

Explicit Substitutions and All That

Mauricio Ayala-Rincón
Universidade de Brasilia, Brasilia D.F., Brasil

César Muñoz
ICASE, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities These results are published by NASA in the NASA STI Report Series, which includes the following report types

- TECHNICAL PUBLICATION Reports of completed research or a major signtficant phase of research that present the results of NASA programs and include extensive data or theoretical analysis Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value NASA's counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations
- TECHNICAL MEMORANDUM. Scientific and technical findings that are prelımınary or of specialized interest, e g, quick release reports, working papers, and bibliographies that contain minımal annotation Does not contan extensive analysis
- CONTRACTOR REPORT Scientific and technical findings by NASA-sponsored contractors and grantees
- CONFERENCE PUBLICATIONS.

Collected papers from scientific and technical conferences, symposia, semınars, or other meetıngs sponsored or cosponsored by NASA

- SPECIAL PUBLICATION Scientıfic, technical, or histonical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest
- TECHNICAL TRANSLATION Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission

Specialized services that complement the STI Program Office's diverse offerıngs include creating custom thesauri, building customized data bases, organızıng and publishıng research results even providing videos

For more information about the NASA STI Program Office, see the following

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- Email your question via the Internet to help@stı.nasa gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Telephone the NASA STI Help Desk at (301) 621-0390
- Write to. NASA STI Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320

Explicit Substitutions and All That

Mauricıo Ayala-Rıncón
Unıversidade de Brasilia, Brasilia D.F., Brasil

César Muñoz
ICASE, Hampton, Virginia

ICASE
NASA Langley Research Center
Hampton, Virginia
Operated by Universities Space Research Association

Natıonal Aeronautics and Space Administration

Langley Research Center	Prepared for Langley Research Center
Hampton, Virginia 23681-2199	under Contract NAS1-97046

November 2000

Natıonal Technical Information Service (NTIS)
7121 Standard Drive

5285 Port Royal Road
Springfield, VA 22161-2171

EXPLICIT SUBSTITUTIONS AND ALL THAT*

MAURICIO AYALA-RINCON ${ }^{\dagger}$ AND CESAR MUÑOZ ${ }^{\ddagger}$

Abstract

Explicit substitution calculi are extensions of the λ-calculus where the substitution mechanism is internalized into the theory This feature makes them suitable for implementation and theoretical study of logıc-based tools such as strongly typed programming languages and proof assistant systems In this paper we explore new developments on two of the most successful styles of explicit substitution calculi the $\lambda \sigma$ and λs_{e}-calculı

Key words. explicit substitution, higher order unification, lambda-calculus, type theory, rewriting

Subject classification. Computer Science

1. Introduction. This paper focuses on the uses of explicit substitutions in the language of the simplytyped λ-calculus Type theories were used at the beginning of the twentieth century as a formalism to deal with the mathematical paradoxes studied at that time and incorporated in 1940 to the λ-calculus by A Church [11] The need of stronger programming languages guided type theory to the interest of computer scientists in the 1970's and 1980's, when new languages based on type theories were developed Probably the most relevant of these languages is ML [42], developed by R Milner In the 1990's, several proof assistant systems based on higher-order logics, such as Coq [5], HOL [27], and PVS [51], were developed The λ-calculus is the simplest logical framework for reasoning about formal properties of all these systems Many of the essential technıques and computational procedures involved in these tools have been developed, analyzed, and improved in the context of the simply-typed λ-calculus before being implemented These technıques include simple mechanısms such as type checking and type inference, and more complex ones such as those used for dealing with the inhabitation problem and the higher order unification problem The basic operation of the λ-calculus is the β-conversion that was originally defined based on an implicit notion of substitution where renamıng of variables was informally assumed to avoid "clashes" and "captures" This implicitness of the notion of substitution was not critical before this theoretical framework was used in other contexts than the ones of computer science, but making the notion of substitution explicit is essential when computational properties such as time and space complexity should be analyzed

We will focus on two styles of explicit substitutions $\lambda \sigma$ and λs_{e} These calculi use a name-less notation for variables Therefore, technical nusances due to the higher order aspect of λ-calculus, such as renammg and capture of variables, are minımized or completely elıminated in $\lambda \sigma$ and λs_{e}. For these calculı, we will motıvate and illustrate different techniques developed for important computational problems and applications such as higher order unification, type inference, and inhabitation problem These kind of problems arıse naturally in many fields of computer science Some of the curient progress in the area of explicit substitution is recorded in the series of "International Workshops on Explicit Substitutions Theory and Applications to Programs and Proofs" - WESTAPP that runs yearly together with the Conference on Rewriting Technıques

[^0]and Applications - RTA For other surveys and tutorials on explicit substitution calculı see [38, 56]
Firstly, in section 2 we present basic notions of the λ-calculus, its representation in de Bruijn index notation, its simply-typed version, and the Curry-Howard isomorphism Afterwards, in section 3, we motıvate explicit substitutions and present the two before mentioned calculi of explicit substitutions along with their simply-typed versions In section 4, we explain briefly the applications of explicit substitutions before concluding in section 5
2. The λ-calculus. The λ-calculus was developed by Church around 1930 [12] as a formal language for the foundations of mathematics and logic Although that foundation was later revealed to be inconsistent, indeed Russell paradox [58] can be encoded in it, the λ-calculus still provides a formal model of computability Church and Kleene [37, 10] proved that the class of λ-expressions and the class of partial-recursive functions are the same This result, along with Turing's own work, shows that the λ-calculus is as expressive as Turing machunes

The notation consists of a set Λ of terms and rules to mampulate them The set Λ is built on a countable set of variables $\mathcal{V}=\{x, y, \quad\}$ and it is inductively defined as follows $\mathcal{V} \subset \Lambda$, if $M, N \in \Lambda$ then $(M N) \in \Lambda$, and if $x \in \mathcal{V}$ and $M \in \Lambda$ then $\lambda x M \in \Lambda$ Terms of the form (M) are called applıcatzons and terms of the form $\lambda x M$ are called abstractıons Abstractions are binding structures As usual for these kind of structures, a notion of free and bound variables is necessary The set of free variables of M, denoted $\mathcal{F} V(M)$, is defined by $\mathcal{F} V(x)=\{x\}, \mathcal{F} V((M \quad N))=\mathcal{F} V(M) \cup \mathcal{F} V(N)$, and $\mathcal{F} V(\lambda x M)=\mathcal{F} V(M) \backslash\{x\} \quad$ The variable x in a term $\lambda x M$ is said to be bound Names of bound variables are irrelevant For instance, $\lambda x x$ and $\lambda y y$ represent the same λ-term This implicit equivalence is called α-conversion Formally, if $z \notin \mathcal{F} V(M)$, then $\lambda x M={ }_{\alpha} \lambda z M\{z / x\}$, where for an arbitrary term $N, M\{N / x\}$ denotes the atomic substitution of the free occurrences of the variable x in M by N

Substitution plays a very important role in the λ-calculus In fact, the main computational rule in this formalısm, the β-rule, is expressed as follows $(\lambda x M N) \xrightarrow{\beta} M\{N / x\}$ Informally, it states that the application of a function $\lambda x M$ to an argument N, results in a term $M\{N / x\}$ where the formal parameter x has been replaced by the argument N in M (the body of the function) An additional rule, called η, states that abstractions computing the same value for the same argument are convertıble Formally, $\lambda x(M x) \xrightarrow{\eta} M$, if $x \notin \mathcal{F} V(M)$

The formal definition of substitution is not as simple as it seems The following one, commonly used in implementations, is wrong $x\{M / x\}=M, y\{M / x\}=y$, if $y \neq x,\left(\begin{array}{ll}M_{1} & \left.M_{2}\right)\{M / x\}=\left(M M_{1}\{M / x\} \quad M_{2}\{M / x\}\right), ~\end{array}\right.$ $(\lambda x N)\{M / x\}=\lambda x N$, and $(\lambda y N)\{M / x\}=\lambda y N\{M / x\}$, if $y \neq x \quad$ The problem arises in the last case the term M may contan a free variable y which becomes a bound variable when the substitution is applied A correct definition should avoid this capture, for instance, by modifying the last case with $(\lambda y N)\{M / x\}=\lambda z N\{z / y\}\{M / x\}$, where $z \notin \mathcal{F} V(M)$

The λ-calculus is not terminating Indeed, a term like $(\lambda x(x x) \lambda x(x x)) \beta$-reduces to itself and then it can be always reduced However, the λ-calculus satisfies, the Church-Rosser property ie, if $M_{1}=\beta \eta M_{2}$, then there exists N such that $M_{1} \xrightarrow{\beta \eta^{*}} N$ and $M_{2} \xrightarrow{\beta \eta^{*}} N^{1}$ In consequence (1) the λ-calculus is also confluent and (2) normal forms, it they exist, are umque We refer to [3] for a complete description of the λ-calculus and its properties

[^1]2.1. de Bruijn indices. At the beginning of the seventies, de Brujn developed a nameless notation for the λ-calculus [19] In that notation, names of bound variables are replaced with indices

Definition 21 The set $\Lambda_{d B}$ of λ-terms in de Bruinn index notation $2 s$ defined inductively as

$$
M I, N=\underline{n}\left|\left(\begin{array}{ll}
M
\end{array}\right)\right| \lambda M
$$

where $n \in \mathbb{N}^{>0}$
An index counts the number of λ-symbols in the binding scope of the bound variable that it represents For instance, in de Bruijn index notation, the term $\lambda x x$ is written $\lambda \underline{1}$ snce the bound variable x is in the binding scope of one λ-symbol Similarly, the term $\lambda x(\lambda y(x y) x)$ is written $\lambda(\lambda(\underline{2} \underline{1}) 1$) Note that the same index appearing in different binding scopes represents different variables Vice-versa, occurrences of the same variable appearıng in different bindıng scopes are denoted by different indices

Free variables can also be represented by de Bruju indices In that case, it is necessary to fix an enumeration, namely a referental, $x_{1}, x_{2}, \quad, x_{n}$, of free variable names If the occurrence of a variable is denoted by an index \underline{n} and the number of λ-symbols in the binding scope of that occurrence is less than n, say m, then that occurrence of \underline{n} represents the free-variable x_{n-m} of the referential For instance, the term $(\lambda x(y x) z)$ can be encoded as ($\lambda(\underline{2} \underline{1}) \underline{2}$) under the referential y, z and as $(\lambda(3 \underline{1}) \underline{1})$ under the referential z, y

The formulation of the rules β and η for $\Lambda_{d B}$-terms requires the following functions for updating and substitution of mdices

Definition 22 Let $M \in \Lambda_{d B}$ The \imath-lift of M, denoted $M^{+\imath}$ is defined inductively as follows
$1\left(M_{1} M_{2}\right)^{+\imath}=\left(\begin{array}{l}\left.M_{1}^{+\imath} M_{2}^{+\imath}\right) \text {, }\end{array}\right.$
$2(\lambda N)^{+\imath}=\lambda N^{+(\imath+1)}$,
$3 \underline{n}^{+\imath}=\left\{\begin{array}{l}\frac{n+1}{n}, \text { ıf } n>\imath \\ \underline{n}, \text { ıf } n \leq \imath\end{array}\right.$
The lift of a term M is its 0 -lift and is denoted brıefly as M^{+}
Definition 23 The application of the substitution with N at the depth $n-1$ on a term M, denoted $M\{N / \underline{n}\}$, is defined inductively as follows
$1\left(M_{1} M_{2}\right)\{N / \underline{n}\}=\left(M_{1}\{N / \underline{n}\} \quad M_{2}\{N / \underline{n}\}\right)$,
$2(\lambda M)\{N / \underline{n}\}=\lambda M\left\{N^{+} / n+1\right\}$,
$3 \underline{m}\{N / \underline{n}\}=\left\{\begin{array}{l}\frac{m-1}{}, \text { if } m>n \\ N, \text { if } m=n \\ \underline{m}, \text { थf } m<n\end{array}\right.$
Definition 24 The rules β and η are defined for the set of $\Lambda_{d B}$-terms as follows

$$
\begin{array}{lll}
\left(\begin{array}{ll}
\lambda & N
\end{array}\right) & \xrightarrow{\beta} & M\{N / \underline{1}\} \\
\lambda\left(\begin{array}{ll}
M & 1
\end{array}\right) & \xrightarrow{\eta} & N, \text { rf } N^{+}=M
\end{array}
$$

