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ABSTRACT

Genetic algorithms, which simulate evolution in natural systems, have been used to find

solutions to optimization problems that seem intractable to standard approaches. In this

study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse

detonation engine (PDE) is demonstrated. The objective was to maximize impulse

during the detonation wave passage and blow-down phases of operation. Impulse of each

profile variant was obtained by using the CFD code Mozart�2.0 to simulate the transient

flow. After 7 generations, the method has identified a nozzle profile that certainly is a

candidate for optimum solution. The constraints on the generality of this possible
solution remain to be clarified.

INTRODUCTION

Transient flow fields obtained in pulse detonation engines (PDE) preclude traditional

analytic methods of nozzle design, such as the Rao method or method of characteristics.

Quasi-steady blow-down analysis can provide an estimate for expansion ratio but nothing

about nozzle profile; also the quasi-steady assumption is of doubtful validity. It is hard to

conceive of any extension or other direct analytical approach that might be satisfactory.

This leaves search methods: search for the best configuration among the possibilities.

Genetic algorithms are adaptive search algorithms. Over many generations, given an

inherent source of genetic variation, natural populations evolve according to the

principles of natural selection and 'survival of the fittest' first clearly stated by Darwin in

The Origin of Species. By mimicking this process, GAs are able to evolve solutions to

more mundane problems involving searches for global maxima on convoluted solution

spaces. J. Holland, who in 1975 was the first to rigorously lay down the basic principles,

demonstrated that GAs combine exploration of the solution space and exploitation of

previously visited points simultaneously and in the best way, at least theoretically, t61

GAs are an element of the soft, computing techniques for solving complex problems with

system uncertainty coming into use in the design of aerospace control systems, structures
[1,2 31

and components ' ' . Other applications include: (1) the design and optimization of

neural networks, used for a variety of classification problems such as pattern recognition,
[4]

machine learning, image processing and expert systems ; (2) numerical function

optimization, a traditional research area where GAs have been shown to out-perform

conventional methods on difficult, discontinuous, multimodal, noisy functionst51; and (3)

combinatorial optimization dealing with arrangement of discrete objects or allocation of
resources I61.



Here,thepopulationconsistsof diversenozzleprofile variants,eachencodedin a
sequenceof parameters(asequenceof genesformingachromosome).Fitnessis
quantifiedasa performancecharacteristicdeterminedby CFDsimulationof thetransient
flow throughthenozzle.

EVOLUTIONARY ELEMENTS

Evolution can be seen as a two step process: First, a source of hereditary genetic

variation, and second, a selection of those variants most effectively propagated to

following generations. Hereditary genetic variation is brought about through two

mechanisms: mutation of variants and recombination of variants through sexual

reproduction.

Selection. Natural selection is understood as the differential reproduction of alternative

genetic variants. Some variants may increase the chances of individuals carrying them to

survive and reproduce more successfully than individuals carrying alternative variants.
Such individuals are the "fittest".

In simulation, fitness is a calculable quantity. Fitness is calculated for members of the

current population (nozzle variants), and those in the top n percent are ranked as potential

parents for the next generation. Selection for the breeding population is made by fitness

or rank weighted, random lottery.

Recombination. Recombination of the maternal and paternal genes takes place during

meiosis, a type of cell division in which the diploid (double) chromosome complement is

reduce by half (haploid) to form gametes (sex cells). The essential feature is the random

genetic exchange that occurs between homologous sections of maternal and paternal

chromosomes and results in new genetic variants (Figure la).

In simulation, a chromosome section marked by randomly selected break-points in the

gene sequence of the father's chromosome is swapped for the homologous section of the

mother's chromosome. This produces two offspring whose genetic structures are

conjugate recombinations of the genetic material of their parents (Figure lb).

Mutation. Mutations are randomly occurring imperfections in DNA replication. When

these occur in germ cells prior to meiosis, they can be passed on to progeny. Normally
the rate of occurrence is small, maybe 4 mutations per l0 5 replications. Rarely do they

introduce something new that imparts a selection advantage. Nevertheless, mutation may

be the main source of material for evolutionary change.

In simulation, their main role seems to be that of a mechanism lessening the potential for

premature convergence. Since it is relatively easy for diversity to be lost in a small

simulation population, the mutation rate is often assumed to be many times greater than

that occurring in nature, say between 4 and 10 percent.



THE PDE NOZZLE ALGORITHM

Each nozzle variant must be represented by a manageable (small) set of parameters

encoding sufficient information to construct its unique profile. In this experiment, a

nozzle profile is given as a nine point, cubic spline-connected curve. The radial

coordinate values - axial coordinates are specified - form the parameter set that, in the

genetic analogy, is a chromosome. (Axial coordinate distribution was taken from a spline

representation of a proto-type, Rao derived, nozzle, typical of a nozzle showing

moderately aggressive expansion, with clustering near the nozzle entrance.) The first

point is fixed, both axially and radially, to mate with the detonation tube. Although we

will consider variants affecting the only the last eight genes, the nine gene chromosome

encodes the profile,

[ rl, r2, r3, r4, rs, r6, rT, r8, r9 ].

During CFD simulation of the transient flow, pressure (p - poo) is integrated over the

nozzle surface every few time steps from the instant the detonation wave enters the

nozzle until a programmed stop at around .4ms when pressure in the detonation tube has

relaxed sufficiently for recharging. The impulse at cut-off is taken as the nozzle's fitness
value.

