the system stable.

Application of Fuzzy Logic

In theory, the smaller the value of A, the better the performance of GPC, which is

due to rather large control magnitude. However, there is a limitation of control

magnitude and so the performance and control magnitude should be traded off, which is

determined by A. For simplicity, assume that the weighting matrix A is an identity

matrix multiplied by a scalar _,. This is a common assumption in practice in predictive

control applications. The fuzzy logic rules are developed to tune the value of/1,. To

understand fuzzy logic, the reader is directed to Ref. 2 for further information.

Control Weighting Tuning

In this study, the antecedent part of fuzzy rules has two inputs, i.e., performance

index (PI) and control index (CI), which are defined as follows.
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PI= RMS[yrop(k)Yop(k)] (7)

CI = Maxku(k)l/Uma x (8)

where y(k) is the system output with control, yop(k) is the system output without control,

u(k) is the control, Uma_is the maximum control force allowed, and k is the time step.

The membership functions of linguist variables are shown in Fig. 1 and the rule

matrix is shown in Table 1. The output linguist variable (multiplication factor) has ten

linguist labels, which are represented by 1 to 10 as shown in Fig. 1. The number 7 means

zero action. Note that the multiplication factor value is an exponent to a number that is

two in this study. For example, if PI = 0.5 and CI = 0.8 computed from Eqs. (7) and (8),

then PI is A and CI is A with degree 1 (see Fig. 1). From Table 1, only one fuzzy rule is

activated and its label is 6. The corresponding value from the bottom figure in Fig. 1

results in -0.5. The final multiplication to the control weighting 2. is 2 x=0.70711 where

x= -0.5. The integer 2 is introduced to regulate the change of ,,_. Any other integer or

number may be used for different applications. The recursive update law for the control

weighting is

/]'new _ 2x/]'old (9)

Now consider the case where PI = 0.4, then both fired degrees of G and A from the

top figure of Fig. 1 are 0.5. In addition, if CI = 1, the degree of linguist label U from the

middle figure of Fig. 1 is 1. According to Table 1, the activated rules are linguist labels 8

and 9. The defuzzified value becomes 0.75. Thus the multiplication to the control

weighting is 2 o.75. The negative value of x means the multiplier is less than one, i.e.,

decrease 2, and the positive value means greater than one, i.e., increase 2. The fuzzy

rules are briefly described as below.

(1) If the controller performance is good and the control effort is close to the maximum

value, then 2, should be increased, i.e., using the linguist label 8-10.



(2) If the controllerperformanceis not satisfiedandthe control magnitudehasroom to

increase,then,_.should be decreased, i.e., using linguist label 1-6.

(3) If both PI and CI are satisfied or there is no room to increase control magnitude, then

should be kept constant, i.e., using the linguist label 7.

The universe of discourse defined for the fuzzy variables in this study may not be

suitable for other systems. However, this problem can be overcome by multiplying the

signals by a scalar before fuzzification so that the fuzzy rules can be applied correctly.

For example, if the value of variable PI is 0.3, the degree of good is 1.0 according to Fig.

1. If the value 0.3 is excellent in a specific system, the signal PI should be multiplied by

1/3 to become 0.1 and PI should be excellent with degree close to 1 after fuzzification.

On the other hand, if this value is only acceptable, the signal should be multiplied by 5/3

to yield 0.5 so that it will belong to acceptable with degree close to 1 after fuzzification.

With these modifications, the defined fuzzy logic rules can be applied to many different

systems.

The computational procedure for control weighting tuning can be summarized as

follows

1. Perform an open loop experiment with a given input sequence u(k) where k = 1,2,.../

to obtain the open-loop output response history Yop (k) with k = 1,2,...l. Note that the

system may also be excited by unknown disturbances.