Example 25 The λ-term $(\lambda x(\lambda y(x z) x)(z \lambda z(x z)))$ can be translated under the referential x, y, z into the $\Lambda_{d B}$-term $(\lambda(\lambda(\underline{2} \underline{5}) \underline{1})(\underline{3} \lambda(\underline{2} \underline{1})))$ Furthermore, we have

$$
(\lambda x(\lambda y(x z) x)(z \lambda z(x z))) \xrightarrow{\beta}(\lambda y((z \lambda z(x z)) z)(z \lambda z(x z)))
$$

We examme in detall the steps of that reduction for $\Lambda_{d B}$-terms

$$
\begin{aligned}
& (\lambda(\lambda(\underline{2} \underline{5}) \underline{1})(\underline{3} \lambda(\underline{2} \underline{1}))) \xrightarrow{\beta}(\lambda(\underline{2} \underline{5}) \underline{1})\{(\underline{3} \lambda(\underline{2} \underline{1})) / \underline{1}\} \\
& =((\lambda(\underline{2} \underline{5}))\{(\underline{3} \lambda(\underline{2} \underline{1})) / \underline{1}\} \underline{1}\{(\underline{3} \lambda(\underline{2} \underline{1})) / \underline{1}\}) \\
& =\left(\lambda(\underline{2} \underline{5})\left\{(\underline{3} \lambda(\underline{2} \underline{1}))^{+} / \underline{2}\right\}(\underline{3} \lambda(\underline{2} 1))\right) \\
& =\left(\lambda(\underline{2} \underline{5})\left\{\left(\underline{3}^{+} \lambda\left(\underline{2}^{+1} \underline{1}^{+1}\right)\right) / \underline{2}\right\} \quad(\underline{3} \lambda(\underline{2} \underline{1}))\right) \\
& =(\lambda(\underline{2} \underline{5})\{(\underline{4} \lambda(\underline{3} \underline{1})) / \underline{2}\} \quad(\underline{3} \lambda(\underline{2} \underline{1}))) \\
& =(\lambda(\underline{2}\{(\underline{4} \lambda(\underline{3} \underline{1})) / \underline{2}\} \underline{5}\{(\underline{4} \lambda(\underline{3} \underline{1})) / \underline{2}\})(\underline{3} \lambda(\underline{2} \underline{1}))) \\
& =(\lambda((\underline{4} \lambda(\underline{3} \underline{1})) \underline{4})(\underline{3} \lambda(\underline{2} \underline{1})))
\end{aligned}
$$

The $\Lambda_{d B}-\operatorname{term}(\lambda((\underline{4} \lambda(\underline{3} \underline{1})) \underline{4})(\underline{3} \lambda(\underline{2} \underline{1})))$ represents the term $\left(\lambda y\left(\left(\begin{array}{ll}z & \lambda z(x z)) z)(z \lambda z(x z))) \text { under }, ~\end{array}\right.\right.\right.$ the given referential

Example 26 Notıce that

$$
\lambda((\lambda \lambda(\underline{5}(\underline{1} \underline{2})) \underline{4}) \underline{1}) \xrightarrow{\eta}(\lambda \lambda(\underline{4}(\underline{1} \underline{2})) \underline{3})
$$

smes

$$
\begin{aligned}
(\lambda \lambda(\underline{4}(\underline{1} \underline{2})) \underline{3})^{+} & =\left((\lambda \lambda(\underline{4}(\underline{1} \underline{2})))^{+} \underline{3}^{+}\right) \\
& =\left(\lambda(\lambda(\underline{4}(\underline{1} \underline{2})))^{+1} \underline{3}^{+}\right) \\
& =\left(\lambda \lambda(\underline{4}(\underline{1} \underline{2}))^{+2} \underline{3}^{+}\right) \\
& =\left(\lambda \lambda\left(\underline{(}^{+2}\left(\underline{1} \underline{2}^{+2}\right) \underline{3}^{+}\right)\right. \\
& =\left(\lambda \lambda\left(\underline{4}^{+2}\left(\underline{1}^{+2} \underline{2}^{+2}\right)\right) \underline{3}^{+}\right) \\
& =(\lambda \lambda(\underline{5}(\underline{1} \underline{2})) \underline{4})
\end{aligned}
$$

2.2. Simply-typed λ-calculus. The λ-calculus is a simple, but yet powerful formalsm As we sand before, when used as a logical framework, the λ-calculus allows the encoding of paradoxes To solve that problem, Church developed a typed version of the λ-calculus [11] which happens to be a simplfication of the Type Theory of Whitehead-Russell [58]

The effect of typed λ-calculus can be seen on a term such as $\lambda x(x x)$ which is a well formed term in the untyped λ-calculus that represents the abstract concept of "self-application" The meanıngfulness of this concept may be questioned and was involved in many of the logical paradoxes from the beginning of the twentreth century Thinking about x as a functional variable from A to A or of "type $A \rightarrow A$ ", the application ($x \quad x$) is forbidden, since it's impossible to apply a function of type $A \rightarrow A$ to an argument of type $A \rightarrow A$ This comcides with the conception of functional objects assumed by most mathematicians Of course, if z is a variable of type A, the typed expression $\lambda x(x(x z))$ makes sense For a formal introduction to the theory of the simply-typed λ-calculus and interesting historical remarks see [30]

In a typed λ-calculus, λ-terms are stratified in several categories, namely types A type, in the simple type theory, can be a basic type a, b, or a functional type $A \rightarrow B$, where A and B are types We use upper-case letters A, B to range over types Only terms that follow a type discıplne are considered to be valid The type discipline is enforced by a set of typing rules Thanks to the typing rules, Russell's paradox cannot be expressed in the simple type theory
$\frac{x \notin \Gamma}{x A, \Gamma \vdash x \quad A}$ (Start)
$\frac{x A, \Gamma \vdash M B}{\Gamma \vdash \lambda x A M A \rightarrow B}(\mathrm{Abs})$

$$
\begin{gathered}
\frac{x \notin \Gamma}{x A, \Gamma \vdash M} B \\
\frac{\Gamma \vdash M A \rightarrow B}{\Gamma \vdash(\text { Weak })} \\
\frac{\Gamma \vdash N A}{}(\text { Appl })
\end{gathered}
$$

Fig 21 The sumply-typed λ-calculus

FIG 22 The simply-typed λ-calculus for $\Lambda_{d B}$-terms

Typed λ-terms are elements of the set of Λ-terms except that bound varıables in abstractions have type annotations, 1 e , they have the form $\lambda x A M$ Rules β and η are modified accordingly

$$
\left(\begin{array}{lll}
\lambda x & A M
\end{array}\right) \xrightarrow{\beta} M\{N / x\} \quad \text { and } \quad \lambda x A(M x) \xrightarrow{\eta} M, \text { if } x \notin \mathcal{F} V(M)
$$

A typing judgment $\Gamma \vdash M \quad A$ denotes that the term M has type A in Γ, where Γ is a context, 1 e , a list $x_{1} A_{1}, \quad, x_{n} A_{n}$ of variable declarations Henceforth, we use Greek letters Γ, Δ, to range over contexts Figure 21 shows the typing rules of the simply-typed λ-calculus We say that a λ-term M is well typed in Γ if and only if there exists a type A such that $\Gamma \vdash M A$, and we say that a type A is inhabited in Γ if and only of there exists a λ-term M such that $\Gamma \vdash M A$

The presentation of the typed λ-calculus used in this paper corresponds to the Church-style In this presentation, typed λ-terms are elements of the set of Λ-terms except for abstractions, which have type annotations An alternatıve presentation, called Curry-style, considers typed λ-terms as standard Λ-terms without type annotations In that case, type variables should be added to the formalism Indeed, in a typed λ-calculus \dot{a} la Curry, the type of $\lambda x x$ is $\alpha \rightarrow \alpha$ where α denotes any type (See [4])

Type checking is decidable for the simply typed λ-calculus That is, there is a method to decide whether or not a term has a type in a given context according to the typing rules As the untyped version of the λ-calculus, the simply-typed λ-calculus enjoys the Church-Rosser property and therefore it is also confluent Furthermore, it also satisfies the following properties

- Subject reduction, if $\Gamma \vdash M A$ and $M \xrightarrow{\beta \eta} N$, then $\Gamma \vdash N A$,
- Type unıqueness, if $\Gamma \vdash M A$ and $\Gamma \vdash M B$, then $A=B$,
- Strong normalization, if M is a well typed term, then M has no reductions of infinite length Therefore, due to the confluence property, normal-forms of well typed terms always exists and they are unqque
In the de Bruign setting of the simply typed λ-calculus, a context Γ is a list of types $A_{1} \quad A_{n}$ where A_{2} is the type of the free-variable represented by the index $\underline{\imath}$ The empty context is denoted by ϵ Simply-typed $\Lambda_{d B}$-terms are defined by the typing rules of Fig 22
2.3. Curry-Howard isomorphism. There is a strong relation between type theory and intuitionistic logic If we identify types with propositions, where an arrow type is an implication, typing rules of the simplytyped λ-calculus correspond one to one to deduction rules of a minmal intuitionistic logic In other words, typing rules are logical rules decorated with typed λ-terms This principle is known as the Curry-Howard
isomorphism
Consider an intuitionstic minmal logic where propositional formulas are built from atomic propositions a, b, \quad and the implication, 1 e , if A and B are formulas then $A \rightarrow B$ is a formula We use uppercase Greek letters Ω to range over set of formulas We write Ω, A as a shorthand for $\Omega \cup\{A\}$ A judgment $\Omega \vdash_{I} A$ denotes that A is a logical consequence of Ω A judgment is sadd provable (in the minimal inturtıonıstic $\log \imath c$) if and only if it is derived by top-down application of the following rules

$$
\overline{\Omega, A \vdash_{I} A}(\text { Axiom }) \quad \frac{\Omega, A \vdash_{I} B}{\Omega \vdash_{I} A \rightarrow B}(\text { Intro }) \quad \frac{\Omega \vdash_{I} A \rightarrow B \quad \Omega \vdash_{I} A}{\Omega \vdash_{I} B}(\text { (Ilm })
$$

A formula A is a tautology if and only if the judgment $\vdash_{I} A$ is provable For example, the formula $A \rightarrow((A \rightarrow B) \rightarrow B)$ is a tautology since it can be derived as follows

$$
\frac{\overline{A, A \rightarrow B \vdash_{I} A \rightarrow B} \text { (Axiom) } \quad \overline{A, A \rightarrow B \vdash_{I} A}}{} \text { (Axiom) }
$$

Formally, the Curry-Howard isomorphism says that $\Omega \vdash_{I} A$ is provable in the minmal intuitionistic logic if and only if $\Gamma \vdash M \quad A$ is a valid typing judgment in the simply-typed λ-calculus, where Γ is a list of variable declaration of propositions, seen as types, in Ω The term M is a λ-term that represents the proof derivation For instance, the term decoration of the tree derivation above results in the valid typing judgment $\vdash \lambda x A \lambda y \rightarrow B(y x) \quad A \rightarrow((A \rightarrow B) \rightarrow A)$

The Curry-Howard isomorphism is extended to intuitiomstic first order and higher order logics and it is widely studied in proof theory It is at the base of mathematic formalizations where proofs are just mathematical objects Such languages are the base of automatic systems for proof construction, program verification and program synthesis
3. Explicit Substitutions. Implicitness of substitution is the Achulles heel of the λ-calculus Namely, the λ-calculus is a convenient and compact model of the computable functions but it does not provide any mechanism for observing essential operational properties of these functions as time and space complexity The reason for this is that the substitution involved in β-reductions does not belong in the calculus, but rather in an informal meta-level In practice, β-reduction is not a primitive operation and is implemented based on a substitution generally elaborated by renaming variables and/or mantaining some variable convention That makes it impossible to determine or bound in time and space the β-reduction

The $\lambda \sigma$-calculus was the first one presented formally as a mechansm for making explicit substitution in the λ-calculus [1] But before this, today widely considered seminal work, many empiric and theoretic efforts were realized in order to solve the problem of implicitness of the substitution operation From the theoretical point of view, the Combinatory Logic of Curry and Feys [18] proposed the first solution to this problem However, this setting does not remain close to the λ-calculus and the number of primitive steps can be extensively larger than required by explicit substitution calculı From the empirical point of view, perhaps the person who provided the foundations to take care of this problem was de Bruijn humself, when developing his system AUTOMATH from the middle of the 1960's Part of his primary conceptions was the previously mentioned nice nameless notation for the λ-calculus [19] His legacy is collected in [50]

