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Preface

This report contains the 2000 annual progress reports of the postdoctoral Fellows and

visiting scholars of the Center for Turbulence Research. It summarizes the research efforts

undertaken under the core CTR program. Las_ year, CTR sponsored sixteen resident

Postdoctoral Fellows, nine Research Associates, and two Senior Research Fellows, hosted

seven short term visitors, and supported four doctoral students. The Research Associates

are supported by the Departments of Defense and Energy.
In addition to supporting the work reported in this volume, CTR sponsored its eighth

summer program, its largest ever, with forty participants. A separate report documenting

the findings of this summer program was published earlier this year. CTR publications

including this one and the Summer Proceedings are available at CTR's site on the world

wide web (http://ctr.stanford.edu). The combustion program has continued to benefit
from increased collaborations with NASA-Glenn Research Center through the Ultra Ef-

ficient Engine Technology Program and the Department of Energy's ASCI program at

Stanford. Through additional planned appointments, we expect combustion physics and

simulation to remain a major focus of CTR in the future. In addition, CTR's new efforts

in computational biology and protoplanetary disks will increase moderately. Here our ap-

proach has been to appoint fellows interested in applying their experience in turbulence

analysis and diverse areas of flow physics to research in these areas.

The reports in this volume are divided into five groups. The first group largely consists
of the new areas of interest at CTR. It includes efficient algorithms for molecular dy-

namics, stability in protoplanetary disks, and experimental and numerical applications

of evolutionary optimization algorithms for jet flow control. The next group of reports is

in experimental, theoretical, and numerical modeling efforts in turbulent combustion. As

more challenging computations are attempted, the need for additional theoretical and

experimental studies in combustion has emerged. A pacing item for computation of non-

premixed combustion is the prediction of extinction and re-ignition phenomena, which

is currently being addressed at CTR. The third group of reports is in the development
of accurate and efficient numerical methods, which has always been an important part

of CTR's work. This is the tool development part of the program which supports our

high fidelity numerical simulations in such areas as turbulence in complex geometries,

hypersonics, and acoustics. The final two groups of reports are concerned with LES and
RANS prediction methods. There has been significant progress in wall modeling for LES

of high Reynolds number turbulence and in validation of the v 2 - f model for industrial

applications.
At the time of this writing, we became aware of the death of Richard Seebass, cur-

rent Chairman of the CTR Advisory Committee. Professor Seebass was a renowned

aerodynamicist, a great advisor for NASA, and a champion of fundamental engineering
research in the United States. He served both as member and chairman of the CTR

Advisory Committee. We dedicate this volume to his enormous contributions.



As usual,weareindebtedto DebraSpinks,the Center'slong-termadministrative
associate,for theday-to-daymanagementof CTRandfor compilationof this report.
ThiswasthelastyearforDebraat CTR.Shehasbeenatremendousassetto theCenter,
andhercontributionswill bemissed.Wewill striveto maintainherhighstandardsin
thepreparationofthesereports.

ParvizMoin
WilliamC.Reynolds

NagiN. Mansour
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Calculating free energies using scaled-force
molecular dynamics algorithm

By Eric Darve, Michael A. Wilson_ AND Andrew PohoriIlet

3

1. Motivation and objectives

One common objective of molecular simulations in chemistry and biology is to calcu-

late the free energy difference between different states of the system of interest. Examples

of problems that have such an objective are calculations of receptor-ligand or protein-

drug interactions, associations of molecules in response to hydrophobic, and electrostatic

interactions or partition of molecules between immiscible liquids. Another common ob-

jective is to describe evolution of the system towards a low energy (possibly the global

minimum energy), "native" state. Perhaps the best example of such a problem is folding

of proteins or short RNA molecules.

Both types of problems share the same difficulty. Often, different states of the sys-

tem are separated by high energy barriers, which implies that transitions between these
states are rare events. This, in turn, can greatly impede exploration of phase space. In

some instances this can lead to "quasi non-ergodicity', whereby a part of phase space is
inaccessible on timescales of the simulation.

A host of strategies has been developed to improve efficiency of sampling the phase

space. For example, some Monte Carlo techniques involve large steps which move the

system between low-energy regions in phase space without the need for sampling the

configurations corresponding to energy barriers (J-walking). Most strategies, however,

rely on modifying probabilities of sampling low and high-energy regions in phase space
such that transitions between states of interest are encouraged. Perhaps the simplest

implementation of this strategy is to increase the temperature of the system. This ap-

proach was successfully used to identify denaturation pathways in several proteins, but

it is clearly not applicable to protein folding. It is also not a successful method for de-

termining free energy differences. Finally, the approach is likely to fail for systems with

co-existing phases, such as water-membrane systems, because it may lead to sponta-

neous mixing. A similar difficulty may be encountered in any method relying on global

modifications of phase space.

A new, promising technique is the multicanonical Monte Carlo method. In this algo-

rithm, sampling of energy proportional to the Boltzmann factor is substituted by sam-

pling from the uniform energy probability distribution. This means that multieanonical

simulation corresponds to a random walk in one-dimensional energy space and, there-

fore, the system does not experience energy barriers. Since multieanonical weights are

not known initially, they have to be estimated in the first step of the simulations. The

multicanonical Monte Carlo method appears to be particularly suitable to study helix-

.coil transition in proteins because a single simulation can provide information about both

the low-temperature, helical state and the high-temperature, disordered state.

Many problems of chemical or biological interest can be formulated in terms of evo-

t NASA Ames & UCSF
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lution of a system along a small number of slow degrees of freedom in the potential of

mean force exerted by the remaining coordinates. Then an effective strategy is to add to

the Hamiltonian a biasing potential chosen such that free energy barriers in this reduced

representation decrease. Sometimes identifying the slow degrees of freedom is not easy,

especially if a formally defined reaction coordinate is sought. In many instances, however,

our intuitive understanding of the problem can guide us successfully in this process. For
example, transport of ions and small molecules across membranes can be well described

by calculating the potential of mean force associated with moving the center of mass of

the solute in the direction perpendicular to the membrane. In another example, folding

of peptides or small, single-domain proteins can be studied by selecting ¢, ¢ (angles in

the peptide backbone) and, possibly, some X angles (angle of rotation of side chains) as
slow degrees of freedom.

The method of biasing potentials has several important advantages. First, using a

reduced representation is very helpful in planning the simulations and analyzing their

results. In fact, it can be argued that, precisely for this reason, it is extremely useful to

identify the slow degrees of freedom from the very beginning. Second, if motion along
only a few, selected slow degrees of freedom is modified, the chances for the correct iden-

tification of pathways along which the system evolves improve markedly. The approach

also has a serious disadvantage. To design a useful biasing potential, a good, initial guess

about the shape of the potential of mean force is required. If, however, no such guess is
available, the approach may turn into a very frustrating experience. Unfortunately, cor-

rect estimation of the potential of mean force is often quite difficult because it depends

on several contributions of different origin, such as solute-solvent interactions, solvent re-

organization, and interactions between solute atoms separated by many bonds but close
in space.

In this paper, we present a new approach to the problem of efficient sampling of phase

space, based on the molecular dynamics (MD) algorithm in the canonical ensemble. As

in the methods of biasing potential, it requires the initial identification of slow degrees
of freedom. It does not, however, suffer from the main disadvantage of these methods;

no prior assumptions about the shape of the potential of mean force are needed. Even

without this assumption, the free energy differences between states in the reduced phase

space can be calculated efficiently, perhaps even optimally.

We prove that the derivative of the free energy along a selected generalized degree of
freedom can be expressed by an average force, which is a function of this coordinate, and

its derivatives with respect to time and positions of the particles. Thus, it can be easily

calculated numerically. If this force is scaled by 0 < a < 1 or completely eliminated and

substituted by another, suitably chosen force, sampling of the generalized coordinate

improves markedly. To underscore this feature we call our approach the Scaled Force

Algorithm (SFA). Even though the new force acting on the selected coordinate is not, in

general, derived from a Hamiltonian, it is still possible, under appropriate conditions, to

calculate the free energy change along the selected coordinate in the unmodified system.

In the next section, we present the main idea and the implementation of the method.

As the test case, we selected conformational transition of 1,2-dichloroethane in water.

The main body of the paper closes with the summary and the outline of future work.
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60 180

F_URE 1. Free energy A(_) for DCE - schematic

2. Thermodynamics force

We consider a system of N particles. This system can be characterized by the position

of the particles xl,..., XN and their momenta P_1 .... ,P_s-

Very often we may be only interested in a much more limited number of degrees of free-

dom. Typically these degrees of freedom can be torsion angles, distances between centers

of mass of molecules, distance between center of mass of a molecule and a membrane,

etc. F_ord a more abstract point of view, these can simply be viewed as functions of the

position and momenta of the particles.

For simplicity we consider the case of 1,2-dichloroethane (DCE) for which we are

interested in only one degree of freedom, the torsion angle _ for the C1-C-C-C1 bonds.

It is well-known that for this case there are three stable configurations: gauche (60 deg),

trans (180 deg), gauche-prime (300 deg).

The relative stability of these configurations can be obtained from the free energy A(_).
It can be defined as:

A(() d_f -sTlog P(() + Ao (2.1)

where P(_) is the probability density function of the torsion angle (. Ao is an arbitrary

constant. See Fig. 1 for an illustration. When the theory of transition state approximation

is valid, the probability to go from one configuration, say gauche, to another configuration,
say trans, is equal to:

1

P(gauche _ trans) = _ exp(-flAA)

where AA is the energy barrier separating 60 deg from 180 deg (see Fig. 1). A; is a

normalization facto_r and fl deJ 1/(nT).

One of the usual methods to compute the free energy uses Eq. (2.1) and explicitly

computes P(_). Another approach consists in considering the derivative of the free energy

dA/d_. This quantity has dimension of a force and can be viewed as the average force

acting on _.

More precisely, the following equations can be derived. The probability density for a

system at temperature T to be in state Xl,... , XN and p,l,... , P*N is given by:

1

P(x, p) = _ exp -/_H
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where H is the Hamiltonian of the system. Equation (2.1) becomes:

A(() = -nTlog/ exp -_H + nTlog._ <"+ A0
J S_

where S¢ is the set of all x and p such that _(x) = (.

The derivative of A can now be explicitly evaluated:

OA fs, OH-_-exp-_H
--= / H,O___ (2.2)
O( fs_ exp -fill = s_

OA
where ()s¢ denotes the statistical average. Thus -_- is equal to the statistical average of

the force -_ acting on _.

To properly define the partial derivative with respect to (, it is necessary to introduce
generalized coordinates. We define the set of functions ql,... , q3N-l:

ql = ql(xl,... ,XN)

q3g-1 = q3g-l(Xl,.-. ,XN)

such that ((,ql,-.. ,q3N-1) forms a basis equivalent to xl,... ,XN. We mean that for

each set of values xl,... , XN there is a unique set of values ((, ql,-.. , q3g-t) such that:

Xl =Xl(_,ql,... ,q3Y-1)

XN : XN (_, ql,-.. , q3Y- 1 )

The derivative with respect to _ can now be defined as the derivative computed with

q_ , • • •, q3N-1 constant:

O_ q, ..... qaN-- I

To give a more precise expression for Eq. (2.2), we need to introduce some notations.

We can define the Jacobian of this transformation, denoted J:

o_L o__ o /

o_ o__

j %/ o_, ox_ "" o_,, (2.3)
......... ,,,

Oq3N-_ _ Oq3N-_ ]
Ozl Oz2 "'" _ /

and its inverse J-_. We denote Z the following matrix:

Z d_! jM_Ij t

where jt is the transpose of J and M is the mass matrix

0
::: °0J.........
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We make the assumption for simplicity that the matrix Z can be written:

°)Z = Zq

N

k=l

where Zq is a 3N - 1 x 3N - 1 matrix.

It is well-known that if the Hamiltonian H of the system is:

H(x,px) = _ . + ¢(x)

it is possible to define an Hamiltonian for _, qt,... , q3N-l:

H(_,q,p(,pq) = _Z_pg + ptqZqpq +'_(_,q) (2.6)

We are now in position to give a more precise expression for Eq. (2.2), using Eq. (2.6):

OA / 10Z_ 2 1 t OZ_ 0_(_, q) \

o_ = \ _-5-(;_+ _Pq-5-(p_+ o---(-/_, (2.7)

Obviously, such a formula is not very useful since we need to explicitly define the

functions ql, • • •, q3N- 1 to compute _. The purpose of Section 2.1 is to give an equivalent

form of (2.7) in which no reference is explicitly made to q and pq.

The two following sections, Sections 2.2 and 2.3, will explain how this expression can

bc adapted to the case where _ is decoupled from the other degrees of freedom and is

varying in a quasi-static fashion.

2.1. Unconstrained simulation

In the following sections we will use the following notations:

, d_l , d_f p_ (2.8)
xi = v_xi P_' - v_

"It del [ _'_ ( 1 o__g "_ (2.9)

Recall that

Thus the derivative of H is equal to:

OH

OH =- dp_ (2.10)
O( dt

def

p_ = _ (2.11)

__ dZ¢
- _ + (2.12)

O_ Z_ dt

We now denote - a dot product or a matrix-vector product. From the rules of derivation:

dZ_ _ _ OZ_ dx__j_= OZ_ ,d'--_-- . Oxi dt Ox--''-7 "p_ (2.13)
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Using Eq. (2.12) & (2.13) and Definition (2.11):

OH _ p_ OZ_

O_ z¢ z_ Oz'

Since

we have:

W. Wilson _ A. Pohorille

' p'_ (2.14)

p =jt(P_)pq (2.15)

Z_ Ox' p* dpq = e__H p____OZ¢ PC dpqZ_ Ox' " (j,)e Pq

As we integrate over pq the only non-zero contribution is:

(.,)Ox' pq J -_ Ox' Ox'-_ __. ( g,)t dpq = --.

using Definition (2.3) of J.

Finally using Definition (2.5) of Z_ and Definition (2.9) of 7-/:

/ / ,e_ZH p_ OZ¢ , e__H P_ O_ . 74. dpq
Z¢ Ox' Pz dpq = 2 -_ Ox-----7

We can compute the integral over p_ now and obtain, using Eq. (2.6):

2 _ 2 _1 fexp(-_Z_p_)fl/p_ exp(-_Z_p_) dp_ = dp_

Gathering Eqs. (2.14), (2.16), and (2.17), we have proved that

OW = --_ q,pq,p = ( -- At- _ _Xi " _ " OX----7)q,pq,p,

_= T_, . -5-_,+ v" . n p_

(2.16)

(2.17)

(2.18)

(2.19)

where 0q,p_,p_ denotes an average with respect to q, pq, and p_. We call thermodynamics
force F_ the force defined by:

d_ !_ 2 o_ o_Fe
= Ze /3z_ Ox' "_" Oz-----7

(2.20)

Equation (2.18) is very convenient from a numerical point of view since it involves only
quantities which can be readily computed: _ and its derivatives with respect to time and

position.

2.2. Arbitrary motion along

In SFA the motion along _ is decoupled from the rest of the system. Then, _ is advanced in

some manner that ensures uniform sampling of _, for example by using Langevin equation

of motion. In this new system the free energy along _ is no longer properly defined and

Equation (2.18) no longer applies. However, it is possible to compute the free energy

of the original (unmodified) system, provided that the motion of _ is quasistatic. This
requires transforming Equation (2.18). Deriving the appropriate formula for OA is the

objective of this section.
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Suppose that we run a MD simulation at fixed _ = _o. In the case of a Hamiltonian

system, the probability density for (q,pq,p_) at _ = _0 is equal to exp(-flH_o ) where

H_o(q, pq,p_) = _Z(p( + ptqZqpq + _go(q)

However, when _ is decoupled from other degrees of freedom and advanced quasistati-

tally using an independent equation, we sample with a probability equal to exp(-flH_o),
where

. 1
H_o(q,pq,p_ ) = KeZt(p_) + _PqZqP a + r_o(q)

The function K ezt depends on the equation of motion for _. If this is a diffusion equation

(Langevin)

1T 2

where T_ is the temperature used in the Langevin equation (see Section 3). Because we
sample from a different probability distribution function it is not possible to use Equa-

tion (2.18) directly. This difficulty can be solved by calculating analytically the integral

over p_ in Equation (2.18). To do so we first identify the terms which depend on p_: the

acceleration 4' and the probability density. More specifically considering Equation (2.18)

and (2.19), we need to calculate:

f h p" dpe

where f_ = exp(-_Z_p_).

Denoting fp_ = exp(_p_Zqpq) we have:

f / (P').J'74(J')t.(P')dpq (2.21)

/ f= • JqT-l(Jq) .pq dpq (2.22)p_ -_Tx_. 7t. _ fp_ dpq + h, Pq ' , t

using Equation (2.15), and the fact that integration is performed over pq.

Next we consider the integral over Pe and use Equation (2.17):

f 0_ 0_ 1 O_ 74- 0_ /fep_ -_x t . 74 . -_--_xTx, dp_ = fl--_ Ox---7 • _x r f_ dp_ (2.23)

Using this equation, we observe that the following transformation is possible on sta-

tistical averages:

74. P_)q,pq,p¢

Fhrther, using Equation (2.22) and (2.23)

1 _2 _7

1 0_ 0( , , t+ J;74(J;)74 • _---x-Tx,
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We have proven the following result:

f exp(-_3H_o)Q = f exp(-3H, o)F_ 2)

with F_2)= g f - (_ + Z_'Z_Ox' Ox'

(see Equation (2.20) for the definition of F_). Moreover f hqF_ z) dp_ is independent of

p_. Thus, we have removed the dependence of the average force on p_. This is a desirable
result because the dependence on p_ changes with implementation of quasistatic process.
Thus we can conclude:

13 2 1 j r_fdpq fv, "-''_)

We proved that when _ is decoupled and moves quasistatically, the following equation
applies:

where A is the free energy of the original system.

2.3. Constrained simulation

The case of the constrained simulation is a corollary of the previous result. It is a par-

ticular case of a "quasi-static" motion where the velocity of _ is zero.

case --F_2) is simply equal to:In this

1 10_ OfF___)= _+ _ z_ox' _o_--

Thus the complete expression for Oa is

OA j3 zsl 2 0x----7 _ q,v_

0---( -- 1 (2.25)

This expression is identical to Otter and Briels (1998).

3. Description of the algorithm

At each timestep we need to calculate the force along _, which is of the form A(t) _-_=.
This is the centerpiece of SFA; The force must be such that:

Z_,(t)- a_ af , ,
-_x_ . -_Tx_+ p= . 7-t . pz - O

To compute the value of A(t) we use a modified version of RATTLE, for which the

"constraints" are updated at each timestep.
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Consider the traditional RATTLE algorithm and suppose that we have a constraint

a(x) = a0, which has to be satisfied at each timestep. The algorithm consists of two
steps. After advancing the position from time t to t + dt, RATTLE is used to compute

the force ttrVa, such that a(x(t + dt)) = ao. After advancing the velocity from time

t + dt/2 to t + dt, RATTLE is used to compute the force #vVa, such that v - _Ta = 0.

In contrast, in SFA we need to add a force which exactly compensates the acceleration
of _ due to the interatomic forces. Since the constraint has to be changed at each timestep

the algorithm is slightly different. After advancing the position from time t to t + dt,
RATTLE is used to compute the force _rV_, such that _(t + dt) = _(t) + dt _(t), where

_(t) is the velocity before the forces are applied at time t. After advancing the velocity

from time t + dt/.2 to t + dt, RATTLE is used to compute the force _vV_, such that
v. V_(t + dt) = _(t + dt) = _(t), where _(t) is the velocity before the forces are applied
at time t.

Once _ is decoupled from the other degrees of freedom, we apply a Langevin force to

so that we obtain a diffusive motion along _. We define p(t) with:

and

u(t) = + n(t)

(R(t)R(t')} = 2_kT_5(t - t')

where _ is friction coefficient, R(t) is normally distributed random force, whose ensemble

average is zero, and T_ is the temperature. Note that _ is related to the diffusion constant,
D, by the Einstein relation:

D = kT/_

The total external force applied to the system is equal to the RATTLE force plus tile

Langevin force:

3.1. RATTLE Lagrange multipliers

In this section the equations for )_r and _v the position and velocity Lagrange multiplier
for RATTLE are given. We will show that )_r can be used to compute the value of _.

Let us consider the position RATTLE. The position is advanced using:

r(t + dt) = r(t) + v(t + dt/2)dt (3.1)

while the velocity is advanced using:

dt F(t)
= -- -- (3.2)v(t + dt/2) v(t) + 2 m

After position RATTLE is applied we want _ to be equal to:

_n(t + dt) = _(t) + dt _(t) (3.3)

Using a Taylor-Lagrange approximation, we obtain the equation for ),_:

2&(t) v( + v(t). v(t)) - dt Q'(t) (3.4)2 &
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See Eq. (2.19). This equation means that /_ can be used to compute the value of _ at
each time-step.

For velocity RATTLE we have a similar equation. For the velocity:

= __dt_F(t) + A_ V_(t) + at F(t + dt) (3.5)v(t + dt) v(t) + 2 m m 2 m

vn(t + dt) = v(t + dt) + _' V_(t + dt) (3.6)
772

As the constraint on vn(t + dt) is vn(t + dt) = v(t) we obtain:

At first order using Eq. (3.4):

A'(t) -- 2Z_(t + dt) V_ + Ar + m V_

-dt F(t +
= 2Z, It +,tl ( m et_v_-v(tl._.v(ti)

Note that only ,V is equal to -d_t _ For ,_ the sign in front of v(t) - 7t • v(t) is
2 Z_'

opposite.

4. Application - isomerization of 1,2-dichloroethane in water

To test the performance of the SFA, we studied the rotation around the C-C bond in

1,2-dichloroethane (DCE) dissolved in water. Specifically, we calculated the free energy

A(_) as a function of the C1-C-C-C1 torsional angle _. The same quantity was previously

calculated for DCE in several different environments, including the gas phase, bulk wa-

ter, bulk Hexane, and water-Hexane interface, using conventional methods (Benjamin

and Pohorille (1993), Pohorille and Wilson (1993)). See Fig. 2. In all environments, A(_)

exhibits local minima corresponding to the trans and gauche arrangements of the chlo-
rine atoms. However, the relative stabilities of these two conformations and the free

energy barrier that separates them change with environment. The trans conformation

was found to be favored by 1.1 kcal/mol in the gas phase, whereas gauche conformations

were slightly favored in water (by 0.3 kcal/mol) (Benjamin and Pohorille (1993), Poho-
rille and Wilson (1993)). The shift of 1.4 kcal/mol stabilizing the gauche conformations

in aqueous solutions can be attributed to strong, favorable interactions between these

polar conformations and water. Note that the symmetrical, trans conformation has no

permanent dipole moment. Also, the free energy barrier between the gauche and trans

states increased from 3.5 kcal/mol in the gas phase to 4.4 kcal/mol in aqueous solution.
This indicates that the solvent provides a considerable contribution to the potential of
mean force around _.

The system studied consisted of one DCE molecule and 343 water molecules placed

in a cubic box whose edge length was 21.73 _.. This corresponds to a water density of
approximately 1 g/cm 3. Periodic boundary conditions were applied in the three spatial

directions. The water-water interactions were described by the TIP4P potential model

(Jorgensen (1983)). For DCE, an all-atom, fully fleXible model was used. This model

was described in detail previously (Benjamin and Pohorille (1993)). All intermolecular
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interactions were truncated smoothly with a cubic spline function between 8.0 and 8.5

The MD equations of motion were integrated using the velocity Verlet algorithm with

a time step of 1 fs. The temperature of the system was 300 K. The bond and angular

constraints were resolved using RATTLE (Andersen (1983)). The same algorithm was

also used to calculate the force of constraint acting on _ whenever necessary. To generate

configurations from the canonical ensemble, the Martyna et aI. implementation (Martyna

(1992)) of the Nose-Hoover algorithm was used.

Initially, we performed simulations of the system without scaling (a=l) in both mi-

crocanonical and canonical ensembles. A(_) was obtained from a series of calculations

in which _ was constrained by a harmonic potential in 2 overlapping windows. The MD

trajectory for each window was 1.0 ns long. From this trajectory the probability distri-

bution, P(_), of finding DCE in a conformation defined by _ was obtained and used to

calculate A(_) from Equation (2.1).

The free energy profile in the full range of _ was generated by matching A(_) in the

overlapping regions of consecutive windows. This was required to ensure that A(_) was

a continuous function of _. Matching was done using the Weighted Histograms Method

(Kumar (1992)).