2. Set the control weighting to an initial value, 2 = 1 for example.

3. Perform system identification to compute T and ® shown in Eq. (1).

4. Determine the control law according to Eq. (6).

5. Close the system loop using the control force defined by Eq. (6).

6. Compute the performance index (PI) and the control index (CI) using Eqs. (7) and

(8).

7. Update the control weighting using the fuzzy rules described earlier.

8. Repeat step 3 to 7 until the weighting 2 converges.



ARX Model Order Tuning

The fuzzy rules may alsobe developedto tune the ARX model order. Usually,

high order models produce better output prediction error. However, when the model

order exceeds a certain number, the model only improves slightly at the expense of

considerable computation time, which imposes limitations on the sampling rate.

Therefore, it is necessary to adopt a proper model order to trade-off computation time.

In this study, three variables are considered to determine the action. These are

normalized output prediction error (PE), change in PE (CPE), and normalized model

order (ORD), which are defined as follows.

PE- RMS_ y(k)- _(k) )

RMS_y(k_) (10)

CPE= sign(N(k)-N(k-1))x[PE(k-1)-PE(k)] (11)

ORD = N(k) / Nmax (12)

where y(k) and )(k) are output and predicted output, respectively, N and Nmax are model

order and maximum model order, respectively, and k is the time step. Equation (11)

includes the term sign(N(k)-N(k-1)) for CPE to indicate the direction of change of model

order. If CPE is positive, the change of model error will be positive; otherwise, the

direction will be reversed.

In order to simplify the fuzzy rule structure, a hierarchical structure is adopted.

The first level's input linguistic variables are PE and CPE, and the output linguist

variable is an order multiplier, which is referred to as OUT1. The input variables for the

second level are ORD and OUT1 and the output linguist variable is a multiplier that

adjusts the result of the first level, which is called OUT2.

The membership functions for the first level fuzzy variables are shown in Fig.2

and rule matrix is shown in Table 2. The main ideas are as follows.

(1) If CPE is negative, then decrease the model order, i.e., OUT1 < 0.

(2) If CPE is positive, then increase the model order, i.e., OUT1 > 0.

(3) If CPE is close to zero, then maintain the same order, i.e., OUT1 = 0.

The membership functions and rule matrix for the second level fuzzy rules are

shown in Fig. 3 and Table 3, respectively. The main purpose of these rules is to adjust
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the magnitude of the first level output. When the model order is close to the allowable

value, which is determined by the computer, the number of multiplication will be

decreased; otherwise maintain the same number of multiplication. The final multiplier of

the order is OUT2*(1.+ OUT1).

Consider the simple example where PE - 0.35, i.e., PE is B with degree 1 from

-3

the top figure of Fig. 2, and CPE=3xl0 , i.e., CPE is PS with degree 1 from the

middle figure of Fig 2. This means that the prediction error has been either reduced by

increasing the model order or increased by reducing the model order. In either case, the

model order may be increased. The linguist label of OUT1 is 4 according to Table 2 and

the degree is 1. As a result, the value of OUT1 is 0.4 from the bottom figure of Fig. 2.

For the second-level rules, OUT1 -- 0.4 corresponds to the label 3 with degree 1 as shown

in the top figure of Fig. 3. If ORD = 0.4, i.e., ORD is 3 with degree 1 from the middle

figure of Fig. 3, then OUT2 is 4 according to Table 3, whose value is 0.8 after

defuzzification from the bottom figure of Fig. 3. The final multiplier to the original order

is 0.8 x (1 + 0.4) -- 1.12, i.e., increasing the model order in the next step.

Consider another example where PE - 0.1, i.e., PE is G with degree 1, and

CPE = -3x10 -3 , i.e., CPE is NS with degree 1. There are two possible scenarios. Either

the prediction error becomes worse by increasing the model size, or decreasing the model

order has resulted in reducing the prediction error. Thus, the model order must be

reduced. From Table 2, OUT1 is 2 with degree 1 whose value is 0 from the bottom

figure of Fig. 2. For the second level, OUT1 -- 0 corresponds to the linguistic label 1

with degree 1 for the second-level rules from Fig. 3. If ORD -- 0.6, i.e., ORD is 4 with

degree 1. Then the OUT2 is 5 from Table 3 whose value is 0.9 after defuzzification. The

final multiplier becomes 0.9x (1 + 0)= 0.9, i.e., decreasing the model size in the next

step.

