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EXPLICIT SUBSTITUTIONS AND ALL THAT* 

11AURICIO AYALA-RINCONt AND CESAR MUNOZ+ 

Abstract. ExphClt substItutlOn calcuh are extenslOns of the A-calculus where the substItutlOn mechamsm 

IS Internahzed Into the theory ThIs feature makes them sUItable for ImplementatIOn and theoretIcal study of 

logIc-based tools such as strongly typed programmIng languages and proof assIstant systems In thIS paper 

we explore new developments on two of the most successful styles of exphclt substItutlOn calcuh the AU

and Ase-calcuh 

Key words. exphclt SubstitutlOn, hIgher order umficatIOn, lambda-calculus, type theory, rewntIng 

Subject classification. Computer SCIence 

1. Introduction. TIllS paper focuses on the uses of exphclt substitutlOns In the language of the simply

typed A-calculus Type theones were used at the begInmng of the twentIeth century as a formalIsm to deal 

wIth the mathematIcal paradoxes studIed at that tIme and Incorporated In 1940 to the A-calculus by A 

Church [11] The need of stronger programmIng languages gUIded type theory to the mterest of computer 

SCIentIsts In the 1970's and 1980's, when new languages based on type theones were developed Probably 

the most relevant of these languages IS ML [42], developed by R MIlner In the 1990's, several proof 

aSSIstant systems based on hIgher-order logIcs, such as Coq [5], HOL [27], and PVS [51], were developed 

The A-calculus IS the sImplest logIcal framework for reasonIng about formal propertIes of all these systems 

Many of the essentIal tcchmqucs and computatlOnal procedures Involved In these tools have been developed, 

analyzed, and Improved In the context of the sImply-typed A-calculus before bemg Implemented These 

techmques mclude sImple mechamsms such as type checkIng and type Inference, and more complex ones 

such as those used for dealIng WIth the InhabitatlOn problem and the hIgher order umficatlOn problem The 

baSIC operatIOn of the A-calculus IS the f3-converslOn that was ongInally defined based on an Imphclt notlOn 

of substitutIOn where renammg of vanables was Informally assumed to aVOId "clashes" and "captures" ThIS 

ImphCltness of the notlOn of SubstitutlOn was not cntlcal before thIS theoretIcal framework was used In other 

contexts than the ones of computer SCIence, but makmg the notlOn of SubstItutlOn explICIt IS essentIal when 

computatlOnal propertIes such as tIme and space compleXIty should be analyzed 

\Ve WIll focus on two styles of exphclt substItutlOns ,\U and ASe These calculI use a name-less notatlOn 

for vanables Therefore, techmcal nUIsances due to the hIgher order aspect of A-calculus, such as renamIng 

and capture of vanables, are mInImIZed or completely elImmated In AU and ASe _ For these calcuh, we WIll 

motIvate and Illustrate dIfferent techmques developed for Important computatlOnal problems and applIcatlOns 

such as hIgher order umficatlOIl, type Inference, and mhabitatlOn problem These kmd of problems anse 

naturally In many fields of computer SCIence Some of the cunent progress In the area of exphclt SubstitutlOn 

IS recorded In the senes of "InternatlOndl Workshops on Expbcit SubstItutlOns Theory dnd ApphcatlOn~ to 

Programs and Proofs" - \VESTAPP that runs yearly together With the Conference on RewntIng Techmques 

'Work carned out durmg the VISit of the first author at the ULTRA Group, CEE, Henot-Watt Umverslty, Edmburgh, 

Scotland, and funded by CAPES (BEX0384/99-2) BraZIlIan FoundatIOn For the second author, the work was supported by the 

NatIOnal AeronautIcs and Space AdmmlstratlOn under NASA Contract No NASl-97046 while he was m residence at ICASE, 

NASA Langley Research Center, Hampton, VA 23681-2199, USA 
tDepartamento de MatematIca, Umversldade de BrasilIa, 70910-900 BrasilIa D F , Brasil, e-mail ayala@mat unb br 
+ICASE, Mall Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199, USA, e-maIl munoz@lcase edu 
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and ApphcatlOns - RTA For other surveys and tutonals on exphclt substltutlOn calcuh see [38, 56] 

Firstly, m sectlOn 2 we present basIc not lOllS of the A-calculus, ItS representatlOn m de BrUlJn mdex 

notatlOn, ItS simply-typed verSlOn, and the Curry-Howard Isomorphism Afterwards, m sectlOn3, \\e motivate 

exphClt substItutlOns and present the two before mentlOn~d calcuh of exphclt substltutlOns along With their 

simply-typed verSlOns In sectlOn 4, we explam bnefly the apphcatlOns of exphclt substItutlOns before 

concludmg m sectlOn 5 

2. The A-calculus. The A-calculus was developed by Church around 1930 [12] as a formal language for 

the foundatlOns of mathematics and logiC Although that foundatlOn was later revealed to be mconslstent, 

mdeed Russell paradox [58] can be encoded m It, the A-calculus still provides a formal model of computablhty 

Church and Kleene [37, 10] proved that the class of A-expresslOns and the class of partlal-recufSlve functlOns 

are the same ThiS result, along With Turmg's own work, shows that the A-calculus IS as expressive as Tunng 

machmes 

The notatlOn consists of a set A of terms and rules to mampulate them The set A IS bUllt on a countable 

set of vanables V = {x, y, } and It IS mductlvely defined as follows V c A, If 111, N E A then (111 N) E A, 

and If x E V and 111 E A then AX 111 E A Terms of the form (111 N) are called applzcatzons and terms of the 

form .xx AI are called abstmctzons AbstractlOns are bmdmg structures As usual for these kmd of structures, 

a notion of free and bound vanables IS necessary The set of free varzables of AI, denoted FV(AI), IS defined 

by FV(x) = {x}, FV((AI N)) = FV(M) U FV(N), and F~T(Ax M) = FV(M) \ {x} The vanable x m 

a term AX AI IS Said to be bound Names of bound vanables are Irrelevant For mstance, .xx x and AY Y 

represent the same A-term ThiS ImpliClt eqUivalence IS called Q-COnVerSlOn Formally, If z (j FV(AI), then 

AX AI =", AZ AI {z j x}, where for an arbitrary term N, AI {N j x} denotes the atomzc substztutzon of the free 

occurrences of the vanable x m Al by N 

SubstItutlOn plays a very Important role m the .x-calculus In fact, the mam computatlOnal rule m tlns 

formahsm, the ,a-rule, IS expressed as follows (Ax 111 N) ---..!!.- M{Njx} Informally, It states that the 

apphcatlOn of a functlOn AX 111 to an argument N, results m a term Al {N j x} where the formal parameter x 

has been replaced by the argument N m A[ (the body of the functIOn) An addltlOnal rule, called 71, states that 

abstractlOns computmg the same value for the same argument are convertible Formally, AX (A[ x) ---..!.!..... 111, 

If x (j FV(1I1) 

The formal defimtlOn of substItutlOnls not as Simple as It seems The followmg one, commonly used mlm

plementatlOns, IS wrong x{1I1jx} = 111, y{Mjx} = y, If Y =I- x, (Ah Ah){Mjx} = (MI {Mjx} 1112 {1I1jx}), 

(Ax N){Mjx} = AX N, and (AY N){Mjx} = AY N{Mjx}, If Y =I- x The problem anses m the last 

case the term AI may contam a free vanable y winch becomes a bound vanable when the substitutIOn 

IS apphed A correct defimtlOn should aVOId thiS capture, for mstance, by modIfymg the last case With 

(.xy N){1I1jx} = AZ N{zjy}{Mjx}, where z (j FV(M) 

The A-calculus IS not termmatmg Indeed, a term hke (Ax (x x) AX (x x)) ,a-reduces to Itself and then 

It can be always reduced However, the A-calculus satisfies, the Church-Rosser property Ie, If Ah =(31/ A[2, 

then there eXIsts N such that MI ~ Nand 1112 ~ N I In consequence (1) the A-calculus IS also 

confluent and (2) normal forms, It they eXIst, are umque \Ve refer to [3] for a complete descnptlOn of the 

A-calculus and Its properties 

R R' 
I As usual, If R IS a term rewrite system, we denote by - the relatIOn mduced by R and by the refleXIve, 