The free energy profiles in the microcanonical and canonical ensembles were nearly
identical and were quite similar to those calculated previously using the same potential

functions (Benjamin and Pohorille (1993), Pohorille and Wilson (1993)). Gauche and
trans conformations were found to have nearly the same free energy and were separated

by a barrier 4.2 kcal/mol high. The profiles, shown in Fig. 3, served as the reference

to determine accuracy of the SFA. Their statistical precision was further confirmed by

fitting a Fourier series to A(_) and repeating the calculations using the series as the

biasing potential. As expected, the free energy profile so generated was flat. The same
calculations were also used to estimate the rotational diffusion constant, D, needed for

the Langevin term in SFA. This was done by calculating the velocity autocorrelation

function and employing the formula:

,jD= <v(0)v(t) >,
o
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FIGURE 3. DCE in bulk water. This figure shows the reference result, computed with a
traditional window method (--), and SFA with a biasing potential (........ ).

where v(t) is the velocity of the torsional angle and < ... > denotes a statistical average.

The diffusion coefficient was computed to be 0.53 rad2/ps.

In the next step, we compute the free energy using Eq. (2.18) and not the probability

density (Eq. (2.1)). In this simulation (Fig. 3), we use the original interaction forces and

add a biasing potential to the system to obtain a uniform sampling. At every MD step, the

values of the constraint force (i.e. obtained using RATTLE) are binned in small intervals

of _, and at the end of the simulation, the average value of the force of constraint in each

bin is calculated. Next, these values are corrected for the geometrical factor according

to Eq. (2.18), yielding the thermodynamic force as a function of _. This force is then

integrated numerically to provide A(_).

The important point is that we are still in a Hamiltonian framework which guarantees

a convergence to the exact solution as the simulation time goes to +oo.

The simulation was run for 1 ns and the resulting free energy profile is shown in Fig. 3

and compared with the profile obtained from the previous calculations and Eq. (2.1). As

can be seen, the agreement between the two profiles is excellent.

Then, simulations of the same system are performed using SFA with a = 1. This means

that the angle _ is fully decoupled from the rest of the system. To advance this angle the

Langevin equation of motion is integrated. We choose different diffusion coefficients. In
this table we summarize the run times and number of windows used:

Diffusion Number of Simulation

Coefficient windows time

0.53 rad2/ps 1 Ins

0.53x 10 -1 rad2/ps 1 lns

0.53x10 -2 rad2/ps 2 lns

0.13x10 -2 rad2/ps 3 2ns

The simulation time is per window. The number of windows and simulation time have

to be increased because as the diffusion constant goes to zero it takes more and more

time to cover the complete range from 50 deg to 190 deg.

For this simulation we use Eq. (2.24) to compute the free energy. This is the equation
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FIGURE 4. DCE in bulk water. These are the results obtained with SFA using a Langevin force
with different diffusion constants: 0.53 (--× -- ), 0.53× 10-1 (---o -- ), 0.53× 10 -_ (--t -- ) and
0.13×10 -_ rad2/ps (--o -- ). The reference curve (_) is shown with a thick line. Only the
range [60-180] degrees was computed. Note that since the free energy is defined up to a constant,
we decided to align all the curves at the point _ = 120 deg. The fact that the difference with the
reference curve is more significant at 60 deg than 180 deg reflects the fact that the precise shape
of the free energy around 60 deg depends on precise interactions with the water and correct
equilibration at these configurations.

that we need to use when _ is decoupled from the other degrees of freedom and advanced

in a quasi-static manner.
For these simulations we no longer have a Hamiltonian system. The free energy profile

converges to the exact solution only when _ is a sufficiently "slow" degree of freedom.
This means that _ has to change in a quasi-static way to get a correct convergence. If it

changes sufficiently fast that the rest of the rest of the system cannot relax in response
to its movements, the system is in a non-equilibrium state and the free energy converges

to the wrong value.
We progressively lower the diffusion coefficient and observe that the free energy con-

verges to the exact solution as the motion of _ becomes quasi-static. The results are

shown in Fig. 4.

5. Conclusion and future work

We developed a new method called Scaled Force Algorithm to compute free energies.

It is based on decoupling the reaction coordinates from the other degrees of freedom. The

free energy of the original system can then be computed using Eq. (2.24). The advantage

of the method is that the sampling is guaranteed to be homogeneous, which is the best

possible sampling to minimize CPU time.
We made two kinds of computations. In the first we applied a biasing potential and the

system was Hamiltonian. In this case, the general theory of Hamiltonian system applies

and the computed free energy (with Eq. (2.18)) converges to the exact free energy when

the simulation time goes to +oc. In the second we applied a Langevin force and the

system was not Hamiltonian. In this case we need to satisfy a quasi-static hypothesis to

converge towards the exact free energy (Eq. (2.24)).
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We are currently developing a new method, the Adaptive Biasing Force, which has two

main advantages:

• The system converges towards a Hamiltonian system. We are thus guaranteed to
converge towards the exact free energy regardless of the quasi-static hypothesis. This is

an advantage over the Langevin force variant.

• The Adaptive Biasing Force is computed as the simulation goes and thus no a priori
guess is needed. This is an advantage over the biasing potential variant.

Early tests confirm that the new method will yield even better results than the ones

presented in this report (biasing potential and Langevin force).

We are also planning to study two-dimensional or multi-dimensional cases where the

number of slow degrees of freedom is two or more.

A very important application of the method is the problem of protein folding. The
solution of these problems has so far been limited because the computational time is

extremely large. A full computation requires on the order of 109 time-steps to reach the

micro-second time-scale. Such a large number of time-steps results from the fact that

the system has to cross energy barriers between intermediate steps of the folding. SFA
will allow to lower these energy barriers and thus reduce the computational time of the
solution.
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In pursuit of structures in protoplanetary disks

By O. M. Umurhan

1. Motivation and objectives

This brief summarizes work devoted to studying the linear stability of baroclinic pro-

toplanetary Keplerian disks. This work largely builds on the foundation and fundamental

results obtained by Barranco, Marcus & Umurhan (2000) (hereafter BMU) which pre-

sented a model to describe structures in weakly baroclinic Keplerian disks.

Interest in protoplanetary disks has grown since the discovery of the first of what are

now dozens of extrasolar planets around F and G type stars (Marcy 1996, Perryman

2000). The apparent ubiquity of planets suggests that the nebular disks (or protoplan-

etary disks), out of which these stars are born, must be susceptible to the development

of structures. However, theoretical work (see references in BMU) argues that purely

pressure-supported gaseous barotropic Keplerian disks do not undergo any known type

of hydrodynamic instabilities. The basis for this claim is that the strong rotation in

Keplerian shear flows manages to suppress any of the usual instabilities seen in labora-

tory shear flows such as the Taylor-Couette and Kelvin-Helmholtz instabilities (Drazin

& Reid, 1982). Some investigators (e.g. Shu et al., 1993) have gone so far as to claim

that protoplanetary disks are featureless objects totally bereft of vortical structures or

long-lasting stable patterns.
To counter this assertion, some investigators have suggested that the protoplanetary

disk is sufficiently magnetized to undergo a magneto-rotational instability as first ex-

plored by Chandresekhar (1956) using linear analysis and later demonstrated numerically

by Balbus, Hawley & Stone (1996) for fully nonlinear flows. However, Desch (2000) has
indicated that disks suspected to be around solar type stars will be too cool and weakly

ionized such that local dust particles in short time will sweep up the ionization in the

gas, leaving the fluid nearly neutral. What little ionization is left in the disk is too little

to allow strong coupling to an external magnetic field. Thus this mechanism is unlikely

to play an important role in the formation of planets at the radii where the large gas

giants are observed to reside.

The point of view taken by BMU is that a weakly baroclinic Keplerian disk will produce

the type of shear flow that will promote hydrodynamical instabilities. The assumption

was that the added component of vertical shear driven by baroclinic effects generates

coherent structures in an otherwise featureless protoplanetary disk. To isolate this effect

they derived a number of asymptotic reductions of the 3D Euler equations in cylindrical

geometry with a central mass source. The work here outlines the linear theory of these

reduced equations in order to:

• Study and determine the conditions for which waves in these baroclinic disks are

unstable in order to develop a physical intuition of the instability process.

• Provide analytical results to test the numerical techniques to be used in simulating

the fully three dimensional Euler equations on a section of the protoplanetary disk.

Ongoing collaborative work with P. Marcus and J. Barranco is exploring the proposi-

tion that disk baroclinicity may be sufficient to generate structures. This work is being
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done mainly through the development and implementation of fully three-dimensional

simulations of the reduced 3D Euler equations derived in BMU.
The second half of this brief is concerned with work done with N. J. Balmforth and

C. Picollo at the University of California, Santa Cruz, concerning the problem of char-

acterizing the development of vortical structures in two-dimensional shearing flows in a
planetary-scale vorticity field.

2. Physical considerations, the reduced equations, and linear theory

A baroclinic disk is an equilibrated pressure-supported gaseous disk with a central

gravitational source in which the pressure and density iso-lines do not align. The physi-

cal cause for such a misalignment is most likely the uneven penetration, absorption, and

heating of the gas by radiation coming from the central star. For a cylindrical geome-

try, barotropic pressure-supported Keplerian disks have azimuthal velocities that, though

they are sheared strongly in the radial direction, have no variation of their speeds in
the disk vertical direction. However, with only the most conservative assumptions for

the baroclinic heating of the steady disk, it was shown in BMU that there will be a

slight vertical shear of the azimuthal velocity. This result establishes the setting for what
follows.

The asymptotic reduction of the full three-dimensional Euler equations have a number

of physical assumptions built into them. First, that the disk is so cold that its vertical

scale height is much smaller than its radial extent. Second, that dynamical structures (if
they exist) appear in the baroclinic disk as small amplitude departures atop an otherwise

featureless medium. Third, that coherent vortex structures of interest should be subsonic

in the reference frame moving with respect to the vortex center. This last requirement

provides additional constraints on the length and time scales to be explored within the

3D Euler equations. Since the rotation and shear in Keplerian disks are of comparable
strengths, to hunt for vortex structures that are both subsonic and coherent means one

must explore length scales that are small in the disk radial direction compared to the

azimuthal and vertical directions. The picture is not of shallow structures in a thin disk,

but rather of deep radially thin structures instead.

We investigate only two of the three sets of reduced asymptotics in BMU. The equations

presented below are in non-dimensional form using the scalings assumed in BMU. In

short, the velocities were scaled according to the local Mach number (e). The sound
speed is defined by

c_ = P(Ro, O)/fi(Ro, 0), (2.1)

where P(Ro, 0) and fi(Ro, 0) are the pressure and density values at the disk midplane at

a reference radial position Ro. The velocity is given by

vsco e-- = GJb- /Ro, c = -sco,e/  

where It is the local Keplerian rotation frequency at R0 given by the mass of the central

object, M. L_ is the radial length scale assumed of the vortical structure. Time is scaled to

reflect the advective times for the disturbances. Lr is chosen so that the difference of the

radial Keplerian speed across that length is the same order of magnitude as the velocity

disturbances themselves. For notational convenience the equations are expressed in terms

of momentum density, or u = fiv, where _ is the steady-state disk density evaluated at

the radial position Ro. The reduction procedure involves the local Cartesionization of the
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cylindrical disk: in the resulting units x represents the disk azimuthal direction, y is the

radial direction and, z denotes the vertical.

In the limit where the radial, azimuthal, and vertical disturbance scales are of equal

magnitude but much smaller (as measured by the Mach number e) than the scale of
variations of the vertical component of the disk shear or the vertical disk gravity, we find

the following equations,

aux ( ._ ) aP0--t- = -V. \t_(Ro, z) + 2u_ 0z

auz ( uu_ ) OP _z0--T= -v. kZ(R0, z) az
0=V.u.

aP

Oy

(2.2)

(2.3)

(2.4)

(2.5)

In BMU this reduced set was referred to as the Round Vortices equations. These re-

duced equations are anelastic owing to the assumed dominance of advection, thus sound

waves are not present. Density and pressure, _ and/5 respectively, represent their fluctu-

ations from the steady disk state. The explicit appearance of z on the right-hand side of

Eq. (2.4) represents the variable gravitational force as one moves vertically in the disk.

The steady-state baroclinic Keplerian shear appears as a forcing term on the right-hand

side of Eq. (2.3) because the reduction procedure that results in these equations involves

subtracting the featureless disk from the full 3D Euler equations. On the length scales

considered, the radial component of the Keplerian shear appears as a linear term in y

while the baroclinic contribution appears as a term quadratic in z. The degree of baro-

clinicity is measured by the parameter/3. We refer the reader for further details to BMU,

§3.

The other set of reduced equations we study assumes that the azimuthal and vertical

extent of structures are of equal magnitude to the variations of the vertical shear and

gravity but are much larger than the radial scale of the structures. These assumptions

result in what is referred to in BMU as Elongated Dynamics:

au_ ( .u_ ) oPa-7-= -v. kz-(-_,z). + 2_y az (2.6)

0 = -2(_ - _(no, z)(3y/2 + _z2)) ap (2._)
Oy

Ouz =-V. ( uu_ _ OP kz (2.8)0-5-\z--_,z)_ az
V. u = 0. (2.9)

A notable difference between these equations and the ones presented before is that motion

in the radial direction is entirely geostrophic, meaning that there is a constant balance

between the Coriolis and pressure terms at all times during the flow.

In the following two subsections we explore the linear stability of these above two sets

of equations. We do this using (a) standard channel flow boundary conditions and (b)

periodic conditions in the "sliding box" coordinate system (Rogal]o 1981).
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2.1. Round vortex linear theory

We linearly perturb Eqs. (2.2)--(2.5) about the steady Keplerian state and write,

, /5 =/5,. (2.10)u_ = _ + u" u.. = 0 + u'_ u_ = 0 + uv

For notational convenience we define vx = _,/_(Ro,ez) so that in the unit scalings

appropriate for Eqs. (2.2) (2.5), the steady velocity shear appears as,

_x = 3y/2 + 3e2z 2. (2.11)

We assume that the disturbances are isothermal so that/5, = T(Ro, ez)_' where 7'(R0, ez)

is the steady-state temperature profile evaluated at Ro, the radial position of the pertur-

bation in cylindrical coordinates. We use the simplest form for T: a constant plus local

variations that are quadratic in ez. Linearizing Eqs. (2.2)-(2.5) gives,

(0 (2.12)

(0 O) , ___0/5'_2u: (2.13)

(0 O) OP' e2zp , (2.14)+ u', - Oz

Ou" Or'v Or"
0---_-+ -_y + _ = O. (2.15)

In the following we present results for the different boundary conditions of interest.

2.1.1. Channel geometry

In this section we look for solutions of the form expi(_t + k,x). For the boundary

conditions at both the _ and _ boundaries we use,

' :t=( and (ii) uv(i) u_=0 atz= ' =0 aty=+l, (2.16)

which means no vertical flow at the top and bottom boundaries and no radial flow

perturbations at the radial boundaries, y = 4-1. For flexibility, we consider the the z

boundary conditions at 4-_ with ¢ now a tunable parameter. We assume that j3 is an

order 1 quantity and we write all quantities and solutions to Eqs. (2.12)-(2.15), including
the frequency ca, as a perturbation series in powers of e2,

2 -t I t 2 t
/5I = /5_ + C P._ + ''" , U x ---_ _txO + £ Ztx2 + "'" , Cd = OJ 0 + _2_ 2 + ''" , (2.17)

and similarly for u_ and u',. We insert the expansion Eq. (2.17) into Eqs. (2.12)-(2.15)
and collect like powers of of e. At lowest order we combine equations and find,

- ' - tb2- ' =0, (2.18)
(1-¢2) k2 _z 2 uv ° Oy 2 - k Uvo

with ¢ = w0 + {y. Equation (2.18) is separable so we assume solutions of the form,

@o = ffQ(y)Zm(z). (2.19)

Upon enforcing the no vertical flow boundary condition at z = -¢-_, we find that the

vertical eigenfunctions Zm (z) are given by

Zm(z) = cos lrnsfracz¢, (2.20)
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in which m = (2n + 1)/2 where n is any integer. The solutions to Eq. (2.18) show that

the _t(y)'s are a discrete infinite set of eigenfunctions (ordered by integer t) composed of
linear combinations of Bessel functions of the first and second kinds. The specific linear

combinations are determined by imposing the boundary conditions at y = +1. The

lowest order frequencies are real and have been confirmed by numerical computations of

the eigenvalue problem. Furthermore, the following orderings for coo hold: IWo(tl, kx)I >

lcoo(&,G)l for Itll < IGI.
In the long wave limit, kx -_ O, the frequency reduces to,

while for short waves it is,

w0_ = 4rn2/(e2¢ _ + 4m2), (2.21)

lim Cao = sgn(k.)]_kxl, (2.22)
k= _4-oo

Equation (2.22) implies that the mode frequencies for all g cluster together around 3_kr

for Ik_l >> 1.
The effect of disk baroclinicity, which appears in the vertical shear term, shows up

at the next expansion order. Carrying out the perturbation expansion to order e2 and

demanding that the boundary conditions be satisfied reveals that the resulting frequency
corrections are real, and this has been validated by numerical computations. Thus, the

no-radial/no-vertical boundary conditions explored here shows no destabilizing tendency

due to disk baroclinicity to this order in e.

2.1.2. Sliding box coordinates

We consider here Eqs. (2.12)-(2.15) in a reference frame that moves with the x-direction

mean motion. The following coordinate transformation achieves this aim,

3
x' = x + _yt t' = t y' = y z' = z, (2.23)

where the primes in Eq. (2.23) represent the transformed coordinate. These "sliding box"

coordinates have previously been used in studies of plane Couette and other shearing flows

(Marcus & Press 1977, Rogallo 1981 and Korycansky 1992). Inserting the coordinate

transformation Eq. (2.23) into Eqs. (2.12)-(2.15) and assuming periodic solutions in the

x' and y' directions, i.e..._ expi(k_y I + k_xl), results in,

0u"
-- ik_[ _' + iuul, _ikzfle2z2ul _ 2fle2ul

Ot
(2.24)

0G
Ot- = -2% - i(ku - _Gt)P' - ik_fle2z2u_ (2.25)

Ou_ _ £.P' - ik_fle2z2u'_ (2.26)
Ot

0 = (k2+(k_-_k_t)2-ff--_£)P'-ik_uy

_2i(k u _ 3_k_t)ux - 4ik_fle2 z2u'_, (2.27)

with E -- O/Oz + e2z. For notational ease we have dropped primes from the coordinates.

We solve the resulting partial differential equations (now in t and z) subject to the

boundary conditions that there be no vertical flow at z = =t=(.
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Series solutions for Eqs. (2.24)-(2.27) are sought in powers of e_, i.e.

t t 2 t

u x = ux0 + e ux2 + ..-, (2.28)

and similarly for the other fluid quantities. We insert these expansions into Eqs. (2.24) -

(2.27) and collect like powers of e. The resulting lowest order equations admit separable

solutions of the form,

! !

U_o= _o(t)Zm(z) %0 = _yo(t)Zm(z)
I

P_ = [_o(t)Zm(z) U=o = fi_o(t)(OZm(z)/Oz). (2.29)

The vertical eigenfunction Zm(z) is the same one that appears in Eq. (2.20). After insert-

ing Eq. (2.29) into the lowest order set of equations we find that we are faced with having

to solve the result numerically. However, by a dominant balance argument (Bender &

Orszag, 1999) we find the (numerically verified) long time behavior of the solutions to

be,

uxo "" ao l_kxt - kul x+ + bo I_kxt - kul x- for ]tI >> _-, (2.30)

where ao and bo depend on the choice of initial conditions, and where,

X+ = -(1 4- u)/2, u = (1 - 16m2/9k_)½. (2.31)

We note that _0 has the same long time behavior as uxo (i.e. fi_o "" O (u_o)), while the

long time behavior of the radial momentum term is uuo "_ 0 (£t_o/t). We can see from

the solution of Eq. (2.30) that all modes decay algebraically since 0 < Re(v) < 1 for
all values of m and k_. Thus we conclude that the lowest order solution which describes

disturbances of a barotropic disk show no linear instability.

By carrying the perturbation analysis out to order e2 introduces disk baroclinieity. By

demanding that the next. order perturbation quantities satisfy the requisite boundary

condition at z = =t=(, the following long time behavior (numerically verified) is,

u'2/Z(z) ~ t3a21_k,t - kul l+x+ +13b2 i_k_t3 _ kul'+X- + O (tx+,t x-), (2.32)

where a2, b2 are constants that depend on the initial conditions. The long time trend for
' _ is down by a power of t, viz.u,2 has the same temporal form as Eq. (2.32). However, u_2
' ~ o (_'_/t).Uy2

Introducing disk baroclinicity predicts that modes should exhibit t 1/2 (for u imaginary)

and t 1/2:L_/2 (for u real) amplitude growth for t >> [2ku/3k_l, showing that a baroclinic

disk is indeed unstable. Strictly speaking, the perturbation analysis breaks down when

/3e2t = O (1) since the correction term (e.9. u_2) breaks its ordering and competes with

the lowest order term u_0._ This signifies that linear theory is no longer valid at that
late time and that disk baroclinicity has introduced a dynamically active feature. It

' is down by one power of t, the radial momentumis interesting to note that since uu2
correction term exhibits algebraic decay in the long time limit despite the other terms

( e.9. u_2, u_2) exhibiting algebraic growth.

2.2. Elongated theory

We now linearly perturb Eqs. (2.6)-(2.9) about the steady Keplerian state just as in

Eqs. (2.10). We wish to demonstrate some of the peculiarities of these "elongated" asymp-

totic equations by adopting a couple of simplifications: disk baroclinicity is turned off

(/3 = 0), and we assume no density fluctuations _ = 0. In this limit the steady velocity
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FIGURE 1. Mode evolution for the Round Vortices &symptotics in the sliding box coordinate
frame. Shown here is the numerical evolution of a representative mode: k= = 1 k_ = 30. The
baroclinic effect, introduced here as a correction term in the analysis, predicts t t/2 growth for

, r correction exhibits t -1/_ decay. Alsothe u= and u r, velocity components corrections. The up
shown is the lowest order u_ velocity together with the dominant balance result (-----).

appears as _, = 3y/2. The linearized equations become,

5_+ _ u'_- _ + _u_

OP'
0 -- cgy 2u'_ (2.34)

(0 _z) 0/5' (2.35)_i + _" u', - Oz

Ou'= Ou_ Ou_ (2.36)
o=-5;S +-N-y+ a--T •

2.2.1. Channel geometry

We adopt the same periodic solutions and channel flow boundary conditions as in

§2.1.1. Equations (2.33)-(2.36) may be combined into a single equation for the pertur-
bation pressure,

_ (_ + _ 2 0_P ' 02p'
_k=y) _ + Oz 2 - O. (2.37)

The following relationships hold between the pressure perturbation and the other fluid

quantities,

1 oP , oP
u: - COy , uy = -i (w + _k=y) _y + 2ik, P'. (2.38)
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Since Eq. (2.37) is in separable form, we adopt the following ansatz,

P'= _me(y)Zm(z). (2.39)

Enforcing the no vertical flow boundary condition reveals that the vertical structure

function Zm(z) is the same one appearing in Eq. (2.20). The solution for _me is given
by

1 .1 1 ,1

q_mt= \w,nt_ak, ] + 5-3iA \Came-ak, ] , (2.40)
I

A = 9(2k_ 1 (2.41)

where g is any non-zero integer.

Stability, of the eigenvalues w,,_t depend on the sign of the expression appearing under

the square root in Eq. (2.41),

Came = ak_coth (_), for 16rr_m 2 - 9_2k_ > 0 (2.42)

come = -iak, cot (_), for 16_2rn _ - 9_2k. = < 0, (2.43)

where 5 = iA. Clearly, the situation in which 16r_2rn 2 - 9_2k 2 < 0 corresponds to waves

that exhibit exponential growth. Thus, modes are unstable when both ]m] < 3_lk_[/4rr
and

0 < mod_(&r/a) < rr/2

rr/2 < mod,(trr/5) < rt

fork_ > 0

fork_ < O. (2.44)

2.2.2. Sliding box coordinates

We adopt the same coordinate transformations of Eq. (2.23) and the same solution form
and flow boundary-initial conditions as was done in §2.1.2. Inserting the transformations

into Eqs. (2.33)-(2.36) results in the following linear equations of motion,

Ou"
1, (2.45)= -ik_P + $uyOt

0 = -2u'. - i(k_ - akxt)P' (2.46)

ou" = __° p, (2.47)
Ot Oz "

0 u'
0 = ik.u'. + i(ky - ak_t)u'y + _z _" (2.48)

Since Eqs. (2.45)-(2.48) are autonomous in z, their solutions may be written in separable

form (in t and z),

' = _y(t)Zm(z) P' ['(t)Zm(z) ' = _,(t)(aZm(z)/az),' = ftz(t)Zm(z) u_ = u z12 x

(2.49)

and the vertical eigenfunctions Zm(z) are the same ones that appear in Eq. (2.20).