If CPE = 0 and PE is any value, then OUT1 is 2, with a value equal to 0. This

implies that OUT1 is 1 for the second-level rules. If ORD is 1, 2 or 3, then OUT2 is 6,

with a value close to 1. The final multiplier becomes 1x (1 + 0) = 1, i.e., keeping the same

model order.



Application of Genetic Algorithm (GA) and Simulated Annealing (SA)

The control weighting used in GPC must be determined before on-line operation.

In using fuzzy logic as described above, the control weighting is initially set to a "proper"

value such as unity. The proper value is case dependent. Two alternative methods,

Genetic Algorithm (GA) and Simulated Annealing (SA), are examined in this section to

search for an optimal parameter value based on a defined objective function. Both GA

and SA are derivative-free optimization methods, which are suitable for this purpose.

In the regulator problem, the objective function is the summation of the output

deviation from a set point over a finite-time duration and a controller stability penalty

term. GA and SA methods need a large number of function evaluations, which may result

in poor performance during the search. These function evaluations are not practical for

on-line experiments. Therefore, an alternative way is to use an identified model instead

of the real system to generate the function value. It was observed that identifying a high-

order model in combination with a proper model reduction to capture the major dynamic

characteristics would produce a proper model to represent the real system.

GA and SA are briefly described here but the reader should refer to Ref. 3 for

further details.

Genetic Algorithm

GA encodes each point in the solution space into a binary bit string called a

chromosome. Each point is associated with a fitness value, which is usually calculated

from objective function. In a generation, GA keeps a set of points, which is called

population. To generate the new generation, GA constructs a new population using

genetic operators such as crossover and mutation. The members with higher fitness value

have better chance to survive and to participate in mating operations. After several

generations, the population contains members with better fitness values. The procedures

are as follows.

Step 1. Initialization:

(a) Randomly generate the initial population over the solution space.



(b) Evaluatethefitnessvalueof eachindividual.

Step2. Elitism: Keepacertainnumberof bestmembersto thenextgeneration.

Step3. Mating:

(a) Selecttwo membersfrom thepopulationaccordingto their fitnessvalue.

(b) Apply crossoveraccordingto thecrossoverrate.

(c) Apply mutationaccordingto themutationrate.

(d) Repeat (a) to (c) until enough membersare generatedto form the next

generation.

Step4. Repeatsteps2 and3 until a stoppingcriterion is met.

SimulatedAnnealing

Simulatedannealingwas derived from physical characteristicsof spin glasses.

The principle behind simulatedannealingis similar to the phenomenawhenmetalsare

cooled at a controlled rate in temperature.It is now commonly used to solve an

optimization problem. The solution points are evaluatedat the different temperature,

which is decreasingduring the search. At high temperatures,faraway points may be

accepted. Thenew point maypossessa worsefunction valuethan that of the previous

point which is determinedby theacceptancefunction

1
h(_,T) - (13)

1 + exp(AE/(cT))

The quantity c is a system-dependent constant, T is the temperature, and AE is the

energy difference between two different states Xne w and x:

AE = f(Xnew) - f(x) (14)

wherefis the system-dependent objection function. When the temperature decreases to a

low temperature, SA evaluates the objective function at the local points. The procedure

is as follows.

Step 1. Choose a start point x and set a high temperature T. Evaluate the objective

function fix).

Step 2. Set the new point Xnew _- X "+" l_, where Ax is randomly generated.