Since the $\lambda \sigma$-calculus was mtroduced in [1], several other variants of explicit substitution calculi have been proposed (see, for example, $[54,38,32,7,39,17,35,43,24,44]$) These calculı implement several styles of explicit substitutions

We will focus our attention on two of these styles the $\lambda \sigma$ - and the λs_{e}-styles Both of them use a nameless notation based on the de Bruijn index notation, which is completely insensitive to α-conversion That allows a clean and elegant meta-theoretical study of the calculı which make them suitable for implementation of declarative programming languages, higher order proof assistants, and automated deductive systems Both styles were shown incomparable in [34]

The $\lambda \sigma$-calculus and its variants have been proposed as a general framework for higher order unification and term synthesis $[21,22,9,36,45,47,46,6]$ Furthermore, calculn of the $\lambda \sigma$-family have been incorporated with success into programming languages and proof assistants For example, an algorithm for pattern unification for dependent types, based on $\lambda \sigma$, has been implemented in the Twelf system [52] It has also been relevant in the improvement of the explicit substitution for the rewrite calculus (ρ-calculus [14]) of the ELAN system, which provides a language based on rewrite rules for specifying and prototyping deductive systems [13]

The λs_{e}-calculus $[32,33]$ was developed more recently than the $\lambda \sigma$-calculus and its mann claimed advantage over the $\lambda \sigma$-calculus is that it remains as close as possible to the λ-calculus having only one sort of objects There is a close relation, until now only subjectively purposed, between the λs_{e}-calculus and the rewrite rules developed by Nadathur and Wilson in the early 1990's and used in the implementation of the higher order logic programming language λ Prolog [41] For instance the laziness in the substitution needed in implementations of β-reduction, that arises naturally in the λs_{e}-calculus, is provided as the informal but empirical concept of suspension of substitutions by Nadathur and Wilson rewrite rules, with their notion of substitution being more general than the λs_{e} one More recently their rewrite rules were published in the context of explicit substitution as the suspension calculus [49, 48] Establishing formally the relations and differences between the λs_{e}-calculus and the suspension calculus remains as important work to be done
3.1. The $\boldsymbol{\lambda} \boldsymbol{\sigma}$-calculus. The $\lambda \sigma$-calculus is a first order rewrite system with two sorts of expressions terms and substıtutions In fact, substitutions mherent to the β-rule in de Bruijn index notation, $\left(\begin{array}{ll}\lambda & N\end{array}\right) \xrightarrow{\beta} M\{N / \underline{1}\}$, are delayed and recorded in the $\lambda \sigma$-calculus as $(\lambda M N) \longrightarrow M[N \quad \imath d]$ Here, $M\left[\begin{array}{ll}N & \imath d\end{array}\right]$ is a $\lambda \sigma$-expression representing M with a recorded substitution $N \quad \imath d$ Additional rules are necessary for applying the recorded substitution to the term $M, 1 \mathrm{e}$, replacing all the free occurrences of the de Bruijn index 1 at M with N and decrementing by one remaining free de Bruijn indices over M Delaying application of substitution is widely used in implementations of functional and logical programming languages, because immediate substitution may give rise to a size explosion of the expressions

Definition 31 ($\lambda \sigma$-calculus) The $\lambda \sigma$-calculus is defined by the rewrite system depicted in Fig 31 where

Terms	M, N
Substitutions	$=1\|\lambda M\|(M N) \mid M[S]$
	$=\imath d\|\uparrow\| M S \mid S \circ T$

The rewrite system obtained by dropping rules (Beta) and (Eta) of $\lambda \sigma$ is called σ
In $\lambda \sigma$, de Bruijn indices are encoded by means of the constant $\underline{1}$ and the substitution \uparrow We write \uparrow^{n} as n-times
a shorthand for $\overbrace{\uparrow 0}^{\circ} \uparrow$ We overload the notation $\underline{\imath}$ to represent the $\lambda \sigma$-term corresponding to the index

$(\lambda M \quad N)$	\longrightarrow	$M[N \imath d]$	(Beta)
$(M N)[S]$	\longrightarrow	$(M[S] N[S])$	(App)
$(\lambda M)[S]$	\longrightarrow	$\lambda M[1 \quad(S \circ \uparrow)]$	(Abs)
$M[S][T]$	\longrightarrow	$M[S \circ T]^{\circ}$	(Clos)
$\underline{1}[M S]$	\longrightarrow	M	(VarCons)
$M[\imath d]$	\longrightarrow	M	(Id)
$\left(S_{1} \circ S_{2}\right) \circ T$	\longrightarrow	$S_{1} \circ\left(S_{2} \circ T\right)$	(Assoc)
$(M S) \circ T$	\longrightarrow	$M[T] \quad(S \circ T)$	(Map)
$\imath d \circ S$	\longrightarrow	S	(IdL)
$S \circ \imath d$	\longrightarrow	S	(IdR)
$\uparrow \circ(M S)$	\longrightarrow	S	(ShiftCons)
$\underline{1} \uparrow$	\longrightarrow	$\imath d$	(VarShift)
$\underline{1}[S](\uparrow \circ S)$	\longrightarrow	S	
$\lambda(M \underline{1})$	\longrightarrow	N	if $M={ }_{\sigma} N[\uparrow]$

Fig 31 The $\lambda \sigma$-calculus [1]
$\imath, 1 \mathrm{e}$,

$$
\underline{\underline{\imath}}= \begin{cases}\underline{1} & \text { if } \imath=1 \\ \underline{1}\left[\uparrow^{n}\right] & \text { if } \imath=n+1\end{cases}
$$

This one-shift encoding is interesting because involving a built-in deduction mechamism for arithmetic in implementations of systems based on the $\lambda \sigma$-calculus makes it difficult the analysis of time and space quantitative performance But in any conceivable implementation one should use full indices at the meta-level instead of the one-shift encoding

An explicit substitution denotes a mapping from indices to terms Thus, $\imath d$ maps each index \imath to the term $\underline{\imath}, \uparrow$ maps each mdex \imath to the term $\underline{\imath+1}, S \circ T$ is the composition of the mapping denoted by T with the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect to the usual notation of function composition), and finally, $M S$ maps the index 1 to the term M, and recursively, the index $\imath+1$ to the term mapped by the substitution S on the index \imath

The $\lambda \sigma$-calculus is not a confluent rewrite system [17], however it is confluent on ground expressions [1] and confluent on substitution-closed expressions ($\mathrm{i} \mathbf{e}$, expressions without substitution variables) [54] On the other hand, the σ-calculus, $1 \mathrm{e}, \lambda \sigma$ without (Beta), is confluent and terminating [1]

A term is called pure if it does not contan substitutions Notice that the set of pure terms in $\lambda \sigma$ and the set of $\Lambda_{d B}$-terms are identifiable Furthermore, the $\lambda \sigma$-calculus sımulates the λ-calculus [17], 1 e , the relations induced by $\xrightarrow{\beta}$ and $\xrightarrow{(\text { Beta })} \xrightarrow{\sigma^{*}}$ (one step of (Beta) followed by a σ-normahzation) concide on pure terms However, the $\lambda \sigma$-calculus does not preserve strong-normalization of the λ-calculus [40], 1 e , strongly normalizing λ-terms can be reduced forever in $\lambda \sigma$
3.2. The $\boldsymbol{\lambda}_{\mathcal{L}}$-calculus. As pointed out before, the one-shift encoding of indices in $\lambda \sigma$ is a theoretically convenient feature, but impractical for implementations Nadathur also remarked in [48] that the non-leftlnear rule of $\lambda \sigma$, namely (SCons), is difficult to handle in real implementations Instead of rule (SCons), he suggested the meta-rule $\left.\underline{1}^{[} \uparrow^{n}\right] \uparrow^{n+1} \longrightarrow \uparrow^{n}$ Since \uparrow^{n} is a shorthand in $\lambda \sigma$, an infinite set of rules is

$(\lambda M N)$	\longrightarrow	$M\left[N \uparrow^{0}\right]$	(Beta)
$(\lambda M)[S]$	\longrightarrow	$\lambda M\left[\underline{1} \quad\left(S \circ \uparrow^{1}\right)\right]$	(Abs)
$(M N)[S]$	\longrightarrow	$(M[S] N[S])$	(App)
$M[S][T]$	\longrightarrow	$M[S \circ T]$	(Clos)
$\underline{1}[M S]$	\longrightarrow	M	(VarCons)
$M\left[\uparrow^{0}\right]$	\longrightarrow	M	(Id)
$(M S) \circ T$	\longrightarrow	$M[T](S \circ T)$	(Map)
$\uparrow^{0} \circ S$	\longrightarrow	S	(IdS)
$\uparrow^{n+1} \circ(M S)$	\longrightarrow	$\uparrow^{n} \circ S$	(ShiftCons)
$\uparrow^{n+1} \circ \uparrow^{m}$	\longrightarrow	$\uparrow^{n} \circ \uparrow^{m+1}$	(ShiftShift)
$\underline{1} \uparrow^{1}$	\longrightarrow	\uparrow^{0}	(Shift0)
$\underline{1}\left[\uparrow^{n+1}\right] \uparrow^{n+2}$	\longrightarrow	\uparrow^{n+1}	
$\lambda(M 1)$	\longrightarrow	$N \quad$ ff $M=\mathcal{L} N\left[\uparrow^{1}\right]$	(Eta)

Fig 32 The rewrate system $\lambda_{\mathcal{L}}$
represented by this scheme
Non-left-linear rules are not only annoying to implement, but they are usually responsible for nonconfluence and typing problems Indeed, $\lambda \sigma$ is not confluent [17] and it does not preserve typing in a dependent-type system [45], both problems because of the non-left-linearity of the calculus

The $\lambda_{\mathcal{L}}$-calculus [44] is a left-linear variant of $\lambda \sigma$ where \uparrow^{n} is a first-class substitution This allows the formulation of the rule suggested by Nadathur as a regular first order rule In fact, instead of (SCons), the the $\lambda_{\mathcal{L}}$-calculus has the following rule $\underline{1}\left[\uparrow^{n+1}\right] \uparrow^{n+2} \longrightarrow \uparrow^{n+1}$

Definition 32 ($\boldsymbol{\lambda}_{\mathcal{L}}$-calculus) The $\lambda_{\mathcal{L}}$-calculus is defined by the rewrite system depicted in Fig 32 where

Natural numbers	n	$=0 \mid n+1$
Terms	M, N	$=\underline{1}\|\lambda M\|(M N) \mid M[S]$
Substitutions	S, T	$=\uparrow^{n}\|M S\| S \circ T$

The \mathcal{L}-rewrite system is obtained by droppang rule (Beta) from $\lambda_{\mathcal{L}}$
We adopt the notation $\underline{\imath}$ as a shorthand for $\underline{1}\left[\uparrow^{n}\right]$ when $\imath=n+1$ Substitutions $\imath d$ and \uparrow are written in $\lambda_{\mathcal{L}}$ as \uparrow^{0} and \uparrow^{1}, respectively In general, \uparrow^{n} denotes the mapping of each index \imath to the term $\underline{\imath+n}$ Using \uparrow^{n}, the scheme of rule proposed by Nadathur can be encoded in a first order rewrite system Natural numbers are constructed with 0 and $n+1$ Arithmetic calculations on indices are embedded in the rewrite system

The $\lambda_{\mathcal{L}}$-calculus is confluent on substitution-closed expressions and it simulates the λ-calculus [45] Just as $\lambda \sigma$, it does not preserve strong normalization

Another left-linear varıant of $\lambda \sigma$ is the $\lambda \sigma_{\Uparrow}$-calculus [17] The $\lambda \sigma_{\Uparrow}$-calculus is a confluent first order rewrite system, 1 e, it is confluent on presence of both term and substitution variables However, $\lambda \sigma_{\Uparrow}$ raises some technical problem with η-conversions due to the fact that substitutions $\imath d$ and $\underline{1} \uparrow$ are not $\lambda \sigma_{\Uparrow}$-convertıble
3.3. The λs_{e}-calculus. The λs_{e}-calculus avoids introducing two different sets of entities as the $\lambda \sigma$ calculus does, insisting in this way on remaining close to the syntax of the λ-calculus Next to abstraction and application, the λs_{e}-calculus introduces substitution (σ) and updating (φ) operators