R 
symmetric, and transItive closure of Furthermore, the equatIOnal theory asSOCiated to R defines a congruence denoted 

by =R 
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2.1. de Bruijn indices. At the begmnmg of the seventIes, de BrUIJn developed a nameless notatlOn 

for the A-calculus [19] In that notatlOn, names of bound vanables are replaced wIth mdzces 

DEFINITION 2 1 The set AdB of A-terms m de BruIJn mdex notatlOn zs defined mductwely as 

M, N = rr I (M N) I AM 

where n E N>o 

An mdex counts the number of A-symbols m the bmdmg scope of the bound vanable that It represents 

For Instance, In de BruIJn mdex notatlOn, the term AX X IS wntten Al smce the bound vanable x IS In the 

bmdIng scope of one A-symbol SImIlarly, the term AX (AY (x y) x) IS wntten A(A(2 1) 1) Note that the 

same mdex appeanng In dIfferent bmdmg scopes represents dIfferent vanables VIce-versa, occurrences of 

the same vanable appeanng m dIfferent bIndIng scopes are denoted by dIfferent mdices 

Free vanables can also be represented by de BrUIJn mdices In that case, It IS necessary to fix an 

enumeratlOn, namely a referentzal, Xl, X2, , x n , of free vanable names If the occurrence of a vanable IS 

denoted by an mdex rr and the number of A-symbols m the bmdmg scope of that occurrence IS less than n, 

say m, then that occurrence of rr represents the free-vanable X n - m of the referentIal For mstance, the term 

(Ax (y x) z) can be encoded as (A(2 1) 2) under the referentIal y, z and as (A(3 1) 1) under the referentIal 

z,y 

The formulatlOn of the rules {J and TJ for AdB-terms reqUIres the followmg functlOns for updatmg and 

substItutlOn of mdices 

DEFINITION 2 2 Let ME AdB The z-hft of M, denoted M+' zs defined mductwely as follows 

1 (MI M 2 )+' = (M{' Mi'), 
2 (AN)+' = AN+(,+I), 

3 n+' = { n + 1, zf n > z 
- rr, zf n :::; z 

The hft of a term M zs zts O-lzjt and zs denoted brzefly as M+ 

DEFINITION 2 3 The apphcatlOn of the substItutlOn wzth N at the depth n - 1 on a term M, denoted 

M {N I rr}, zs defined mductwely as follows 

1 (Ml M2){N/rr} = (1\1dN/rr} 1\12 {N/rr}) , 

2 (AM){Nlrr} = AM {N+ In + I}, 

{ 

m -1, zfm > n 

3 m{Nlrr} = N, zfm = n 

m, zfm < n 

DEFINITION 2 4 The rules {J and TJ are defined for the set of AdB-terms as follows 

(AM N) ~ M{N/l} 

A(M 1) ~ N, zf N+ = 1\1 

EXAMPLE 2 5 The A-term (Ax (AY (x z) x) (z AZ (x z))) can be translated under the referentIal 

x, y, z mto the AdB-term (A(A(2 Ii) 1) m A(2 1))) Furthermore, we have 

(Ax (AY (x z) x) (z AZ (x z))) ~ (AY «z AZ (x z)) z) (z AZ (x z))) 



\Ve exam me m detaIl the steps of that reductIOn for AdD-terms 

(>'(>'(2. Q) 1) (;! >'(2. 1))) ~ (>'(2. Q) 1){C;! >'(2. 1))/I} 

(( >'(2. Q)){ (;! >'(2. 1)) II} l{ (;! >'(2. 1)) II} ) 

( >. (2. Q){ (;! >. (2. 1)) + /2.} (;! >. (2. 1))) 

(>'(2. Q){(;!+ >'(2.+1 1+1))/2.} (;! >'(2. 1))) 

(>'(2. Q){(1 >'(;! 1))n} m >'(2. 1))) 

(>'(2.{(1 >.(;! 1))n} Q{(1 >'(;! 1))n}) (;! >'(2. 1))) 

(>.( (1 >'(;! 1)) 1) (;! >'(2. 1))) 

The Adwterm (>'((1 >.(;! 1)) 1) (;! >'(2. 1))) represents the term (>.y ((z >.Z (x z)) z) (z >.z (x z))) under 

the given referential • 

EXAMPLE 2 6 Notice that 

smce 

>. ( (>.>. (Q (1 2.)) 1) 1) ~ (>.>. (1 (1 2.)) ;!) 

(>'>'(1 (1 2.)) ;!)+ = ((>'>'(1 (1 2.)))+ ;!+) 

= (>'(>'(1 (1 2.)))+1 ;!+) 

= (>'>'(1 (1 2.))+2 ;!+) 

= (>'>'(1+2 (1 2.)+2) ~+) 

= (>'>'(1+2 (1+2 2.+2)) ;!+) 

= (>.>.(Q (1 2.)) 1) 

• 

2.2. Simply-typed A-calculus. The >.-calculus IS a Simple, but yet powerful formalIsm As we Said 

before, when used as a logical framework, the >.-calculus allows the encodmg of paradoxes To solve that 

problem, Church developed a typed verSIOn of the >.-calculus [11] which happens to be a slmplIficatlOIl of the 

Type Theory of Whitehead-Russell [58] 

The effect of typed >.-calculus can be seen on a term such as >.x (x x) which IS a well formed term m the 

untyped >.-calculus that represents the abstract concept of "self-applIcatIOn" The meanmgfulness of thiS 

concept may be questIOned and was mvolved m many of the logical paradoxes from the begmmng of the 

twentIeth century Thmkmg about x as a functIOnal vanable from A to A or of "type A-+A", the applIcatIOn 

(x x) IS forbidden, smce It'S ImpOSSible to apply a functIOn of type A-+A to an argument of type A-+A 

ThiS comcldes With the conceptIOn of functIOnal objects assumed by most mathematiCIans Of course, If z 

IS a vanable of type A, the typed expreSSIOn >.x (x (x z)) makes sense For a formal mtroductlOn to the 

theory of the Simply-typed >.-calculus and mterestmg hlstoncal remarks see [30] 

In a typed A-calculus, A-terms are stratified m several categones, namely types A type, m the szmple 

type theory, can be a baSIC type a, b, or a functIOnal type A--+B, where A and B are types \Ve use 

upper-case letters A, B to range over types Only terms that follow a type dlsclplme are considered to be 

valId The type diSCiplIne IS enforced by a set of typmg rules Thanks to the typmg rules, Russell's paradox 

cannot be expressed m the Simple type theory 
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x gT ( ) 
x A, r f- x A Start 

x g' r r f- M B (Weak) 
x A,r f- M B 

x A,r f- M B 
r f- AX A M A-+B (Abs) 

r f- AI A-+B r f- N A (Appl) 
r f- (M N) B 

FIG 2 1 The sImply-typed A-calculus 

l<z<n 
Al A2 An f- 1. A, (Var) 

Arf-M B 
r f- >lA AI A-+B (Abs) 

r f- M A-+B r f- N A (Appl) 
r f- (AI N) B 

FIG 2 2 The sImply-typed A-calculus for AdB -terms 

Typed A-terms are elements of the set of A-terms except that bound vanables m abstractlOns have type 

annotatlOns, 1 e , they have the form AX A AI Rules f3 and "7 are modIfied accordmgly 

{3 
(Ax AM N) - M{Njx} and AX A (M x) ~ M, If x (j. FV(M) 

A typmg Judgment r f- AI A denotes that the term M has type A m r, where r IS a context, 1 e , a hst 

Xl AI, ,Xn An of vanable declaratlOns Henceforth, we use Greek letters r, .6., to range over contexts 

FIgure 2 1 shows the typmg rules of the sImply-typed A-calculus We say that a A-term M IS well typed m 

r If and only If there eXIsts a type A such that r f- AI A, and we say that a type A IS znhabzted m r If and 

only If there eXIsts a A-term AI such that r f- M A 

The presentatlOn of the typed A-calculus used m thIS paper corresponds to the Church-style In thIS 

presentatlOn, typed A-terms are elements of the set of A-terms except for abstractlOns, whIch have type 

annotatlOns An alternatIve present at lOn, called Curry-style, consIders typed A-terms as standard A-terms 

WIthout type annotatlOns In that case, type varzables should be added to the formalIsm Indeed, m a typed 

A-calculus a la Curry, the type of AX X IS 0:-+0: where 0: denotes any type (See [4]) 