Inserting Eq. (2.49) into Eqs. (2.45)-(2.48) and subsequent simplification results in,

_k_-O--_9_0 ( T 2 0 )_-_ ,-41r2m2-"2T+ /3 + ---Ty--P = 0 , T=_ak, t-ku. (2.50)
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Exact solutions to Eq. (2.50) are,

1

[a=a 7k_t-ky +b 7k_t-ky X+ 2 ' _ ]

25

(2.51)

where a and b in Eq. (2.51) depend on the initial condition for that mode. The solution

predicts that all perturbations in which kykx > 0 will experience an algebraic singularity

at tsing --= 2ky/3k, while those modes in which kyk, < 0 exhibit algebraic decay as
t --+ _. This means that adopting sliding box coordinates to describe the stability of

these elongated dynamics predicts some rather curious stability properties. This suggests

that our analysis of the reduced equations is highly sensitive to the boundary conditions

that we adopt. Consequently, future work must answer the question as to which or what

are the most physically appropriate boundary conditions to use in protoplanetary disk
simulations.

Additionally, the algebraic singularity in the sliding box coordinates suggests that

the elongated dynamics equations may have only limited applicability. The singularity

at tsing is not physical since, in the vicinity of tsing , the temporal scalings that led to
Eqs. (2.6)-(2.9) break down as the perturbation time scale becomes very short,

0-t "_ (.9 , as t --4 tsing, (2.52)

in which, At = tsing - t. In other words, in this regime the time scales are no longer

the advective ones that we assumed in deriving the asymptotic equations. Thus, the

total time derivative term that is missing from Eq. (2.7) will become the same order of

magnitude as the other terms in that equation when At _ O (e), and ignoring this will

lead to erroneous conclusions. Further analysis of this matter is needed.

2.3. Discussion

The asymptotic equations for each qualitative regime (i.e. round vortices or elongated

dynamics) predict instabilities of some type. The elongated dynamics analysis predicts
that there will be rather violent instabilities if one considers disturbances from the van-

tage point of the sliding box coordinate frame. As was discussed before, we do not expect

the instability to be as violent as the results predict, primarily because the asymptotic

equations begin to lose their validity in the immediate vicinity of the algebraic instability.

However, the results strongly suggest that a 3D disk simulation will experience a signif-

icant dynamical response that, in all likelihood, will manifest itself as a finite amplitude
phenomenon.

Because the equations describing Round Vortices are better posed (they retain all

three time derivatives), their results are more indicative of the relative strength of the

baroclinic instability. We saw that when the baroclinic effect was turned off (i.e. the

lowest order linear solution) there was no linear instability, while when it was on there

was a growth rate proportional to t 1/2. On the other hand, Rogers (1991) shows that

sheared homogeneous flow (no rotation) in a sliding box frame is predicted to be linearly

unstable with a growth rate that scales as t log t in the long time limit, much stronger than

the instability predicted here. We view the relative weakness of the baroclinic instability

to mean that instead of widespread turbulence the disk may support coherent structures

in a way that is similar to organized large scale convection cells in atmospheres that only

marginally exceed their critical Rayleigh numbers.



26 O. M. Umurhan

3. Dynamical structures of 2d jets in planetary vorticity fields

The following is a summary of work done in collaboration with N. J. Balmforth and C.

Piccolo at the University of California, Santa Cruz, as presented in Balmforth, Piccolo

gz Unmrhan, 2000 (BPU for short). We studied the stability and developed a reduced

asymptotic model (a variant of the classical "single-wave model") for the 2D incompress-

ible Bickley jet in a rotating planetary vorticity field (the/3-plane). The Bickley jet profile

in a planetary vorticity field has often been employed as a rnodel to describe planetary
scale jets like the Gulf Stream in the North Atlantic. The mathematical structure of the

Bickley jet makes it relatively easy to develop asymptotically valid descriptions of the

onset of coherent vortices, their shedding, and the generation of planetary scale jet mean-

der. These asymptotic models also provide deeper insights into the dynamical differences
between purely inviscid and nearly inviscid flows.

Shechan et al. (1999) have proposed that protoplanetary disks may support jet flows

that are similar to the jets observed on the outer cloud layers of Jupiter. If such strongly

counterflowing jets do exist in the protoplanetary disk (and this would be borne out

through numerical simulations), then it would not be a surprise if they also undergo a

similar type of dynamical instability that are experienced by jets. A description of such
disk jet instabilities by a reduced asymptotic model would be useful because it would

provide a framework to study flow mixing and the cascade of the flow into increasingly
complex structures. The work presented here for a simpler flow serves as a template for

future endeavors in the context of exploring jet instabilities in protoplanetary disks.

Work in protoplanetary disks generally assumes inviscid flow since the viscosities ap-

propriate for hydrogen and helium under typical disk temperatures predict Reynolds
numbers on the order of 1012-14 (see BMU for details). Even if numerical simulations

are attempted to reflect this nearly inviscid situation, as a practical matter some sort of

artificial dissipation must be introduced in order to stabilize the schemes. However, the

presence of viscosity may change the physical behavior of the flow from that of nearly

or perfectly inviscid circumstances. Thus, it should be clearly understood what the dif-

ferences are for nearly inviscid as opposed to totally inviscid flows since one assumption
might predict dynamics different from the other.

3.1. Problem formulation and linear theory

We consider incompressible jet flow on a two-dimensional (x,y) plane. The plane is
located in a rotating reference frame whose Coriolis parameter varies as a linear function

of its planetary latitude (the _-plane), which is the y coordinate. In the following, all
quantities have been non-dimensionalized by their appropriate length and time scale

units. The equations governing the evolving portion of the fluid flow are,

a_t + UaJ_ + J(¢,a_) = uV:w + (Uyy - _)_o_ (3.1)

¢_ + eyy = w, (3.2)

where ¢(x, y, t) and aJ(x, y, t) denote the streamfunction and vorticity respectively. The
quantity v is the non-dimensionalized viscosity parameter, which is the inverse of the

Reynolds number. The Bickley jet profile is given as U(y) = sech2(y). Subscript y's

and x's denote differentiation with respect to the y and x coordinate respectively. The
nonlinear term J is Czw u - Cuw_. The strength of the gradient of the planetary Coriolis

parameter is given by ft. For boundary conditions we choose periodic flow in x, and we

find that the stability and evolution is insensitive to the boundary conditions in the y
direction. For numerical purposes we require that the stream function be zero at some
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suitably large value of ±Y0, and for analytical purposes we require that the streamfunction

be bounded as y -+ ±oc.

Linear theory of Eqs. (3.1)-(3.2), which has been covered at least in part by others (e.g.

Maslowe 1991 and Balmforth & Piccolo 2000), shows a number of interesting features.
After assuming an expi(kx-ct) solution form where k is the horizontal wavenumber and

where c is the temporal eigenvalue, we find that the linear stability can be characterized

by two parameters k and ft. We refer the reader to Balmforth & Piccolo (2000) and BPU

for details. Only some relevant highlights are discussed below.

The Iinear stability is qualitatively characterized by three regimes in the _-k z param-

eter plane: one in which Rossby waves propagate, one in which there exists a complex

conjugate pair of modes (of which one is unstable) and one in which there is a continu-

ous spectrum of eigenmodes, t The continuous spectrum occurs whenever the horizontal
wavespeed is real and matches the flow speed, defining the critical level. The/_-k 2 bound-

ary for the continuous spectrum is where the critical level and the inflection point of the

total flow (i.e. where Uyy - _ = 0) coincide.

The parameter value pair (fl,k 2) = (-2,6) is special because it represents the spot

where all three dynamical regimes meet: much like a triple point in gaseous phase
transitions. Physically, this parameter value represents the coincidence of the inflection

point/critical-level at the jet tip. This special value of the parameter pair is where we

develop an asymptotic description of the inst, ability. It results in a variant of the single-

wave model appearing often in plasma physics (Bahnforth & Piccolo, 2000 and references

therein),

3.2. Results

One of the challenges in deriving a weakly nonlinear description of the dynamics near the

critical point (_,k:) = (-2,6) is that the unstable mode that appears emerges out of the

continuous spectrum. Standard center manifold type reductions of dynamical systems

are successful because they exploit the fact that marginally unstable modes are isolated

from other modes of the system. In this case, the emerging unstable mode comes from a

continuum of modes, which in practice means that this continuum wiI1 also be excited as

the system becomes unstable. In our analysis we take this effect into account (for details

see BPU). The analysis considers small departures from the critical parameter value in
powers of the small parameter c,

O--tO-_ _ 1 + e2 OT'O k 2 _ 6 + e# _3 --+ -2 + e2/72, v --'_ 64/24, (3.3)

and the streamfunction and vorticity have amplitudes scaled by e3. The analysis requires

a number of matched asymptotic expansions relating the flow field away from the jet tip

to the dynamics occurring in the tip region. The resulting nonlinear reduced model is

expressed in terms of the scaled streamfunction and vorticity, (I) and t2,

l/ffdxf?A - _ _ dYe-i_ and (_ = Ae i_ + c.c. (3.5)

1 By continuous spectrum we mean a collection of eigenmodes that have eigenfrequencies that
are dense on a segment of the real axis.
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where the coordinate x has been scaled by the the critical wavenumber kc = v/6. The

departure parameters are,

)_ = v4/k,, _ = 6/p, 7 = 3/32/4#. (3.6)

Balmforth conducted numerical sinmlations of Eq. (3.1)-(3.2) to compare to the results

of the reduced model Eq. (3.4) -(3.5) for values of the (unsealed) viscosity v = 10 -6. The

agreement was exceptionally good, and the results were reported on at length in BPU.

The reduced model predicted the onset and development of vortex structures at the tip

of the jet in accordance with the numerical simulations.

Constructing a linear theory of the reduced set (assuming exp -i(cT + x) solutions)

reveals subtle differences between the predictions of the nearly inviscid versus exactly

inviscid flow. The first of these is that the predictions for the types of modes that propa-

gate differs between the v = 0 and v --+ 0 cases. The results are summarized in Fig. 2(a)

and Fig. 3.

The v = 0 theory predicts that waves that are outside of the unstable regime (as

depicted in Fig. 2) are neutrally stable. On the other hand, the v > 0 theory predicts

that the eigenvalue c of at least one mode is approximately,

A1/4e-i,_/s
c _ (3.7)

This predicts that those waves that are neutrally stable in the u _ 0 limit become

viscously unstable if k 2 < 6 (/_ < 0) (see Fig. 4) and remain stable for k 2 > 6 (/_ > 0).

Another curious result of the inviscid versus nearly inviscid theory is that the inviscid

theory predicts that there are either zero, one, or two modes of the system. In the nearly

inviscid theory, in addition to the modes of the inviscid theory, there are a countably

infinite number of viscous modes given by

c _ (2n + 3/4)v/_e -i'_/4, (3.8)

where n are the positive integers. For the problem at hand these modes are decaying and

do not dynamically play an active role. However, in other problems they may possess

different stability characteristics and one must be aware of their existence.

In summary, we have reduced the complicated dynamics of critical-layer/inflexion-

point instabilities of a jet in a planetary vorticity field to a manageable set of asymptotic

equations. The asymptotic validity of tlle equations was demonstrated, and we found that

the reduced set offers a transparent view into some of the differences between assuming

viscous versus inviscid flow. The methodology developed can be used in studying and

dissecting the dynamics of other jet flows that might be manifest in protoplanetary disks.

4. Current directions

Current work with Barranco and Marcus is focused on developing a fully parallel

three-dimensional spectral simulation of the Euler equations on an annular section of a

Keplerian protoplanetary disk. We are preparing the simulation to be run on the SP2 Blue

Horizon machine at the San Diego supercomputing center. The linear theory developed

in § 2 will be used to provide checks for the code as it is developed. In addition, we

have a number of analytical tasks that must be performed in support of the numerical

simulations. These include the following:

• No analogous asymptotic expression for the energy content of the fluid has yet been
developed. We must perform a similar analysis to the.one performed in BMU in order to
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FIGURE 2. The types of propagating modes for the u = 0 theory. For /32 < 0, all modes are
neutral and they represent Rossby waves. In panel (b) we see the frequency and growth rates for
the modes as a function along the dotted-line cut shown in panel (a). Note how the transition
to instability occurs when the two real (Rossby) waves merge, cr and ci represent the real and
imaginary parts of the eigenvalue.This
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F[C;URE 3. The u -+ 0 limit of the viscous linear
theory. The predictions should be compared to
the u = 0 theory in Fig. 2. The types of modes
that propagate as a function of parameter val-
ues are different between the two theories.
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FIGURE 4. u > 0 tendency for f12 = -5.16
for assorted values of y. Whereas in the
u -+ 0 limit, the Rossby wave for this param-
eter regime is neutrally stable, the waves be-
come viscously unstable when the viscosity is
non-zero.

determine an asymptotically valid expression for a heat equation for the fluid. Analysis

and judgments need to be made as to the relative time scales involved between the heating

and cooling of the baroclinic disk against the time scales involved with the advected fluid
fluctuations. Two extreme limits of the thermal time will yield an equation of state that
is either isothermal or adiabatic.

• As seen throughout § 2, though baroclinicity induces some sort of instability in most

cases, boundary conditions play a role in the onset criteria for instability of disturbances.
Therefore, a detailed understanding of the implications of the various boundary condi-

tions is required to judge whether or not the numerical simulations predict physically

realizable phenomena. At the very least, interpretation of an instability will require an

understanding of how the prescribed boundary conditions physically effect the flow and

contribute to the instability.
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Evolutionary optimization for flow experiments

By Ivo F. Sbalzarini_, Lester K. Su AND Petros Koumoutsakost$

1. Motivation and objective

Despite the ever increasing power of digital computers and numerical algorithms, ex-
periments are still the ultimate test for physical reality. However, in a design cycle they

are usually conducted in later stages in order to test the configurations that have been

selected by theoretical or computational studies. The reasons are usually the expense

associated with experiments as well as the lack of automation. For parameter optimiza-

tion, the latter drawback can be alleviated by implementing evolution strategies for the

optimization cycle.

Evolution Strategies (ES) were initially developed for experiments four decades ago

(see e.g. Box (1957) or Schwefel (1977)). In the absence of computers, they were im-

plemented by hand using paper, pencil, and the throwing of a dice to simulate random

numbers. Early studies have shown that ES cover the whole search space, and that is

what makes them better suited for experimental purposes than grid search methods (Box

& Wilson (1951)). Today's ES are based on random mutations rather than the pattern

based variations of their ancestors (Schwefel (1977), Rechenberg (1994)). This makes

them more efficient, and they have proven to be a very powerful tool in computational

optimum seeking. Moreover, they are highly portable since every optimization problem

that can be formulated as a vector of parameters being sought in order to maximize

(or minimize) one or several quantities (called cost function or fitness function) can be

addressed by Evolution Strategies. Due to the fact that many experiments belong to

this class of problems, it has been the objective of this work to implement and develop

suitable evolutionary algorithms for the automation of optimization in experiments.

Inexpensive general purpose digital computers, hardware interfaces such as A/D con-

verters, and suitable control software have made it possible for a computer to take the

place of the experimenter for routine tasks and repeating measurement cycles. Evolution

Strategies communicate the methodical selection of parameters to the control software of

the experimental device using an interface and they could ultimately control the course

of the experiment on a higher level, just as a human experimenter would do.

This paper is organized as follows: Section 2 of this paper gives a short introduction to

Evolution Strategies in general as well as to the specific Evolution Strategy used for this
work. Section 3 describes the basic set-up of an automatic experiment and gives detailed

information about the communication interface that has been developed. Section 4 dis-

cusses some of the main problems and issues of using evolution to control optimization

in experiments and introduces variance analysis. Section 5 shows how this methodology

has been applied to the problem of finding optimal parameters to control high Reynolds

number round air jets, and Section 6 presents results obtained from the experiments.

Swiss Federal Institute of Technology (ETH), 8092 Zfirich, Switzerland
:_ Also at CTR Stanford/NASA Ames

ivo,petros@eniac.ethz.ch, lsu@stanford.edu
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2. Evolution strategies

The fundamental concept of ES is the imitation of the natural process of biological

evolution. The problem to be solved is described using a certain number of parameters
(design variables). One then creates a group of )_(:> 0) different parameter vectors and

considers it as a population of individuals. The quantity A is called the population size.

The quality of a certain vector of parameters (i.e. an individual in the population) is

expressed in terms of a scalar valued fitness ]unction (objective function). Depending

on whether one wants to minimize or maximize the objective function, individuals (i.e.

parameter vectors) with lower or greater fitness are considered better, respectively. Ttle

algorithm then proceeds to choose the #, (# < _) best individuals out of the population

to become the parents of the next generation (natural selection, survival of the fittest).

Therefore, # denotes the number o]parents. The smaller # that is chosen compared to A,

the higher the selection pressure will be. Out of the tt individuals chosen to be parents for

the next generation, one then creates a new population of _ offspring x a+l by applyingi

mutation (c.f. Fogel (1997)) on the parents x_ as follows:

x g+li =xjg+N(0, E) ,i=l,...,A ,jE {1,...,/_} (2.1)

where Af(0, Z) denotes a vector of jointly distributed Gaussian random numbers with

zero mean and covariance matrix Z. The standard deviations (i.e. the square roots of the
2 of E) of the additive random numbers determine "how far awaydiagonal elements a i

from its parent a child will be on the average" and are called step sizes of the mutation.

Now, the first iteration is completed and the algorithm loops back to the evaluation of

the fitness function for the new individuals. Several different techniques for adaptation

and control of the mutation step size have been developed (see e.g. B_ck (1997a), B_ck

(1997b), B_ick (1993), Hansen & Ostermeier (1996) or Hansen & Ostermeier (1997)).

2.1. The (I+I)-ES

For this work, one of the simplest and yet powerful evolution strategies has been em-

ployed: the "one plus one evolution strategy", denoted by (I+I)-ES. In this strategy,

both the number of parents and the population size (i.e. number of offspring) are set to
one: # = A = 1. Mutation is accomplished by adding a vector of uncorrelated Gaussian

random numbers, i.e. E = diag(a_). Step size adaptation has been performed according

to Rechenberg's 1/5-rule: if less than 20% of the past generations are successful (i.e.
offspring better than parent), then decrease the step size for the next generation; if more

than 20% are successful, then increase the step size in order to accelerate convergence.
This adaptation is done every N • Ln generations where N is the number of parameters

(i.e. dimension of search space) and Ln is a constant, usually equal to one. Selection is

done out of the set union of parent and offspring, i.e. the better one of the two is chosen

to become the parent of the next generation.

3. Subsystems of an automatic experiment

Our automated optimization experiment as driven by evolution consists of the following
functional blocks: the experimental hardware set-up, hardware computer interfaces such

as D/A and A/D converters, a general purpose digital computer, a data acquisition and

control software, an evolution strategy code, and a communication interface between the

ES code and the acquisition/control software. We will not discuss experimental hardware,
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File Format Usage/Meaning

evo.in
evo.out

flag
Nstart
abort

NF16.9 \n F16.9 actual parameters, fitness value
N[F16.9 \n] parameter values to be tested
I1.1 measurement status
I3.3 index shift for restart
I1.1 global execution control

TABLE 1. Interface ASCII files.

digital computers, or hardware interfaces in this paper, but will focus on the software
needed.

3.1. Data acquisition and control software

This piece of software provides the only connection of the ES code to the real, physical
world. It can be viewed as a replacement for the eyes and hands of the experimenter. For

this work, National Instrument's LabView 5.1 t running on a Microsoft Windows 98 PC
has been used. It was set up to control the whole experiment in its sequential course and

collect all the measurement data needed.

3.2. Evolution Strategy code

The evolution algorithm may be viewed as a simple replacement for the strategy of the

experimenter. It looks at measurement readings and decides where to go next in order

to eventually achieve the optimum it is looking for. For this work, a restartable (I+I)-

ES has been implemented in Fortran with a communication subroutine connecting it to

LabView.

3.3. Communication interface

The evolution code and LabView are assumed to be running on the same computer in

a multitasking mode that allows them to be executed concurrently. To ensure porta-

bility across computing platforms, a simple file interface has been chosen to handle all
communication. Both LabView and the ES code write and read shared files to exchange

information or monitor flag files for the sake of synchronization. The interface consists
of the files shown in table 1. The format column indicates the numeric format of each

ASCII file in Fortran notation where N is the number of parameters, \n means a newline

character, and N[F16.9 \n] indicates N numbers separated by newline characters.

The control flow proceeds as follows:
1. ES code starts, initializes its parameters or reads a restart file, writes a zero in the

files "flag" and "abort", writes the current generation number to "Nstart", and creates

the first (or next if a restart) parameter vector to be tested.
2. LabView starts, initializes and reads "Nstart" to determine the current generation

number. For all output of LabView, Nstart will be added to the value of its loop counter

to get the correct generation number.
3. LabView monitors the file "flag" every t seconds. It sits idle as long as the file

contains a zero.

i" ht tp://www.ni.com/labview/
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4. ES deletes the old "evo.in" file.

5. ES writes the current parameter vector to be evaluated in "evo.out".

6. ES writes a one in "flag" to tell LabView to start.
7. ES test for the existence of "evo.in" in fixed time intervals.

8. LabView starts the experiment using actual values as close to the parameter values

as possible (i.e. next discrete digital level).

9. When the measurement is completed, LabView calculates the fitness value and

writes the actual parameters as well as the fitness value to "evo.in". It also checks the file

"abort" and terminates if it contains a nonzero value. Otherwise, LabView loops back to

step 3.
10. ES detects existence of "evo.in'.

11. ES writes a zero in "flag" to set LabView on hold.

12. ES starts reading "evo.in". If an error occurs because LabView has not yet finished

writing the file, the ES code will step back and try again later. It reads the actual

parameters (overwriting its internal representation of the parameter vector) and the

fitness value for this population member.

13. ES checks "abort" file. If it contains a nonzero value, execution is terminated. If

the next generation is the last one, ES writes a one in "abort" to halt LabView and itself
after the next evaluation.

14. ES writes the current information to a restart file, performs selection based on the

latest fitness values, and creates a new population before looping back to step 4.

Since LabView will not overwrite any files without prompting the user for permission,
the ES code has to make sure that all files are deleted before LabView overwrites them.

Otherwise, LabView will display a message box and wait for user action, which is in

contradiction to the goal of having automated experiments. A second point to consider

is that LabView is very strict regarding file formats and separator characters. That is

why all file I/O in Fortran has to be done using explicit, fixed format specifiers instead of
list directed output. The same format specifiers have to be used in LabView. Moreover,

numbers that are passed to LabView need to be separated by a well defined delimiting
character. This ultimately means that they need to be on separate lines using the newline

character as a delimiter because Fortran will pad and number to the right length using
spaces. If the numbers were on the same line, there would be an unknown amount of

spaces between each of them and, therefore, no well defined delimiter, since LabView is

sensitive to the number of spaces.

4. Main problems and issues

Applying evolution to experiments means coping with additional effects that are usu-

ally not present in computation. They can roughly be divided into effects caused by

measurement uncertainties (or errors), digital signal quantification, and uncontrollable

environmental influences. The following subsections discuss each of these causes in turn

and proposes some solutions.

4.1. Measurement uncertainties

During selection, the ES code determines the population member with the highest (or
lowest) fitness value, and it assumes that the differences in fitness between different in-

dividuals are entirely caused by the differences in their parameters, i.e. a better fitness

value corresponds to better parameters. However, if the fitness is determined in measure-

ments and the difference between two fitness values is less or equal to the measurement
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uncertainty, it could possibly be that the "better" individual only has a better fitness
value due to measurement errors and not due to its parameter set, which could actually

be worse than others. This can mislead the ES since it relies on information that is no

more than an artifact of the experimental procedure. To avoid this problem, mutation

step sizes must always be larger then any uncertainty in order to get changes in the ob-

jective function that are larger then the general measurement noise. This poses a lower
limit to the convergence of the Evolution Strategy and an additional constraint to the

method of step size adaptation to ensure that step sizes are always significant. ES us-

ing recombination (Booker, Fogel, Whitley & Angeline (1997)) are more robust against
distorted selection and should, therefore, be favored for experimental purposes. Other

strategies to cope with this problem could include a cutoff coefficient, which forces the
ES to select variances larger than this cutoff. If the distance between two individuals in

objective space is less than the cutoff value, the ES should not take the "better" of them

as a parent for the next generation but rather the mean of them.