$(\lambda M N)$	\longrightarrow	$M \sigma^{1} N$	(σ-generation)
$(\lambda M) \sigma^{2} N$	\longrightarrow	$\lambda\left(M \sigma^{2+1} N\right)$	(σ - λ-transition)
$\left(\begin{array}{ll}M_{1} & \left.M_{2}\right) \sigma^{2} N\end{array}\right.$	\longrightarrow	$\left(\left(M_{1} \sigma^{2} N\right)\left(M_{2} \sigma^{2} N\right)\right)$	(σ-app-transition)
$\underline{n} \sigma^{2} N$	\longrightarrow	$\left\{\begin{array}{lll}\frac{n-1}{\varphi_{0}^{2} N} & \text { if } & n>\imath \\ \varphi_{0} & \text { if } & n=\imath \\ \underline{n} & \text { if } & n<\imath\end{array}\right.$	(σ-destruction)
$\varphi_{h}^{2}(\lambda M)$	\longrightarrow	$\lambda\left(\varphi_{h+1}^{2} M\right)$	(φ - λ-transition)
$\varphi_{h}^{2}\left(\begin{array}{ll}M_{1} & M_{2}\end{array}\right)$	\longrightarrow	$\left(\left(\varphi_{h}^{2} M_{1}\right)\left(\varphi_{h}^{2} M_{2}\right)\right)$	(φ-app-transition)
$\varphi_{h}^{2} \underline{n}$	\rightarrow	$\begin{cases}\underline{n+\imath-1} & \text { if } n>k \\ \underline{n} & \text { if } n \leq k\end{cases}$	(φ-destruction)
$\left(M_{1} \sigma^{2} M_{2}\right) \sigma^{3} N$	\longrightarrow	$\left(M_{1} \sigma^{\jmath+1} N\right) \sigma^{\imath}\left(M_{2} \sigma^{\jmath-\imath+1} N\right) \quad$ if $\imath \leq \jmath$	(σ - σ-transitıon)
$\left(\varphi_{h}^{2} M\right) \sigma^{j} N$	\longrightarrow	$\varphi_{h}^{\imath-1} M$ if $k<\jmath<k+\imath$	($\sigma-\varphi$-transition 1)
$\left(\varphi_{h}^{\imath} M\right) \sigma^{J} N$	\longrightarrow	$\varphi_{h}^{2}\left(M \sigma^{\jmath-\imath+1} N\right) \quad$ if $k+\imath \leq \jmath$	(σ - φ-transition 2)
$\varphi_{h}^{2}\left(M \sigma^{3} N\right)$	\longrightarrow	$\left(\varphi_{h+1}^{2} M\right) \sigma^{\jmath}\left(\varphi_{h+1-\jmath}^{2} N\right) \quad$ if $\jmath \leq k+1$	(φ - σ-transition)
$\varphi_{h}^{2}\left(\varphi_{l}^{3} M\right)$	\longrightarrow	$\varphi_{l}^{J}\left(\varphi_{R+1-\jmath}^{2}, M\right) \quad$ if $l+\jmath \leq k$	($\varphi-\varphi$-transition 1)
$\varphi_{h}^{2}\left(\varphi_{l}^{J} M\right)$	\longrightarrow	$\varphi_{l}{ }^{+\imath-1} M \quad$ if $l \leq k<l+\jmath$	(φ - φ-transition 2)
$\lambda\left(\begin{array}{ll}\text { (}\end{array}\right)$	\longrightarrow	N if $M=s_{e} \varphi_{0}^{2} N$	(Eta)

Fig 33 Rewriting system of the λs_{e}-calculus

DEFINITION 33 ($\lambda s_{e_{e}}$-calculus) The λs_{e}-calculus is given by the rewrite system on Fig 33 and the grammar

$$
M, N=\underline{n}|(M N)| \lambda M\left|M \sigma^{3} N\right| \varphi_{h}^{\imath} M \text { for } n, \jmath, \imath \geq 1 \text { and } k \geq 0
$$

The calculus of substitutions associated with the λs_{e}-calculus, namely s_{e}, s the rewriting system generated by the set of rules $s_{e}=\lambda s_{e}-\{\sigma$-generation, Eta $\}$

Intuitively, the substitution operator, σ, mitiates (rule (σ-generation)) one-step of β-reduction, from ($\lambda M N$), propagating the associated substitution innermost (rules ($\sigma-\lambda$) and (σ-app-transition)) Once this propagation is finished, when necessary, the updating operator, φ, is introduced to make the appropriate lift over N (rule (σ-destruction)) Otherwise either free de Bruijn indices are decremented by one or bounded maintained

The λs_{e}-calculus simulates β-reduction and is confluent [33] It does not preserve strong normalization [28]
3.4. Simply-typed calculi of explicit substitutions. In this section, we only include the essential notation of the simply-typed $\lambda_{\mathcal{L}^{-}}$and $\lambda s_{e^{-}}$calculı Properties can be found in detail in [44] and [32], respectively Typing rules in both calcul follow the scheme as those of the simply-typed $\lambda \sigma$-calculus [21]

The rewrite rules of the typed $\lambda_{\mathcal{L}^{-}}$and $\lambda s_{e^{-}}$-calculı are defined by adding to their respective set of rules the necessary typing information Thus, for the simply-typed $\lambda_{\mathcal{L}}$-calculus we have the typed rules

$$
\begin{array}{llll}
\left(\lambda_{A} M N\right) & \longrightarrow & M\left[N \uparrow^{0}\right] & \text { (Beta) } \\
\left(\lambda_{A} M\right)[S] & \longrightarrow & \lambda_{A} M\left[\underline{1}\left(S \circ \uparrow^{1}\right)\right] & \text { (Abs) } \tag{Abs}\\
\lambda_{A}(M \underline{1}) & \longrightarrow & N \quad \text { if } M=_{\mathcal{L}} N\left[\uparrow^{1}\right] & \text { (Eta) }
\end{array}
$$

Fig 34 Typing rules for the $\lambda_{\mathcal{L}}$-calculus

Fig 35 Typing rules for the λs_{ϵ}-calculus
and for the typed λs_{e}-calculus

$$
\begin{array}{llll}
\left(\lambda_{A} M N\right) & \longrightarrow & M \sigma^{1} N & (\sigma \text {-generation }) \\
\left(\lambda_{A} M\right) \sigma^{2} N & \longrightarrow & \lambda_{A}\left(M \sigma^{2+1} N\right) & (\sigma \text { - } \lambda \text {-transition }) \\
\varphi_{L}^{2}\left(\lambda_{A} M\right) & \longrightarrow & \lambda_{A}\left(\varphi_{h+1}^{2} M\right) & (\varphi-\lambda \text {-transition }) \\
\lambda_{A}(M \quad \underline{1}) & \longrightarrow & N \quad \text { if } M=s_{e} \varphi_{0}^{2} N & \text { (Eta) }
\end{array}
$$

Typing rules for the $\lambda_{\mathcal{L}}$-calculus and the λs_{e}-calculus are presented in the Figures 34 and 35 , respectively Notice that in the case of the $\lambda_{\mathcal{L}}$-calculus, substitutions receive contexts as types This is denoted as $\Gamma \vdash S \triangleright \Delta$ Let Γ be a context of the form $A_{1} A_{2} A_{n} \Delta$ We use the notation $\Gamma_{\leq k}$ and $\Gamma_{\geq k}$ for denoting the contexts $A_{1} \quad A_{h}$ and $A_{h} \quad A_{n} \Delta$, respectively This notation is extended for " $<$ " and " $>$ " in the obvious manner

Example 34 In order to illustrate the use of the typing rules, we show how to infer the type of the term $\lambda_{A \rightarrow B} \lambda_{B \rightarrow C} \lambda_{A}(\underline{2}(\underline{1} \underline{1}))$ in λs_{e}

For short, let $\Gamma=A B \rightarrow C A \rightarrow B$ Firstly, observe that
$\overline{(1) \Gamma+\underbrace{\prime}}{ }^{(\mathrm{Var})}$

$$
\frac{\overline{B \rightarrow C A \rightarrow B \vdash-1} \overline{B \rightarrow C}}{(2) \Gamma \vdash \underline{B} B \rightarrow C} \text { (Var) } \text { (Varn) }
$$

Then, we have

$$
\frac{\left.(2) \quad \frac{(3)}{\Gamma \vdash(\underline{3}} \underline{1}\right) B}{\Gamma \vdash(\underline{2}(\underline{3} \underline{1})) C}(\mathrm{App})
$$

Finally, notice that

For the $\lambda_{\mathcal{L}}$-calculus the inference is identical except for the first steps, for instance, notice that

$$
\frac{\overline{B \rightarrow C A \rightarrow B \vdash \uparrow^{0} \triangleright B \rightarrow C A \rightarrow B}}{\frac{\Gamma \vdash \uparrow^{1} \triangleright B \rightarrow C A \rightarrow B}{(\mathrm{Id})}} \text { (Shift) }_{\Gamma \vdash \uparrow^{2} \triangleright A \rightarrow B}^{\frac{A \rightarrow B \vdash \uparrow^{0} \triangleright A \rightarrow B}{B \rightarrow C A \rightarrow B \vdash \uparrow^{1} \triangleright A \rightarrow B}} \text { (Id) } \text { (Shift) } \text { (Comp) }
$$

Then,

$$
\frac{\Gamma \vdash \uparrow^{2} \triangleright A \rightarrow B \quad \overline{A \rightarrow B \vdash \underline{1} \quad A \rightarrow B} \text { (Var) }}{\Gamma \vdash \underline{3}} \begin{array}{lll}
A \rightarrow B & \text { (Clos) }
\end{array}
$$

Remember that the language of the $\lambda_{\mathcal{L}}$-calculus only includes the de Bruun index $\underline{1}$ and the others are smmulated using the \uparrow^{n}

The simply-typed versions of the $\lambda_{\mathcal{L}^{-}}$and $\lambda s_{e^{-}}$-calculus satisfy, among others, the properties of subject reduction and type unqueness Additionally, they are Weakly Normalizing (WN) and Church-Rosser (CR)
4. Applications. Although in an intuitionstic logic, the concepts of propositions and types are identufied, proof construction and term synthesis do not necessarily go in the same direction For instance, to prove the proposition $A \rightarrow(B \rightarrow A)$, one may assume A as an hypothesis and then, recursively, try to prove $(B \rightarrow A)$ Eventually, one gets the axiom $A, B \vdash A$ and the proof derivation is completed On the other hand, the proof synthesis procedure decorates with λ-terms the proof-tree derivation from the axioms, $1 \mathbf{e}$, $x A, y B \vdash x \quad A$, down to the conclusion, $1 \mathrm{e}, \vdash \lambda x A \lambda y B x \quad A \rightarrow(B \rightarrow A)$

In order to synthesize a λ-term at the same time as a proof is being developed, it is necessary to represent incomplete-proofs Assume, for example, the proposition $A \rightarrow(B \rightarrow A)$ The bottom-up application of the rule (Abs) results in a term $\lambda x A X$ where X is a term to be constructed of type ($B \rightarrow A$) A term as $\lambda x A X$ is called an open term and the place-holder X denotes a hole to be filled with a term of the right type, in this case of type $(B \rightarrow A)$ Place-holders are also called meta-varaables to distingush them from the variables of the λ-calculus Meta-variables are written as uppercase last letters of the Latin alphabet X, Y, At some moment during the proof derivation, we get the typing judgment $x A, \Gamma \vdash \lambda y B x \quad(B \rightarrow A)$ Hence, to obtain a close term, 1 e , a term without meta-varıables, we can instantate the meta-variable X with the term $\lambda y B x$ This results in $\lambda x A \lambda y B x$ In contrast to substitution of variables, instantiation of meta-variables is a first order replacement that does not take care of renaming of bound variables or capture of free-variables

Notice, however, that open terms are not λ-terms In fact, (1) instantiation and β-reduction do not commute, and (2) instantration and typing do not commute To illustrate the first point, take the open term ($\begin{array}{ll}x & X\end{array} \quad y$) and the instantiation of X with x The instantiation results in ($\left.\begin{array}{ll}x x & y\end{array}\right)$, which β-reduces to y However, the original term β-reduces to X, which gets instantiated as x To see why instantiation and typing do not commute, consider the context $\Gamma=x A, z(B \rightarrow A) \rightarrow C$ and the open term $(z \lambda x B X)$ of type C, where X is a meta-variable of type A If we instantiate X with the variable x of Γ, then we obtan the 1ll-typed term ($z \lambda x B x)$