Type checkmg IS deCidable for the SImply typed A-calculus That IS, there IS a method to deCIde whether 

or not a term has a type m a gIven context accordmg to the typmg rules As the untyped verSlOn of the 

A-calculus, the SImply-typed A-calculus enJOYs the Church-Rosser property and therefore It IS also confluent 

Furthermore, It also satIsfies the followmg propertIes 

• Subject reductzon, If r f- M A and AI ~ N, then r f- N A, 

• Type umqueness, If r f- AI A and r f- M B, then A = B, 

• Strong normalzzatzon, If M IS a well typed term, then AI has no reductlOns of mfimte length 

Therefore, due to the confluence property, normal-forms of well typed terms always eXIsts and they 

are umque 

In the de BrUlJn settmg of the SImply typed A-calculus, a context r IS a lIst of types Al An where A, 

IS the type of the free-vanable represented by the mdex 1. The empty context IS denoted by E SImply-typed 

Adwterms are defined by the typmg rules of FIg 22 

2.3. Curry-Howard isomorphism. There IS a strong relatlOn between type theory and mtUltlOmstIc 

lOgIC If we IdentIfy types WIth propositlOns, where an arrow type IS an ImplIcatIOn, typmg rules of the simply

typed A-calculus correspond One to one to deductlOn rules of a mimmal mtmtlOmstlc logIC In other words, 

typmg rules are logIcal rules decorated WIth typed A-terms ThIS pnnCIple IS known as the Curry-Howard 
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IsomorphIsm 

ConsIder an mtUItIOmstlc mlmmalloglc where proposItIonal formulas are bUIlt from atomIC proposltIon'l 

a, b, and the ImphcatIOn, Ie, If A and B are formulas then A -+ B IS a formula We use upperca~e Greek 

letters n to range over set of formulas We WrIte n, A a'l a shorthand for n U {A} A Judgment n h A 

denotes that A IS a logIcal consequence of n A Judgment IS SaId provable (m the mzmmal mtuztzonzstzc 

logzc) If and only If It IS derIved by top-down apphcatIOn of the followmg rules 

n A f- A (AxIOm) 
, J 

n, A f- J B (I t ) 
Of-JA-+B nra 

A formula A IS a tautology If and only If the Judgment f- J A IS provable For example, the formula 

A-+((A-+B)-+B) IS a tautology smce It can be derIved as follows 

A,A-+B h A-+B (AxIOm) A,A-+B f-J A ~~~:~) 
A, A-+B f-J B 

A f-J (A-+B)-+B (Intra) 
f-J A-+((A-+B)-+A) (Intra) 

Formally, the Curry-Howard IsomorphIsm says that n f- J A IS provable m the mmmmi mtmtIOmstIc 

logIc If and only If r f-!lf A IS a vahd typmg Judgment m the SImply-typed A-calculus, where r IS a hst 

of varIable declaratIOn of proposItIOns, seen as types, m n The term !If IS a A-term that represents the 

proof derIVatIOn For mstance, the term decoratIOn of the tree derIVatIOn above results m the valId typmg 

Judgment f- AX A AY A-+B (y x) A-+((A-+B)-+A) 

The Curry-Howard Isomorplnsm IS extended to mtUItIOmstlc first order and hIgher order logIcs and 

It IS WIdely studIed m proof theory It IS at the base of mathematIc formalIzatIOns where proofs are Just 

mathematIcal objects Such languages are the base of automatIc systems for proof constructIOn, program 

verIficatIOn and program syntheSIS 

3. Explicit Substitutions. Imphcltness of SubstItutIOn IS the Achzlles heel of the A-calculus Namely, 

the A-calculus IS a convement and compact model of the computable functIOns but It does not proVIde any 

mechamsm for observmg essentml operatIOnal propertIes of these functIOns as tIme and space compleXIty 

The reason for thIS IS that the SubstItutIOn mvolved m ,a-reductIOns does not belong m the calculus, but rather 

m an mformal meta-level In practIce, iJ-reductIOn IS not a prImItIve operatIOn and IS Implemented based 

on a substItutIOn generally elaborated by renammg varIables and/or mamtammg some varIable conventIOn 

That makes It ImpOSSIble to determme or bound m tIme and space the iJ-reductIOn 

The A17-calculus was the first one presented formally as a mechamsm for makmg exphclt SubstItutIOn 

m the A-calculus [1] But before thIS, today WIdely conSIdered semmal work, many empIrIC and theoretIc 

efforts were reahzed m order to solve the problem of ImplICItness of the SubstItutIOn operatIOn From the 

theoretIcal pomt of VIeW, the Combmatory Logzc of Curry and Feys [18] proposed the first solutIOn to tlns 

problem However, thIS settmg does not remam close to the A-calculus and the number of prImItIve steps 

can be extenSIvely larger than reqUIred by explICIt SubstItutIOn calculI From the empIrIcal pomt of VIew, 

perhaps the person who prOVIded the foundatIOns to take care of thIS problem was de BrmJn hImself, when 

developmg hIS system AUTOMATH from the mIddle of the 1960's Part of hIS prImary conceptIOns was the 

preVIOusly mentIOned mce nameless notatIOn for the A-calculus [19] HIS legacy IS collected m [50] 
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Smce the Aa-calculus was mtroduced m [1], several other vanants of explIcIt substItutIOn calculI have 

been proposed (see, for example, [54,38,32, 7,39, 17, 35,43, 24, 44]) These calculI Implement several styles 

of explIcIt <;UbstItutIOns 

\Ve wIll focus our attentIOn on t\vO of these styles the Aa- and the Ase-styles Both of them use a nameless 

notatIOn based on the de BruIJn mdex notatIOn, WhICh IS completely msensItIve to Q-COnVerSIOn That allows 

a clean and elegant meta-theoretIcal study of the calculI whIch make them SUItable for ImplementatIOn of 

declaratIve programmIng languages, hIgher order proof assIstants, and automated deductIve systems Both 

styles were shown mcomparable In [34) 

The Aa-calculus and ItS varIants have been proposed as a general framework for hIgher order umficatIOn 

and term synthesIs [21, 22, 9, 36, 45, 47, 46, 6) Furthermore, calcuh of the Aa-famlly have been mcorporated 

wIth success mto programmmg languages and proof assIstants For example, an algOrIthm for pattern 

umficatIOn for dependent types, based on Aa, has been Implemented m the Twelf system [52) It has also 

been relevant m the Improvement of the explICIt SubstItutIOn for the rewrzte calculus (p-calculus [14]) of the 

ELAN system, WhICh prOVIdes a language based on reWrIte rules for specIfymg and prototypmg deductIve 

systems [13) 

The Ase-calculus [32, 33) was developed more recently than the Aa-calculus and ItS mam claImed ad

vantage over the Aa-calculus IS that It remams as close as pOSSIble to the A-calculus haVIng only one sort of 

objects There IS a close relatIOn, untIl now only subjectively purposed, between the Ase-calculus and the 

reWrIte rules developed by Nadathur and \VIlson m the early 1990's and used In the ImplementatIOn of the 

hIgher order logIC programmmg language AProlog [41) For mstance the lazmess m the substItutIOn needed 

m ImplementatIOns of ,B-reductIOn, that anses naturally m the Ase-calculus, IS prOVIded as the Informal but 

empIrIcal concept of suspenszon of substitutIOns by Nadathur and \VIlson reWrIte rules, WIth theIr notIOn of 

SubstItutIOn beIng more general than the ASe one More recently theIr rewrIte rules were pubhshed m the 

context of exphcIt substItutIOn as the suspenszon calculus [49, 48) EstablIshmg formally the relatIOns and 

dIfferences between the Ase-calculus and the suspenSIOn calculus remams as Important work to be done 

3.1. The Au-calculus. The Aa-calculus IS a first order rewnte system WIth two sorts of expres

SIOns terms and substztutzons In fact, SubstItutIOns mherent to the ,B-rule m de BrUIJn mdex notatIOn, 

()"M N) ~ M{N/l} , are delayed and recorded III the )..a-calculus as ()"M N) - M[N ui] Here, 

M[N ul)Is a )..a-expressIOn representmg AI WIth a recorded substItutIOn N zd AddItIOnal rules are nec

essary for applymg the recorded substItutIOn to the term AI, 1 e , replacmg all the free occurrences of the 

de BrUIJn mdex 1 at M WIth Nand decrementmg by one remammg free de BrUIJn mdIces over M De

laymg applIcatIOn of substItutIOn IS WIdely used III ImplementatIOns of functIOnal and logIcal programmmg 

languages, because ImmedIate substItutIOn may gIve nse to a SIze explOSIOn of the expreSSIOns 