4.2. Digital quantification

Digital hardware is capable of producing or measuring signals only in discrete steps. For
certain hardware such as on-board waveform generators, these steps can be as large as

0.5%, depending on the buffer size of the device. For a wave form generator, this could

mean that frequencies around 1000Hz can only be varied in steps of 5Hz. This means that

parameter vectors differing less than one such discrete step will cause the same physical

output to be produced and are, therefore, actually identical. Besides adding another
lower limit for the mutation step size of the ES, this quantification also calls for some

feedback mechanism to "tell" the ES what values have actually been produced instead

of the parameter vector it requested. The ES should then take these physical values to

replace its internal representation of the parameter vector in order to be consistent with
the fitness value that has been caused by the physical values. This calls for a certain

robustness of the ES against unpredictable changes in the parameter vectors. Problems
can occur in ES that have some sort of "memory" to keep track of the evolution path in

order to improve their convergence (e.g. the CMA-ES by Hansen & Ostermeier (1996)).

4.3. Uncontrollable environmental factors

Every experiment is affected by various uncontrollable external factors, such as ambient

temperature or pressure, electro-magnetic fields, sunlight, etc. Since these factors can not
be controlled by the ES, one has to make sure that they do not affect the fitness function.

In other words, the same parameter vector should (within experimental accuracy) always

produce the same fitness value regardless of changes in any environmental quantity. The
easiest way to achieve this is to determine the most important environmental factors

(impact analysis) and normalize the fitness function accordingly.

5. Application to jet control

We consider the application of an evolutionary optimization procedure to the problem

of control of high Reynolds number jet flows. These flows have been the subject of

several experimental works, and they have been chosen because it is a quite well known,

old (Leconte (1958)) issue where lots of reference works in conventional experiments (e.g.

Lepicovski, Ahuja & Salikuddin (1984), Lepicovski & Ahuja (1985), Lee £: Reynolds

(1985), Parekh, Reynolds & Mungal (1987), Lepicovski, Ahuja, Brown, Salikuddin &
Morris (1988), Parekh, Leonard & Reynolds (1988) and Juvet & Reynolds (1993)) as
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well as computational studies (e.g. Urbin, Brun & Metais (1997) and Preund & Moin

(1998)) have been done. Evolution Strategies have been successfully applied to numerical

simulations at lower Reynolds numbers (Koumoutsakos, Freund & Parekh (1998), M/iller,

Milano & Koumoutsakos (1999) and Koumoutsakos, Freund & Parekh (2001)), involving

methods with step size adaptation developed by Hansen & Ostermeier (1997).

5.1. Basic experimental set-up

The experimental set-up consists of a vertical jet of warm (about 35°C) air exiting from

a straight nozzle (inner diameter D = 20rnrn). The surrounding air was air-conditioned

to about 20°C. Temperature profiles were measured on a straight path from the center of

the jet outward using a type K thermocouple connected to a Fluke thermocouple adaptor.

The thermocouple was moved across the jet d = 122.2mm (diD = 6.11) above the nozzle
exit. The jet was acoustically excited using 5 loudspeakers. 4 of them were used to create

a helical excitation of certain frequency, amplitude, and phase, and one was used to create

an axial excitation. Detailed descriptions of the set-up and the hardware can be found

in Parekh, Reynolds & Mungal (1987), Parekh, Leonard & Reynolds (1988) and Juvet

& Reynolds (1993). The inputs of the amplifiers driving the speakers were connected to
the outputs of D/A converters (National Instruments BNC-2090 DAQ board for the two

helical channels and Data Translation 2D16A board for the axial channel), which in turn

were connected to a computer. The temperature sensor was mounted on an arm and

moved across the jet by a step motor controlled by the computer. Temperature readings

at each point were digitized using the National Instruments BNC-2090 DAC and fed to
the computer. Temperatures were measured at certain distances from the center of the

jet, collecting 3000 samples per point at a sampling rate of 500Hz.

5.2. Excitation

The jet was acoustically excited using two different modes: helical and axial. The helical

excitation was done by four speakers, regularly arranged around the centerline of the

jet at angles of 90 °. Their sound was fed into the jet right before the exit nozzle using

wave guides. The excitation signal was sinusoidal, and the phase corresponded to the

geometrical set-up, i.e. one speaker was fed a sine wave, the one to its right a cosine

wave, the one opposite of it a negative sine wave, and the one to its left a negative cosine

wave. Therefore, the phase between adjacent speakers was 90 ° in normal operation mode.

However, this phase could be shifted by adding some value. Opposite speakers were always

180 ° out of phase regardless of the phase shift between adjacent ones. The two pairs of

opposite speakers (i.e. the ones fed with a sine wave and the ones fed with a cosine wave)

were connected to two different channels of the same power amplifier (Kenwood Stereo

Power Amplifier Basic M2A). Phase reversal for opposite speakers was done by simply

changing the polarity of the wires. The amplifier was adjusted to a gain of 60, which
corresponds to a maximal output amplitude of 16VRMs.

The axial excitation was done by a single loudspeaker sitting in the bottom of the jet

column. It was connected to the output of a second power amplifier (Kenwood Stereo

Power Amplifier Basic M1 and Kenwood C1 preamplifier) and fed with a simple sine wave

of specific frequency. The amplifier was adjusted to a gain of 30, which also corresponds
to a maximal output amplitude of 16VRMs.

All 5 speakers were 120 Watt compression drivers of type JBL 2485J. Their frequency

range is 300Hz to 3000Hz, and they are designed to be used in large systems such as
those found in stadiums. The amplitudes and frequencies for both modes as well as the

phase shift of the helical excitation were controlled by the computer.
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5.3. Parameters

The parameters to be optimized were:

• frequency of helical excitation (fh) in Hertz

• frequency of axial excitation (fa) in Hertz

• amplitude of helical excitation (Ah) in Volts

• amplitude of axial excitation (A_) in Volts

• phase shift of helical excitation (_) in radians

The parameters were subject to the following constraints defining the boundaries of

the search space: both frequencies have to be between 300Hz and 3000Hz (band limit of

the speakers), both amplitudes have to be between OVRMs and 16_MS (amplifier power

limitation), and the phase shift is between 0 and r (periodicity).

5.4. Fitness function

Since the goal was to maximize the spreading of the jet, the fitness function was chosen to

be proportional to the discrete variance of the normalized temperature profile, normalized

to the number of measurement points, i.e.:

g = __100 T_ PT (5.1)
N i_l x

where 7"/ is the physical temperature at the i-th measurement point, N is the number of

measurement points per profile, Tmaz is the peak value of the profile:

Traax _ max T i
i

and PT is the mean of the normalized temperature profile:

(5.2)

1
(5.3)

_T : N Li__I Xmax

5.5. Variance analysis

As mentioned in Section 4.1, the changes in fitness due to parameter changes have to be

significantly larger than the ones due to measurement noise. To see whether a certain

experiment can be treated by evolution using a given fitness function, a small variance

analysis should be performed. One simply measures the fitness values at certain fixed

points in parameter space several times to get an estimate of mean and variance at

these points. If the error bars for two parameter sets do not overlap, evolution strategies

will be able to distinguish between them and use this information to converge towards

the better point. Variance analysis for the jet has been done for the parameter sets

listed in table 2. For all sets, the phase of the helical excitation has been fixed at 0

and the amplitudes have been fixed to their maximal values of 16VRMs. 5 temperature

profiles have been taken for each set under varying environmental conditions (i.e. ambient

temperature and jet temperature) on different days, and the fitness values for all profiles

have been calculated according to Section 5.4. Each profile consisted of 8 measurement

points at 0, 5, 10, 15, 20, 30, 40, and 50ram distance from the center of the jet. All runs

were performed at ReD = 105, which corresponds to an exit velocity of about 77_.
The "strong blooming condition" was found by Juvet & Reynolds (1993) as a condition
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Set nr. Meaning of point Helical [Hz] Axial [Hz]

1 Natural jet, no excitation 0 0
2 Lower boundary of search domain 300 300
3 "Strong blooming condition" 896 2060
4 Random starting point for ES 1000 1800
5 Best point of ES run 1 777 1773
6 Upper boundary of search domain 3000 3000

TABLE 2. Parameter sets for variance analysis.
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FIGURE 1. Variance analysis for the jet. See table 2 for parameter values.

which gives very high spreading. The best point of the ES run was taken from the (1+1)
optimization of both frequencies (see Section 6.1).

The bar plot in Fig. 1 shows mean and span for all measurements of each parameter

set. It can be seen that the bars generally do not overlap except for the natural jet and

the upper domain boundary. Moreover, the variation due to measurement uncertainties

seems to be small enough to allow evolution with an accuracy of at least one unit in fitness

value. This implies that if the difference in fitness of two parameter vectors is more than

one, it can be considered a significant difference, and one parameter set is clearly better

then the other. It can also be seen that there must exist a (at least local) minimum in
the search space chosen since there are points between the domain boundaries that have
lower fitness values than the boundaries themselves.

6. Results for the jet

Several runs under different conditions were performed for the jet. The amplitudes have

been fixed to their maximal value for all runs since higher amplitudes always cause higher
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spreading and, therefore, they should simply be as high as possible (Mfiller, Milano &

Koumoutsakos (1999)). In the first run presented here, both frequencies have been varied

independently; the phase shift was fixed at 0 and the evolution started from a random

point. In the second run, the frequency ratio has been optimized starting from the "strong
blooming condition" found by Juvet & Reynolds (1993). Finally, in the third run, both

frequencies and the phase have been varied independently, starting from the same point
as the first run. The results are presented in the following subsections.

6.1. Run i: Two frequencies at Re = 102000

Both frequencies were optimized using a (I+I)-ES as described in Section 2.1, while the

amplitudes were fixed at their maximum of A_ = 16VRMs and Ah = 16VRMs. The phase
shift has been fixed at 0, which means that adjacent speakers were 90 ° out of phase (c.f.

Section 5.2). The initial step sizes for the ES were 50Hz for both frequencies, and step size

adaptation was done every 20 generations. The temperature was measured at 8 points

at distances of 0, 5, 10, 15, 20, 30, 40, and 50ram from the center of the jet (i.e. at 1/D =

0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5). We collected 3000 samples at each point at a sampling rate

of 500Hz, which corresponds to a sampling time of 6 seconds. Statistical analysis showed

that this sampling time is sufficient to get a stable mean within 1%. The stagnation

pressure in the jet right before the exit was fixed at 15 inches of water over ambient

pressure, which translates into an exit velocity of about 78-_ (by isentropic calculation).

The Reynolds number based on the inner diameter of the exit nozzle was ReD : 102000

for this run. The starting values for the parameters were: helical frequency fh = 1000Hz

and axial frequency f_ = 1800Hz, which corresponds to Strouhal numbers (based on the

inner diameter of the exit nozzle) of St h : 0.26 and Sta = 0.46, respectively. The initial

fitness value at this point was 6.8. The ambient temperature was between 21°C and 22°C

during the whole period of measurement, and the temperature of the jet was between
35°C and 38°C at the exit nozzle. The ES was run for 100 generations.

Figure 2 shows the fitness values of all the individuals that have been created by the ES.
The best parameter vector has been found at generation 48 as fh = 777Hz (Sth = 0.20),

f_ = 1773Hz (St_ = 0.45) and had a fitness value of 3.4, which is half of the fitness value

at the starting point. Since the change in fitness was clearly larger than one, it can be

considered a significant (c.f. Section 5.5) improvement. Figure 3 shows the temperature

profiles (normalized to the peak temperature) for initial and best parameters as well as

for the natural jet without any excitation. The profiles got clearly flatter, which implies a

higher spreading of the jet. The results found by the ES are supported by computational
results of Freund & Moin (1998) that strong flapping of the jet appears for Sth -= 0.2.

The same has been observed in experiments by Parekh, Kibens, Glezer, Wiltse & Smith

(1996). Moreover, a large amplification of signals was observed by Parekh, Kibens, Glezer,

Wiltse & Smith (1996) and Parekh, Leonard & Reynolds (1988) for St_ ._ 0.4. The same
Strouhal numbers have also been found in the first attempt to find optimal actuation

parameters for compressible jets with numerical simulations and ES by Koumoutsakos,

Freund & Parekh (1998). This suggests that ES work well on experiments and that they

have found reasonable parameters in this case.

6.2. Run 2: Frequency ratio at Re = 95000

In this run, the frequency ration was optimized while the frequency of the axial excitation

has been fixed at 2060Hz (St_ = 0.56). Both amplitudes were fixed at their maximal

values of 16VRMs each. and the phase shift was again fixed at 0. The helical frequency

was varied by the (I+I)-ES starting from 896Hz (Sth = 0.24) with an initial step size of



4O

_g

Y.

8

7.5

7

6.5

6

5,5

5

4.5

4

3.5

3

I. F. Sbalzarini, L. K. Su 6J P.

5 10 15 20 25 30 35 40

Generation

F[cuaE 2. Path of (I+I)-ES

45

095

0.9
0.85

0.8

Koumoutsakos

o

_" 0.75

I"--
0,7

0.65

"%1

-4

_O ........

05 1 1.5 2 2.5

Distance from center [d/D]

FIGURE 3. Normalized temperature profiles of
natural jet (--*--), initial condition for ES
(-----o-- ) and best result of ES (--).

50Hz. Step size adaptation was performed every 10 generations. The temperature profiles
were measured in exactly the same way and at exactly the same positions as in the first

run. The stagnation pressure in the jet right before the exit was fixed at 13.2 inches

of water over ambient pressure, which corresponds to an exit velocity of about 73.6_
(isentropic calculation) and a Reynolds number of Re = 95000. The starting values for

this run correspond to a frequency ratio of 2.3, which is clearly within the range for

blooming (Lee & Reynolds (1985)). They are identical to the parameters of the "strong

blooming condition" that have been found by Juvet & Reynolds (1993) as a condition of
very high spreading. They also fixed the axial frequency to 2060Hz and run at the same

Reynolds number. The only differences between their measurements and the present work

are that they used a shrouded jet (which should not have any influence on the position

of the optimum, however) and hot-wire velocity measurements instead of temperature

measurements. The initial fitness value for the strong blooming point was found to be

8.3. The ambient temperature fluctuated between 21°C and 25°C; the temperature of the

jet was between 35°C and 38°C at the exit nozzle. The ES was run for 100 generations.

Figure 4 shows the fitness values of all the individuals that have been created by the ES.

The best parameter vector has been found at generation 25 as fh = 791Hz (Sth = 0.21),
which corresponds to a frequency ratio of 2.6 and a fitness value of 4.5. Compared to the

initial fitness value of 8.3, this is again a significant improvement. Figure 5 shows the

temperature profiles (normalized to the peak temperature) for initial (strong blooming)
and best parameters as well as for the natural jet without any excitation. Even compared

to the "strong blooming condition", the evolution has achieved a significant improvement.

6.3. Run 3: Two frequencies and phase at Re = 102000

In a third run, both frequencies plus the phase shift between adjacent speakers of the

helical excitation have been varied independently. Again, the amplitudes were fixed at

their maximal value of 16VRMs each. Frequencies and phase were varied by the (I+I)-ES
starting at the same point as in the first run, i.e. fh = 1000Hz (Sth = 0.26), f_ = 1800Hz

(St_ = 0.46), and _ = 0, with an initial step size of 50Hz for both frequencies and 0.1rad

for the phase shift. Step size adaptation was done every 30 generations. The temperature

profiles were measured in exactly the same way and at exactly the same positions as

in the previous two runs. The jet exit velocity was the same as in run 1, i.e. this run

was done at Re = 102000 as well. The initial fitness value was 6.9, which is (within
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given experimental accuracy) the same as in run 1. The ambient temperature fluctuated
between 21°C and 23°C; the temperature of the jet was between 35°C and 38°C at the

exit nozzle. The ES was run for 100 generations.

Figure 6 shows the fitness values of all the individuals that have been created by the ES.

The best parameter vector has been found at generation 25 as fh = 952Hz (Sth = 0.24),

f, = 1645Hz (St_ = 0.42), _a = -0.488rad (28°), which corresponds to a fitness value of

4.5. Figure 7 shows the temperature profiles (normalized to the peak temperature) for

initial and best parameters as well as for the natural jet without any excitation.

7. Conclusions and future work

We have shown that Evolution Strategies can successfully be applied to the optimiza-

tion of control parameters in experimental set-ups. The results found by these strategies

demonstrate that they can successfully complement human expertise. Some key issues of

the implementation of evolution algorithms in an experimental set-up have been iden-

tified and addressed. However, further work is needed in this area in order to improve

certain properties of ES for experiments. Such work should include the application of dif-

ferent ES in order to compare their performance. Above all, ES with recombination, time
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averaging, or self-adaptation of step sizes should be tested for better robustness against

measurement errors and parameter changes. As far as the jet experiment is concerned,

different fitness functions and their influence on the optimum found should be investi-

gated. Runs at different. Reynolds numbers and with different numbers of measurement

points per profile should be performed in order to test whether the fitness function and

the location of the optimum are independent of them or not. In summary, we believe

that, with today's hardware and software technologies, evolutionary algorithms offer a

strong candidate for the automation of optimization and design cycles in realistic set-ups.
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Control and optimization of turbulent jet mixing

By Angela Hilgers

1. Motivation and objective

The control of turbulent jet flows has applications in various fields such as combustion,

aerodynamic noise, and jet propulsion. Control of mixing can be achieved by manipula-

tion of the large-scale, global instabilities of the flow. In combustors it is important to

enhance turbulent mixing of the chemical species in order to achieve high combustion

efficiency and to reduce the emission of pollutants. In jet engines, aerodynamic noise can

be reduced by controlling flow unsteadiness that produces noise. One aim of enhanced

mixing in jet propulsion applications is to decrease the plume temperature and suppress
infrared radiation.

The mixing rate of a turbulent jet can be significantly altered by applying a suit-

able excitation at the jet orifice. Since the external forcing interacts with the natural

modes of the jet in a nonlinear way, it is not possible to predict which kind of actua-

tion is optimal to increase mixing. Various experiments have been carried out that study

the reaction of jets to the nozzle geometry and to external forcing (Lee & Reynolds

(1985), Parekh (1987), Parekh (1988)). Different types of actuators such as piezoelectric

devices and synthetic jets have been tested (Wiltse (1993), Parekh (1996)). It has been

shown that a large spreading of the jet can be achieved with a small mass flow actuation

if suitable frequencies are chosen (Parekh (1996)). Numerical simulations of compress-

ible and incompressible jet flows have been carried out that confirm many observations

made in experiments with periodically forced jets (Freund (1998), Freund (1999), Danaila

(1998), Urbin (1997)). So far it is difficult to carry out a systematic search for the optimal
forcing because the simulations are very computationally intensive. Koumoutsakos et al.

(1998) showed that evolution strategies are capable of finding suitable actuations for a
vortex model and direct numerical simulations of compressible jets.

In this paper we describe a systematic search for combined axial and helical forcing of a

round jet that maximize mixing. While stochastic search strategies and direct numerical

simulation (DNS) of a jet have been combined before (Hilgers (1999), Hilgers (2000)),

this work concentrates on the optimization of jets at higher Reynolds numbers using large

eddy simulation (LES). Different search strategies are introduced and their performance

for the optimization of jet mixing is compared. The strategies are used to search for

an actuation that maximizes mixing in jets at Reynolds numbers Re = 6000 and Re =
100000.

2. Accomplishments

2.1. Numerical method

For a free round jet issuing from a circular orifice in a solid wall, the incompressible

Navier-Stokes equations and the transport equation for a passive scalar are solved in

a spherical coordinate system. Spatial derivatives are calculated on a staggered grid.

The time integration is carried out with a second order Adams-Bashforth method. The
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computational domain is bounded in the radial direction by the surfaces r = 5D and

r = 15D and the cone starting from the center of the sphere with an opening angle

of 36 °. This geometry is able to cover the streamwise spreading of the jet and allow a

well-balanced resolution of the flow field with a reasonable number of grid points.

For the control of jets at higher Reynolds numbers, we included a subgrid scale model

in our simulation to keep the computational cost affordable. The idea of LES is to resolve

only the large scales of the flow while modeling the contribution of the small (subgrid)

scales. The LES equations are obtained by applying a spatial filter to the momentum

equations. In order to account for the subgrid-scale contribution to the flux of momentum,

the molecular viscosity is augmented by an eddy viscosity ut = CA2ISI, where S is the

subgrid strain tensor and C the Smagorinsky constant. We have used an LES based on the

dynamic procedure by Germano (1990), which determines the constant C as a function

of space and time. The dynamic procedure does not contain any model constants.

At the inflow section, the following mean streamwise velocity profile is imposed

I_'_o(rc) = -_- 1 + tanh 0.25D/@o(D/(4rc) - 4re/D) , (2.1)

where D is the jet diameter, V0 the centerline velocity, and rc the radius in a cylindrical

system (z, re, ¢). The initial momentum thickness was O0 = D/60 in our simulations.

At the lateral boundary, the total normal stress is set to zero, which allows fluid

exchange across the boundary. This condition properly simulates the entrainment of am-

bient fluid in the spreading jet flow. A so-called convective boundary condition (Orlanski

(1976)) is used to evacuate the vortex structures through the downstream boundary.

Details of the numerical scheme can be found in Boersma (1998).

For the LES of a jet with Reynolds number Re = 6000 based on orifice velocity l/b and

diameter D, the spherical grid consists of 192 x 128 x 64 points in the radial, tangential,

and azimuthal directions respectively. Typical CPU times for the calculation of a fully

developed jet are 1800 node hours on an Origin 2000, using the Message Passing Interface

(MPI). The optimization requires the simulation of up to 100 jets for different actuation

parameters. It is therefore necessary to reduce the CPU time during the optimization

process.

In unforced jets, large coherent structures are observed that are related to the insta-

bility modes of the jet. The dominant modes are the axisymmetric or varicose mode and

helical modes. The axisymmetric mode causes the shear layer to roll up into vortex rings.

By applying axial forcing to the shear layer, the frequency of vortex ring generation and

the pairing of the vortex rings may be altered. The initial shear layer is able to amplify a

large range of frequencies. The frequency f which leads to the maximum amplification of

the initial shear layer is called the natural frequency. It can be obtained by linear spatial

instability analysis (Michatke (1984), Ho (1984)). For an axisymmetric jet with the initial

velocity profile given in Eq. (2.1), it is Steo = fOo/Vo -- 0.018. The frequency fp of the

axial perturbation that produces the largest total amplification is called the preferred
mode of the jet. It corresponds to the frequency of vortices at the end of the potential

core. This frequency has been determined by Crow and Champagne to be Stp _ 0.3
(Crow (1971)). However, other studies have found the preferred Strouhal number to vary

between 0.25 and 0.5 (Hussain (1981), Mankbadi (1985)). Mankbadi (1985) observed for

a round jet under axisymmetric forcing that mixing is enhanced if the forcing Strouhal

number is equal to about twice the jet's preferred mode.

Mixing can be increased significantly if axial and helical forcing are combined (Lee
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& Reynolds (1985), Parekh (1987), Parekh (1996)). In the following we will denote the
Strouhal numbers of axial and helical forcing with St_ and Sth. Large spreading angles

(up to 80 °) have been observed for certain ratios _ = St_/Sth of the Strouhal numbers.

In particular, the jet splits into two branches for _ = 2 (bifurcating jet). It has been dis-

cussed by Parekh (1988) that these flow patterns appear for both low and high Reynolds
numbers.

In our simulation the actuation of the shear layer was achieved by imposing periodic

disturbances on the initial velocity profile. The actuation we used is a superposition of

axial and helical modes

Vz(rc,¢,t)= Vz0(r)[e+A_sin (2zrSt_-_ t)+Ahsin (27rSth_-_t + (_) cos(¢)_-_] .

(2.2)

Here A_ and Ah are the amplitudes of the axial and helical mode and Sty, Sth are the

respective Strouhal numbers. We have chosen the helical part of the actuation to be phase

locked in the plane ¢ = 0. The angle a determines the plane of spreading. The actuation

Eq. (2.2) with fl = 2 has been used before to model bifurcating jets (Boersma (1998)). In

the following sections we will investigate which parameter vector x = (Sty, Sth, Aa, Ah)

maximizes the spreading of the jet.