Meta-variables can be encoded in classical λ-calculus by using a technique taken from the higher order unnfication tradition [31] This technique uses a functional handle of scope For instance, the open term $\lambda x A Y$, where Y is a meta-variable of type B, is encoded as the λ-term $\lambda x A(y x)$, where y is a fresh variable of type $A \rightarrow B$ In this case, the information that the variable x can indeed occur in a subsequent substitution of y is taking into account by the application $(y x)$ Thus, an instantiation of Y^{\prime} with M in the original problem is translated as a substitution of y by $\lambda x A \rightarrow B M$ in the λ-calculus Notice, however that the meta-variable Y has the type B whle the corresponding varıable y has the type $A \rightarrow B$

Explicit substitutions and de Bruijn indices allow a sımple and natural notation for open terms First, in a de Bruinn setting, meta-varıables are just variables of the free algebra of terms Notice that bound and free variables of the λ-calculus are represented as indices And second, explicit substitution calculı as $\lambda \sigma$, $\lambda_{\mathcal{L}}$, and λs_{e}, are confluent on open terms (in the case of $\lambda \sigma$ and $\lambda_{\mathcal{L}}$, on substitution-closed terms) Thus, in these calcul, commutation of instantiation and the β-reduction is for free

We will consider meta-variables over a set \mathcal{X}
Definition 41 The set $\Lambda_{d B}(\mathcal{X})$ of λ-terms in de Bruijn index notation with meta-variables over the set \mathcal{X} is defined inductively as

$$
M, \left.N=\underline{n}|X|\left(\begin{array}{ll}
M & N
\end{array}\right) \right\rvert\, \lambda M
$$

where $n \in \mathbb{N}^{>0}, X \in \mathcal{X}$
Definition $42 A$ valuation is a mapping from \mathcal{X} to $\Lambda_{d B}(\mathcal{X})$ The homeomorphic extension of a valuation, θ, from ts domain \mathcal{X} to the domain $\Lambda_{d B}(\mathcal{X})$ is called the graftıng of θ

As usual valuations and ther corresponding graftings are denoted by the same Greek letters Apphication of a grafting θ to a term M will be written in postfix notation $M \theta$ For explict representation of a valuation and its corresponding grafting θ, we use the notation $\theta=\{X \mapsto X \theta \mid X \in \operatorname{Dom}(\theta)\}$ A grafting is the formal concept for meta-variable instantiation

The set of $\lambda \sigma^{-}, \lambda_{\mathcal{L}^{-}}$, and $\lambda s_{e^{-}}$-terms with meta-variables, and therr respective grafting notion, can be defined in a sımılar way The typing rule for meta-variables in these systems is [21]

$$
\overline{\Gamma_{X}+X \quad A_{X}}\left(\operatorname{Meta}_{X}\right)
$$

where A_{X} and Γ_{X} are, respectively, a unique type and a unique context associate to each meta-variable By using this rule, typing and instantiation of meta-variables commute [21]
4.1. Higher order unification. Higher order unification (HOU) is essential in automated reasoning, where it has formed the basis for generalizations of the Resolution Principle in higher order logics, being a sine qua non mechanısm in the implementation of higher order proof assistants and higher order logic programming languages as the ones previously referenced For a very sımple presentation of HOU see [57] and for a detailed introduction in the context of declarative programming see [53] As for the first order case, substitution is the key operation for HOU and its implicitness makes difficult the analysis of important computational properties Therefore, use of calculi of explicit substitution in the formal implementation of HOU procedures is relevant

HOU problems are expressed in the language of the sımply-typed λ-calculus in de Bruinn indices over a set of meta-variables \mathcal{X}, denoted $\Lambda_{d B}(\mathcal{X})$ Meta-variables play the role of unfication variables A smple example of a HOU problem is to search for function solutions F of the equality $F(f(a))={ }^{\prime} f(F(a))$ That can be written in $\Lambda_{d B}(\mathcal{X})$ as $(X(\underline{2} \underline{1}))==_{\beta \eta}^{7}(\underline{2}(X \underline{1}))$, where both X and $\underline{2}$ are of functional type, say $A \rightarrow A$
and $\underline{1}$ of atomic type A A solution for X is the function identity, $\lambda_{A} \underline{1}$ but $\left\{\lambda_{A}(\underline{3} \underline{1}), \lambda_{A}(\underline{3}(\underline{3} \underline{1})), \quad\right\}$ (correspondingly, $\left\{F=f, F=f^{2}, \quad\right\}$) are solutions too

The first person to present a HOU algorithm of practical interest was Huet [31] Huet's work was relevant because he realized that to generalize Robinson first order Resolution Principle [55] to higher order theories it is useful to verify the existence of unfiers without computing them explicitly Huet's algorithm is a semi-decision one that may never stop when the input unfication problem has no unfiers, but when the problem has a solution it always presents an explicit unffier Unfication for second-order logic was proved undecidable in general by Goldfarb [26] Goldfarb's proof is based on a reduction from Hilbert's Tenth Problem This result shows that there are arbitrary higher order theories where unfication is undecidable, but there exist particular higher order languages of practical interest that have a decidable unfication problem In particular, for the second-order case, unfication is decidable, when the language is restricted to monadic functions [23] Another problem of HOU is that the notion of most general unfier does not apply and that a notion more complex than the one of complete set of umfiers is necessary Huet has showed that equations of the form $\left(\begin{array}{ll}\lambda x & F\end{array}\right)=^{7}\left(\begin{array}{ll}\lambda x & G\end{array}\right)$ (called flex-flex) of third-order may not have minmal complete sets of unfiers and that there may exist an infimite chain of unfiers, one more general than the other, without having a most general one (for references see section 41 in [53])

The general method of HOU via calculi of explicit substitutions was introduced in [21] (for the $\lambda \sigma$ calculus) and consists mainly in firstly, a translation or "pre-cookng" from HOU problems in $\Lambda_{d B}(\mathcal{X})$ into the language of a calculus of explicit substitutions Secondly, an application of (first order) unification in the selected calculus of explicit substitutions to solve the translated problems Finally, translation back of the given grafting solutions into substitution solutions of the original HOU problem In this way HOU problems are solved via first order unfication in the language of calculi of explicit substitution We will explan with examples how reduction relations from the smply-typed $\lambda \sigma$-calculus and λs_{e}-calculus of explicit substitutions are used to solve HOU problems in $\Lambda_{d B}(\mathcal{X})$ For a formal presentation of the methods consult [21] and [2]

Definition 43 Let $\theta=\left\{X_{1} \mapsto a_{1}, \quad, X_{n} \mapsto a_{n}\right\}$ be a valuatıon from the set of meta-varables \mathcal{X} to $\Lambda_{d B}(\mathcal{X})$ The corresponding substitution, $\left\{a_{1} / X_{1}, \quad, a_{n} / X_{n}\right\}$, also denoted by θ but written in a prefix notatoon, as defined inductively as follows

$$
\begin{aligned}
& 1 \quad \theta(\underline{m})=\underline{m}, \text { for } m \in \mathbb{N}, \\
& 2 \theta(X)=X\left\{X_{1} \mapsto a_{1}, \quad, X_{n} \mapsto a_{n}\right\}, \text { for } X \in \mathcal{X}, \\
& 3 \\
& 4 \theta\left(a_{1} a_{2}\right)=\left(\theta\left(a_{1}\right) \theta\left(a_{2}\right)\right), \\
& 4 \theta\left(\lambda a_{1}\right)=\lambda \theta^{+}\left(a_{1}\right),
\end{aligned}
$$

where θ^{+}denotes the substztution corresponding to the valuatoon $\theta^{+}=\left\{X_{1} \mapsto a_{1}^{+}, \quad, X_{n} \mapsto a_{n}^{+}\right\}$
Unifyng two terms M and N in $\Lambda_{d B}(\mathcal{X})$ consists in finding a grafting θ such that its corresponding substitution satısfies $\theta(M)={ }_{\beta \eta} \theta(N)$ Notice that application of a grafting has a different effect to the application of its corresponding substitution For instance, although $(\lambda X)\{X \mapsto M\}=\lambda M$, a unfier of the problem $\lambda X={ }_{\beta \eta}^{7} \lambda M$ is not $\{M / X\}$, since $(\lambda X)\{M / X\}=\lambda\left(X\left\{M^{+} / X\right\}\right)=\lambda M^{+}$However, by translating appropriately the $\Lambda_{d B}(\mathcal{X})$-terms M, N, the HOU problem $M={ }_{\beta}^{\gamma} N$ can be reduced to first order unfication etther in the $\lambda \sigma$ - or in the λs_{e}-calculus Essentally, the pre-cooking translation from terms in $\Lambda_{d B}(\mathcal{X})$ into the language of the $\lambda \sigma$-calculus replaces each occurrence of a meta-variable X with $X\left[\uparrow^{\wedge}\right]$, where k is the number of abstractors above the occurrence of X For the case of the λs_{e}-calculus the pre-cooking translates each occurrence of a meta-varıable X into $\varphi_{0}^{h+1} X$, where k is as before

Example 44 Consider the problem $\underline{2}={ }_{\beta \eta}^{\gamma}\left(\begin{array}{ll}X & \underline{2}) \text { beng } \underline{2} \text { of type } A \text { and } X \text { of type } A \rightarrow A \text { Introducing }, ~\end{array}\right.$ a fresh meta-variable Y of type A the problem is translated into $\underline{2}={ }_{\beta \eta}^{7}(\lambda Y \underline{2}) \wedge X={ }_{\beta \eta}^{7} \lambda Y$

In the λs_{e}-calculus the problem is normalized into $\underline{2}={ }_{\lambda s_{e}}^{?} Y \sigma^{1} \underline{2} \wedge X={ }_{\lambda s_{e}}^{?} \lambda Y$, whose solutions are $\{\underline{1} / Y\}$ and $\{\underline{3} / Y\}$ giving as result the solutions $\{\lambda \underline{1} / X\}$ and $\{\lambda \underline{3} / X\}$

In the $\lambda \sigma$-calculus the problem is normalized into $\underline{2}={ }_{\lambda \sigma}^{?} Y[\underline{2} \imath d] \wedge X={ }_{\lambda \sigma}^{?} \lambda Y$, from which we infer the solutions above

Example 45

Now consider the HOU problem $\underline{2}={ }_{\beta \eta}^{7}(\lambda Z \underline{2})$, where $\underline{2}$ and Z are of type A
In the λs_{e}-calculus the problem is pre-cooked into $\underline{2}={ }_{\lambda s_{e}}^{?}\left(\lambda \varphi_{0}^{2} Z \underline{2}\right)$ and then transformed into $\underline{2}={ }_{\lambda s_{e}}^{?}$ $\left(\varphi_{0}^{2} Z\right) \sigma^{1} \underline{2}$ and subsequently into $\underline{2}={ }_{\lambda s_{e}} \varphi_{0}^{1} Z$ by normalization The sole possible solution given is $\{Z \mapsto \underline{2}\}$ Observe, on the one side, that $\left(\lambda \varphi_{0}^{2} Z \underline{2}\right)\{Z \mapsto \underline{2}\}=\left(\lambda \varphi_{0}^{2} \underline{2} \underline{2}\right)={ }_{\lambda s_{e}}(\lambda \underline{2} \underline{2})={ }_{\lambda s_{e}} \underline{3} \sigma^{1} \underline{2}={ }_{\lambda s_{e}} \underline{2}$ On the other side, turning back the pre-cooking transformation, this corresponds to the substitution solution $\{\underline{2} / Z\}$ for the original problem In fact, $(\lambda Z \underline{2})\{\underline{2} / Z\}=((\lambda Z)\{\underline{2} / Z\} \underline{2}\{\underline{2} / Z\})=\left(\lambda\left(Z\left\{\underline{2}^{+} / Z\right\}\right) \underline{2}\right)=(\lambda \underline{3} \underline{2})$ The previous term β-reduces into $\underline{2}$