DEFINITION 3 1 (Au-calculus) The )..a-calculus zs defined by the rewrzte system depzcted m Ftg 31 

where 

TERMS M,N 

SUBSTITUTIONS S, T 

11 )"M I (M N) I M[S) 

zd I tiM SIS 0 T 

The rewrzte system obtamed by droppmg rules (Beta) and (Eta) of )..a zs called a 

In )..a, de BrUIJn mdIces are encoded by means of the constant 1 and the substItutIOn t We wnte t n as 
n-tImes 

..---"-----
a shorthand for too t We overload the notatIOn 1. to represent the Aa-term correspondmg to the mdex 
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(>.M N) --+ M[N zd) (Beta) 

(M N)[S] --+ (M[S] N[S]) (App) 

(>'M)[S] --+ >'M[1 (S 0 t)] (Abs) 

M[S][T] --+ M[SoT]' (Clos) 

I[M S] --+ M (VarCons) 

M[zd] --+ M (Id) 

(SI OS2) oT --+ SI 0 (S2 0 T) (Assoc) 

(M S) oT --+ M[T] (S 0 T) (Map) 

zdo S --+ S (IdL) 

S ozd --+ S (IdR) 

to (M S) --+ S (SlllftCons) 

1 t --+ zd (VarShlft) 

I[S] (t 0 S) --+ S (SCons) 

>.(M 1) --+ N If M =(T N[t] (Eta) 

FIG 3 1 The >.a-calculus [1] 

z, Ie, 

1 = { ~[tn] If Z = 1 

If z = n + 1 

This one-shift encodmg IS mterestmg because mvolvmg a bUilt-m deductIOn mechamsm for anthmetlc m 

ImplementatIOns of systems based on the >.a-calculus makes It difficult the analysIs of time and space quan

titative performance But m any conceivable ImplementatIOn one should use full mdlce'l at the meta-level 

m'ltead of the one-shift encodmg 

An exphclt substitutIOn denotes a mappmg from mdlces to terms Thus, zd maps each mdex z to the 

term 1, t maps each mdex z to the term z + 1, SoT IS the compositIOn of the mappmg denoted by T with 

the mappmg denoted by S (notice that the compositIOn of substitutIOn follo'Ws a reverse order with respect 

to the usual notatIOn of functIOn compositIOn), and finally, A1 S maps the mdex 1 to the term A1, and 

recursively, the mdex z + 1 to the term mapped by the substitution S on the mdex z 

The >.a-calculus IS not a confluent rewnte system [17], however It IS confluent on ground expressIOns [1] 

and confluent on substitutIOn-closed expressIOns (I e , expresslOn~ Without substitutIOn vanables) [54] On 

the other hand, the a-calculus, Ie, >.a Without (Beta), IS confluent and termmatmg [1] 

A term IS called pure If It does not contam substitutIOns Notice that the set of pure terms m >.a and 

the set of AdB-terms are Identifiable Furthermore, the >.a-calculus simulates the >.-calculus [17], Ie, the 
J3 (Beta) (To 

relatIOns mduced by - and - - (one step of (Beta) followed by a a-normahzatlOn) comclde 

on pure terms However, the >.a-calculus does not preserve strong-normahzatlOn of the >.-calculus [40], Ie, 

strongly normahzmg >.-terms can be reduced forever m >.a 

3.2. The Ac-calculus. As pomted out before, the one-shift encodmg of mdlces m >.a IS a theoretically 

convement feature, but Impractical for ImplementatIOns Nadathur also remarked m [48] that the non-left

hnear rule of >'a, namely (SCons), IS difficult to handle m real ImplementatIOns Instead of rule (SCons), 

he suggested the meta-rule I[tn] tn+1 - t n Smce tn IS a shorthand m >'a, an mfimte set of rules IS 
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(>.M N) -----+ M[N to] (Beta) 

(>'M)[S] -----+ >.M[l (S 0 t l )] (Abs) 

(M N)[S] -----+ (M[S] N[S]) (App) 

M[S][T] -----+ M[SoT] (Clos) 

l[M S] -----+ M (VarCons) 

M[tO] -----+ M (Id) 

(M S) 0 T -----+ M[T] (S oT) (Map) 

to 0 S -----+ S (IdS) 

t n+1 0 (M S) -----+ t n 
0 S (ShiftCons) 

t n+l 
0 t m -----+ t n 

0 t m +l (ShiftShIft) 

1 t l -----+ to (ShiftO) 

l[r+l] t n+2 -----+ t n+1 (ShIftS) 

>.(M 1) -----+ N If M =t:. N[tl] (Eta) 

FIG 3 2 The rewrite system AC 

represented by thIS scheme 

Non-Ieft-Imear rules are not only annoymg to Implement, but they are usually responsIble for non

confluence and typmg problems Indeed, >.u IS not confluent [17] and It does not preserve typmg m a 

dependent-type system [45], both problems because of the non-left-linearIty of the calculus 

The >'c-calculus [44] IS a left-linear varIant of >.u where tn IS a first-class substItutIOn ThIs allows the 

formulatIOn of the rule suggested by Nadathur as a regular first order rule In fact, mstead of (SCons), the 

the >'t:.-calculus has the followmg rule l[tn+I] t n+2 _ t n+l 

DEFINITION 3 2 (Ac-calculus) The >'t:.-calculus ~s defined by the rewrzte system depzcted zn Fzg 32 

where 

NATURAL NUMBERS n 

TERMS M,N 

SUBSTITUTIONS S, T 

= °In+1 
= 11 >'M I (M N) I M[S] 

t n 1M SIS oT 

The C-rewrzte system zs obtazned by droppzng rule (Beta) from >'t:. 

We adopt the notatIOn 1:. as a shorthand for Htn] when z = n + 1 SubstItutIons zd and t are WrItten m 

>'t:. as to and tI, respectively In general, r denotes the mappmg of each mdex z to the term z + n U smg tn, 

the scheme of rule proposed by Nadathur can be encoded m a first order reWrIte system Natural numbers 

are constructed wIth 0 and n + 1 ArIthmetIc calculatIOns on mdices are embedded m the reWrIte system 

The >'c-calculus IS confluent on substitutIOn-closed expreSSIOns and It SImulates the >.-calculus [45] Just 

as >.u, It does not preserve strong normalizatIOn 

Another left-lmear vanant of >.u IS the >'uft-calculus [17] The ).uft-calculus IS a confluent first order 

reWrIte system, Ie, It IS confluent on presence of both term and substitutIOn varIables However, >'uft 

raises some techmcal problem wIth 1}-conversIOns due to the fact that substitutIOns zd and 1 t are not 

>'uft-convertible 

3.3. The Ase-calculus. The >'se-calculus aVOIds mtroducmg two dIfferent sets of entIties as the >'u

calculus does, mSIstmg m thIS way on remammg close to the syntax of the >.-calculus Next to abstractIOn 

and applicatIOn, the >'se-calculus mtroduces substitutIOn (u) and updatmg (cp) operators 
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(AM N) 

(AM) a 1N 

(Ml M2)a 1N 

'!1.a 1N 

cpi.(AM) 

cpi (Ml lIh) 

~ MaIN 

~ A(M a 1+1 N) 

~ ((Ml a 1N) (M2a 1N)) 

{ 

n-1 If n>z 

~ CPaN If n = z 

'!1. If n < z 

~ A( CPi.+l M) 

~ ((cpi Md (cpi. 1vh)) 

{ 
n + z - 1 If n > k 

'!1. If n'5.k 

(Ml a'M2 )aJ N ~ (Ml a)+1 N) a 1 (lIh aJ - 1+1 N) If z '5. J 

CPt- l M If k < J < k + z (cpi M)aJ N ~ 

(cpi M)aJ N ~ CPi. (M a J -
1+l N) If k + Z :S J 

CPi. (M a J N) 

CPi. (<t?i M) 

cpi (cpI M) 

A(M 1) 

~ (CPi,+l M)aJ (CPi,+l-J N) If J '5. k+ 1 

~ <t?i (CPk+l-) M) If 1+ J '5. k 

~ cpf+ l
-

l M If 1 '5. k < I + J 

~ N If M =Se CP6N 

FIG 3 3 Rewntmg system of the ASe -calculus 

(a-generatIOn) 