Step 3. Calculate the new value of the objective functionf(Xnew).
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Step4. (a)Calculateacceptancefunction h(AE, T)

(b) Generate a random probability p.

(c) If h(AE, T) > p, then setx = Xnewand f(x) = f(Xnew).

Repeat (a) to (c) for a set number of times.

Step 5. Reduce the temperature T according to the annealing schedule•

Step 6. Repeat steps 2 to 5 until stopping criterion is met.

Numerical Example

A simplified representation of a mechanical system is used to illustrate various

concepts developed in this paper. Several different cases will be discussed for a multi-

input/multi-output system.

Consider a nine-degree-of-freedom spring-mass-damper system

Mw+Ew+Kw=u

where

W _

Wl

w2

w8

_w9

Ul

u2

H= •

u8

_u9_

m

91 + 92

-92

0

0

-ml

0

0

0

O °°° O

m 2 ... 0

: ".. :

0 ..- m 8

0 ... 0

-92 "'" 0

92 +93 "'" 0

: ".. •

0 "'" 98 + 99

0 .... 99

0

0

0

m9

0

0

- 99

99

11



and

K __.

-k I + k 2 - k 2 .-. 0 0

-k 2 k 2 +k 3 ... 0 0

• : ".. • :

0 0 ... k 8 + k 9 -k 9

0 0 .... k 9 k 9

The quantities mi,_i and k i for i = 1,2,...,9 are the mass, damping coefficients, and

stiffness, respectively. For this system, the order of the equivalent state-state

representation is 18. The control force or disturbance force applied to each mass is

denoted by u i , i = 1, 2,..., 9. The variables w i , i = 1, 2,--., 9 are the positions of the nine

masses measured from their equilibrium positions. In the simulation,

m l=m 2 .... =m 9=lkg, k l=k 2=...=k 9=1000N/m,and

_1 = g2 ..... _9 = 1N - sec/m. The system is sampled at 40 Hz. Measurements are

assumed to be the accelerations of the nine masses, Yi = dZwi/dt2 •

Let us consider two-control-input, single-disturbance-input and three-output case

where the control inputs to the system are the forces on the third and ninth masses (i.e.,

u 3, u 9 ), the disturbance input is at the second mass (i.e., u 2 ), and the outputs are the

accelerations of the fourth, fifth, and eighth masses (non-collocated actuator-sensor).

Therefore, the smallest order of the ARX model is 18.

Assume that the disturbance forcing function is u 2 = 2cos(2_rcot)with co = 6 Hz.

Applying the disturbance signal u 2 , and two independent random signals for u 3 and

u 9 to the system would then generate an open-loop simulation. Both random signals are

normally distributed. A total of 500 data points were collected for system identification

and an initial controller design. To simulate the real system, let the three open-loop

outputs be disturbed by some measurement noise so that the signal to noise ratio is 100.

The noise is random normally distributed.
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Application of Fuzzy Logic

With the open-loop data available, applying fuzzy logic for model tuning

produced Table 4. All identified models were obtained by using the two control inputs

and the three measured outputs without counting the disturbance. Here the disturbance

was assumed unknown. It is known that proper system identification techniques would

recover an accurate input/output map in the presence of periodic input disturbances. The

quantities PE and CPE were calculated using 500 data points. The CPE value for the first

iteration is empty because there is no prediction error available before the first iteration.

Careful examination of Table 4 indicates that increasing the order size does indeed

improve the prediction accuracy. However, the change in prediction error (CPE) shows

less than 1% reduction after the model order 18. Therefore, the model order 18 appears

to be a reasonable choice for GPC controller designs. The ARX model order 18

corresponds to the model size 54 (i.e., 54 times the number of outputs) for a state-space

representation.

Application of fuzzy logic for tuning the control weighting _ produces Table 5.