In the $\lambda \sigma$-calculus the problem is pre-cooked into $\underline{1}[\uparrow]=_{\lambda \sigma}^{?}(\lambda Z[\uparrow] \underline{1}[\uparrow])$ which $\lambda \sigma$-reduces into $\underline{1}[\uparrow]={ }_{\lambda \sigma}^{?}$ $(Z[\uparrow])[\underline{1}[\uparrow] \imath d]$ and subsequently into $\underline{1}[\uparrow]={ }_{\lambda \sigma}^{?} Z[\uparrow \circ(\underline{1}[\uparrow] \imath d)]$ and into $\underline{1}[\uparrow]={ }_{\lambda \sigma}^{?} Z[\imath d]$ and finally into $\underline{1}[\uparrow]={ }_{\lambda \sigma}^{?}$ Z giving the corresponding sole solution $\{Z \mapsto \underline{1}[\uparrow]\}$ This corresponds to the above grafting solution in λs_{e} On the one side, $(\lambda Z[\uparrow] \underline{1}[\uparrow])\{Z \mapsto \underline{1}[\uparrow]\}=(\lambda((\underline{1}[\uparrow])[\uparrow]) \underline{1}[\uparrow])={ }_{\lambda \sigma}\left(\lambda \underline{1}\left[\uparrow^{2}\right] \underline{1}[\uparrow]\right)={ }_{\lambda \sigma} \underline{1}\left[\uparrow^{2}\right][\underline{1}[\uparrow] \imath d]={ }_{\lambda \sigma}$ $\underline{1}\left[\uparrow^{2} \circ(\underline{1}[\uparrow] \imath d)\right]={ }_{\lambda \sigma} 1[\uparrow]$ On the other side, turning back the pre-cooking transformation, this corresponds to the substitution solution $\{\underline{2} / Z\}$ for the original problem in $\Lambda_{d B}(\mathcal{X})$ as above

Notice that $\{\underline{1} / Z\}$ is not a substitution solution of the previous problem, since for any de Bruıjn index \underline{n} we have $(\lambda Z)\{\underline{n} / Z\}=\lambda\left(Z\left\{\underline{n}^{+} / Z\right\}\right)=\lambda(\underline{n+1})$

The following example illustrates why pre-cooking of λ-terms before applying unfication rules is essential
EXAMPLE 46 (Continuing example 45) In the λs_{e}-calculus, when normalizing the HOU problem $\underline{2}={ }_{\beta \eta}^{7}(\lambda Z \underline{2})$ before pre-cooking we obtain $\underline{2}={ }_{\lambda s_{e}}^{?} Z \sigma^{1} \underline{2}$, whose solutions are the graftings $\{Z \mapsto \underline{1}\}$ and $\{Z \mapsto \underline{3}\} \quad$ As previously mentioned $\{\underline{1} / Z\}$ is not a substitution solution of the original HOU problem Analogously, in the $\lambda \sigma$-calculus, when normalizing the corresponding problem $\underline{1}[\uparrow]=_{\lambda \sigma}^{?}(\lambda Z \underline{1}[\uparrow])$ we obtain $\underline{1}[\uparrow]={ }_{\lambda \sigma}^{?} \lambda Z[\underline{1}[\uparrow] \imath d]$, whose solutions are $\{Z \mapsto \underline{1}\}$ and $\left\{Z \mapsto \underline{1}\left[\uparrow^{2}\right]\right\}$ given rise to the same problem
4.2. Type inference. In order to infer types of λ-terms (or $\lambda \sigma$-terms or λs_{e}-terms) we deal with new sets of type variables τ_{\imath} and context varıables $\gamma_{\imath}, \imath \in \mathbb{N}$ Essentially, we will take as input of a type inference problem a term without knowing its type and context and as output we will formulate a first order unification problem on type and context variables Well-typedness of the input term will then correspond to solvability of the generated first order umfication problem Here we illustrate the general method mentioned above using the language of the λs_{e}-calculus Simple modifications according to the typing rules of the selected language will adapt this method to other settings

Let M be a λs_{e}-term Initially, we introduce new variables for the type and for the context of each subterm of M Then M can be seen as a new term M^{\prime} with all its subterms decorated with one different type variable as subscript and one different context variable as superscript

ExAmple $47\left(\lambda_{A}\left(\lambda_{B}\left(\lambda_{C}\left(\underline{\tau}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} \underline{1}_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}}\right)_{\tau_{5}}^{\gamma_{5}}\right)_{\tau_{6}}^{\gamma_{6}}\right)_{\tau_{7}}^{\gamma_{7}}\right)_{\tau_{8}}^{\gamma_{8}}$, where τ_{2} and $\gamma_{2}, \imath=1, \quad, 8$ are new mutually different type and context variables, is the decorated version of the λ-term $\lambda_{A} \lambda_{B} \lambda_{C}(\underline{2}(\underline{3} \underline{1}))$

Afterwards, we apply the set of transformation rules in Table 41 for pairs of the form $\langle R, E\rangle$, where R is a set of decorated terms and E a set of equations on type and context variables The application of these transformation rules begin from the par $\left\langle R_{0}, \emptyset\right\rangle$, where R_{0} is the set of all decorated subterms of M^{\prime}

Table 41
Transformation rules for type inference in the λs_{e}-calculus

(Var)	$\left\langle R \cup\left\{\underline{1}_{\tau}^{\gamma}\right\}, E\right\rangle$	\rightarrow	$\left\langle R, E \cup\left\{\gamma=\tau \gamma^{\prime}\right\}\right\rangle$, where γ^{\prime} is a fresh context variable,
(Varn)	$\left\langle R \cup\left\{\underline{n}_{\tau}^{\gamma}\right\}, E\right\rangle$		$\left\langle R, E \cup\left\{\gamma=\tau_{1}^{\prime} \quad \tau_{n-1}^{\prime} \tau \gamma^{\prime}\right\}\right\rangle$, where γ^{\prime} and $\tau_{1}^{\prime}, \quad, \tau_{n-1}^{\prime}$ are fresh context and type variables,
(Lambda)	$\left\langle R \cup\left\{\left(\lambda_{A} M_{\tau_{1}}^{\gamma_{1}}\right)_{\tau_{2}}^{\gamma_{2}}\right\}, E\right\rangle$	\rightarrow	$\left\langle R, E \cup\left\{\tau_{2}=A \rightarrow \tau_{1}, \gamma_{1}=A \gamma_{2}\right\}\right\rangle$,
(App)	$\left\langle R \cup\left\{\left(M_{\tau_{1}}^{\gamma_{1}} N_{\tau_{2}}^{\gamma_{2}}\right)_{\tau_{3}^{\prime}}^{\gamma_{3}}\right\}, E\right\rangle$	\rightarrow	$\left\langle R, E \cup\left\{\gamma_{1}=\gamma_{2}, \gamma_{2}=\gamma_{3}, \tau_{1}=\tau_{2} \rightarrow \tau_{3}\right\}\right\rangle$,
(Sigma)	$\left\langle R \cup\left\{\left(M_{\tau_{1}}^{\gamma_{1}} \sigma^{2} N_{\tau_{2}}^{\gamma_{2}}\right)_{\tau_{3}}^{\gamma_{3}}\right\}, E\right\rangle$		$\left\langle R, E \cup\left\{\tau_{1}=\tau_{3}, \gamma_{1}=\tau_{1}^{\prime} \quad \tau_{\imath-1}^{\prime} \tau_{2} \gamma_{2}, \gamma_{3}=\tau_{1}^{\prime} \quad \tau_{\imath-1}^{\prime} \gamma_{2}\right\}\right\rangle$, where $\tau_{1}^{\prime}, \quad, \tau_{t-1}^{\prime}$ are fresh type variables and in the case that $\imath=1$ the sequence $\tau_{1}^{\prime} \tau_{\imath-1}^{\prime}$ is empty,
(Phı)	$\left\langle R \cup\left\{\left(\varphi_{L}^{2} M N_{\tau_{1}}^{\gamma_{1}}\right)_{\tau_{2}^{2}}^{\gamma_{2}}\right\}, E\right\rangle$		$\left\langle R, E \cup\left\{\tau_{1}=\tau_{2}, \gamma_{2}=\tau_{1}^{\prime} \quad \tau_{h+\imath-1}^{\prime} \gamma^{\prime}, \gamma_{1}=\tau_{1}^{\prime} \quad \tau_{h-1}^{\prime} \gamma^{\prime}\right\}\right\rangle$, where γ^{\prime} and $\tau_{1}^{\prime}, \quad, \tau_{h+2-1}^{\prime}$ are fresh context and type varıables and in the case that $k \leq 1$ respectively $k=0$ and $t=1$ the sequences $\tau_{1}^{\prime} \tau_{h-1}^{\prime}$ respectively $\tau_{1}^{\prime} \tau_{l+\imath-1}^{\prime}$ are empty,
(Meta)	$\left\langle R \cup\left\{X_{\tau}^{\gamma}\right\}, E\right\rangle$		$\left\langle R, E \cup\left\{\gamma=\Gamma_{X}, \tau=A_{X}\right\}\right\rangle$, where $\Gamma_{Y} \vdash \mathcal{X} A_{Y}$,

Notice that the transformation rules in the Table 41 are built according to the typing rules of the λs_{e} calculus After the application of each of the transformation rules the size of the current set of decorated subterms R decreases by one Consequently, the application of these rules begmnng from the parr $\left\langle R_{0}, \emptyset\right\rangle$ finishes after a finite number of steps (exactly as many steps as subterms in M) giving as result an empty set of decorated terms and a set E_{f} of equation on type and context variables E_{f} is a first order unffication problem on type and context variables

Finally, our algorithm terminates by applyng any first order umfication algorithm to E_{f} If the unfication algorithm fals then our term is ill-typed Otherwise, if the unfication algorithm succeeds, the most general unfier resultıng as output gives straıghtforwardly a context Γ and a type A such that $\Gamma \vdash M A$ Of course, the construction of Γ and A is done from the bindings given in the resulting unfier corresponding to the outermost context and type variables selected in the decoration of M

Correctness and completeness of this method is a direct consequence from the correctness and completeness of the first order unfication and of the typing rules of the λs_{e}-calculus used to construct the transformation rules in Table 41

Example 48 (Contmuing Example 47) The intial input for the set of inference rules is $\left\langle R_{0}, \emptyset\right\rangle$, where

$$
\begin{aligned}
& R_{0}=\left\{\underline{\tau}_{\tau_{1}}^{\gamma_{1}}, \underline{\tau}_{\tau_{2}}^{\gamma_{2}}, \underline{-}_{\tau_{3}}^{\gamma_{3}},\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} \underline{1}_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}},\left(\underline{2}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} \underline{-}_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}^{4}}\right)_{\tau_{5}}^{\gamma_{5}^{5}},\left(\lambda_{C}\left(\underline{2}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} 1_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}}\right)_{\tau_{5}}^{\gamma_{5}}\right)_{\tau_{6}}^{\gamma_{6}},\right. \\
& \left.\left(\lambda_{B}\left(\lambda_{C}\left(\underline{\tau}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} \underline{\tau}_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}}\right)_{\tau_{5}}^{\gamma_{5}}\right)_{\tau_{6}}^{\gamma_{6}}\right)_{\tau_{7}}^{\gamma_{7}},\left(\lambda_{A}\left(\lambda_{B}\left(\lambda_{C}\left(\underline{\tau}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} \underline{1}_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}}\right)_{\tau_{5}}^{\gamma_{5}^{5}}\right)_{\tau_{6}}^{\gamma_{6}}\right)_{\tau_{7}}^{\gamma_{7}^{7}}\right)_{\tau_{8}}^{\gamma_{8}}\right\}
\end{aligned}
$$