2.2. Optimization strategies

The optimization problem is described by a vector of parameters that are varied during

the procedure and an objective function that evaluates the performance of the parame-

ters. In the following, we will call the sequence of parameter vectors that are evaluated

during the optimization procedure a search trajectory. The objective function measures

the spreading of the jet by performing an LES of the jet flow. The surface that describes

the objective function value as a function of the parameters is referred to as the fitness

landscape. The dynamic behavior of the jet is determined by the nonlinear interaction

of different modes. This is likely to cause a complicated dependence of the jet devel-

opment on the actuation parameters. We therefore expect the objective function to be

multimodal, which suggests that stochastic procedures are the method of choice for op-

timization of jet mixing since they are able to avoid premature convergence to a local

optimum. Our approach of optimizing jet mixing implies that for each search step an

LES of the jet flow has to be performed, which is very expensive. Even when various

approximations to reduce the CPU time and parallel processing of the jet code are used,

the total number of jet flow calculations that can be achieved is of the order 100.

We have compared the following optimization procedures: a simulated annealing algo-

rithm, implemented by Goffe (1994), a single-membered and a multi-membered evolution

strategy with Covariance Matrix Adaption of the steplength (Hansen (1996)), imple-
mented by Koumoutsakos et al. (1998) and adapted to the problem of jet optimization

by Hilgers (1999).

Simulated annealing (Kirkpatrick (1983)), also known as Monte Carlo annealing, is a

serial procedure which is very efficient and straightforward. It is based on the analogy

between the annealing of solids, i.e. the way in which a solid cools and freezes into a

crystalline structure with minimal energy, and the problem of solving large optimization

problems. The algorithm, first proposed by Kirkpatrick (1983) is easy to implement

and very efficient. It employs a random search which does not only accept changes that

improve the objective function f, such that Af = f(xn+l) -f(xn) < 0 in a minimization
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problem, it also accepts an increase A/> 0 with probability

Here T is the 'system temperature' which is high in the beginning of the annealing pro-

cess and approaches zero towards its end. Eq. (2.3), known as the Metropolis criterion,

determines the amount of uphill movement that is allowed. The optimization procedure
consists of a sequence of 'temperatures' T. At each T, a random search with a fixed num-

ber of search steps (a Markov chain of certain length) is generated, where new parameter

vectors are obtained by random variation. In our optimization, a step that leads to a

value outside the allowed range is considered unsuccessful and is repeated until allowed

values are obtained. If several repetitions of the random step fail, tile parameters are
defined randomly within the given limits. If no better solution has been found at the end

of the chain, the start parameters of the search are kept as initial points for the search

at the next T. The parameter T ensures that at the beginning of the search steps are

possible that lead to a worse objective function value, which enables the trajectory to

leave a local optimum. At the end of the search, when the vicinity of the global optimum

is reached, the probability of accepting a worse solution is very low to ensure rapid con-

vergence to the optimum. As the rule for decrementing the temperature, the so-called

annealing schedule, we have chosen an exponential cooling scheme (Kirkpatrick (1983)).

The initial temperature was set such that the average probability for accepting a worse

parameter vector is about 0.7 (Kirkpatrick (1983)). The steplength is adjusted according
to the successful number of trials.

Evolution strategies make use of the principles of evolution - reproduction, muta-

tion, and selection - to find an optimal solution (Rechenberg (1971)). They are easy to

implement, efficient, and inherently parallel. Examples for the application of evolution

strategies to problems in fluid mechanics and first results for the optimization of jet

mixing have been presented in Koumoutsakos et al. (2000). Evolution strategies operate

on populations of individuals which represent possible solutions of the given problem.
Each individual consists of a vector x containing n parameters and an associated vector

s containing n mutation steplength. The number of parents in each generation is #; the
number of offspring is 3,, with )_ > #. If p > 1, multiple trajectories are evaluated in

parallel. Starting from an initial generation of # parents, the offspring are generated by
mutation

xi+l i + spN(0, 1). (2.4)o _ Xp

Here, the indices p and o denote parent and offspring and i is the number of the genera-

tion. N(0, 1) is a normal distributions with zero average and unit variance.
After ,_ offspring have been generated, their fitness values are determined and the best

# individuals are selected. The steplengths of the mutation are decreased if the offspring

are better than the parents; otherwise, they are increased. The # best individuals, i.e. the

vectors of the best parameters, and the corresponding mutation steplengths are used as

parents for the next generation. The best individuals are chosen among the p + )_ parents

and offspring ((/_ + )_) strategy).

The p best individuals, i.e. the vectors of the best parameters, may also inherit their

associated mutation steplength. A speed-up of the procedure is achieved by the Covari-

ance Matrix Adaption scheme by Hansen (1996). The search is terminated if either the

improvement made during the search gets smaller than a certain value or if a maximum
number of function evaluations is reached.
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FIGURE 1. Convergence of the evolution strategies ((1 +1) circles, (2+5) squares) and simulated
annealing (crosses) for the parameter vector x = (Sty, Sth), x0 = (0.45, 0.14), and Aa = 0.025,
Ah = 0.075 fixed.

2.3. Jet optimization

The actuation of the jet is described by the parameter vector x, which consists of two

Strouhal numbers and two amplitudes x = (Sta,Sth,Aa, Ah). The limits of the pa-
rameters have been chosen as follows. In laboratory experiments by Parekh (1988) and

numerical simulations by Freund (1999), flapping jets have been found for Strouhal num-

bers Sth E [0.2, 0.4], bifurcating jets for St_ E [0.4, 0.65]. We have varied the Strouhal
numbers in a somewhat wider range 0.2 < Sta < 1.0 and 0.1 < Sth < 0.7.

Large spreading corresponds to efficient mixing of a passive scalar, transported by the

flow, with the surrounding air. We have therefore maximized the integral of the radial

velocity (in the cylindrical system)

/(x, to) = [ v,_o(r, 0, _, to) dr' (2.5)
J V

where V is the computational domain. The integral of v 2 is time dependent, A suitable
re

time to must be chosen in the jet simulation for the evaluation of the objective function,

Other choices for the objective function are described in Hilgers (2000).

Our computations have shown that the optimization strategy tends to choose at least

one of the amplitudes to be as large as possible within the given limits. Since an actuation

with very large amplitudes is not desirable, we have kept the axial amplitude constant at

A_ = 0.025 and varied the helical amplitude 0.025 < Ah < 0.075. In order to reduce the

CPU time, we have used a coarse grid in the optimization procedure. The overall behavior

of the jet, in particular at early stages of the simulation, is captured by simulations on

this coarser grid. We note that under-resolved simulations can only be used for a rough

estimate of the jet dynamics, but since the jet flow is controlled by large scale structures,

the overall dynamic is preserved by this approximation. Details about the comparison of

different grids and the choice of the time for the evaluation of the fitness function are

given in Hilgers (2000).

For a simple test case, a jet at low Reynolds number Re = 1500, we repeated the

optimization procedure with the following search algorithms: the simulated annealing

algorithm, an evolution strategy using only one search path ((1 + 1) strategy), and an
evolution strategy using a population of two parents and five offspring in each generation

((2 + 5) strategy), which corresponds to the simultaneous evaluation of two search paths.
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In order to test and compare the different search strategies for the maximization of the

objective function (2.5), we have started the optimization at different points in phase

space. Oil average, simulated annealing and the (2, 5) evolution strategy with covariance

matrix adaption of the steplength were able to find the global optimum using acom-

parable number of function evaluations, the number being slightly lower for simulated

annealing. A typical example is shown in Fig. 1. For the (2 + 5) strategy, the resulting

curve is not monotonic because the offspring are obtained by random mutation of the

average parent vectors and, therefore, may have lower fitness values. For simulated an-

nealing and the (1 + 1) ES on the other hand, the best solution is kept until it is replaced

by a better one. The fact that the number of function evaluations for the (2, 5) evolu-

tion strategy" is not lower than that for simulated annealing indicates that the number of

search steps that can be achieved for this computationally expensive problem is too small

to allow efficient use of the information gathered on the search path. We have therefore

used this method mainly for the less expensive optimization at low Reynolds numbers

and simulated annealing for the optimization at higher Re, which will be presented in

the next section. Repeating our tests for different values of A_ and Ah, we found that

the location of the extreme does not depend significantly on the amplitudes. We con-

clude that the shape of the fitness landscape is mainly determined by the two Strouhal
numbers.

2.4. Results o] the optimization

For the optimization of jets at low Reynolds number, Re = 1500, a pronounced global

maximum was found at (Sty, Sth) _ (0.66, 0.31). In addition, local maxima were identi-

fied at (Sty, Sth) _ (0.9,0.32) and (Sta,Sth) _ (1.1,0.32). In fact, mixing is enhanced
for a range of values of A_ when Sth _ 0.31.

We will now discuss the results of the optimization of jet mixing at higher Reynolds

numbers using LES. We confined the search to the space of the Strouhal numbers, as-

suming that they are the relevant parameters for control of jet mixing, and kept the
amplitudes constant at at A_ = 0.025 and Ah ----0.075. The optimization was performed

with the simulated annealing algorithm, which on average needed the lowest number of

objective function evaluations for the test case.

First, we compared simulations on grids with different resolution. For Re = 6000, we

found that a grid with 160 x 120 x 32 points in the radial, tangential, and azimuthal direc-

tion respectively is small enough to allow repeated calculation of the objective function

while being sufficiently large to give a reliable estimate of the jet dynamics. Comparing
the objective function (2.5) as a function of time for different parameter values, we have

chosen the time for the evaluation of the function as to --- 1.8. The CPU time for one

evaluation of the objective function was 32 node hours, as compared to 1800 node hours

for the full LES on a 192 x 128 x 64 grid. At Re = 100000, a grid with 384 x 200 × 96

was used for the full LES. The LES of the optimization was done on a coarser grid with

252 x 150 × 64 points. The CPU time for one evaluation of the objective function on this
grid was approximately 120 node hours.

For the case Re = 6000, the search was started at x0 = (St,,Sth) = (0.66,0.31) .

The best value was reached after 52 evaluations of the objective flmction at (Sty, Sth) :

(0.79, 0.36). Comparing the absolute fitness values, we found that the maximum value

reached at this Reynolds number is approximately 1.5 times higher than that for Re =

1500, suggesting that the spreading of the jet is larger for the Re = 6000 jet. Apart from

the global maximum, we found parameters with comparably high value at x = (0.90, 0.45)

and at x = (0.58,0.22). For Re = 100000, the search was started at (St_,Sth) =
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FIGUaE 2. Snapshot of the scalar concentration at time t -- 8 for a jet at Re = 6000,
St, = 0.79, Sth = 0.36, A_ = 0.025 and Ah = 0.075.

(0.8,0.36). The best value was reached at (Sta,Sth) = (0.6,0.33) after 48 evaluations
of the fitness function. Another high value of the objective function was reached at

x = (0.74, 0.38).

Apparently, the structure of the fitness landscape at high Reynolds numbers is different

from that found for Re = 1500. In particular, high fitness values do not only appear at

Sth .,_ 0.33. Since we were only able to determine a small number of points on the fitness

landscape, a guess of its structure is difficult. Like in most optimization problems, there

is no certainty about whether the global optimum has been reached. However, we have

found a good solution within reasonable time.

2.5. Discussion of the results

For the best actuation parameters found by the evolution strategies, we have repeated

the LES of the jet on a fine grid as described above. Fig. 2 shows a snapshot of the
passive scalar concentration obtained for the jet at Re = 6000 actuated with (2.5) and

the optimal Strouhal numbers Sta = 0.79 and Sth = 0.36. The figure shows the jet in

the plane of the actuation, _ -- 0. Different shades of grey denote different concentration

C of the scalar. The concentration is approximately one in the inner (dark) region and

zero far outside (white region). The jet spreads rapidly in the plane of the actuation

and contracts in the orthogonal plane. Despite the small amplitudes of the actuation,

the dual-frequency actuation leads to an impressive spreading of the jet, visualized by

the large area to which the tracer is transported. The center of the jet shows a strong

flapping motion which is due to the large amplitude of the helical forcing. The jet column
is completely dispersed near the end of the computational domain.

In Fig. 3 a snapshot of the scalar concentration is plotted for a jet at Re = 100000

which was obtained using the best actuation St_ = 0.60 and Sth _- 0.33 found for this

Reynolds number. For this simulation a grid with 384 × 200 × 96 points was used. The

calculation was terminated at time t = 5.5 due to the high computational cost of the

LES. Although the jet is not fully developed at this stage, a strong flapping motion of

the jet column is clearly visible. Apart from the large spreading of the jet, it can be seen
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FIGURE 3. Snapshot of the scalar concentration at time t = 8 for a jet at Re -- 100000,
St_ = 0.60, Sth = 0.33, A_ = 0.025 and Ah = 0.075.

I t st. l Sth I

IRe= 1500 10.6610.311

IRe= 6000 I0.7910.361

IRe = 10000010.6010.33I

TABLE 1. Best actuation parameters found by the optimization strategies;
Aa = 0.025, Ah = 0.075

that the jet column disintegrates soon after the initial pairing. Narther downstream the

scalar concentration is low, indicating good mixing in the jet.

The main results of our optimization are summarized in table 1. In all cases, the
spreading of the jet is most pronounced at helical Strouhal numbers St ._ 0.3...0.36. It

differs from the natural Strouhal number, for which linear instability analysis predicts the

largest amplification of signals (Michalke (1984)), but is in agreement with the preferred

frequency of the jet found by Mankbadi (1985). The optimal axial Strouhal number

found by the optimization procedure is approximately twice as large as the preferred

frequency, as predicted by Mankbadi (1985). The Strouhal numbers found are in very

good agreement with experimental results by Lee & Reynolds (1985).

3. Summary

In this paper we have combined stochastic search programs and numerical simulation

of a jet to search for actuation parameters that enhance mixing in the jet. Since jet

flows are governed by the dynamics of the large eddies, we have used a coarse grid for
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the LES in the optimization procedure. We have found that the spreading of the jet

and hence the amount of mixing depends mainly on the actuation Strouhal numbers and

that it grows with the amplitudes. The spreading is most pronounced for helical and axial

Strouhal numbers Sth ,._ 0.31...0.36 and St_ ,,_ 2. Sth, which correspond approximately

to the preferred Strouhal number of the jet and twice its value. These optimal Strouhal

numbers were found for all Strouhal numbers investigated here: Re -- 1500, Re = 6000,

and Re = 100000. The spreading of the jet as measured by our objective function is

larger at higher Reynolds numbers.

Comparing different optimization methods, we have found that multi-membered evo-

lution strategies and in particular simulated annealing are well suited for this problem.

Due to the high computational cost of the LES at high Reynolds numbers, it is not pos-

sible to search the phase space of Strouhal numbers in a systematic way. Nevertheless,

we were able to find actuation parameters that induce a pronounced spreading of the jet

for Reynolds numbers as high as Re = 100000. In a real experiment the perturbation is

not described by a simple mathematical function like in our simulation, and, therefore,

a one-to-one comparison between simulation and experiment is difficult. However, we

expect that the frequency range found to be best in our simulations is similar to that for

experiments under comparable conditions.
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1. Motivation and objectives

In the early 1990's, Glezer and his co-workers at Georgia Tech made a startling dis-

covery. They found that forcing at frequencies too high to directly affect the production
scales led to a dramatic alteration in the development of a turbulent shear layer. An ex-

perimental study of this phenomenon is presented in Wiltse & Glezer (1998). They used

piezoelectric actuators located near the jet exit plane to force the shear layers of a square

low-speed jet. The actuators were driven at a high frequency in the Kolmogorov iner-

tial subrange, much higher than the frequencies associated with the large-scale motion

(where the turbulent energy is produced and located) but much lower than those associ-

ated with the Kolmogorov scale (where the turbulent energy is dissipated). Measurements

of the shear-layer turbulence showed that direct excitation of small-scale motion by high-

frequency forcing led to an increase in the turbulent dissipation of more than an order

of magnitude in the initial region of the shear layer! The turbulent dissipation gradu-

ally decreased with downstream distance but remained above the corresponding level for
the unforced flow at all locations examined. The high-frequency forcing increased the

turbulent kinetic energy in the initial region near the actuators, but the kinetic energy

decreased quite rapidly with downstream distance, dropping to levels that were a small
fraction of the level for the unforced case. Perhaps most importantly from the present

standpoint, the high-frequency forcing significantly decreased the energy in the large-

scale motion, increasingly so with downstream distance. Wiltse and Glezer interpreted
this behavior as an enhanced transfer of energy from the large scales to the small scales.

The initial work by Wiltse & Glezer (1998) has expanded into other applications. To

explore the potential of high-frequency forcing for active acoustic suppression, in 1998

the first author proposed a set of experiments involving an edge tone shear layer and

an open cavity flow. This work was funded by the US Air Force Research Laboratory,

and the experiments were developed and executed at Boeing by Raman and Kibens

(Raman, Kibens, Cain & Lepicovsky 2000). These experiments involved high-frequency

forcing applied to low-speed flows using wedge piezo actuators and powered resonance

tubes. The system is simple, open loop, compact, potentially requires little power, and

is easily integrated. Dramatic results, such as reductions of 20 dB in spectral peaks
and 5-8 dB in overall levels across the entire acoustic spectrum, were obtained in some

cases. Sample results are presented in Fig. 1. Following this success in low-speed flows, an
international cooperative program continuing this work involved transonic experiments in

a mid-size facility in the United Kingdom. Similar reductions in noise level were obtained

in these transonic experiments. Discussion of this work is given in Raman et al. and

Stanek, Raman, Kibens, & Ross (2000). Other experiments at Georgia Tech have shown

significant potential of high-frequency forcing in controlling reaction rates in chemically

reacting flows (Davis 2000).

t Innovative Technology Applications Company, Chesterfield, MO 63006
J; NASA Ames Research Center, Moffett Field, CA 94035
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This recent work at Georgia Tech and Boeing is in sharp contrast to earlier ideas

on how control of free shear flows should be approached. The review by Ho & Huerre

(1984) characterizes the perspectives of the 1970's and 1980's, demonstrating the link

between large-scale structures and linear stability theory. Drazin & Reid (1981) identify

approaches to linear stability theory that determine the scale of exponentially growing

disturbances. The work by Ho & Huerre extends the earlier stability theory/large-scale

structure ideas by discussing vortex pairing and the more general merging of many large-

scale structures. Ho and Huerre provide convincing experimental demonstrations of flow

control by excitation frequencies that produce exponentially growing disturbances ac-

cording to linear stability theory. Cain & Thompson (1986) provide another example of

the merits of linear stability analysis. They show that the growth rates predicted by linear
theory are able to predict the evolution of finite amplitude disturbances to a saturated

state as given by a full nonlinear simulation. These are a few examples of many stud-

ies that characterize the control possibilities of free shear flows using "low-frequency",

stability-theory-guided frequency selections. The Georgia Tech/Boeing studies constitute

a major departure from earlier work. These recent studies do not dispute the results of

the earlier work, only the assumption that turbulence theory and linear stability theory

preclude interesting effects in the "high-frequency" excitation regime. The new "high-

frequency" regime is currently without a theoretical basis, and the present study is aimed

at adding detailed quantitative insight into this phenomenon.

There is a need to understand the basic mechanism behind effective high-frequency

forcing so that scaling laws can be developed to facilitate reliable large-scale system

design. The Boeing experiments sometimes produce dramatic results, but other high-

frequency control systems don't show the same improvement. An understanding of the

physics is required to ensure reliable application of the technology.

2. Results

Here we use direct numerical simulations of free shear layers to investigate the impact

of high-frequency forcing on various aspects of shear layer evolution. To ensure that
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the results found are representative of what would be observed in flows of practical

interest, it is necessary to have the ability to simulate realistic high-Reynolds number

turbulent shear flows. For this purpose, the pseudospectral free shear layer code used

by Rogers and Moser (1994) and Moser, Rogers, and Ewing (1998) has been chosen

(the version of the code used to generate the simulations described here actually uses a
different numerical representation of the flow variables in the inhomogeneous direction, as

described in Rogers (2001)). This code is designed to simulate incompressible temporally

evolving plane free shear layers. By simulating a temporally evolving flow, much higher
turbulence Reynolds numbers can be achieved and cleaner boundary conditions can be

implemented. Although the temporally evolving flow possesses symmetries not present in

spatially developing flows, the dynamics of the large-scale structures are similar between

these two flows, and the results obtained here should be relevant to spatially developing
flows as well. Thus the incompressible flows simulated here should be comparable to the

experimental flows of Wiltse & Glezer (1998).

The turbulent plane wake flow was selected as the first flow of investigation, with the

new simulations being compared to the baseline cases presented in Moser et al. (1998).

These previously simulated baseline cases include three different plane wake flows, an

"unforced" case, a (weakly) "forced" case, and a "strongly forced" case, the two forced

cases having additional energy added to the two-dimensional modes of the computation
at the initiation of the wake. The "strongly forced" case does not achieve self-similarity

and is, therefore, a poor choice for a baseline flow. Both the "unforced" and "forced" cases

evolve self-similarly once developed and exhibit statistical properties similar to experi-

mental wakes. The "unforced" case spreads relatively slowly compared to the "forced"

case and to most experiments, and it has little large-scale organization. One of the goals

of this work is to determine whether high-frequency forcing can reduce the spreading

rate of a free shear layer (and perhaps the associated level of large-scale organization)

and this may not be possible for a baseline flow that is already spreading at a minimal

rate. For this reason, the "forced" case (termed "FWAK') was chosen as a baseline flow

for the investigation described here; although spreading at a rate typical of experimental

flows, it is possible for the flow spreading rate to be reduced.

As described in Moser et al. (1998), the wake flows are generated by placing two
different realizations from a turbulent boundary layer simulation (Spalart 1988) together

as if they were forming on either side of an infinitely thin plate. At time t = 0 the plate

is removed and the boundary layer turbulence evolves into free shear flow turbulence.
For the forced case considered here, additional turbulent kinetic energy is added to all

of the two-dimensional Fourier modes of the computation at t = 0 as well. As noted in

Moser et al., statistics from the forced wake case indicate self-similar evolution for non-

dimensional times r = tU_/m greater than about 65 (where Ud is the initial free-stream

velocity of the turbulent boundary layers relative tO "the plate" and rh is the conserved

mass flux deficit of the wake). After about 7- = 120, the observed self-similarity begins
to break down as a result of the limited computational domain size of the simulation.

The Reynolds number based on the wake half velocity width and velocity deficit is about

2,000 during the self-similar period.

In order to document a sustained impact of high-frequency forcing on the wake, we

hope to observe a change in the self-similar state achieved by the wake. Thus the high-

frequency forcing should be applied prior to the start of the self-similar period at 7 = 65.

On the other hand, the turbulence at _- = 0 is still "boundary-layer" turbulence with

significant viscous diffusion and a cusp-shaped mean velocity profile. In most experiments
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ICase [k*b°l [Ik*L_l/(27r)] Ik:b°l [Ik:L:l/(2_r)] ao ] f ] a Il/b °]

TURB1 [22.49,23.83] [84,89] 0 0 I 0 1200.0 0

I TURB2 [22.49,23.83] [84,89] [27.85,29.99] [26,28] I 0 ]20 0.0 0
[TURB3 [34.54,37.221 [129,1391 [40.70,42.851 [38,40] 1.0 250 0.5 1.64
]TURB4 [34.54,37.22] [129,139] [0,1.07] [0,1] 1.0 250 0.5 0.94

HTRANsFTRANS[34.54,37.2211134.54,37.22][129,139][129'139][0,1.07][0'1"07]I [0,1][0'1] t 10012500t25 t 0.o0"50.940"94t

TABLE 1. Parameters of the high-frequency forcing for each forced case. The first four columns
indicate the (kx,ks) wavenumber range over which the forcing is applied and the last four

columns characterize the y-profile of the forcing, given by a0 + fexp {-c_(ly t - I)2/b°2}. The
"TURB" cases are begun from the "FWAK" baseline case at r = 12.17. The "FTRANS" and
"HTRANS" cases are begun from the "TRANS" case at v = 12.17 and 7"= 89.43, respectively.

the high-frequency forcing is applied somewhat downstream of the initiation of the free

shear layer, and this choice has also been made in the computations, with the high-

frequency forcing typically being applied at r = rf = 12.17.

2.1. Description of cases simulated

Two classes of high-frequency forced simulations have been generated. The first consists

of turbulent cases in which energy has been added to various high-frequency modes of

the baseline FWAK computation at :re = 12.17. The second consists of transitional flows
in which energy has been added to high-frequency modes of a modified baseline flow, this

modified flow being generated by reducing the amplitude of all the turbulent fluctuations

of FWAK by a factor of ten at 7/ = 12.17 (while leaving the mean profile unaltered).

This modified base flow, labeled "TRANS" here, has thus been "relaminarized" to a large
extent but still contains broad band three-dimensional disturbances. Flow visualization

confirms that the flow is dominated by large-scale vortices that form an irregular Karman
vortex street and have small-scale motions superimposed on them.