The initial weighting 1 was arbitrarily chosen. Table 5 shows that it takes about 12 steps

for the control weighting to converge to a constant value. On the other hand, it takes only

9 steps for the performance index (PI) to converge. In other words, PI is not as sensitive

as the control weighting for the updating process. The maximum control force was set to

15N. The control index (CI) in Table 5 implies that the feedback control force at any

time step during the closed-loop control simulation never exceeded 80% of the maximum

force allowed. Table 1 for the rules of tuning 2 may be modified to adjust the maximum

allowable CI to a desired value. Each closed-loop simulation used the control force

shown in Eq. (6) with the parameter matrices determined by the input-output data and

control weighting computed in the previous step, and input/output data. A total of 500

data points were collected for computing new PI and CI at each step. Note that the

objective of the closed-loop simulation is to reduce the response excited by the unknown

disturbance input.

In using fuzzy logic, the heuristic rules are established from experience and the

weighting ,_ must be initialized. The resulting GPC controllers may not be stable even

13



thoughthecorrespondingclosed-loopsystemis stable. It is known thata stable

controllerwill provideamorerobustclose-loopsystem.It is extremelydifficult, if not

impossible,to generatetheheuristicrulesto guaranteethestability of a GPCcontroller,

becausetheexplicit relationshipbetweenthecontrolweightingandtheGPCcontroller

stability is unknown.

Applications of Genetic Algorithm and Simulated Annealing

For the same example, let the objective function for the genetic algorithm be

1 R]_Z[yTopt(k)Yop(k)]
J(_.,n) -

PI RMS[y_ (k)y(k)]

The objective is to maximize J(2, n) subject to the constraint that the GPC controller

must be stable. The variables (members) to be optimized are the control weighting 2

and the ARX order n. For an unstable GPC controller, a negative value may be assigned

for J(2, n) to artificially force the chosen variables out of the mating operations. The

optimal variables after 200 iterations yielded a control weighting 2 = 0.00169, an ARX

order n = 16, and a performance index PI = 27.1%. With each new set of selected

variables, a closed-loop simulation was performed to obtain a set of 500 data points to

compute the objective function.

The parameters used in this example for the genetic algorithm are the number of

iterations 10, the population size 20, the mutation rate of 0.01, crossover rate of 1,

number of bits used in variable encoding 16, range of weighting 10 -3 </_ < 10, and the

range of the ARX order 5 < n < 30. Without any measurement noise and periodic

disturbance, the ARX order 6 is enough to describe the system with 18 degrees of

freedom in the state-space representation and 3 measurement outputs. With noise and

disturbance present, it is known that the optimal order should be higher to accommodate

the computational modes in addition to the system modes. Several simulations have been

performed. Since the initial parameters are randomly chosen for each simulation, optimal

results are somewhat different. However, they are not far apart from each other. In

particular, the PIs are all within the range of 27% to 28%.

The objective function for the application of simulated annealing is
14



RMS[yr (k)y(k)]

J(_,,n) = PI- RMSropt(k)yopt(k)l[y]r

which is the same as that shown in Eq. (7) used for the application of fuzzy logic. The

solution is constrained to yield stable controllers.. A large positive value may be

assigned for J(2, n) to accommodate the constraint because SA is used to search for a

minimum. The optimal results after 446 iterations yielded a control weighting

2 = 0.0014, identified ARX order n = 15, and performance index PI = 26.6%. The

results are similar to the ones obtained using the genetic algorithm. Both optimal GPC

controllers computed from GA and SA are indeed stable.

Instead of the ARX order as an input variable, additional control weighting is

used such that each control force has its own weighting. Assuming that the order is

n=15, the optimal results after 236 iterations are 21 = 0.00256,,,l 2 = 0.00037, and

PI=25.9% where/l 1 and/12 are computed for the control forces u 3 and u 9 located at

the third mass and the ninth mass, respectively. The weighting for u 9 is one order of

magnitude less than the one for u 3 . It means that the control force at the free end of the

spring-mass-damper system works harder than the other force. The resulting

performance is slightly better than other cases.