In the sequel, we show the steps of the application of the transformation rules For convenence we apply the rules in an specific order (from smaller to bigger subterms), but the application of the rules is nondeterministic Applying the rules in any order we will obtain different sets of equations that correspond
to the same unnfication problem

$$
\begin{aligned}
& \left\langle R_{0}, \emptyset\right\rangle \quad \rightarrow \text { Var } \\
& \left\langle R_{1}=R_{0} \backslash\left\{\underline{1}_{\tau_{3}}^{\gamma_{3}}\right\}, E_{1}=\left\{\gamma_{3}=\tau_{3} \gamma_{1}^{\prime}\right\}\right\rangle \\
& \rightarrow \text { Varn } \\
& \left\langle R_{2}=R_{1} \backslash\left\{\underline{\tau}_{1}^{\gamma_{1}}\right\}, E_{2}=E_{1} \cup\left\{\gamma_{1}=\tau_{1}^{\prime} \tau_{1} \gamma_{2}^{\prime}\right\}\right\rangle \quad \rightarrow \text { Varn } \\
& \left\langle R_{3}=R_{2} \backslash\left\{\underline{3}_{\tau_{2}}^{\gamma_{2}}\right\}, E_{3}=E_{2} \cup\left\{\gamma_{2}=\tau_{2}^{\prime} \tau_{3}^{\prime} \tau_{2} \gamma_{3}^{\prime}\right\}\right\rangle \\
& \rightarrow A p p \\
& \left\langle R_{4}=R_{3} \backslash\left\{\left(\underline{\tau}_{\tau_{2}}^{\gamma_{2}} \underline{-}_{\tau_{3}}^{\gamma_{3}} \gamma_{\tau_{4}^{4}}^{\gamma_{4}}\right\}, E_{4}=E_{3} \cup\left\{\gamma_{2}=\gamma_{3}, \gamma_{3}=\gamma_{4}, \tau_{2}=\tau_{3} \rightarrow \tau_{4}\right\}\right\rangle\right. \\
& \left\langle R_{5}=R_{4} \backslash\left\{\left(\underline{\tau}_{\tau_{1}}^{\gamma_{1}}\left(\underline{-}_{\tau_{2}}^{\gamma_{2}} \underline{-}_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}}\right)_{\tau_{5}}^{\gamma_{5}}\right\}, E_{5}=E_{4} \cup\left\{\gamma_{1}=\gamma_{4}, \gamma_{4}=\gamma_{5}, \tau_{1}=\tau_{4} \rightarrow \tau_{5}\right\}\right\rangle \\
& \rightarrow A p p \\
& \left\langle R_{6}=R_{5} \backslash\left\{\left(\lambda_{C}\left(\underline{2}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}}{\underset{\tau}{T_{3}}}_{\gamma_{3}}^{\gamma_{4}^{4}}\right)_{\tau_{5}^{\prime}}^{\gamma_{4}}\right)_{\tau_{6}}^{\gamma_{6}}\right\}, E_{6}=E_{5} \cup\left\{\tau_{6}=C \rightarrow \tau_{5}, \gamma_{5}=C \gamma_{6}\right\}\right\rangle\right. \\
& \rightarrow \text { Lambda } \\
& \left\langle R_{7}=R_{6} \backslash\left\{\left(\lambda_{B}\left(\lambda_{C}\left(\underline{2}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} 1_{\tau_{\tau}}^{\gamma_{3}}\right)_{\tau_{1}}^{\gamma_{4}}\right)_{\tau_{5}}^{\gamma_{5}}\right)_{\tau_{6}}^{\gamma_{5}}\right)_{\tau_{7}}^{\gamma_{7}}\right\}, E_{7}=E_{6} \cup\left\{\tau_{7}=B \rightarrow \tau_{6}, \gamma_{6}=B \gamma_{7}\right\}\right\rangle \quad \text { Lambda } \\
& \left\langle\emptyset=R_{7} \backslash\left\{\left(\lambda_{A}\left(\lambda_{B}\left(\lambda_{C}\left(\underline{\tau}_{\tau_{1}}^{\gamma_{1}}\left(\underline{3}_{\tau_{2}}^{\gamma_{2}} l_{\tau_{3}}^{\gamma_{3}}\right)_{\tau_{4}}^{\gamma_{4}}\right)_{\tau_{5}^{5}}^{\gamma_{5}^{5}}\right)_{\tau_{6}}^{\gamma_{6}}\right)_{\tau_{7}}^{\gamma_{7}}\right)_{\tau_{8}}^{\gamma_{8}^{8}}\right\}, E_{8}=E_{7} \cup\left\{\tau_{8}=A \rightarrow \tau_{7}, \gamma_{7}=A \gamma_{8}\right\}\right\rangle
\end{aligned}
$$

Now the reader is invited to apply his/her preferred first order unfication algorithm for resolving the unfication problem $E_{8}=\left\{\gamma_{3}=\tau_{3} \gamma_{1}^{\prime}, \gamma_{1}=\tau_{1}^{\prime} \tau_{1} \gamma_{2}^{\prime}, \gamma_{2}=\tau_{2}^{\prime} \tau_{3}^{\prime} \tau_{2} \gamma_{3}^{\prime}, \gamma_{2}=\gamma_{3}, \gamma_{3}=\gamma_{4}, \tau_{2}=\tau_{3} \rightarrow \tau_{4}, \gamma_{1}=\gamma_{4}, \gamma_{4}=\right.$ $\left.\gamma_{5}, \tau_{1}=\tau_{4} \rightarrow \tau_{5}, \tau_{6}=C \rightarrow \tau_{5}, \gamma_{5}=C \gamma_{6}, \tau_{7}=B \rightarrow \tau_{6}, \gamma_{6}=B \gamma_{7}, \tau_{8}=A \rightarrow \tau_{7}, \gamma_{7}=A \gamma_{8}\right\}$ and then to resolve the bindings of the resulting unfier (if it exists) for giving appropriate contexts and types for the input λ-term
4.3. Inhabitation and higher order logics. Gıven a type A and a context of variable declarations Γ, the inhabitation problem consists of finding a term M such that $\Gamma \vdash M \quad A$ Using the open term approach, the problem can be formulated as finding a pure mstantiation for the meta-variable X satisfying $\Gamma \vdash X \quad A$ Thus, the term to instantiate X can be constructed at the same time as the proof derivation of A by applying the typing rules in a bottom-up manner and introducing new meta-variables for the unknown terms

For the simply-typed λ-calculus this problem is decidable In fact, snce provability in the minmal propositional intuitionstic logic is decidable, the term M can be built directly from the proof-tree derivation of $\Omega \vdash_{I} A$, where Ω is the set of types in Γ, as explaned before However, when we move to a first order or a higher order intuitionstic logic and, in consequence, we extend the type system to handle quantification, the problem becomes much more complicated In [47], a semi-algorithm to solve the inhabitation problem via the $\lambda_{\mathcal{L}}$-calculus has been presented It uses the fact that $\lambda_{\mathcal{L}}$ is confluent on substitution-closed terms and weakly normalizing, even for dependent type settings of the calculus

Although first and higher order logics are out of the scope of this paper, we give some hints of the inhabitation problem for these kind of logics See [20] for a complete description of a term synthesis algorithm in the Cube of Type Systems and [47] for a similar algorithm via explcit substitutions and open terms

The Dependent Type theory, namely $\lambda \Pi[29]$, ss a conservative extension of the simply-typed λ-calculus It allows a finer stratification of terms by generalizing the function space type In fact, in $\lambda \Pi$, the type of a function $\lambda x A M$ is $\Pi x A B$ where B (the type of M) may depend on x Hence, the type $A \rightarrow B$ of the simply-typed λ-calculus is just a notation in $\lambda \Pi$ for the product $\Pi x A B$ where x does not appear free in B The Calculus of Constructions, namely $C C,[15,16]$ extends the $\lambda \Pi$-calculus with polymorphism and constructions of types From a logical point of view, $\lambda \Pi$ and $C C$ allow representation of proofs in the first and higher order intuitionstic logic, respectively Via the types-as-proofs principle, a term of type $\Pi x A B$ 1s a proof-term of the proposition $\forall x A B$

Terms in these calculı can be variables, applications, or abstractions, hee in classical λ-calculus, or two new knd of terms products ($\Pi x A B$), and sorts (Type, Kind) Term and types belong to the same syntactical category Thus, $\Pi x A B$ is a term, as well as $\lambda x A M$ However, terms are stratified in several levels accordıng to a type discipline For instance, given an appropriate context of variable declarations,

FIG 41 Rules (Abs) and (Apl) for the CC type system
$\lambda x A M \Pi x A B, \Pi x A B \quad$ Type, and Type Kind The term Kind cannot be typed in any context, but it is necessary since a circular typing as Type Type leads to the Girard's paradox [25] In Fig 41 we give rules (Abs) and (Appl) for the $C C$ type system

The $\lambda_{\mathcal{L}}$-calculus has been extended with products for the $\lambda \Pi$ and $C C$-type systems in [45] These variants satisfy the same properties as the smply-typed version confluent on substitution-closed terms, weakly-normalizing, and subject reduction For further detaıls we refer to [45]

Example $49 \quad$ We can proof the first order predicate $(\forall x(P x)) \rightarrow(P c)$ by finding a term X of type
 bottom-up application of rule (Abs) results in a term X having the form $\lambda y(\Pi x A(P x)) Y$ where Y is a term of type $\left(\begin{array}{ll}P & c\end{array}\right)$ in a context where the variable y has the type $\Pi x A(P x)$ If we instantiate Y with the term $\left(\begin{array}{ll}y & c\end{array}\right)$, which is a well typed term of type $\left(\begin{array}{ll}P & c\end{array}\right)$, we obtain the term $\lambda y(\Pi x A(P \quad x))(y c)$ of type $\Pi x(\Pi x A(P x))(P c)$ Notice that in this example we have used the meta-variables X and Y and the instantiation mechanism of meta-variables to build incrementally a proof

Typing of meta-variables is more complicated in dependent-type systems than in the simply-type case Since meta-variables can appear in terms, types, and contexts, the typing rules should take care of possible circular dependences
5. Conclusion. The λ-calculus uses an external and atomic operation to compute the substitutions of variables by terms Calculi of explicit substitutions mprove the substitution mechanism by allowing substitutions to be part of the formal language by means of special constructors and reduction rules There are several versions of calculı of explicit substitutions Figure 51 summarizes the main characteristics of some of them All these calculi implement the β-reduction by means of a lazy mechanism of reduction of substitutions

In this paper we have explored new developments and applications on two of the most successful styles of explicit substitution $\lambda \sigma$ and λs_{e}

REFERENCES

[1] M Abadi, L Cardelli, P -L Curien, and J -J Lévy, Explıcıt Substıtutıons, Journal of Functional Programming, 1 (1991), pp 375-416
[2] M Ayala-Rincón and F Kamareddine, Unıficatıon via λs_{e}-Style of Explıcıt Substıtutıon, in 2nd International Conference on Prıncıples and Practice of Declaratıve Programming, Montreal, Canada, September 2000, ACM Press
[3] H P Barendregt, The Lambda Calculus Its Syntax and Semantıcs (revised editıon), North Holland, 1984
[4] ——, λ-calcull with types, Handbook of Logıc in Computer Science, II (1992)
[5] B Barras, S Boutin, C Cornes, J Courant, J Filliatre, E Giménez, H Herbelin,

	$\lambda \sigma$	$\lambda_{\mathcal{L}}$	λs_{e}	$\lambda \sigma_{\Uparrow}$	λ_{ζ}	λv	λ_{d}	$\lambda \mathrm{x}$	$\lambda \chi$
Confluence	Mv	Mv	\checkmark	\checkmark	\checkmark	Gnd	Gnd	Gnd	Gnd
Normalization	Wk	Wk	Wk	Wk	PSN	PSN	PSN	PSN	PSN
Composttion	\checkmark	\checkmark	$\stackrel{*}{*}$	\checkmark	$\stackrel{* *}{\sim}$	$\stackrel{* *}{ }$	\sim^{*}	$\stackrel{* *}{\sim}$	$\stackrel{* *}{\sim}$
Fintary $1^{\text {st }}$-order	\checkmark	\checkmark	$\stackrel{* *}{*}$	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{* *}{*}$	$\stackrel{*}{*}$
Variables	dB	Nm	Lv						
Number of rules	13	12	13^{\dagger}	19	13	8	19	6	10^{\dagger}
β-reduction	\checkmark	\checkmark	\smile	\checkmark	\sim	\checkmark	\checkmark	\checkmark	\checkmark
Reference	[1]	[44]	[32]	[17]	[43]	[38]	[35]	[8]	[39]

- The general pioperty holds
$\stackrel{*}{\sim} \quad$ The property does not hold
$\sim \quad$ The property holds with restrictions
Mv Confluence on semi-open expressions, 1 e only with meta-variables of terms
Gnd Confluence on ground expressions
Wk Weak normalization on typed terms
PSN Preservation of strong normalization
dB De Bruijn indices notation of variables
$\mathrm{Nm} \quad$ Variable names
Lv De Bruijn levels notation with variable names
$\star \quad$ Restricted composition In particular, the λ_{d}-calculus does not allow simultaneous substitutions
$\dagger \quad$ Number of schemes The λs_{e}-calculus is not finitary
$\ddagger \quad$ Big-step semantic of β-reduction The λ_{ζ}-calculus does not simulate each step of β-reduction