The Mozart _ PDE model has a detonation tube length to radius ratio of 10.0 (.2 m long,

.02 m radius), and a nozzle length nominally half the tube length. It is charged with a

stoichiometric mixture of H2 and 02 at 2 atms pressure. This is also the pressure to which

blowdown must relax for purge/recharge to begin. Ambient pressure is 1 atm.

Computations are performed with full chemistry, inviscidly.

Mozart is initialized for its chosen charge and quiescent conditions. The nozzle is any

nozzle that has the chosen grid dimensions. Mozart is then run. A detonation wave

forms and propagates down the tube. Just as it reaches the exit plane of the tube, the run

is stopped and all flow conditions, including history and thrust history files, are saved and

reserved for initialization of all subsequent trials. Thereafter we can swap nozzles freely,

provided they have the same grid dimensions and smoothly connect to the detonation

tube, restart Mozart from the reserved initialization files, run until it reaches the

programmed stop, and examine the nozzle's contribution to impulse. Additional details

regarding the implementation of this operation will not be discussed here; they deal with

procedures specific to running Mozart.

A diagram of the algorithm is given in figure 3. Since the present algorithm departs from

tradition in using continuous variables instead of binary strings as genes, the crossover

and mutation operations are slightly different than those of the earlier illustration. Figure

2 gives a geometric interpretation. The crossover operation might better be seen as a cut

and translate operation. Note that the translation is exact. However, if the offspring's

chromosome is mutated, translation is imperfect, determined by random trial on a

Mozart/2.0 is a research code specifically designed for transient, reacting flows. It was obtained from its
developer, Jean-Luc Cambier now of MSE-TA Inc., Butte, MT. (See for instance AIAA Paper 99-2659.)



Gaussiandistributionabouttheexacttranslation. (Of coursethereareno sharpbendsin
theconstructedprofiles.)

Eachrun takesroughly45mins.ononeprocessor(SGI). Typically, agenerationof 10or
morenewmembersis setupandrun atonetime; usually,thesamenumberof idle
processorscanbefoundonmachinesto which wehaveaccess.

RESULTS AND DISCUSSION

An initial population consisting of 40 members was chosen, produced by randomly

generating points, subject only to the constraint that they be monotonically

nondecreasing. A sample is shown in Figure 4. From this a breeding population of 10

was selected, and each successive generation consists of 10 new members. Figure 5

shows the evolution of the population. The shaded area shows nozzle impulse at cutoff,

while the other curve is the maximum impulse attained (nozzle thrust can become

negative before cutoff). As expected these converge; nozzle thrust is zero at cutoff for

the best performance. Figure 6 shows nozzle variant 95, the best found after 7

generations. The expansion ratio of this nozzle is 3.53. For comparison, a 1-D quasi-

static blowdown analysis gives an exit area ratio of around 3.5 for optimum

thrust/impulse history, given an initial pressure ratio of .01 (ambient to chamber, about 20

percent higher than the maximum simulation pressure). Thereafter, little genetic

diversity remained in the active population, and performance differences were minimal.

The experiment was closed.

At this point, it is tempting to engage in some genetic engineering, to tamper with the

genotype of the breeding population. And if the only objective were to design the

optimum PDE nozzle, we would probably do so. However, in the spirit of the

experiment, we restrained ourselves to better understand its flaws.

It is entirely possible to include x-locations in the gene definition. Clearly some

generality is sacrificed in choosing a particular axial distribution of profile control points.

Note, however, that a profile need not start expansion immediately but could merely

extend the detonation tube for some distance, effectively shortening the nozzle. It did not

work out this way. It would be very fortuitous for the optimum length to have been

chosen by chance. More likely, any initial population profile that might have had the

proper nonexpansive behavior near the entrance was linked to a poor performing
downstream section and so was lost in selection, unfortunately for all time. In genetics

this is called epistasis and refers to the fact that the effectiveness of a gene can strongly

depend on the presence of other genes - a sort of nonlinearity. Unwittingly, we lost

diversity quickly by picking a breeding population too small. At least for several

generations, the breeding population should be large to give potentially good genes a

second chance.

In summary, we should be hesitant to claim that the profile 95 is optimum. Nevertheless,

the experiment was a qualified success. We have demonstrated feasibility and have



gainedvaluableinsightsinto theoperationandrequirementsof GAs in design
application.We haveseenhowGAsexploreandexploit asolutionspacesimultaneously.
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Figure la. Each chromosome is replicated, forming sister chromatids connected at thecentromere.
Maternal and paternal chromosomes come together in homologous pairs with one or more
crossover sites (chiasmata).
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Figure lb. Simulation. Chromosomes represented by binary strings. Crossover point marked by
filled arrows.
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Figure 2. Crossover geometric illustration.



Generate an initial population of size M (a random

selection from allpossible solutions).

Decode chromosomes & generate nozzles - setup Mozart.

(New members of population only.)

b,,,_ Calculate performance (new members only)- select
subset cp of top N performers.

I Check pr°gress'c°nvergence ] [_ (Ston)

Define random variable R on {1,2 .... N} by

assigning rank weighted probability to each i in _.

Two trials of R _breeding pair- repeat ],

for each of n parent pairs. I
Apply crossover at random site in chromosomes of parents ____:_offspring.

Apply mutation if random variable on [0,1] < .05 (5% rate). Repeat for all

couples ofbreedinz population.

Update population. ]

Figure 3. Algorithm schematic

Figure 4. Sample profiles from initial population
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Figure 5. Evolution through generation 7
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Figure 6. Tentative optimum nozzle profile ( # 95) at cutoff
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