(a-A-transitIon) 

( a-app-transitIon) 

(a -destructIOn) 

( cp-A-transitIOn) 

(cp-app-transItIOn) 

(cp-destructIOn) 

(a-a-transitIOn) 

(a-cp-transitIon 1) 

(a-cp-transltIOn 2) 
(cp-a-transitIon) 

(cp-cp-transitIon 1) 

(cp-cp-transitIon 2) 

(Eta) 

DEFINITION 3 3 (Ase-calculus) The Ase-calculus zs gwen by the rewrzte system zn Fzg 33 and the 

grammar 

M,N = '!1.1 (M N) I AM I MaJN I cpi M for n, J, z 21 and k 2 0 

The calculus of substztutzons assoczated wzth the ASe -calculus, namely Se, zs the rewrztzng system generated 

by the set of rules Se = ASe - {a-generatzon, Eta} 

IntUitIvely, the substItutIOn operator, a, mitIates (rule (a-generatIOn)) one-step of ;3-reductIOn, from 

(AM N), propagatmg the associated substitutIOn mnermost (rules (O"-A) and (a-app-transitIOn)) Once tins 

propagatIOn IS fimshed, when necessary, the updatmg operator, cp, IS mtroduced to make the appropnate hft 

over N (rule (a-destructIOn)) OtherwIse eIther free de BrUIJn mdices are decremented by one or bounded 

mamtamed 

The Ase-calculus SImulates ;3-reductIOn and IS confluent [33] It does not preserve strong normahzatIOn 

[28] 

3.4. Simply-typed calculi of explicit substitutions. In thIS sectIOn, we only mclude the essen

tial notatIOn of the SImply-typed AC- and Ase-calcuh PropertIes can be found m detatl m [44] and [32], 
respectIvely Typmg rules m both calcuh follow the scheme as those of the SImply-typed Aa-calculus [21] 

The rewnte rules of the typed AC- and Ase-calcuh are defined by addmg to theIr respective set of rules 

the necessary typmg mformatIOn Thus, for the SImply-typed Ac-calculus we have the typed rules 

(AA M N) 

(AA M)[S] 

AA (M 1) 

~ M[N to] 

~ AA M[1 (S 0 tl)] 

~ N If M =c N[tI
] 
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A f I-- 1 A (Var) 

f I-- M A-tB f I-- N A (App) 
f I-- (A1 N) B 

f I-- to [> f (Id) 

f I-- M A f I-- S [> ~ (C ) 
f I-- AI S [> A ~ ons 

Afl--N B 
f I-- AA N A-tB (Lambda) 

f I-- S [> ~ ~ I-- AI A (Cl ) 
f I-- M[S] A os 

f I-- t n 
[> ~ 

A f I-- tn+1 [> ~ (ShIft) 

f I-- T [> ~2 ~2 I-- S [> ~I (C ) 
f I-- SoT [> ~I omp 

FIG 3 4 Typmg rules for the AC -calculus 

A f I-- 1 A (Var) 

Afl--N B 
f I-- AA N A-tB (Lambda) 

f>1 I-- N B f <, B f>, I-- M A (Sigma) 
fl--Ma'N A 

fl--n B 
A f I-- n + 1 B (Varn) 

f I-- N A-tB f I-- AI A (A ) 
f I-- (N M) B pp 

f <k f>I.+' I-- M A (PI ) 
f I-- <Pi. M A 11 

FIG 3 5 Typmg rules for the ASe -calculus 

and for the typed Ase-calculus 

(AA M N) ~ MaIN (a-generatlOn) 

(AA AI) a'N ~ AA (M a,+l N) (a-A-transitlOn) 

<pt(AA M) --t AA (<pi+! M) ( <p-A-transitIon) 

AA (M 1) --t N If M =se <P6N (Eta) 

Typmg rules for the A.c-calculus and the Ase-calculus are presented m the FIgures 34 and 3 5, respec

tively NotIce that m the case of the A.c-calculus, substItutlOns receIve contexts as types ThIS IS denoted as 

f I-- S [> ~ Let f be a context of the form Al A2 An ~ We use the notatlOn f '5,k and f2:k for denotmg 

the contexts Al AI. and AI. An~' respectIVely ThIs notatlOn IS extended for "<" and ">" m the obvlOus 

manner 

EXAMPLE 3 4 In order to Illustrate the use of the typmg rules, we show how to mfer the type of the 

term AA-tB AB-tC AA (~ (i! 1)) m ASe 

For short, let f = A B-tC A-tB FIrstly, observe that 

(1) f I-- 1 A (Var) 

n--:""'7';--;;--:--;"i""T--.----n---:-:n (Var) 
B-tC A-tB I-- 1 B-tC (V ) 

(2) f I-- ~ B-tC arn 

(Var) 
A-tB f- 1 A-tB (Varn) 

B-tC A-tB I-- 2 A-tB (V ) 
(3) f I-- i! A-tB arn 

Then, we have 

(3) (1) 
(2) f I-- (i! 1) B (App) 

f I-- (~ (i! 1)) C (App) 
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Fmally, notice that 

r f- (2 (3 1)) C (Lambda) 
B-'tC A-'tB f- AA (2 (3 1)) A-'tC (Lambda) 

A-'tB f- AB~C AA (2. (;l 1)) (B-'tC)-'t(A-'tC) Lambda 
f- AA--+B AB~C AA (2. (;l 1)) (A-'tB)-'t((B-'tC)-'t(A-'tC)) ( ) 

For the A.c-calculus the mference IS Identical except for the first steps, for mstance, notice that 

-------,,0,-------- (Id) 0 (Id) 
B-'tC A-'tB f- t t> B-'tC A-'tB (Shift) A-'tB f- t t> A-'tB (Slllft) 

r f- t 1 
t> B-'tC A-'tB B-'tC A-'tB f- t 1 

t> A-'tB (Camp) 
r f- t2 t> A-'tB 

Then, 

----:-----:=-:--:-~-= (Var) 
r f- t 2 

t> A-'tB A-'tB f- 1 A-'tB (Clos) 
r f-.:i A-'tB 

Remember that the language of the Ac-calculus only mcludes the de BrmJn mdex 1 and the others are 

simulated usmg the t n 
• 

The simply-typed verSlOns of the AC- and Ase-calculus satisfy, among others, the properties of subject 

reductlOn and type umqueness Additionally, they are Weakly Normahzmg (WN) and Church-Rosser (CR) 

4. Applications. Although m an mtmtlOmstIc logic, the concepts of proposztzons and types are Iden

tified, proof constructlOn and term synthesIs do not necessanly go m the same dlrectlOn For mstance, to 

prove the proposltlOn A-'t(B-'tA), one may assume A as an hypothesIs and then, recursively, try to prove 

(B-'tA) Eventually, one gets the aXlOm A, B f- A and the proof denvatlOn IS completed On the other 

hand, the proof synthesIs procedure decorates with A-terms the proof-tree denvatlOn from the aXlOms, 1 e , 

x A, y B f- x A, down to the conciuslOn, 1 e , f- AX A AY B x A-'t(B-'tA) 

In order to synthesize a A-term at the same time as a proof IS bemg developed, It IS necessary to represent 

mcomplete-prooJs Assume, for example, the proposltlOn A-'t(B-'tA) The bottom-up apphcatlOn of the rule 

(Abs) results m a term AX A X where X IS a term to be constructed of type (B-'tA) A term as AX A X 

IS called an open term and the place-holder X denotes a hole to be filled with a term of the nght type, III 

this case of type (B-'tA) Place-holders are also called meta-vanables to dlstmgmsh them from the vanables 

of the A-calculus Meta-vanables are wntten as uppercase last letters of the Latlll alphabet X, Y, At 

some moment durmg the proof denvatlOn, we get the typmg Judgment X A, r f- AY B X (B-'tA) Hence, 

to obtam a close term, 1 e , a term without meta-vanables, we can mstantwte the meta-vanable X with 

the term AY B X This results m AX A AY B X In contrast to substItutlOn of vanables, lllstantIatlOn of 

meta-vanables IS a first order replacement that does not take care of renammg of bound vanables or capture 

of free-vanables 

Notice, however, that open terms are not A-terms In fact, (1) mstantmtlOn and ;3-reductlOn do not 

commute, and (2) mstantIatlOn and typmg do not commute To lilustrate the first pomt, take the open term 