The baseline flows without high-frequency forcing are thus here referred to as FWAK

and TRANS. The parameters for the cases with high-frequency forcing are listed in

Table 1 and described below. Four simulations with high-frequency forcing were begun

from the FWAK flow at r/ = 12.17. These cases differ in the amount of high-frequency

forcing, the k_ (streamwise) and k_ (spanwise) wavenumbers into which energy has been

added, and the y (cross-stream) profile of the forcing. The high-frequency forcing in the

"TURBI" flow has been applied to two-dimensional modes (k_ = 0) over six streamwise

wavenumbers 22.49 < ]k_b°t < 23.83 across the entire wake (i.e. for all y). The existing

amplitudes of these Fourier modes have been increased by a factor of 20, corresponding

to an initial increase in turbulent kinetic energy of 3.7%. Case "TURB2" uscs the same

multiplieative factor of 20 for the same k_ wavenumber range but for 27.85 < Ik_b°l <
29.99 rather than k_ = 0. The increase in turbulent kinetic energy for this flow is 5.0%.

For the "TURB3" case, the forcing has becn limited to narrow layers in the cross-stream

(y) direction according to the profile 1 + 250 exp{-0.5([y[ - l)2/b°2}, where l is chosen

to be 1.64b °. This forcing is applied only for wavenumbers 34.54 < [k_b °] < 37.22 and
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FIGtrr_E 2. Energy spectra of the three velocity components for case TURB4 at r = 12.30,
shortly after the high-frequency forcing is applied.

40.70 < }k_b°l < 42.85. The multiplicative factor of up to 251 by which the existing
amplitudes have been amplified is only active over a limited range in y; despite this

large value, the overall increase in the y-integrated turbulent kinetic energy is only 0.9%.

The high-frequency forcing in case "TURB4" is applied to the same kz wavenumbers

as in TURB3 but for only the lowest three k_ wavenumbers of the computation, 0 and

±l.07/b °. The forcing has also been applied cIoser to the layer centerline, with l = 0.94b °.

The initial increase in y-integrated turbulent kinetic energy is substantially larger for this

case, being 49%.

Two other simulations with high-frequency forcing were run from the TRANS baseline

case. In both, the high-frequency forcing was applied to the same kz and k_ wavenumbers

as in the TURB4 flow. In the "FTRANS" flow, the high-frequency forcing was applied

at 77 -- 12.17 in narrow layers located at l = 0.94b °. The y-profile of the forcing is

as given above except that the multiplicative factor has been increased to 2500 from

250. The "HTRANS" flow is the result of high-frequency forcing applied at a later time,

Th = 89.43, when the flow is more developed. At this point in the transition, the y-

integrated production of turbulent kinetic energy is near its maximum. The forcing profile

is given by 25 exp{-0.5(ly I - I)2/b°2}, with I again equal to 0.94b °. The multiplicative

factor is reduced because the growing disturbances at the later time 7"h are larger in

amplitude. The increase in the initial y-integrated turbulent kinetic energy caused by

the forcing was 4784% and 35% for the FTRANS and HTRANS cases, respectively.

In order to verify that the forcing used in the computations is qualitatively similar to

that found in the experiments, energy spectra from the forced flows have been examined.

The streamwise ks wavenumber spectra for u '2, v '2, and w '2 at 7- = 12.30 (shortly after

the forcing has been initiated) in the TURB4 flow are shown in Fig. 2. The spectra are

similar to those observed by Wiltse & Glezer (1998), with the energy associated with the
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forcing being at about the same relative wavenumber, of similar relative width, and of

similar amplitude compared to the energetic large scales of the turbulence.

2.2. Forcing of a fully turbulent wake

In this section the impact of t, igh-frequency forcing on a fully turbulent plane wake is

investigated. The figures presented here contain results from the four "TURB" simula-

tions as well as for the unforced baseline case "FWAK". As noted above, the forcing is
applied at rf = 12.17. The forced runs are terminated at 7 ._ 15 for TURB1, TURB2,

and TURB3, and at 7- = 30 for TURB4.

The evolution of the scale parameters describing the wake mean velocity profile, the
magnitude of the peak mean velocity deficit U0, and the full width of the wake at the

half-deficit points b are shown in Fig. 3. These parameters have been non-dimensionalized

by their values at 7- = 12.17, denoted by b_ and b°. The mean profile evolution for all
four forced flows is virtually identical to the baseline case, with only barely perceptible
differences in U0 and b.

The evolution of the turbulence is impacted to a greater degree than the mean velocity

profile. The evolution of twice the cross-stream (y) integrated turbulent kinetic energy is

shown in Fig. 4. Relatively little turbulent kinetic energy has been added to tile TURB1,

TURB2, and TURB3 cases by the forcing, and what has been added starts decaying fairly

rapidly. In contrast, the integrated kinetic energy has been greatly (by 49%) augmented
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by the forcing in TURB4. In this case too, however, the energy decays rapidly, assuming

a value slightly (1.2%) below that of the baseline unforced case by 7- = 30. Although this
reduction in turbulent kinetic energy once the flow is developed is qualitatively similar

to the experimental observations of Wiltse & Glezer (1998), the magnitude of the effect
is much weaker.

The impact of the forcing on the turbulent kinetic energy dissipation rate is even

more pronounced, as expected since the dissipation is associated with strong velocity

gradients at small scales. The evolution of the cross-stream integrated turbulent kinetic
energy dissipation rate is shown in Fig. 5. The relative increase in dissipation rate is thus

higher than that of the kinetic energy, reaching 425% initially at vf for case TURB4.

This increase also decays rapidly, with the TURB4 dissipation level at T = 30 being

indistinguishable from the baseline case, indicating that the high-frequency forcing has
not resulted in a sustained increase in dissipation level.

The impact of the forcing on the production of turbulent kinetic energy is much less

pronounced, as expected since production is not strongly impacted by the small-scale
motions. The evolution of the cross-stream integrated turbulent kinetic energy production

rate is shown in Fig. 6. The TURB1, TURB2, and TURB3 flows depart only negligibly

from the baseline case. The high-frequency forcing results in a 6.7% reduction in the
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production for case TURB4, but after initially further decreasing relative to the baseline

case, the evolution becomes identical to that of FWAK by T = 30.

2.3. Forcing of a transitional wake

The effects of high-frequency forcing in the simulations of fully turbulent wakes die out

quickly and have no lasting impact. In order to determine whether transitional wakes

are more sensitive to high-frequency forcing, three additional simulations were made as
outlined in section 2.1.

The impact of the high-frequency forcing when applied early in the transition process

(FTRANS) is more significant than when applied later (HTRANS) or when applied to

the fully turbulent wake examined in section 2.2. Additionally, it appears that some of
the effects may be sustained, persisting even once the wake is developed.

The time evolutions of the peak mean velocity deficit and the wake width are shown

in Fig. 7. The evolution of both quantities in the HTRANS flow is very similar to the
corresponding evolution in the unforced TRANS case, while tile behavior in the FTRANS

case is somewhat different. In FTRANS the wake spreads more uniformly in time and
ultimately is not as wide as in the TRANS case at the same time.

Similarly, the evolution of the y-integrated turbulent kinetic energy shown in Fig. 8

shows little difference between the HTRANS and TRANS cases, but forcing early in the

transition, as in FTRANS, results in sustained lower levels of turbulent kinetic energy
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after r _ 150. At 7- = 250 this reduction (FTRANS relative to TRANS) is 20.0%,

whereas the reduction in wake width noted above is only 5.6%. The average turbulent

kinetic energy density in the wake is thus reduced by 15%.

The sustained reduced turbulent kinetic energy levels in FTRANS are accompanied

by sustained increased levels of turbulent kinetic energy dissipation. As seen in Fig. 9,

the initial large increase in turbulent kinetic energy associated with the high-frequency

forcing decays quickly, but in FTRANS there is still a 13% increase relative to TRANS

at T = 250. In contrast, the differences between HTRANS and TRANS is virtually

undetectable for r > _-h + 20.

Reductions in turbulent kinetic energy come about not. only as a result of sustained

increased dissipation levels, but also because of sustained decreased production levels.

The time evolution of the ?,,-integrated production of turbulent kinetic energy is shown in

Fig. 10. In both FTRANS and HTRANS the high-frequency forcing results in a short term

(for Ar _ 5 to 7) reduction in production. In FTRANS the integrated production actually
becomes negative; in HTRANS it is reduced by about 18%. As before, the evolution

in HTRANS quickly relaxes to the unforced behavior, whereas FTRANS maintains a

sustained reduction of 24% at 7- = 250. For r < 100 the main effect of the high-frequency

forcing in FTRANS is to shift the integrated production and dissipation curves about
A_- = 6 to earlier times. It is thus possible that the primary effect of the forcing is to
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FIGURE 11. Contours of vorticity magnitude in the z = 0 plane at r = 200 for (top) TRANS
and (bottom) FTRANS. Contour increment is U°/b °.

initiate an earlier transition, which in turn results in a narrower wake with reduced levels

of turbulent kinetic energy.

Given the reduced wake width and turbulent kinetic energy density in the FTRANS

flow, it is of interest to examine the structure of the flow to determine what, if any,

structural changes are associated with the changes in wake statistics. Early in the flow
evolution the differences between the FTRANS and TRANS flows are minimal. Once

tile flow is developed, however, detectable differences are evident. Contours of vorticity
magnitude are shown in Fig. 11 for both flows at r = 200. The forced flow FTRANS

is less organized, with smaller, less coherent intrusions of irrotational flow into the layer
from both freestreams. These differences are the same as those observed in Moser et

al. (1998) for wakes of differing self-similar spreading rates that arise from large scale

two-dimensional forcing. Also evident in the figure is the limited statistical sample of

large-scale eddies (about 2.5) in the computational domain at r = 200, suggesting the
need for some caution when drawing conclusions from these late-time results.

3. Conclusions and future work

In conclusion, simulations of fully turbulent wakes suggest that high-frequency forcing
has a minimal impact on the evolution of this developed flow after a brief transient. On

the other hand, transitional wakes appear to be more sensitive to high-amplitude, high-

frequency forcing. Such forcing must be applied while the disturbance amplitudes are still

small compared to their amplitudes in flflly turbulent flow. In this case, the simulations

suggest that sustained reductions in wake spreading and turbulent kinetic energy density

may be possible. In particular, reductions in y-integrated turbulent kinetic energy of up

to 20% were observed in the simulations, resulting from both increases in the dissipation-

rate of turbulent kinetic energy and decreases in the turbulent kinetic energy production
rate. Longer simulations might show even more significant effects but a much costlier,

larger domain calculation would be required to confirm this.
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Low-dimensional dynamics of near-wall turbulence

By Javier Jimdnez t AND Mark Simens:_

1. Introduction

Wall-bounded turbulent shear flows are perhaps the last area in 'classical' incompress-

ible turbulence in which there still are open questions about basic physical mechanisms.

There are two competing conceptual models. In tile first one, wall turbulence is just a
modification of ordinary shear turbulence occuring when the latter is a near wall, and is

therefore dependent on the prior existence of an outside turbulent flow. In the second,

it is an essentially different phenomenon which coexists with the outer flow and merges
into it when the distance from the wall is large enough.

Jim_nez (1999) took the latter view and argued that the dynamics of near-wall tur-
bulence is essentially different from the Kolmogorov (1941) mechanism. While the latter

is fundamentally isotropic and the energy is dissipated locally by cascading to smaller

length scales, wall-bounded flows are intrinsically inhomogeneous and anisotropic, and

a substantial part of their energy diffuses from the wall into the outer flow, increasing,

rather than decreasing, its length scales in the process.

In this paper we examine the dynamics of the structures of the viscous and buffer layers

in very simplified situations in which their interaction with the outer flow is severely
restricted. Even natural flows scale in this region approximately in wall units, defined
in terms of the kinematic viscosity v and of the friction velocity u_ = (vcg_U) 1/2, where

U is the mean velocity profile. In that approximation, and if we admit that near-wall

turbulence is not a just a modification by the wall of the outside turbulent flow, only

local quantities such as dimensionless distance to the wall, y+ = u_-y/u, should matter,

while global parameters such as the Reynolds number of the flow should be irrelevant.

In the reduced systems considered here, the outer flow is effectively removed, and the

scaling in wall variables should be strict. No bulk Reynolds number may be relevant
because no bulk turbulent flow exists. Since the local wall-normal Reynolds numbers

are low, we may expect quasi-laminar structures whose behavior can be understood

deterministically. In this sense this region corresponds to the Kolmogorov viscous range

of isotropic turbulence, but we will see that, while the latter is a sink for the energy

cascading from the larger scales, the structures studied here are not only self-sustaining,

but actually export energy to the rest of the flow.

The organization of this paper is as follows. The energy balance is briefly examined in
the next section. The wall region and the numerical experiments undertaken to isolated it
are described next. The results are then discussed, with emphasis on the low-dimensional

behavior of the structures in the simplified flows and on how they evolve into a fully
turbulent flow once the constraints are removed.

t Also at U. Polit_cnica de Madrid
:_ U. Polit_cnica de Madrid and U. Twente
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2. The balance of turbulent energy

One of the reasons suggesting that the near-wall region is quasi-autonomous, inde-

pendent of the outer flow, is the behavior of the kinetic energy fluxes as a function of

tile distance y to the wall. Consider a streamwise-homogeneous flow, such as a turbulent

pipe, and separate the velocity into its mean value and fluctuations. We can write the

evolution equation for the mean turbulent kinetic energy, K = (u '_ + v '2 + w'2)/2,

Oy _T = -(t_'yt)OyU -- £ -]- l/Oyyg. (2.1)

where u 1, v', and w' are tile streamwise, wall-normal, and spanwise velocity fluctuations,

and 0 stands for averaging over time and over the two homogeneous coordinates parallel

to the wall. The first term in the right-hand side is the production of turbulent energy

by the interaction between the mean shear and the Reynolds stresses; the last one is

the large-scale viscous diffusion of the kinetic energy, which can be neglected everywhere

except in the viscous sublayer, and c is the dissipation by the small scales u(I_Tu]e[). The

balance of these three terms is compensated in the left-hand side by the divergence of

the spatial energy flux

1 v_2

where p' are the pressure fluctuations.

It is generally agreed that production and dissipation are approximately in balance

across the logarithmic layer (Townsend 1976), implying that the energy flux ff-r should

be approximately constant in that region. This is seen to be roughly true in Fig. l(a),

which contains data from three numerical channels at moderate Reynolds numbers. The

flux is roughly constant and positive in an intermediate region, showing that energy flows

away from the wall. Its positive slope near the wall, on the other hand, implies a local

excess of energy production. Part of that extra energy diffuses into the wall, but the rest

flows through the logarithmic layer into the outer flow where dissipation is dominant.

In this sense, the wall provides the power needed to maintain turbulence in the outer

region.
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It is, unfortunately, difficult to measure all the terms of the energy equation in exper-

imental flows, and there are no data equivalent to those in Fig. l(a) for higher Reynolds

numbers. Some parts of _T have, however, been measured and can be used to check how

representative are the numerical results. This is done in Fig. l(b), which shows the triple

product (u'2v')/2, which is the main contribution to (2.2). The figure includes the nu-

merical channels of Fig. l(a) and experimental boundary layers at much higher Reynolds

numbers. Notwithstanding the uncertainties in the experimental data, especially near the

wall where the probe lengths are comparable to the wall distance, both sets of measure-

ments coincide where they overlap, giving some confidence on the interpretation of the
numerics.

The picture suggested is that there is an energy-producing region near the wall (y+ <

50) which exports some of its turbulent energy across the logarithmic region into the
outer flow.

Both the spatial and the Kolmogorov cascades are present in wall flows. It is difficult

to compare their magnitude since _T, which is an energy flux per unit area, has different

units from e, which is an energy flux per unit volume. We can, however, form a length

from the two quantities, AT = '_T/Z, which is the thickness of the layer over which the

Kolmogorov cascade would be able to process all the energy provided by the spatial flux.

2 u3r/r_y,It follows from Fig. l(a), and from the logarithmic-layer estimate c _ uTOyU =
where _ _ 0.4 is the K_rm_n constant, that AT _ O.ISy. The turbulent energy being

exported across a plane parallel to the wall in the logarithmic region is equivalent to the

dissipation in the top 15% of the layer bounded by the plane and the wall.

3. The near-wall region

Because of this influence on the global energy balance of the flow and, consequently,

on the magnitude of the wall drag, the region below y+ -._ 100 has been the subject of

intensive study.

Its dominant structures are streamwise velocity streaks and quasi-streamwise vortices.

The former are an irregular array of long (x + _ 1000) sinuous alternating streamwise

jets superimposed on the mean shear, with an average spanwise separation shown by

Smith & Metzler (1983) to be z + _ 100. At the spanwise locations where the jets point
forward, the wall shear is higher than the average, while the opposite is true for the

'low velocity' streaks where the jets point backwards. The quasi-streamwise vortices are

slightly tilted away from the wall, and each one stays in the near-wall region only for

x + _ 200 (Jeong e_ aI., 1997). Several vortices are associated with each streak, with

a longitudinal spacing of the order of x + _ 400 (Jim6nez & Moin, 1991), and most of

them merge into disorganized vorticity after leaving the immediate wall neighborhood

(Robinson, 1991).

It was proposed by Kim, Kline & Reynolds (1971) that streaks and vortices are part

of a cycle in which the vortices are the results of an instability of the streaks, while

the vortices cause the streaks by advecting the mean velocity gradient (Swearingen &

Blackwelder, 1987). While there is general agreement on the latter part of the cycle, the

mechanism by which the vortices are generated is less clear. It was shown by Jim6nez &

Pinelli (1999) that disturbing the streaks inhibits the formation of the vortices, resulting

in the eventual decay of the turbulence, and that the region in which the disturbances

are effective is restricted to between y+ _ 10 and y+ _ 60. That paper contains a more
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complete summary of the different models for the near-wall region in natural turbulent.
flows and should be consulted for additional references.

A slightly different point of view is that the cycle is organized around a nonlinear trav-

eling wave, a fixed point in phase space, which would represent a permanently disturbed

streak. This is actually not too different from the previous instability model, which es-

sentially assumes that the undisturbed streak is a fixed point, and that the cycle is an
approximation to a homoclinic orbit running through it. Candidate nonlinear waves have

been computed by Waleffe (1998) and others, and identified as part of a particular path
to turbulent transition by Toh & Itano (1999). Finally, reduced models based on this

approach have been formulated by Waleffe (1997).

A difficulty with most of these studies, with the possible exception of the one by Toil

& Itano (1999), is that there is no clear connection between the object being studied and

full-scale turbulence. What we intend in this paper is to show that a turbulent flow can be

continuously modified into one of those reduced objects while still remaining identifiably
turbulent.

A way of doing this was proposed by Jimdnez & Moin (1991), who substituted a full tur-

bulent channel by an array of identical computational boxes, periodic in the streamwise
and spanwise directions x and z, while retaining its full wall-normal extent. The idea was

to substitute the complexity of all the nmtually interacting turbulent units near the wall
by a 'crystal' of identical structures executing synchronously the hypothetical turbulence

regeneration cycle. The 'unit cell' of the crystal was adjusted to the smallest dimension

that would maintain turbulence, which turned out to contain a single wavelength of a
wavy low-velocity streak and a pair of quasi-streamwise vortices. These structures went

through a complex cycle which was still difficult to analyze, while the statistics of the

near-wall fluctuations were essentially identical to those of fully developed channels. This

'minimal' system has often been used as a surrogate for real wall turbulence, and most

of the reduced models mentioned above actually refer to it.

The previous experiment eliminates the possibility that wall turbulence requires the

interaction between neighboring wall structures, but says nothing about the importance

of its interaction with the core flow. A step in clarifying that question was taken by

Jim6nez & Pinelli (1999), who eliminated the vorticity fluctuation in the outer flow of

a numerical channel by using a numerical filter which acts as a variable viscosity which

is low near the wall and increases away from it. They were able to show that the wall

cycle was 'autonomous' in the sense that it could run independently of the outer flow as

long as it was not disturbed below y+ _ 60. Again the statistics were similar, although

no longer identical, to those of full turbulence.

In this paper we describe the results of simulations which are both 'minimal', in the

sense that their wall-parallel size is small enough to contain a single copy of each structure,
and autonomous in the sense that they have no turbulent external flow.

4. The numerical experiments

The numerical scheme used for the simulations is similar to the one described by

Jimdnez & Piuelli (1999). The Navier-Stokes equations are integrated in the form of evo-

lution equations for the wall-normal vorticity a;y and for ¢ -- V_v ,, using a pseudospectral

code with Fourier expansions in the two wall-parallel directions and Chebychev polyno-

mials in y, as in Kim, Moin & Moser (1987). At each time step the right-hand sides of
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the two evolution equations are multiplied by a damping filter

F(y)=l if y<_51, F(y)=Fo <1 if y>52, (4.1)

with the two limits connected smoothly by a cubic spline. In all of our experiments

52 _, 1.5 51. Because the filter is applied at every time step, it is very effective in damp-

ing the vorticity fluctuations, and it was shown by Jimdnez _ Pinelli (1999) that the

complete suppression of the fluctuations only requires that 1 - F >> At +, where At is

the computational time step. In practice we use F0 = 0.95, and the damping is effective

approximately midway between 51 and 52. The evolution equations for the (0, 0) Fourier

modes of u and w, which cannot be expressed in terms of wy and ¢, are not modified by
the filter.

The flow is integrated at constant mass flux in a channel, periodic in x and z. No-slip

impermeable boundary conditions are imposed at y = 0 and y = 2. The volumetric flux

is adjusted so that the Reynolds number of an undamped turbulent channel would have

been ReT _ 200. Because there are no Reynolds stresses in the region in which the filter

is active, the mean velocity profile is there parabolic (see Fig. 2a), sequestering much

of the total mass flux, and the final Reynolds number is usually closer to ReT _ 120.

As previously mentioned, however, such Reynolds numbers are irrelevant because no

turbulent flow extends to the far wall. The relevant turbulent Reynolds number is the

height of the damping function 5+ = uT51/u, which determines the size of the largest
turbulent scales.

It was stated by Jimdnez & Pinelli (1999) that the damping function was approximately

equivalent to a viscosity proportional to the velocity instead of to its Laplacian. This is

only partly correct. While the effect of (4.1) is equivalent to a zeroth-order viscosity for

the two evolution variables, the velocities are obtained from them using the definition of

the vorticity and the continuity equation, and potential velocity fluctuations penetrate

into the damped region. Even the vorticity fluctuations are not completely suppressed

since only w_ is directly damped while the other two vorticity components have to satisfy
the solenoidality condition (i.e. the vortex lines have to close).

The flow below y = 51 satisfies the unmodified Navier-Stokes equations. It was shown

by Jimdnez & Pinelli (1999) that the mean velocity and the fluctuations in that layer

were very similar to those in regular channels even when 5+ _ 50. Those results were

obtained in a computational box whose length and width were much larger than the filter

height and which was essentially turbulent. We will present here results for much smaller

boxes, some of which contain very ordered flows in which there are no temporal chaotic

fluctuations to smear the effect of the individual structures and whose mean profiles,

therefore, differ substantially from those of natural turbulent channels. Some examples

are given in Fig. 2.

The three boxes used for that figure contain respectively a fixed point in phase space,

corresponding to a permanent traveling wave, a two-frequency torus, and a mildly chaotic

flow. All of them are too short to sustain a strongly chaotic flow that could be interpreted

as turbulence, and although they are wider than the mean distance between streaks in
natural turbulence, each of them is shown by direct visualization to contain a single

low-velocity streak (see Fig. 6 below).

The mean velocity profiles show a plateau which can be interpreted as an abortive

logarithmic layer, although in this case the velocity decreases slightly before joining the

parabolic profile of the irrotational region. The local maxima present in the vorticity

profiles below the filter height are real, and correspond to individual features which,
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in these relatively ordered flows, stay at a constant distance from the wall instead of

wandering chaotically as in natural turbulence, but the strong peaks located just above
51 are artifacts of the damping filter. They mark the reconnection or tile vortex lines

after they are truncated by the damping, as described above.

Two types of numerical boxes were studied, both of which had widths L + _ 180 when
the filter height was set near its minimal value of 5+ _ 50. The longer ones, which

contain two streamwise copies of the basic structure, have L + ,_ 300 and were run using

42 x 97 x 31 spectral modes in the streamwise, wall-normal, and spanwise directions after

dealiasing. The shorter boxes, which are only half as long in the streamwise direction,

were run using 20 streamwise modes. The resolution, Ax + ,_ 7, Az + ,_ 6, with the first

collocation point at y+ _ 0.07, is therefore excellent.