Fig 51 Some calculı of explucit substitutions

G Huet, C Muñoz, C Murthy, C Parent, C Paulin, A Saibi, and B Werner, The Coq Proof Asssstant Reference Manual - Versıon V6 1, Tech Report 0203, INRIA, August 1997
[6] N BjøRner and C Muñoz, Absolute explicit unification, in International Conference on Rewriting Techniques and Applications (RTA'2000), vol. 1833 of Lecture Notes in Computer Science, Norwich, U K, July 2000, pp 31-46
[7] R Bloo, Preservation of Termination for Explcct Substitution, PhD thesss, Department of Mathematics and Computing Science, Eindhoven Unıversity of Technology, 1997
[8] R Bloo and K H Rose, Preservation of strong normalsation in named lambda calcull with explicit substttution and garbage collection, in Proc CSN-95 Computer Science in the Netherlands, Nov 1995
[9] D Briaud, Hıgher order unffication as a typed narrowing, tech report, CRIN 96-R-112, 1996
[10] A Church, An unsolvable problem of elementary number theory, American Journal of Mathematics, 58 (1936), pp 345-363
[11] _-, A formulation of the sumple theory of types, Journal of Symbolic Logıc, 5 (1940), pp 56-68
[12] ——, The Calculz of Lambda-conversion, Princeton University Press, 1941
[13] H Cirstea and C Kirchner, Combining Hıgher-order and First-order Computation Using p Calculus Towards a Semantics of ELAN, in Frontiers of Combining Systems 2, D M Gabbay and M de Rıjke, eds, Studıes on Logic and Computation, 7, Research Studıes Press/Wıley, 1999, ch 6, pp 95-121
[14] ——, Introduction to the Rewriting Calculus, Rapport de Recherche 3818, INRIA, Dec 1999
[15] T Coquand, Une Théorıe de Constructions, thèse de doctorat, U Parıs VII, 1985
[16] T Coquand and G Huet, The Calculus of Constructions, Information and Computation, 76 (1988), pp 96-120
[17] P -L Curien, T Hardin, and J -J Lévy, Confluence Propertıes of Weak and Strong Calcull of Explucıt Substıtutıons, Journal of the ACM, 43 (1996), pp 362-397 Also as Rapport de Recherche INRIA 1617, 1992
[18] H B Curry and R Feys, Combinatory Logic, vol 1, North Holland, 1958
[19] N de Bruijn, Lambda-calculus Notatıon with Nameless Dummıes, a Tool for Automatıc Formula Manıpulation, with Applıcatıon to the Church-Rosser Theorem, Indag Mat, 34(5) (1972), pp 381392
[20] G Dowek, A complete proof synthesıs method for type systems of the cube, Journal of Logic and Computation, 3 (1993), pp 287-315
[21] G Dowek, T Hardin, and C Kirchner, Hıgher-order Unificatıon via Explucıt Substıtutıons, Information and Computation, 157 (2000), pp 183-235
[22] G Dowek, T Hardin, C Kirchner, and F Pfenning, Unıficatıon via explicit substıtutıons The case of higher-order patterns, in Proceedings of the Joint International Conference and Symposium on Logic Programming, M Maher, ed, Bonn, Germany, Sept 1996, MIT Press
[23] W Farmer, A Unification Algorithm for Second-order Monadic Terms, Annals of Pure and Applied Logic, 39 (1988), pp 131-174
[24] M C F Ferreira, D Kesner, and L Puel, Lambda-calculı with explicut substıtutions and composition which preserve beta-strong normalization, in Algebraic and Logic Programming, 5th Internatıonal Conference, ALP'96, M Hanus and M Rodriguez-Artalejo, eds, vol 1139 of LNCS, Aachen, Germany, 25-27 Sept 1996, Sprınger, pp 284-298
[25] J -Y Girard, Interprétation Fonctıonelle et Élımınation des Compures de l'Artthmétıc d'Ordre Supérıeur, thèse de doctorat, Unıversité Parıs VII, 1972
[26] W Goldfarb, The Undecudability of the Second-order Unification Problem, Theoretıcal Computer Science, 13 (1981), pp 225-230
[27] M Gordon and T Melham, Introduction to HOL A Theorem Proving Environment for Higher Order Logıc, Cambrıdge University Press, 1993
[28] B Guillaume, The λs_{e}-calculus Does Not Preserve Strong Normalization, Journal of Functional Programming, 10 (2000), pp 321-325
[29] R Harper, F Honsell, and G Plotkin, A framework for defining logics, Journal of the Association for Computing Machinery, 40 (1993), pp 143-184
[30] J R Hindley, Basıc Simple Type Theory, no 42 in Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1997
[31] G Huet, A Unification Algorıthm for Typed λ-Calculus, Theoretical Computer Science, 1 (1975), pp 27-57
[32] F Kamareddine and A Ríos, A λ-calculus à la de Bruıjn with Explıcıt Substıtutıons, in Proc of

PLILP'95, vol 982 of LNCS, Springer, 1995, pp 45-62
[33] ——, Extendıng a λ-calculus with Explıcıt Substıtution which Preserves Strong Normalisation into a Confluent Calculus on Open Terms, Journal of Functıonal Programming, 7 (1997), pp 395-420
[34] F Kamareddine and A Ríos, Relating the $\lambda \sigma$ - and λ s-Styles of Explucit Substitutions, Journal of Logic and Computation, 10 (2000), pp 349-380
[35] D Kesner, Confluence propertıes of extensional and non-extensıonal λ-calculı with explicit substıtutions (extended abstract), in Proceedings of the Seventh International Conference on Rewriting Technıques and Applications (RTA-96), H Ganzinger, ed, vol 1103 of LNCS, New Brunswick, New Jersey, 1996, Sprınger-Verlag, pp 184-199
[36] C Kirchner and C Ringeissen, Hıgher-order Equatıonal Unıficatıon via Explıcıt Substıtutıons, in Proc Algebraic and Logıc Programming, vol 1298 of LNCS, Sprınger, 1997, pp 61-75
[37] S C Kleene, λ-definability and recursiveness, Duke Mathematıcal Journal, 2 (1936), pp 340-353
[38] P Lescanne, From $\lambda \sigma$ to λv a Journey Through Calculı of Explıcıt Substıtutions, in Proceedıngs of the 21st Annual ACM SIGPLAN-SIGACT Symposium on Prınciples of Programming Languages, January 1994, pp 60-69
[39] P Lescanne and J Rouyer-Degli, Explucıt substıtutıons with de Bruıjn's levels, in Proceedings of the International Conference on Rewritıng Technıques and Applications (RTA-95), J Hsiang, ed, vol 914 of LNCS, Chapel Hıll, North Carolına, 1995, Sprınger-Verlag, pp 294-308
[40] P -A Melliès, Typed λ-calculı with expluctt substıtutıons may not terminate, LNCS, 902 (1995), pp 328-338
[41] D Miller, λ Prolog An Introduction to the Language and Its Logic Draft, Department of Computer Science and Engineering, The Pennsylvania State University, 1998
[42] R Milner, M Tofte, and R Harper, The Definition of Standard ML, MIT Press, Cambrıdge, MA, 1991
[43] C Muñoz, Confluence and preservatıon of strong normalısation in an explıcıt substıtutions calculus (extended abstract), in Proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, July 1996, IEEE Computer Socıety Press, pp 440-447
[44] ——, A left-linear variant of $\lambda \sigma$, in Proc International Conference PLILP/ALP/HOA'97, vol 1298 of LNCS, Southampton (England), September 1997, Springer, pp 224-234
[45] C Muñoz, Un calcul de substıtutions pour la représentatıon de preuves partielles en théorıe de types, PhD thesis, Unıversité Parıs 7, 1997 Englısh version in Rapport de recherche INRIA RR-3309, 1997
[46] C Muñoz, Dependent types and explıcıt substıtutıons To appear in Mathematical Structures in Computer Science It also appears as report NASA/CR-1999-209722, ICASE No 99-43, 1999
[47] -, Proof-term synthesıs on dependent-type systems via explıcıt substıtutions To appear in Theoretıcal Computer Scıence It also appears as report NASA/CR-1999-209730, ICASE No 99-47, 1999
[48] G Nadathur, A fine-grained notation for lambda terms and its use in intensional operations, Journal of Functional and Logic Programming, (1999)
[49] G Nadathur and D S Wilson, A Notation for Lambda Terms A Generalization of Environments, Theoretical Computer Science, 198 (1998), pp 49-98
[50] R P Nederpelt, J H Geuvers, and R C de Vrijer, Selected papers on Automath, NorthHolland, Amsterdam, 1994
[51] S Owre, J M Rushby, and N Shankar, PVS A prototype ver ficatıon system, in 11th Interna-
tional Conference on Automated Deduction (CADE), D Kapur, ed, vol 607 of Lecture Notes in Artıficial Intellıgence, Saratoga, NY, June 1992, Springer-Verlag, pp 748-752
[52] F Pfenning and C Schurmann, Twelf user's gude, 12 editıon, Tech Report CMU-CS-1998-173, Carnegie Mellon University, September 1998
[53] C Prehofer, Progress in Theoretical Computer Science, in Solving Higher-Order Equations From Logıc to Programming, R V Book, ed, Brrkhauser, 1997
[54] A Ríos, Contributions à l'étude de λ-calculs avec des substitutions expluctes, thèse de doctorat, Unıversıté Parıs VII, 1993
[55] J A Robinson, A Machine-oriented Logic Based on the Resolution Princıple, Journal of the ACM, 12 (1965), pp 23-41
[56] K H Rose, Explcct Substıtution - Tutorial \& Survey, BRICS, Lecture Series LS-96-3, Department of Computer Science, University of Aarhus, 1996
[57] W Snyder and J Gallier, Higher-order Unıfication Revısited Complete Sets of Transformatıons, Journal of Symbohic Computation, 8 (1989), pp 101-140
[58] A N Whitehead and B Russell, Princıpa Mathematica, Cambridge University Press, Cambridge, revised ed, 1925-1927 Three volumes The first edition was published 1910-1913

REPORT DOCUMENTATION PAGE			Form Approved OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources 			
1 AGENCY USE ONLY(Leave blank)	2 REPORT DATE November 2000	3 REPORT TYPE AND DATES COVERED Contractor Report	
4 TITLE AND SUBTITLE Explicit substitutions and all that			5 FUNDING NUMBERS C NAS1-97046 WU 505-90-52-01
6 AUTHOR(S) Maurıcıo Ayala-Runcón and César Muñoz			
7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ICASE Mal Stop 132C NASA Langley Research Center Hampton, VA 23681-2199			8 PERFORMING ORGANIZATION REPORT NUMBER ICASE Report No 2000-45
9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681-2199			10 SPONSORING/MONITORING AGENCY REPORT NUMBER NASA/CR-2000-210621 ICASE Report No 2000-45
11 SUPPLEMENTARY NOTES Langley Technical Monitor Dennis M Bushnell Final Report To appear in the Colombian Journal of Computation			
12a DISTRIBUTION/AVAILABILITY STATEMENT Unclassified-Unlımited Subject Category 60,61 Distribution Nonstandard Avalability NASA-CASI (301) $621-0390$			12b DISTRIBUTION CODE
13 ABSTRACT (Maximum 200 words) Explicit substitution calculi are extensions of the λ-calculus where the substitution mechanism is internalized into the theory This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems In this paper we explore new developments on two of the most successful styles of explicit substitution calculi the $\lambda \sigma$ - and λs_{e}-calcul			
14 SUBJECT TERMS explictt substitution, higher order unfication, lambda-calculus, type theory, rewriting			15 NUMBER OF PAGES 27
			$\begin{gathered} 16 \text { PRICE CODE } \\ \text { A03 } \\ \hline \end{gathered}$
17 SECURITY CLASSIFICATION OF REPORT Unclassified	18 SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19 SECURITY CLASSIFICATION OF ABSTRACT	$\begin{array}{ll} 20 & \text { LIMITATION } \\ & \text { OF ABSTRACT } \end{array}$
NSN 7540-01-280-5500			$\begin{aligned} & \text { Standard Form 298(Rev 2-89) } \\ & \text { Prescribed by ANSI Std Z39-18 } \\ & \text { 298-102 } \end{aligned}$

End of Document

[^0]: *Work carried out during the visit of the first author at the ULTRA Group, CEE, Heriot-Watt University, Edinburgh, Scotland, and funded by CAPES (BEX0384/99-2) Brazilian Foundation For the second author, the work was supported by the National Aeronautics and Space Admimstration under NASA Contract No NAS1-97046 while he was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199, USA
 ${ }^{\dagger}$ Departamento de Matematica, Unıversidade de Brasilia, 70910-900 Brasília D F , Brasil, e-mail ayala@mat unb br
 \ddagger ICASE, Mall Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199, USA, e-mal munoz@icase edu

[^1]: ${ }^{1}$ As usual, if R is a term rewrite system, we denote by \xrightarrow{R} the relation induced by R and by $\xrightarrow{R^{*}}$ the reflexive, symmetric, and transitive closure of \xrightarrow{R} Furthermore, the equational theory associated to R defines a congruence denoted by $=R$