(AX X y) and the mstantmtlOn of X with X The mstantmtlOn results m (AX X y), which ;3-reduces to 

y However, the ongmal term ;3-reduces to X, which gets mstantmted as X To see why mstantmtlOn and 

typmg do not commute, conSider the context r = X A, z (B-'tA)-'tC and the open term (z AX B X) of type 

C, where X IS a meta-vanable of type A If we mstantmte X with the vanable X of r, then we obtam the 

Ill-typed term (z AX B x) 
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Meta-vanables can be encoded m classIcal A-calculus by usmg a techmque taken from the hIgher order 

umficatIOn tradItion [31] ThIs techmque uses a functIOnal handle of scope For mstance, the open term 

AX A Y, where Y IS a meta-vanable of type B, IS encoded as the A-term AX A (y x), where y IS a fresh 

vanable of type A--+B In thIs case, the mformatIOn that, the vanable x can mdeed occur m a subsequent 

subStItutIOIl of y IS takmg mto account by the apphcatIOn (y x) Thus, an mstantIatlOn of 1" WIth AI m the 

ongmal problem IS translated as a substitutIOn of y by AX A--+B M m the A-calculus Notice, however that 

the meta-vanable 1" has the type B whIle the correspondmg vanable y has the type A--+B 

Exphclt substitutIOns and de BrUlJn mdlces allow a SImple and natural notatIOn for open terms FIrst, 

m a de BrUlJn settmg, meta-vanables are Just vanables of the free algebra of terms NotIce that bound and 

free vanables of the A-calculus are represented as mdlces And second, exphclt substitutIOn calcuh as Ao-, 

AC, and ASe , are confluent on open terms (m the case of Ao- and A.C, on substItutIOn-closed terms) Thus, m 

these calcuh, commutatIOn of mstantIatIOn and the ,B-reductIOn IS for free 

We WIll conSIder meta-vanables over a set X 

DEFINITION 4 1 The set AdB(X) of A-terms m de BrUlJn mdex IlotatIOn wzth meta-varzables over the 

set X zs defined znductwely as 

M,N = I! I X I (M N) I AM 

where n E N>o, X E X 

DEFINITION 42 A valuatIOn zs a mappzng from X to AdB(X) The homeomorphzc extenszon of a 

valuatzon, e, from zts domazn X to the domazn AdB(X) zs called the graftmg of e 
As usual valuatIOns and theIr correspondmg graftmgs are denoted by the same Greek letters ApphcatIOn 

of a graftmg e to a term At WIll be wntten m postfix notatIOn Me For exphclt representatIOn of a valuatIOn 

and Its correspondmg graftmg e, we use the notatIOn e = {X t-7 X e I X E Dom (e)} A graftmg IS the 

formal concept for meta-vanable mstantIatIOn 

The set of Ao--, A.c-, and Ase-terms WIth meta-vanables, and theIr respective grajtzng notIOn, can be 

defined m a SImIlar way The typmg rule for meta-vanables m these systems IS [21] 

rx f- X Ax (Metax) 

where Ax and rx are, respectIvely, a unzque type and a unzque context aSSOCiate to each meta-vanable By 

usmg thIS rule, typmg and mstantiatIOn of meta-vanables commute [21] 

4.1. Higher order unification. HIgher order umficatIOn (HOU) IS essentIalm automated reasomng, 

where It has formed the baSIS for generahzatIOns of the ResolutIOn Prmclple m hIgher order lOgICS, bemg 

a szne qua non mechamsm m the ImplementatIOn of hIgher order proof aSSIstants and hIgher order lOgIC 

programmmg languages as the ones preVIously referenced For a very SImple presentatIOn of HOU see [57] 

and for a detailed mtroductlOn m the context of declarative programmmg see [53] As for the first order 

case, substitutIOn IS the key operatIOn for HOU and ItS Imphcltness makes dIfficult the analYSIS of Important 

computatIOnal propertIes Therefore, use of calcuh of exphclt substitutIOn m the formal ImplementatIOn of 

HOU procedures IS relevant 

HOU problems are expressed m the language of the SImply-typed A-calculus m de BrUlJn mdlces over 

a set of meta-vanables X, denoted AdB(X) Meta-vanables play the role of umficatIOn vanables A SImple 

example of a HOU problem IS to search forfunctIOn solutIOns F of the equahty F(f(a)) =? f(F(a)) That can 

be wntten m AdB(X) as (X (2. 1)) =~TJ (2. (X 1)), where both X and 2. are offunctIOnal type, say A--+A 
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and 1 of atomIC type A A solutIon for X IS the functIon Identity, AA 1 but {AA (3. 1), >'A (3. (3. 1)), } 
(correspondmgly, {F = f,F = p, }) are solutIOns too 

The first person to present a HOU algonthm of practical mterest was Huet [31] Huet's work 'vas 

relevant because he reahzed that to generahze Robmson first order ResolutIOn Pnnclple [55] to hIgher order 

theones It IS useful to venfy the eXIstence of umfiers WIthout computmg them exphcltly Huet's algonthm IS 

a semI-deCISIOn one that may never stop when the mput umficatIOn problem has no umfiers, but when the 

problem has a solutIOn It always presents an exphclt umfier UmficatIOn for second-order lOgIC was proved 

undeCIdable m general by Goldfarb [26] Goldfarb's proof IS based on a reductIon from HIlbert's Tenth 

Problem ThIS result shows that there are arbItrary hIgher order theones where umficatIOn IS undeCIdable, 

but there eXIst partIcular hIgher order languages of practIcal mterest that have a deCIdable umficatlon 

problem In partIcular, for the second-order case, umficatIOn IS deCIdable, when the language IS restncted to 

monadIC functIOns [23] Another problem of HOU IS that the notIOn of most general umfier does not apply 

and that a notIOn more complex than the one of complete set of umfiers IS necessary Huet has showed 

that equatIOns of the form (>.x Fa) =? (>.x G b) (called flex-flex) of thIrd-order may not have rmmmal 

complete sets of umfiers and that there may eXIst an mfimte cham of umfiers, one more general than the 

other, WIthout havmg a most general one (for references see sectIOn 4 1 m [53]) 

The general method of HOU VIa calcuh of exphclt SubstItutIOns was mtroduced m [21] (for the >'0"

calculus) and conSIsts mamly m firstly, a translatIOn or "pre-cookmg" from HOU problems m AdB(X) mto 

the language of a calculus of exphclt SubstItutIons Secondly, an apphcatIOn of (first order) umficatIOn m the 

selected calculus of exphclt SubstItutIOns to solve the translated problems Fmally, translatIOn back of the 

gIven graftmg solutIOns mto SubstItutIOn solutIOns of the ongmal HOU problem In thIS way HOU problems 

are solved Via first order umficatIOn III the language of calcuh of exphclt SubstItutIOn \Ve WIll explam WIth 

examples how reductIOn relatIOns from the SImply-typed AO"-calculus and Ase-calculus of exphclt SubstItutIOns 

are used to solve HOU problems m AdB(X) For a formal presentatIOn of the methods consult [21] and [2] 

DEFINITION 4 3 Let () = {Xl H aI, ,X71 H an} be a valuatzon from the set of meta-varzables X 

to AdB(X) The correspondzng substItutIOn, {at/Xl, ,an/Xn }, also denoted by () but wrztten zn a prefix 

notatzon, zs defined znductzvely as follows 

1 ()(m) = m, for mEN, 

2 ()(X) = X{XI Hal, ,Xn H an}, for X EX, 

3 ()(al a2) = (()(ad ()(a2)), 

4 ()(Aar) = >.()+(ar), 

where ()+ denotes the substztutzon correspondzng to the valuatzon ()+ = { Xl H at, , X n H a1;} 
Umfymg two terms Ai and N m AdB(X) conSIsts m findmg a graJtzng () such that ItS correspondmg 