As the filter height is raised, the effective ReT increases to values closer to 180, and the

grid spacing increases by about 50% in wall units. The resolution of those simulations,

which are essentially full minimal channels, is therefore correspondingly worse but still
adequate.

5. Results

In a first series of numerical experiments, the vertical filter was set to _+ _ 50, and the

wall-parallel box size was changed. The simulations were then run until they achieved

statistically steady state. Each simulation was initialized from a statistically converged
instantaneous field from another box of roughly similar dimensions. The transition from

long to short boxes was made by zeroing all of the odd streamwise Fourier coefficients of

one of the former, thus essentially averaging the two wavelengths contained in it. Because

the basin of attraction of nontrivial solution in some of the tighter boxes is fairly small,
this initialization procedure was essential for their survival.

The boxes discussed here are those which turn out to be small enough to contain recog-

nizable simple flow structures and a single low-velocity streak in the spanwise direction.

For two selected box lengths, the height of the filter was varied systematically. As the
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filter height increased, especially as it was made comparable to the channel half-height,
the extent of the parabolic part of the profile decreased and the effective ReT increased.

Although some efforts were made to compensate this effect by changing the length and
width of the computational boxes, there is some systematic variation of both quantities

with the filter height when expressed in wall units.
The time evolution of the flow was characterized in two different ways. The first one

is the evolution of the instantaneous skin friction, defined as the gradient at the wall of

the plane-averaged streamwise velocity. Because of the ambiguities regarding dimensional

bulk variables, only the fluctuations relative to its own mean make sense

Ou_ (5.1)
c_ - OvU,

where the overline stands for instantaneous averaging over wall-parallel planes and U is

the long-time average of _.

Some representative time histories are shown in Fig. 3. They have been normalized

with the skin friction of a parabolic laminar profile with the same mass flux to separate

them vertically for visual clarity, but we have seen that the different levels of the average

wall friction have no physical significance. All of the simulations in Fig. 3 are 'short' boxes

containing a single wavelength of the low-velocity streak. For the lowest filter height, the

flow is a permanent wave which moves with a celerity Uc+ _ 15. This case corresponds
to the solid line in the profiles in Fig. 2(a), and the advection velocity is very close to

that of the plateau in the mean velocity profile. The next two filters heights result in

two-frequency tori, with a short period T + ._ 60 and a long one T + _ 400. The relative
importance of both periods switches with the filter height. While for 5+ = 52 the long

period is only a weak modulation of the short one, invisible at the scale of Fig. 3, the

opposite is true when 6+ = 55.
As the filter is raised further, the flow becomes chaotic, with the longest period of

the tori acting now as a dominant fast frequency. Finally, for 6+ > 70, intermittent

bursts appear which are typical of fully developed turbulent flows and whose amplitude

is substantially higher than in any of the three other cases (Fig. 3b). The shortest bursting
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events are roughly of the same length as the long period of the tori, while the longest

ones are two or three times longer. These times are comparable to those identified for

individual bursts in minimal channels by Jim_nez & Moin (1991). The present boxes are

actually too short to maintain bursting turbulence, which is metastable. The velocity
fluctuations become very weak in the dips of the history of the skin friction until one of

them fails to regenerate and the flow laminarizes completely.

Figure 4 shows the same data in a different representation introduced by Toh & Itano

(1999). Orbits are drawn in terms of the two-dimensional and three-dimensional energy

of the wall-normal velocity fluctuations. The two-dimensional energy is

I("E2D = -_ (v_i)) dy, (5.2)

where V2D (y, z, t) is the streamwise average of the fluctuation of v and therefore measures

the intensity of objects which are long in the streamwise direction, essentially streaks.

The three-dimensional energy is similarly defined for the remaining v fluctuations, v3D =
v -- V2D, and measures deviations from streamwise uniformity. In this representation the

permanent wave is represented by a single point, while the weakly modulated torus of

Fig. 3(a) appears almost as a limit cycle, wide in the sense of the three-dimensional

energy but narrow in the two-dimensional one. The examination of this cycle as well as
of the orbits corresponding to other cases shows that the skin friction correlates with the

magnitude of the two-dimensional energy and, therefore, of the intensity of the streak,

while the faster oscillations of the three-dimensional energy do not affect it strongly.

Figure 4(b) underscores the different range of amplitudes of the simple tori or chaotic

flows, which are obtained for low filter heights, and of the bursts of tim deeper channels,

but it also suggests that the simplification process consists of damping the large bursting
excursions, while the low-activity periods of the deeper flows share with the constrained

systems the same region of the energy space.

Similar behaviors are found for the longer boxes, which contain at least two wavelength

of the wavy streak. A summary of cases is found in Fig. 5(a), which classifies the different

experiments in terms of their temporal behavior. Note the narrow range of filter heights
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which result in time evolutions which are not fully turbulent, but also that the bursting

appears as a natural evolution of the weakly chaotic flows. In the longer boxes the bursting

turbulence is self-sustaining and does not decay spontaneously.

The amplitude of the skin friction fluctuations, normalized as in (5.1), is given in
Fig. 5(b). The bifurcation parameter that collapses the different experiments is (f+, and

the fluctuations increases quickly above a minimum threshold 5+ _ 50. There are two

branches in this figure, representing respectively the long and the short boxes. The steeper
branch consists of short boxes, and the lower fluctuation amplitude of the long ones

reflects the fact that not all the structures burst simultaneously and that the amplitudes

measured in the long boxes represent an average of bursting and quiescent structures.

A three-dimensional representation of the flow field in one of the longer boxes is shown

in Fig. 6(a). It shows a low-velocity streak with two waves, associated to each of which

there is a pair of quasi-streamwise vortices. During the turbulent cycle the amplitude
of the lateral displacement of the streak grows and wanes, and so do the vortices, but

the streak is never uniformly straight. Careful tracing of vortex lines, although generally

complicated, proves that the streak and the vortices are not independent structures, but
different aspects of the same one. The single permanent wave mentioned above when

discussing the time histories is shown in Fig. 6(b). It should be emphasized that this
wave is both permanent, moving at a constant velocity without change of shape, and

autonomous, in the sense that there are no vorticity fluctuations in the numerical box

except those seen in the figure and that it has been derived from a fully turbulent flow by a
continuous set of transformations in which its statistical properties are either maintained

or change smoothly. It is the best representation that we have up to now of the elemental

'engine' that powers near-wall turbulence.

Figures 6(a) and 6(b) are qualitatively very similar to the traveling waves obtained in

Waleffe (1998) and to the structures educed from larger channels by Jimfinez & Moin

(1991) and Jim_nez & Pinelli (1999), as well as to the saddle point identified by Toh &

Itano (1999).
Careful observation of the differences between computer animations of these and of

deeper boxes suggests the root of the increased complexity of the latter. As the streak goes
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quasi-streamwise vortices are negative, so that the net effect of the vortex system is to induce a

positive updraft along the low-velocity streak. The flow is from top-right to bottom-left. (a) is

a regular cycle with L + = 520, 5 + = 51. (b) is the steady wave in Figs. 3 and 4.

through the cycle, it ejects some vorticity into the outer flow, essentially as a small vortex

hairpin. In full-depth flows this vorticity evolves, becomes disorganized, and eventually

modifies the next cycle of the streak. In autonomous flows the vorticity is damped by

the filter as soon as it is ejected, and this randomizing mechanism is not present. The

threshold filter height at which bursting first appears is that for which the vortices are
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just allowed to move far enough from the wall to cross over the top of the streak and
interact with one another.

6. Conclusions

We have shown that simple low-dimensional systems can be obtained from fully tur-

bulent channels by a continuous set of transformations, the most important of which is

the restriction of the distance from the wall at which the quasi-streamwise vortices are
allowed to move.

The simplest solution identified in this way is a permanent traveling wave, similar

to those found by other investigators in related flows. As the vertical constraints on the

system are relaxed, this wave bifurcates into either a limit cycle or a two-frequency torus,

depending on the parameters. The longest of the two periods of the torus evolves into
the bursts of full-scale turbulence when the vertical restriction is further removed.

The critical bifurcation filter height is _1+ _ 50, and the range of heights in which

the bifurcation occurs is very narrow, with the flow becoming essentially turbulent for

5+ _ 70. The bifurcation mechanism was identified visually as the interaction, across the

top of the low-velocity streak, of the two counter-rotating vortices.

Even in the very short boxes used in these simulations, the only streamwise coherent

structure is the low-velocity streak. The quasi-streamwise vortices, their associated wall-

normal velocities, and the resulting high-shear regions near the wall are all discontinuous

along the box length.

M. S. was supported in part by grant CT98-0175 of the TMR program.
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Experimental results on the stabilization
jet diffusion flames

By L. K. Su, D. Han AND M. G. Mungal

of lifted

1. Motivation and objectives

Many researchers have studied the stabilization of lifted turbulent jet diffusion flames.
Earlier work in this area was thoroughly reviewed by Pitts (1988). Recent advances in

laser diagnostic methods have vastly increased the breadth of data available regarding

this problem, while increased computational capacity has permitted the assessment of
various models for flame stabilization. However, there remains no consensus regarding

the stabilization mechanism.

Proposed models differ primarily on the role of premixing at the flame front. Given a

jet of undiluted fuel issuing into air, it is undisputed that some degree of fuel-air premix-

ing occurs upstream of the lifted flame. The stabilization theory of Vanquickenbourne &

van Tiggelen (1966) assumed full premixedness of fuel and air at the stabilization point,
with stabilization occurring through a balance of the local jet axial velocity and turbu-

lent flame speed. Subsequently, Peters & Williams (1983) argued that, in axisymmetric

turbulent jets, insufficient molecular mixing occurs upstream of the flame front to sup-

port the notion of premixed flame propagation. Instead, stabilization was proposed to

be governed by the quenching of thin, laminar diffusion flamelets. Miiller et al. (1994)
later extended this work to consider partially premixed flamelets, concluding again that

flamelet quenching was important to flame stabilization.

Recently, triple flame theories (Dold (1989), Veynante et al. (1994), Ruetsch et al.

(1995)) have been applied to the stabilization problem. Essential to the formation of the
triple flame structure is a gradient in the fuel mixture fraction profile normal to the flow

direction, ranging from fuel-rich to fuel-lean conditions across the profile. On either side
of the stoichiometric point, a premixed flame branch forms. The excess fuel and oxidizer

from the rich and lean branches, respectively, then burn as a downstream diffusion flame.

These three structures - the rich and lean premixed branches and the diffusion tail -

motivate the 'triple flame' nomenclature. In the idealized case of a uniform incoming

velocity profile, the premixed branches present a convex surface to the flow, with the

fuel-rich and fuel-lean sides receding owing to the reduced flame speed with departure

from stoichiometry. The addition of the diffusion tail downstream of this convex surface

results in the characteristic triple flame shape, which resembles a boat anchor. In a lifted

turbulent jet flame, however, the incoming velocity profile can be expected to be highly

non-uniform. Veynante et al. (1994) computed triple fames with vortices superposed

on the incoming velocity profiles. Under these conditions the flame branches are highly

distorted from the idealized shape. For sufficiently high strain rates, one of the premixed

branches may be extinguished while the other branches continue to burn. Because of

these departures from the idealized triple flame structure, the term 'leading-edge flame'
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or 'edge flame' is preferred when describing flame stabilization involving upstream partial
premixing with a trailing diffusion flame branch.

Emergence of the edge flame theory of fame stabilization has been coincident with the

extensive application of planar laser diagnostic methods to the problem. Measurements

have been presented of mixture fraction, scalar dissipation rate, and temperature fields

(Schefer et al. (1994), Kelman et al. (1998)), reaction zone locations (Maurey et al.

(1998), Schefer& Goix (1998), Watson et al. (1999a), Watson et al. (1999b)), and

fluid velocities in and around the reaction zones (Mufiiz & Mungal (1997), Maurey et

al. (1998), Schefer & Goix (1998), Watson et al. (1999a)). The mixture fraction and

dissipation measurements of Schefer et al. (1994) show scalar dissipation rates well be-

low quenching values at the flame stabilization points, indicating that scalar dissipation
is not significant to the stabilization process for the lifted methane flames studied, in

contradiction to the model of Peters & Williams (1983). The velocity measurements of
Mufiiz & Mungal, conditioned on flame location, show that the flame stabilizes in re-

gions of low incoming fluid velocity (typically less than three times the laminar flame

speed, SL). This, together with velocity profiles normal to the flame base and streamline

patterns in the upstream region, suggests triple flame behavior similar to that seen in

the computations of Ruetsch et al. (1995). Using measurements of CH radical concen-

trations to locate reaction zones, Watson et al. (1999b) show evidence of both the lean

premixed branch and diffusion tail of the idealized triple flame. It is hypothesized that

the rich premixed branch is folded into the diffusion tail in the manner suggested by the

simulations of Veynante et al. (1994).

The conclusions drawn from these experimental studies all have some degree of un-

certainty, however, stemming from experimental limitations. Complete elucidation of the

stabilization process in the context of the proposed models requires simultaneous knowl-

edge of the reaction zone position, the local velocity field, and the local mixture fraction

field; in the studies mentioned, at most two of these were measured. In particular, si-

multaneous measurements of mixture fraction and velocity have not been demonstrated.

The current experiments address this by presenting simultaneous measurement of fuel

concentration, using planar laser-induced fluorescence (PLIF) of acetone seeded into the

fuel stream, and velocity, measured using particle image velocimetry (PIV), in the sta-
bilization region of a lifted methane-air turbulent jet diffusion flame. The reaction zone

can also be fairly well located by these measurements, as will be shown.

2. Results

Much of this work was presented earlier in Su, Han& Mungal (2000). More extensive

experimental details can be found in that paper. That paper also contains several figures

that have been omitted here for brevity.

2.1. Experimental arrangement and image interpretation

The experiments are performed in a vertical wind tunnel which provides a coflow velocity

of 0.36 m/s. The methane fuel stream issues from a straight pipe (inner diameter 4.6 mm)

placed in the center of the tunnel. Two cases are considered here. In the first, tile jet

exit speed is 15.3 m/s, giving a jet Reynolds number (based on jet excess velocity, nozzle
diameter and methane kinematic viscosity) of roughly 4000. In the second case, the jet

exit speed is 10.8 m/s, giving a Reynolds number of roughly 2800. A total of 103 and 88

velocity/scalar image pairs are available for the two cases, respectively.

To provide the Mie scattering signal for the PDI, the coflow air is seeded with a
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FIGURE 1. A sample Mie scattering field, showing the loss of signal in regions where the
glycerol-water particles have evaporated at high temperatures.

glycerol-water fog. A dual cavity Nd:YAG laser, with 532 nm output, is used to produce
two pulses with a temporal spacing of 30 ps. The resulting scattering signal is collected

by an interline transfer CCD camera (1008 x 1016 pixel resolution) which allows each

of the two laser sheet pulses to be captured in a separate image. The cross-correlation

PIV algorithm used (Hasselbrink (1999)), which incorporates iterative interrogation win-
dow offset (Westerweel et al. (1997)), offers high resolution and vector yield. The final

processing step yields a 100x 100 grid of velocity vectors.
For the PLIF, acetone is seeded into the methane fuel stream, to approximately 15%

by volume. A XeC1 excimer laser with 308 nm output excites the fluorescence. The

resulting signal is captured by a low-noise, high-sensitivity CCD camera, with 515×650

pixel resolution. An optical filter isolates the fluorescence signal from ambient light and
flame luminosity. The field of view of the PLIF measurements spans from the jet nozzle

exit to a maximum of 18.2 jet diameters, d, downstream, and extends up to 7.3 d to either

side of the centerline. It is necessary to include the potential core in the PLIF images

in order to correlate signal levels with absolute fuel concentration. No such constraint

exists with the PIV, so the PIV imaging windows were placed so as to capture only the

flame base region. For case 1, the PIV window spanned from 9.5 to 17.3 d downstream

of the nozzle, while for case 2 the PIV window spanned from 6.2 to 15.0 d.

The use of glycerol-water fog particles in lifted flame experiments has previously been

demonstrated (Hasselbrink & Mungal (1998)). A sample Mie scattering image, from

case 2, is given in Fig. 1. The fog particles evaporate in the range 400-450 K, so the

regions with no Mie scattering signal can be interpreted as having been heated by the
flame. Because the reaction zone is known to be thin (Watson et al. (1999a) report

CH regions with an average thickness of approximately 1 mm), the reaction zone can
be assumed to follow closely the heated region outlined as in Fig. 1. Analogous to edge

flame theories, previous researchers have assumed that the stabilization point of the lifted

flame corresponds to the base (i.e. the most upstream position) of the region of elevated

temperature. However, Watson et al. (1999a), through simultaneous measurements of
OH and CH radical concentrations, cast some doubt on this assumption. The CH radical

is a short-lived reaction intermediate and is believed to mark accurately the instantaneous
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reaction zone, while the OH radical is removed by relatively slow three-body reactions
and marks regions containing hot combustion products. Watson et al. observed that

the thin CH zones tend to lie to the inside (toward the centerline) of the broader Ott

zones, and in fact presented some sample images in which the OH zones extend upstream

of the CH zones. This implies that the base of the high temperature regions in Fig. 1
cannot be unambiguously interpreted as the flame base. In the present work we make

use of the simultaneous information on fuel concentration provided by the acetone PLIF.

As a necessary condition for any point on the temperature interface delineated in the

Mie scattering signal to represent an instantaneous flame location, the fuel concentration

immediately upstream of that point nmst be within the flammability limits.

The use of acetone PLIF as a fluid concentration diagnostic in combustion experiments

proceeds with some caveats. One consideration is that acetone decomposes in the flame

zones, confining information on fuel concentration to the flame upstream region. Another

consideration is the variation in acetone fluorescence yield with temperature. Thurber

(1999) found that, for constant pressure and constant laser excitation energy at 308 nm,

thc measured fluorescence per unit acetone mole fraction at 330 K is 0.938 (normalized by

the value at 296 K), dropping to 0.875 at 374 K, and 0.806 at 424 K, which is roughly the

temperature marked by the abrupt drop in the Mie scattering signal. Finally, differential
diffusion effects may arise in attempting to use acetone to mark the Inethane tirol stream.

In combustion, differential diffusion is thought to be significant because the diffusivity
coefficients of hydrogen and heavier species can differ by up to an order of magnitude

and because local laminarization by heat release increases the importance of molecular

diffusion relative to turbulent transport (Bilger (1982)). Because we are concerned only
with the non-burning region of the lifted flame and because the acetone- air and methane-

air diffusion coefficients vary by only a factor of two (Reid et al. (1987)), wc assume
here that the effect of differential diffusion is negligible.

2.2. Data analysis

Figure 2 shows the measured scalar field corresponding to the Mie scattering field of
Fig. 1. Overlaid on the scalar field are the temperature interface determined fi-om the

Mie scattering field as well as the boundary of that field. The scalar field shown is the

tirol mole fraction, X], which corresponds directly to the measured fluorescence. In the

unburned gases, the mixture fraction and fuel mass fraction are equivalent and relate to

Xf as

z = + (1 - (2.1)
where the M are the molecular masses.

Because the jet-to-coflow velocity ratio is relatively high in these measurements (over
40:1 for case 1 and roughly 30:1 for case 2), the scalar field upstream of the flame should

obey pure jet scalings. Figure 3 shows the evolution of flow width for the two cases, where

5(x) is defined as the full width of the mean radial profile between the 10% points. The
width, 5, manifests the expected linear dependence on x for each case until a critical

value of x is reached where this trend is broken, caused (as will be confirmed below)

by the presence of the flame. Recall that in the flame zones, the acetone fluorescence

no longer marks the fuel. The mean radial profiles themselves converge quickly to the

Gaussian shape characteristic of jets (figure not shown). The downstream decay appears

to attain the expected 1/x dependence, though this is not conclusive because of the
limited downstream extent of the present measurements (Fig. 4). The decay curves in
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FIGURE 2. The fuel mole fraction field, X/, (logarithmic grayscale) corresponding to the Mie

scattering field of Fig. 1. The PIV imaging window is superimposed on the image, as is the high

temperature interface determined from Fig. 1.
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decay for the two eases.

Fig. 4 show no evidence of large drops in signal level which would be consistent with

the presence of flame surfaces, indicating that the average flame position has not yet

migrated to the centerline for the downstream positions shown.

As a first step in determining flame base locations, the temperature gradient interface

is found from the Mie scattering images of the form shown in Fig. 1, and this interface is

then mapped onto the scalar field image as demonstrated in Fig. 2. The most upstream

points of these interfaces (in the following discussion, we will refer to these as the leading
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FIGURE 5. Scatterplot of the most upstream points of the high temperature interfaces (the
leading points). Lines are the fits to the 5 curves of Fig. 3.
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FIGURE 6. Averaged mixture fraction profiles immediately upstream of the instantaneous leading
points. Ar measures the radial distance relative to the leading point. The stoichimetrie value of
X I and the lean and rich flammability limits are indicated. +, case 1, x, case 2.

points) for either side of tile centerline are collected in Fig. 5. For case 1, tile mean

position of these points is found at x = ll.5d, r = 2.3d; for case 2, the mean position

is x = 8.6d, r = 1.9d. As indicated in Fig. 3, these x values closely match the points at
which the flow width, 5, deviates from its linear evolution.

As mentioned above, the structure of an edge flame is highly dependent on the in-

coming velocity and fuel concentration profiles. Figures 6 and 7 show the averaged fuel

mole fraction and axial velocity profiles upstream of the instantaneous high temperature

interfaces. The profiles are compiled along lines of fixed x, lying roughly 0.5 mm up-

stream of the leading points. In offsetting the profiles slightly from the high temperature

interfaces, it is intended that the effect of varying temperatures on fluorescence signal be

minimized. (At the profile locations, temperatures should be below approximately 400 K,
so temperature effects will cause the measured mole fractions to deviate by no more than
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15% from tile true mole fractions.) The horizontal axis of the profiles, At, is the radial

position relative to the leading point. To interpret the fuel mole fraction profile, observe
that tile stoichiometric mole fraction for a methane-acetone mixture with respective mole

fractions in the ratio 0.85:0.15 is 0.088. The lean flammability limit for methane (in air,

at 298 K and 1 atm) lies at mole fraction 0.050, and for acetone lies at 0.026 (Glassman

(1987)), so by Le Chatelier's principle, the lean flammability limit for the mixture is at
mole fraction 0.044. The rich flammability limits are 0.15 mole fraction for methane and

0.13 for acetone. Immediately upstream of the leading point (At = 0), the fuel mole

fraction is approximately the lean flammability limit for case 1, at a value of 0.042, and

is slightly above tile lean limit, at 0.056, for case 2. The fuel fraction quickly drops below
tile lean flammability limit towards the outside of the jet (positive Ar). Towards the

inside of the jet, the fuel fraction gradient increases sharply. The stoichiometric point for
case 1 is Ar = -0.28 and for case 2 is Ar = -0.2, and the fuel fraction exceeds 0.15 at

Ar = --0.42 for case 1 and -0.36 for case 2. The profile for case 2 shows a higher gradient

than that for case 1, owing to the smaller average jet width at the lower liftoff height for

case 2.

The profiles of mean axial velocity, u, upstream of the instantaneous leading points for

tile two cases are shown in Fig. 7. Values are normalized by 0.43 m/s, the stoichiometric

laminar burning velocity of both methane and acetone (Glassman (1987)). Immediately

upstream of the leading point, the axial velocity is slightly below SL. Towards the outside

of the jet, the axial velocity profile drops below both SL and the coflow velocity, indicating
a deceleration of tile flow upstream of the high temperature region. On the inside of the

jet, the axial velocity rises steeply, with the higher gradient being seen for the case 2

profiles, as with the fuel fraction profiles shown above.
From probability distributions (not shown) of the axial velocity, u, at various positions

on the high temperature interface determined from the Mie scattering images, statistics

of the incoming fluid velocities can be compiled. We define the '0' position as on the

interface, with Ar (relative to the leading point) between -1 and 1 mm. The '-' position
is on the interface towards the jet centerline, -3 mm < Ar < -1 mm, and the '+' position

is on the interface to the outside of the jet, 1 mm < Ar < 3 mm. (These positions are

indicated in Fig. 1.) Immediately around the leading point (the '0' position) tile velocities

average near SL, with averages of 0.86 SL for case 1 and 0.95 SL for case 2. Towards the
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centerline (the '-' position) the average axial velocity increases, to 2.02 SL for case 1 and

2.51 SL for case 2. Away from the centerline (the '+' position), the velocities average

0.51 SL for case 1 and 0.58 SL for case 2, indicating that the flow in that region has
decelerated fiom the coflow speed of 0.84 SL.