Concluding Remarks

Three techniques have been developed to determine the basic and most important

design variables for a generalized predictive controller. The design variables include the

order of the system/controller and the weighting of the control force. Three well-known

techniques, fuzzy logic, genetic algorithms (GA), and simulated annealing (SA), are used

to derive these techniques to initialize and fine-tune the design variables. The main

contributions include the introduction of proper performance indexes and heuristic rules

for fuzzy logic, and objective functions for GA and SA. It is believed that the

optimization approaches have not yet been introduced in the field of predictive control.
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Numericalexamplesshowthat fuzzy logic providesa smoothandfast

convergencein thesensethatthecurrentupdateis alwaysbetterthanthepreviousonesin

termsof performance.Thevariablesusedin theGA andSA algorithmshavegone

througharoughride with aconsiderablenumberof iterationsto convergeto thefinal

values. Similarly, theresultingobjectivefunctionhasalsojumpedaroundirregularly.

For smallvaluesof weighting,poorperformance(unstableclosed-loopresponse)may

occur.It clearly indicatesthatfuzzy logic is moresuitablefor real-timeadaptive

implementationsthantheGA andSA algorithms. In avery narrowregionof thesolution

space,GA andSA maybefeasiblefor usein real-time/on-lineimplementation.Fuzzy

logicrequiresanexpertto establishrule matricesandmembershipfunctions. In addition,

it providesnoguaranteeon thestabilityof thefeedbackcontrollers. Assumingthatan

input/outputmapof thesystemis accuratelyidentifiedfrom asetof input andoutputdata

andthat aninternalmodelof theunknowndisturbanceis properlyestimated,GA andSA

maybeusedto computeasetof "optimal" variablesto serveastheinitial values,and

thenfuzzy logic is appliedto performreal-time/on-lineadaptivecontrol. Oneunique

featureof theGA andSA is thattheyguaranteethestabilityof thecontroller.
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Table1RuleMatrix for Tuning ,,_

E

G

PI A

B

U

CI

E G A B U

6 7 7 8 10

5 6 7 7 9

5 5 6 7 8

4 5 5 6 7

1 1 3 5 7

Table 2 Rule Matrix for Order Multiplier

E

G

PE A

B

U

CPE

NM NS ZO PS PM

2 2 2 3 3

1 2 2 3 3

1 1 2 3 4

1 1 2 4 5

1 1 2 4 6

Table 3 Rule Matrix for Adjusting Order Multiplier

OUT1

1

2

3

4

5

ORD

1 2 3 4 5 6

6 6 6 5 4 3

6 6 5 4 3 2

6 6 4 4 3 1

6 6 4 3 2 1

6 5 3 2 1 1
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Table4: FuzzyLogic Applicationfor Model OrderTuning

1
2
3
4
5
6
7
8
9
10

Model PredictionError Changein PE
Order (PE %) (CPE%)

6 15.08 ?
9 9.93 5.14
12 8.22 1.71
15 5.05 3.17
18 3.72 1.33
21 2.86 0.86
25 2.67 0.19
29 2.50 0.17
33 2.34 0.17
37 2.22 0.12

Table5: FuzzyLogic Applicationfor ControlWeightingTuning

Con_ol PerformanceIndex Con_ol Index
Weighting (PI %) (CI %)

1 1 62.47 27.48
2 0.4061 48.02 32.89
3 0.2030 39.69 36.86
4 0.1015 33.22 40.64
5 0.0508 30.07 44.63
6 0.0254 27.99 51.84
7 0.0133 26.55 61.46
8 0.0078 25.26 68.84
9 0.0057 25.25 73.06
10 0.0045 24.99 77.28
11 0.0041 24.88 79.51
12 0.0040 24.86 80.06
13 0.0040 24.86 80.03
14 0.0040 24.86 80.00
15 0.0040 24.86 80.00
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