SubstItutIOn satIsfies ()(A1) ={3'1 ()(N) NotIce that apphcatIOn of a graftmg has a dIfferent effect to the 

apphcatIOn of ItS correspondmg SubstItutIOn For mstance, although (AX){X f-7 M} = >'M, a umfier of the 

problem AX = ~'1 AM IS not {M / X}, smce (AX){ M / X} = A(X {M+ / X}) = ).A[+ However, by translatmg 

appropnately the AdB(X)-terms M, N, the HOU problem M =~'1 N can be reduced to first order umficatIOn 

eIther m the AO"- or m the Ase-calculus Essentially, the pre-cookmg translatIOn from terms m AdB(X) mto 

the language of the >.O"-calculus replaces each occurrence of a meta-vanable X WIth X[t"'], where k IS the 

number of abstractors above the occurrence of X For the case of the Ase-calculus the pre-cookmg translates 

each occurrence of a meta-vanable X IlltO '1'3+1 X, where k IS as before 

EXAMPLE 4 4 ConSIder the problem 2. =~'1 (X 2.) bemg 2. of type A and X of type A-+A Introducmg 

a fresh meta-vanable Y of type A the problem IS translated mto 2. =~'1 (AY 2.) A. X =~'1 >.}' 
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In the Ase-calculus the problem IS normahzed mto ~ =~s. YaI~t\X =~s. AY, whose solutIOns are {l/Y} 

and {MY} glVlng as result the solutIOns {AI/X} and {A~/X} 

In the Aa-calculus the problem IS normahzed mto ~ =~a Y[~ ul] t\ X =~a AY, from WhICh we mfer the 

solutIOns above • 
EXAMPLE 4 5 

Now consIder the HOU problem ~ =;1) (AZ ~), where ~ and Z are of type A 

In the Ase-calculus the problem IS pre-cooked mto ~ =~s. (A<pgZ ~) and then transformed mto ~ =~s. 

(<P6 Z)aI 2 and subsequently mto 2 = ~s. <pb Z by normalizatIOn The sole pOSSIble solutIOn gIVen IS {Z H 2} 

Observe, on the one SIde, that (A<pgZ 2){Z H 2} = (A<P62 2) =>.s. (A~ 2) =>.s. ~aI2 =>.s. 2 On the other 

SIde, turnmg back the pre-cookmg transformatIOn, thIS corresponds to the substItutIOn solutIOn {U Z} for 

the ongmal problem In fact, (AZ ~){UZ} = ((AZ){~/Z} ~{UZ}) = (A(Z{~+ /Z}) ~) = (A~ ~) The 

prevIOUS term ,B-reduces mto ~ 

In the Aa-calculus the problem IS pre-cooked mto l[t] =~a (AZ[t] l[t]) whIch Aa-reduces mto l[t] =~a 

(Z[t])[l[t] zd] and subsequently mto l[t] =~a Z[t o(l[t] zd)] and mto l[t] =~a Z[zd] and finally mto l[t] =~a 
Z glVlng the correspondmg sole solutIOn {Z H l[t]} ThIS corresponds to the above graftmg solutIOn m 

ASe On the one SIde, (AZ[t] l[t]){Z H l[t]) = (A((l[t])[t]) l[t]) =>.a (Al[t2
] l[t]) =>.0- 1[t2][1[t] zd] =>.a 

1[t2 o(l[t] zd)] =>.a l[t] On the other SIde, turnmg back the pre-cookmg transformatIOn, tIllS corresponds 

to the substItutIOn solutIOn {UZ} for the ongmal problem m AdB(X) as above 

NotIce that {liZ} IS not a SubstItutIOn solutIOn of the prevIOUS problem, smce for any de BruIJn mdex 

rr we have (AZ){rr/Z} = A(Z{rr+ /Z}) = A(n + 1) • 

The followmg example Illustrates why pre-cookmg of ).-terms before applymg umficatIOn rules IS essentIal 

EXAMPLE 4 6 (Contmumg example 45) In the Ase-calculus, when normahzmg the HOU problem 

~ =~1) ().Z ~) before pre-cookmg we obtam 2 =~s. ZaI 2, whose solutIOns are the graftmgs {Z H 1} and 

{Z H~} As prevIOusly mentIOned {lIZ} IS not a SubstItutIOn solutIOn of the ongmal HOU problem 

Analogously, m the Aa-calculus, when normahzmg the correspondmg probleml[t] =~u (AZ l[t]) we obtam 

l[t] =~a ).Z[l[t] zd], whose solutIOns are {Z H 1} and {Z H 1[t2]} gIven nse to the same problem • 

4.2. Type inference. In order to mfer types of A-terms (or Aa-terms or Ase-terms) we deal WIth new 

sets of type vanables Tt and context vanables "tt, zEN EssentIally, we wIll take as mput of a type mference 

problem a term WIthout knowmg ItS type and context and as output we wIll formulate a first order umficatIOn 

problem on type and context vanables Well-typedness of the mput term wIll then correspond to solvabIhty 

of the generated first order umficatIOn problem Here we Illustrate the general method mentIOned above 

usmg the language of the Ase-calculus SImple modIficatIOns accordmg to the typmg rules of the selected 

language wIll adapt thIS method to other settmgs 

Let M be a Ase-term Imtmlly, we mtroduce new vanables for the type and for the context of each 

subterm of AI Then AI can be seen as a new term M' WIth all ItS subterms decorated WIth one dIfferent 

type vanable as subscnpt and one dIfferent context vanable as superscnpt 

EXAMPLE 4 7 ().A (AB (AG (2'1 (3'2 1,3 )'4 )'5 )'6 )'7 )'8 where T and 'V z = 1 8 are new mutually 
-71 -1"2 -T3 T4 75 Tb 1"7 1"8' 1. /1., " 

dIfferent type and context vanables, IS the decorated verSIOn of the A-term AA AB AG (~ (~ 1)) • 

Afterwards, we apply the set of transformatIOn rules m Table 4 1 for pairs of the form (R, E), where R 

IS a set of decorated terms and E a set of equatIOns on type and context vanables The apphcatIOn of these 

transformatIOn rules begm from the par (flo, 0), where flo IS the set of all decorated subterms of A1' 
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(Var) 

(Varn) 

(Lambda) 

(App) 

(Szgma) 

(Phz) 

(Meta) 

TABLE 4 1 

TransformatIOn rules for type Inference In the ASe -calculus 

(RU {l;},E) 

(RU {Ril,E) 

(R U {(AA Mini-n, E) 
(RU {(M"r1 N"r2)"r3} E) 

T1 T2 T3 ' 

(RU {(M"r1a'N"r2)"r3} E) 
T1 T2 T3 ' 

(RU {Xi}, E) 

~ 

~ 

~ 

~ 

~ 

(R, E U b = 7 /,'}), where "(' IS a fresh context vanable, 

(R,EU b = 7{ T~-1 7 /,'}), where /,' and 7{, ,7:'_1 are 

fresh context and type vanables, 

(R,EU {72 = A~71'/'1 = A "(2}), 

(R,EU bl = /'2,/'2 = /'3,Tl = 72~73}), 

(R, E U {71 = T3, /'1 = 7{ 7:_1 72/'2,/'3 = 7{ 7:_1 /'2})' 
where T{, , T:_1 are fresh type vanables and m the case 

that z = 1 the sequence T{ T:_ 1 IS empt), 

~ (R,EU {71 = 72,"(2 = 7{ <+,-1/,',/'1 = 7{ 7[_1/"}), 
where /,' and 7{, ,7L+'_1 are fresh context and type van

abIes and m the case that k :::; 1 respectively k = 0 and 

z = 1 the sequences 7{ 7Ll respectIvel) 7{ 7L+._l are 

empty, 

~ (R,EUb=rx,T=Ax}),whereryf-X A" 

NotIce that the transformatiOn rules m the Table 4 1 are bUilt accordmg to the typmg rules of the ASe -

calculus After the applicatiOn of each of the transformatiOn rules the SIze of the current set of decorated 

subterms R decreases by one Consequently, the apphcatiOn of these rules begmnmg from the paIr (Ro,0) 
fimshes after a fimte number of steps (exactly as many steps as subterms m lvf) glvmg as result an empty 

set of decorated terms and a set E / of equatiOn on type and context vanables E / IS a first order umficatiOn 

problem on type and context vanables 

Fmally, our algonthm termmates by applymg any first order umficatiOn algonthm to Ef If the umfi

catiOn algonthm fails then our term IS Ill-typed OtherWIse, If the umficatiOn algonthm succeeds, the most 

general umfier resultmg as output gIves straightforwardly a context r and a type A such that r f- 111 A 

Of course, the constructiOn of r and A IS done from the bmdmgs gIven m the resultmg umfier correspondmg 

to the outermost context and type vanables selected m the decoratIOn of !'vI 

Correctness and completeness of thIS method IS a direct consequence from the correctness and com

pleteness of the first order umficatiOn and of the typmg rules of the Ase-calculus used to construct the 

transformatiOn rules m Table 4 1 

EXAMPLE 4 8 (Contmumg Example 47) The ImtIal mput for the set of mference rules IS (Ha, 0), where 

(AB (AC (2"r1 (3"r2 1 "r3 )"r4 )"r5 )"r6 )"r7 (AA (AB (AC (2"r1 (3"r2 1 "r3 )"r4 )"r5 )"r6 )"r7 )"r8 } 
-71 -T2 -73 T4 T5 T6 T7' -71 -T2 -T3 T4 T5 T6 T7 T8 

In the sequel, we show the steps of the applicatiOn of the transformatiOn rules For convemence we 

apply the rules m an speCIfic order (from smaller to bIgger subterms), but the applicatiOn of the rules IS 

nondetermmlstIc Applymg the rules m any order we WIll obtam different sets of equatiOns that correspond 
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to the same ulllficatIOn problem 

(Ro,0) 
(RI = Ro \ Ui;},EI = b3 = T3 /'D) 

(R2 = RI \ {~i:}' E2 = EI UbI = T{ TI /'~}) 

(R3 = R2 \ {.3.in,E3 = E2 u b2 = T~ T~ T2/'D) 

(R4 = R3 \ {(.3.i; li~n:},E4 = E3 u b2 = /'3,/'3 = /'4,T2 = T3-+ T4}) 

(R5 = R4 \ {(~i: (.3.i; li~n:)in,E5 = E4 u bi = /'4,/'4 = /'5,TI = T4-+T5}) 

(R6 = R5 \ {(AG (~i: (.3.i; li:n:mnn,E6 = E5 u {T6 = C-+T5,/'5 = C/'6}) 

(R7 = R6 \ {(AB (AG (~i: (.3.i; li~)i:mn;nn,E7 = E6 u {T7 = B-+T6,/'6 = B /'d) 

(0 = R7 \ {(AA (AB (AG (~i: (.3.i; li:n:mn;)+;nH,Es = E7 u {TS = A-+T7,/'7 = A /'S}) 

-+Var 

-+ Varn 

-+Varn 

-+ App 

-+App 

-+ Lambda 

-+Lambda 

-+ Lambda 

Now the reader IS InvIted to apply hIs/her preferred first order UnIficatIOn algOrIthm for resolvIng the UnIfi

catIOn problem Es = {/'3 = T3 /'~'/'I = T{ TI /'~'/'2 = T~ T~ T2 /'~'/'2 = /'3,/'3 = /'4,T2 = T3-+ T4,/'1 = /'4,/'4 = 
/'5, TI = T4-+T5, T6 = C-+T5, /'5 = C /'6, T7 = B-+T6, /'6 = B /'7, TS = A-+T7, /'7 = A /'s} and then to resolve 

the bIndIngs of the resultIng UnIfier (If It eXists) for giVIng approprIate contexts and types for the Input 

A-term • 

4.3. Inhabitation and higher order logics. GIVen a type A and a context of varIable declaratIOns r, 
the InhabitatIOn problem consists of findIng a term Jvl such that r f- M A USIng the open term approach, 

the problem can be formulated as findIng a pure InstantiatIOn for the meta-varIable X satIsfYIng r f- X A 

Thus, the term to Instantiate X can be constructed at the same time as the proof derIVatIOn of A by applYIng 

the tYPIng rule., In a bottom-up manner and IntrodUCIng new meta-varIables for the unknown terms 

For the simply-typed A-calculus thiS problem IS deCidable In fact, SInce provablhty In the mInimal 

propositIOnal IntUitIOlllStlC logiC IS deCidable, the term lvI can be bUilt directly from the proof-tree deriVatIOn 

of n f-J A, where n IS the set of types In r, as explaIned before However, when we move to a first order or 

a higher order IntUitIOnIStlC lOgIC and, In consequence, we extend the type system to handle quantificatIOn, 

the problem becomes much more complicated In [47], a semi-algOrIthm to solve the InhabitatIOn problem 

Via the A£-calculus has been presented It uses the fact that A£ IS confluent on substitutIOn-closed terms 

and weakly normaliZIng, even for dependent type settIngs of the calculus 

Although first and higher order logICS are out of the scope of thIS paper, we give some hInts of the 

InhabItatIOn problem for these kInd of lOgICS See [20] for a complete deSCrIptIOn of a term syntheSIS algOrIthm 

In the Cube of Type Systems and [47] for a Similar algOrIthm Via exphclt substitutIOns and open terms 

The Dependent Type theory, namely All [29], IS a conservatIVe extensIOn of the Simply-typed A-calculus 

It allows a finer stratificatIOn of terms by generaliZIng the functIOn space type In fact, In All, the type of 

a functIOn AX A M IS llx A B where B (the type of M) may depend on X Hence, the type A-+B of the 

Simply-typed A-calculus IS Just a notatIOn In All for the product llx A B where x does not appear free III 

B The Calculus of ConstructIOns, namely CC, [15, 16] extends the All-calculus With polymorphism and 

constructIOns of types From a logical POInt of View, All and CC allow representatIOn of proofs In the first 

and higher order IntUitIOnIStJC logiC, respectively VIa the types-as-proofs prInCiple, a term of type llx A B 

IS a proof-term of the propOSitIOn "Ix A B 

Terms III these calculi can be varIables, applicatIOns, or abstractIOns, like In claSSical A-calculus, or 

two new kInd of terms products (llx A B), and sorts (Type, Kznd) Term and types belong to the same 

syntactIcal category Thus, llx A B IS a term, as well as AX A 111 However, terms are stratIfied III several 

levels accordIng to a type dISCIpline For Instance, gIven an approprIate context of varIable declaratIOns, 
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x A,r f- M B x A,r f- B {Type, Kmd} (Ab ) 
r f- AX A M IIx A B s 

r f- M IIx A B r f- N A 
r f- (M N) B{N/x} (Appl) 

FIG 4 1 Rules (Abs) and (Api) for the CC type system 

AX A AI IIx A B, IIx A B Type, and Type Kmd The term Kmd cannot be typed m any context, 

but It IS necessary smce a cIrcular typmg as Type Type leads to the GIrard's paradox [25] In FIg 4 1 we 

gIve rules (Abs) and (Appl) for the CC type system 

The A.c-calculus has been extended wIth products for the All and CC-type systems m [45) These 

varIants satisfy the same propertIes as the sImply-typed versIOn confluent on substItutIOn-closed terms, 

weakly-normalIzmg, and subject reductIOn For further details we refer to [45) 

EXAMPLE 49 We can proof the first order predIcate (\fx (P x))-+(P e) by findmg a term X of type 

(IIx A (P x))-+(P e) m a context where the term c has the type A and P has the type A-+Type The 

bottom-up applIcatIOn of rule (Abs) results m a term X havmg the form AY (IIx A (P x)) Y where Y IS a 

term of type (P e) m a context where the vanable y has the type IIx A (P x) If we mstantIate }" With 

the term (y e), whIch IS a well typed term of type (P e), we obtam the term AY (IIx A (P x)) (y e) of 

type IIx (IIx A (P x)) (P e) Notice that m thIs example we have used the meta-vanables X and Y and 

the mstantIatIOn mechamsm of meta-vanables to bUIld mcrementally a proof • 

Typmg of meta-varIables IS more complIcated m dependent-type systems than m the sImply-type case 

Smce meta-vanables can appear m terms, types, and contexts, the typmg rules should take care of possIble 

cIrcular dependences 

5. Conclusion. The A-calculus uses an external and atomIC operatIOn to compute the substitutIOns 

of varIables by terms CalculI of explICIt substitutIOns Improve the SubstItutIOn mechamsm by allowmg 

SubstItutIOns to be part of the formal language by means of specIal constructors and reductIOn ruietJ There 

are several versIOns of calculI of explIcIt substitutIOns FIgure 5 1 summarIzes the mam charactenstIcs of 

some of them All these calculI Implement the ,B-reductIOn by means of a lazy mechamsm of reductIOn of 

substitutIOns 

In thIS paper we have explored new developments and applIcatIOns on two of the most successful styles 

of explIcIt substitutIOn AU and ASe 
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