2.3. Discussion

The profiles of fuel mole fraction and axial velocity immediately upstream of the high

temperature regions (Figs. 6 and 7) are instructive in the context of theories of edge

flames. The assumption that the leading point of these regions corresponds to a stoi-
chiometric mixture with fuel-lean conditions to the outside and rich conditions to the

inside is not supported here. Instead, the average fuel mole fraction at the leading point

is near the lean flammability limit. The sample scalar field of Fig. 2 illustrates this point;

the high temperature interface to the left of the centerline seems to show no fuel to the

outside of the leading point, while the interface to the right of centerline shows low filel

concentrations to the outside. In general, the portion of the high temperature interface

outside of the leading point will have insufficient fuel fraction to support combustion.

Instead, it appears that flammable mixtures, and the flame zone position, are biased
towards the inside of the high temperature regions.

This conclusion is in agreement with the simultaneous CH/OH PLIF measurements

in lifted flames of Watson et al. (1999a), in which the CH zones were found to lie on

the inner boundaries of the OH zones, and the more recent CH PLIF measurements by

the same authors (Watson et al. (1999b)), which showed evidence of weak CH zones

(thought to correspond to the lean premixed branch) curling outward from the bases

of the primary CIt zones (thought to correspond to the diffusion branch). Th(_se latter
measurements were not performed simultaneously with OH PLIF, but it can be inferred

that the weaker CH zones correspond to the region of the high temperature interface near
and to the outside of the leading point. This lean premixed branch was only observed in

roughly 30% of the images, which Watson et al. attributed to three-dimensional effects.

The present measurements suggest that the absence of a lean premixed branch can be

explained by the incoming fuel mixture fractions being below the flammability limit.

While the lean premixed branch of the idealized triple flame has been observed through

CH imaging, the fuel-rich branch has not. Watson et al. (1999b) cite the simulations of

Veynante et al. (1994), which demonstrate that incoming vortices can distort, the edge
flame in such a way that one or both of the premixed branches is obscured. This notion

is supported by the axial velocity profiles upstream of the leading point (Fig. 7). The
profiles show a strong velocity gradient consistent with a vortex which draws ambient

fluid into the jet from below and moves jet fluid upward and away from the eenterline.

Such a vortex might possibly fold the rich premixed branch of an edge flame into the

diffusion tail (Veynante et al. (1994)).
The axial velocity statistics discussed above indicate that velocities upstream of the

high temperature interfaces are relatively low, consistent with previous observations

(Mufiiz & Mungal (1997), Schefer & Goix (1998), Watson et al. (1999a)). The actual val-

ues are, however, somewhat lower than those reported by Mufiiz & Mungal or Watson et

al. Schefer & Goix found that the incoming velocities diminished with lower jet Reynolds

numbers. This was attributed to lower liftoff heights observed for the lower Re. At the

lower positions, flammable layers are thinner, resulting in greater flame curvature and, it

was concluded, less efficient preheating of reactants. The present Reynolds numbers are

indeed lower than those of Mufiiz & Mungal and Watson et aI. However, the filll set of

current measurements encompasses a range of Reynolds numbers up to roughly 10000.
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Analysis of this set in its entirety will permit an assessment of the effects of these issues

of flammability layer thickness and flame curvature.

3. Future work

Preliminary work is underway to use the measured fuel mole fraction and axial velocity

profiles from these experiments in the edge flame code of Ruetsch (Veynante et al. (1994),

Ruetsch et al. (1995)). The resulting reaction rate fields can then be compared with those

observed experimentally, for example by Watson et al. (1999b), using measurements

of the CH radical. This comparison will shed some light on the ability of the simple

edge flame formulation with laminar flow fields and simplified chemistry to describe the

stabilization phenomenon in lifted, turbulent diffusion flames.

The code of Ruetsch computes the fully compressible, 2-D Navier-Stokes equations,
and incorporates the single-step, irreversible reaction F + O -_ P. The simulation is

initialized with a premixed line flame of specified thickness _0. The non-uniform mixture

fraction and velocity profiles are introduced at the inflow boundary. An initial run has

been performed using the experimental results presented in this paper as inputs to the

simulation. For this run, we use hyperbolic tangent profiles for the velocity and mixture

fraction profiles. We define _, and _x as the inverses of the slopes of the velocity and

mixture fraction profiles, respectively, at the stoichiometric point. The ratios _/_o and

_x/_0 are determined from the experimental profiles presented in Figs. 6 and 7.

The tanh inflow profiles used in the initial run are shown in Fig. 8. Contours of the

reaction rate field at two later times are shown in Fig. 9. The incoming flow moves

from bottom to top in the figures. Some tentative observations can be made. First,

the flame migrates away from the initial stoichiometric location in fuel-lean regions,

consistent with the present experiments. Secondly, for the later of the two times shown,

the highest reaction rate on the flame leading edge (which corresponds to the local

stoichiometric position) does not correspond to the leading point as defined in this paper,

as has also been suggested by Chen et al. (2000). Finally, the configuration of the

premixed flame branches begins to resemble the CH fields observed by Watson et al.

(1999b). In particular, the fuel-rich branch for the later of the two times appears to
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FIGURE 9. Reaction rate contours from the simulation at early (left) and later (right) times. The
dashed line in each plot indicates the initial stoichiometric position. Axes represent simulation
grid points.

be aligned roughly parallel to the incoming flow, while the fuel-lean branch is roughly
normal to the incoming flow, curling up slightly at the extreme lean side.

These results, while far from conclusive, suggest that this laminar edge flame model

with simple chemistry is well able to reproduce significant features seen in experimental

lifted turbulent jet diffusion flames. Issues to be addressed in future work include carrying

the simulation out to longer times, incorporating more realistic inflow profiles, and using
inflow parameters from experimental results at different Reynolds numbers.
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Stochastic modeling of scalar dissipation rate
fluctuations in non-premixed turbulent

combustion

By Heinz Pitsch AND Sergei Fedotov t

1. Motivation and objectives

In non-premixed combustion chemical reactions take place when fuel and oxidizer

mix on a molecular level. The rate of molecular mixing can be expressed by the scalar

dissipation rate, which is for the mixture fraction Z defined as

X = 2Dz (VZ) 2 , (I.I)

where Dz is the diffusion coefficient of the mixture fraction. The scalar dissipation rate

appears in many models for turbulent non-premixed combustion as, for instance, the

flamelet model (Peters (1984), Peters (1987)), the Conditional Moment Closure (CMC)

model (Klimenko & Bilger (1999)), or the compositional pdf model (O'Brien (1980), Pope

(1985)). In common technical applications, it has been found that if the scalar dissipation

rates are much lower than the extinction limit, fluctuations of this quantity caused by
the turbulence do not influence the combustion process (Kuznetsov & Sabel'nikov (1990),

Pitsch & Steiner (2000)). However, it has been concluded from many experimental (Saitoh

& Otsuka (1976)) and theoretical studies (Haworth et al. (1988), Mauss et al. (1990),

Barlow & Chen (1992), Pitsch et al. (1995)) that there is a strong influence of these

fluctuations if conditions close to extinction or auto-ignition are considered. For instance,

in a system where the scalar dissipation rate is high enough to prohibit ignition, random

fluctuations might lead to rare events with scalar dissipation rates lower than the ignition

limit, which could cause the transition of the whole system to a burning state.

In this study, we investigate the influence of random scalar dissipation rate fluctua-

tions in non-premixed combustion problems using the unsteady flamelet equations. These

equations include the influence of the scalar dissipation rate and have also been shown

to provide very reasonable predictions for non-premixed turbulent combustion in a va-

riety of technical applications (Pitsch et al. (1996), Pitsch et al. (1998), Barths et aI.

(1998)). However, it is clear that these equations are actually not capable of describing

all of the features which might occur in turbulent non-premixed flames. For instance,

in jet diffusion flames, local extinction events might occur close to the nozzle because

of high scalar dissipation rates. These extinguished spots might reignite downstream,

not by auto-ignition, but by heat conduction and diffusive mass exchange with the still

burning surroundings. It should be kept in mind that the motivation in this work is not

to predict actual turbulent reacting flows, but to study the dynamical system defined

by the equations described in the following section. The advantage of the present sim-

plified approach allows a study of the extinction process isolated from auto-ignition and

re-ignition events.

UMIST, Manchester, England
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The basic purpose of this paper is to analyze how random fluctuations of the scalar dis-

sipation rate can affect extinction of non-premixed combustible systems. The approach,
based on stochastic differential equations, allows us to take random extinction events

into account. In this case the critical conditions must be different from those involv-

ing deterministic situations. Here, we look at these phenomena in terms of noise-induced

transitions theory, where multiplicative noise of sufficient intensity can drastically change
the behavior of a system (Horsthemke & Lefever (1984)). In the present case, tile proba-

bility density function for the temperature in the reaction zone may undergo qualitative
changes as the intensity of random fluctuations increases. It should be noted that a similar

analysis has been done in a series of works on the stochastic analysis of thermal ignition

of explosive systems in (Buyevich et al. (1993), Fedotov (1992), Fedotov (1993)).

Oberlack et al. (1999) have investigated the influence of DamkShler number fluctua-

tions in a well-stirred reactor. The fundamental difference compared to the present study
is that in a well stirred reactor the mixing process is assumed to be infinitely fast. The

DamkShler number, therefore, represents the residence time rather than the mixing time

and appears in the non-dimensional chemical source term. Hence, imposing stochastic
variations of the DamkShler number corresponds to a fluctuating chemical source term.

Here, however, the fluctuating quantity is the scalar dissipation rate, which appears as

a diffusion coefficient. The response of the mixing field to this fluctuating diffusion coef-

ficient and the interaction with the chemical source term are investigated. Moreover, in

the present formulation we allow for temporal changes of the fluctuating quantity and
Mso consider its pdf.

In this paper, we will first present the non-dimensional flamelet equations for a one-step

global reaction. With this assumption the system can be reduced to a single equation for

the temperature. We will then derive stochastic differential equations for the temperature

and the scalar dissipation rate. These equations lead to a partial differential equation for

the joint probability density function of the temperature and the scalar dissipation rate.

This equation will be discussed and numerical solutions will be presented.

2. Governing equations

2.1. Flamelet equations

Assuming an irreversible one-step reaction of the form _FF + boO --_ P, where F, O, and

P denote fuel, oxidizer, and reaction product, respectively, the flamelet equations for the

mass fractions of fuel YF, oxidizer Yo, reaction product Yp, and the temperature T, can
be written as

0Y_ x 02Y_
O--t-- g OZ--_ + uitViw = 0, i = F, O, P (2.1)

OT X 0 zT Qw = 0. (2.2)
Ot 20Z 2 cp

Here, ui are the stoichiometric coefficients, Wi the molecular weights, t is the time, p the
density, Cp the specific heat capacity at constant pressure, and Q is the heat of reaction

defined as Q = -_uiWihi, where hi denotes the enthalpy of species i. The mixture
i

fraction Z is defined as

I)YF -- YO + YO,2 voWo

Z = _YF,1 + Yo,2 with b- UFI4_ ' (2.3)
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where the subscripts 1 and 2 refer to the conditions in the fuel stream and the oxidizer

stream, respectively.

The parameter X appearing in Eqs. (2.1) and (2.2) is the scalar dissipation rate, which

has already been defined by Eq. (1.1). The reaction rate per unit mass w is given by

e×p - , (2.4)

where A is the frequency factor and E the activation energy of the global reaction,

respectively. 7-/is the universal gas constant.

2.2. Non-dimensionalization

In order to investigate the fiamelet equations with respect to the relevant non-dimensional

parameters, it is convenient to introduce the non-dimensional temperature 0 and mass

fractions of fuel YF, oxidizer Yo, and reaction product yp as

0 -- T - Tst,u YF Yo 1_ UFWF Yp (2.5)
Tst,b -- Tst,u ' YF -- YF,st,u ' YO -- Yo,st,u ' yP --- (v -k- , _ YF, 1 '

where the index st refers to stoichiometric conditions and the unburnt values of temper-

ature, fuel, and oxidizer at stoichiometric conditions are given by

Tst,u -_ T2 + (T1 - T2) Zst, _//,st,u -_ _/,2 + (Y/,I - ]_,2) Zst, i -- F, O. (2.6)

The adiabatic temperature for complete conversion of fuel to products is

Tst b : Tst u + L L - YF,1Q _ YF 1 (2.7)
c-p' WFUF(v + 1) v = "'- .' ' WO,2

With these definitions and Eq. (2.3), the mixture fraction can be expressed as

Z- uyv-Yo+I, (2.8)
u+l

from which the stoichiometric mixture fraction

1
Zst - (2.9)

u+l

follows.

The non-dimensional time r is given by

r = Xst'----2°t with a -- 2AZ. Zst(1 - Zst) - 2AZv (2.10)
a (1 + u) 2 '

where the reference value for the scalar dissipation rate Xst,0 and the parameter AZ will
be introduced below.

The non-dimensional scalar dissipation rate x, the DamkShler number Da, and the
Zeldovich number Ze are defined as

X vt_Fapst _Yo 2 A
x- , Da- ' '

Xst,0 (P + 1) I'Vo Xst,0 exp (-flref) (2.11)

Tst,b -- T_, /3 E (2.12)
Ze = o_, o_ ----- Tst, b , -_- _---_bst,b "

With the assumption of constant molecular weight of tile mixture, the density p can
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be expressed in terms of the non-dimensional temperature 0 as

(1 - a)

P - 1 - a(1 - O) pst'u" (2.13)

Introducing these definitions into the flamelet equations, Eqs. (2.1) and (2.2), yields

OyF ax 02yF 1

Or 20Z 2 + 7--+-f c° = 0

Oyo ax 02yo t,
Or 20Z 2 + 7-7-T _° = 0

Oyp ax 02yp
w=0

Or 20Z 2

O0 ax 020

Or 20Z 2

where the non-dimensional chemical source term is given by

( I0)_o=Da (v+ 1)2(1 a)exp(/3rer-3) -Zel-a(1-0)v 1 - a(1 - 0) YFYO exp . (2.18)

The boundary conditions for Eqs. (2.14) - (2.17) are

Z = 0 : YF,2 = 0, YO,2 = 1, Yea = 0, 02 = 0 (2.19)

Z = 1 : YFJ = 1, YO,1 = O, YV,1 = 0, 01 = 0. (2.20)

2.3. Coupling functions

Adding Eqs. (2.14), (2.15), and (2.17) yields a conservation equation for YF + YO + 0 as

0 ax 02
Or (y_ + yo + O) 20Z 2 (YF+ YO + 0) = o. (2.21)

The boundary conditions for the conserved scalar can be determined from Eqs. (2.19)

and (2.20) to be unity at both sides. Then with the unburnt state as initial condition,
the solution of Eq. (2.21) is given by

YF + YO + 0 = 1. (2.22)

Note that this particular choice of the initial condition does not restrict the solution since

it is a requirement of every possible physical initial condition that it has to be realizable

from the unburnt state. Since the non-dimensional product mass fraction yp and tem-

perature 0 are governed by a mathematically similar flamelet equation (Eqs. (2.16) and
(2.17)) and have the same boundary and initial conditions, it follows that

yp = O, (2.23)

which shows that Eq. (2.22) represents tile mass conservation condition.

With Eq. (2.22) and the definition of the mixture fi'action, Eq. (2.8), the mass fractions

of fuel and oxidizer can be expressed in terms of mixture fraction and temperature as

//
Yo = 1 - Z- --0 = 1 - Z- (1 - Zst)O (2.24)

v+l

0

yF = Z v + 1 - Z- ZstO (2.25)

(2.14)

(2.15)

(2.16)

(2.17)
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and the chemical reaction rate, defined in Eq. (2.18), as

1-Z \(-Ze_ 1-g- a) exp (3ref - 3) (_st - O) (1--_--Z_- t O) exp ).

(2.26)
With Eq. (2.26) the flamelet equation for the non-dimensional temperature given by

Eq. (2.17) depends only on the temperature itself and can be integrated without solving
the equations for the mass fractions of fuel, oxidizer, and product. If desired, these can

be computed from Eqs. (2.23), (2.24), and (2.25).

2.4. Stochastic differential equations

In this section we want to derive an equation for the joint pdf of the temperature and the

scalar dissipation rate. To complete Eq. (2.17) we need a stochastic differential equation

(SDE) that governs the evolution of the scalar dissipation rate.

We consider a Stratonovich SDE given by Horsthemke & Lefever (1984)

dxst = f (Xst) dt + a_ (Xst) O dW (t) , (2.27)

where W(t) denotes a Wiener process. In Eq. (2.27) the first term on the right-hand side
is a drift term, the second a random term. The stationary probability density function

corresponding to the Stratonovich SDE can be found to be

Ps (Xst) - a_ (Xst)exp ---- dz . (2.28)

It is well known that a good approximation for a stationary pdf of Xst (t) is a lognormal

distribution (Peters (1983)) given as

)(_st _/271"O'2 _fi , (2.29)

from which it can easily be shown that the mean value of X_t is

Zst = X_tPs (Xst) dx_t = X_t,oexp • (2.30)

To find f (X_t) and _'(X_t), one needs to equate Eqs. (2.29) and (2.28). From this we
obtain

Xst _t_ 1
f (Xst) -_" -- (ln Xst -- In X_t,o) -_-x' _P(Xst) = v _ Xst, N - _/-_x "

(2.31)

For dimensional reasons a characteristic time scale tx has been introduced, which appears

as a parameter of the problem. This time scale is associated with the time to reach a

statistically stationary state. Therefore, it does not appear in the stationary pdf given

by Eq. (2.29). The scalar dissipation rate X (t) then obeys the following SDE

dXs t = - (ln X_t - In _st 0) X_tdt + a st o dW (t). (2.32)
' tx

In non-dimensional form, this equation can be rewritten as

&dxst -- Xst In xstdv + a o dW (7") (2.33)
{_ st "
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Here, 5 = txXst,o/a represents the ratio of the characteristic time scales of Eqs. (2.33)

and (2.2). In a turbulent flow, the time scale tx. would be modeled by the integral time

scale of the turbulence or the scalar (Pope (2000)). Hence, tx can be expressed as

from which follows that

Co Z_2
t_ - (2.34)

  t,0exp

C°Z'2 (2.35)
= 2AZ. Zst(1 - Zst)exp (@) '

where Co is a constant and Z r2 is the mixture fraction variance. This shows that _ is

independent of the mean scalar dissipation rate. Here, 6 = 1 wilI be assumed, which for

Co = l, Zst = 0.5, and a = 1 roughly corresponds to Z' = 0.2.

From a mathematical point of view, Eq. (2.I7) with the source term Eq. (2.26) and

the random scalar dissipation rate is a nonlinear stochastic partial differential equation,

which can be solved but is very difficult to work with analytically. One way to analyze this
equation is to derive the corresponding equation for the probability density functional

for the temperature distribution O(Z) (Fedotov (1992), Fedotov (1993)). However, since

the random parameter X(T, Z) appears in Eq. (2.17) as a multiplicative noise, it would

be very difficult to obtain reasonable results. In order to simplify the problem, we will

derive ordinary stochastic differential equations (SDE) for these quantities by modeling
the diffusion term in Eq. (2.17).

It has been shown by Peters (1983) that these linear temperature profiles in the outer

non-reactive structure can be found as the first order solution of an asymptotic analysis
of the flamelet equations assuming one-step global chemistry. The assumption of linear

temperature profiles in the outer structure will now be used for an approximation of the

diffusion term appearing in Eq. (2.17).

The diffusion term evaluated at stoichiometric conditions can be written as a finite

difference approximation over the reaction zone of width AZ as

OZ2 z., "_ _-_ _ - _ " (2.36)

If the temperature gradients appearing in this expression are evaluated with the as-

sumption of linear profiles in the non-reactive diffusion zones, the diffusion term can be
approximated as

02T _ 1 (rst _ Z 1 T2 - Zst ) Zst-Zst,u (Zst,b-Tst.u)OZ2 z., _ -_ \ 1 - Z_t _i -- AZZst (1 - Zst) = AZZst (1 - Zst) Ost"

(2.37)
Here, it has to be assumed that the reaction zone thickness AZ is independent of the

scalar dissipation rate. Then, AZ is a constant which appears in the DamkShler number.

The actual choice of AZ then only changes the value of the Damk6hler number and is

of no consequence for the conclusions of the paper. The validity of this assumption has

been numerically evaluated by Cha (2000).

Introducing Eqs. (2.37) and (2.26) into Eq. (2.17) formulated at Z = Zst yields

dOst + x (7-) 0st - co (0st) : 0 (2.38)
dr
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with

w = Da (1 - a) exp (fl_f - fl)
1 - a(1 - Ost )

1 - O_t /0 2 -Zel- a(1 - 0st)
(I- st) exp (2.39)

2.5. Joint probability density ]unction

Now we are in a position to analyze how random fluctuations of the scalar dissipation

rate can influence the non-premixed combustion process. It follows from Eqs. (2.38) and

(2.33) that the pair process (Oat (r), xst (r)) is Markovian, and therefore their probability

density function p = p (r, xst, 8st) is governed by the Fokker-PIanck equation

Op 10 O( ) a202Or dOXst ((lnxst--a2) xstP) +-_t (--'Test-}-w(est))P -- (_ OX2st (x2tp) (2.40)

with 0 < xst < co, 0 < 0st < 1, and the boundary conditions

p (r, 0, est) = p (r, oo, 0st) = p (r, zst, 0) = p (r, xst, 1) = 0. (2.41)

It is convenient to introduce the natural logarithm of the stoichiometric scalar dissi-

pation rate as a new independent variable

xln = In x_t. (2.42)

The pdf of xln can then be obtained by the normalization condition

p(Xst) = Plnz (2.43)
Xst

and Eq. (2.40) can be written as

0 ( ) 0"202plnx0Plnz 1 0 (xlnPlnz)+ (-ez'"est+W)Plnz --0. (2.44)
Or- 5 0z,. _ 5 Oz2.

The boundary conditions are given by

pl._(r,-eo, O_t)=Pln_(r, oc, Ost) =pl,_(r, Xln,O) =pm_(r, xln, 1) =0. (2.45)

Note that, as shown by Eq. (2.43), the distribution Pln_ is different from p and the

maximum will in general be at a different value of the scalar dissipation rate. However,

since both functions can easily be converted into each other, the conclusions do not

depend on the choice of the formulation used for the analysis.

3. Numerical solution

Equation (2.44) has been solved numerically using a 4 th order Runge-Kutta scheme

with adaptive step-size control. The convection term in the xin-direction has been dis-

cretized using central differences, the convection term in the 0st-direction by a robust,

globally second order upwind scheme as given by Koren (1996). The equations are solved
on a 300 x 300 equidistant grid. The numerical time-step is restricted by a CFL condi-

tion which is imposed by the high convection velocity in the 0st-direction at high scalar

dissipation rate. This can be observed in Fig. 2, which will be described below. The ini-

tialization is performed with a numerical &function at some point in the xl_-Ost-space.
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4. Results and discussion

In this section we will first provide a general discussion of Eq. (2.44) and the parameters

Da, Ze, and (_ appearing in this equation. Numerical solutions of Eq. (2.44) will then be
presented for a variation of the scalar dissipation rate variance 0., and the results will be
discussed.

Numerical solutions of Eq. (2.44) will then be presented. The results for different values

of the scalar dissipation rate variance 0. will be discussed.

4.1. General discussion

Equation (2.44) is a two-dimensional unsteady partial differential equation depending

on xtn and 0st. In the direction of xin, the equation reveals a convective term and a
diffusion term. The convective term describes the relaxation to the mean. The mean

value is achieved when the convection velocity is zero. This implies that the mean value

of the non-dimensional scalar dissipation rate is xln = 0, which follows trivially from the

normalization of Xst. However, it is interesting to note that only the scalar dissipation rate
itself determines the speed at which it relaxes to its mean. The diffusion term describes

the broadening of the pdf by fluctuations of the scalar dissipation rate with 0.2 appearing
as the diffusion coefficient.

In the direction of O_t, Eq. (2.44) only reveals a convection term. Setting the convection

velocity Ve,_ = -eX'"Ost + w equal to zero yields the steady state relation between the

temperature and the scalar dissipation rate in the absence of scalar dissipation rate
fluctuations as

(Ze] Ze) (1- 2 ( l_0s t ,_
a) (1 - O,t) . -Ze . (4.1)

_:(O_t) = Oa exp W r_f est (1- a(1- e_t)) exp 1 - a(1- e_,)/

This relation describes the so called S-shaped curve for non-premixed combustion (Peters
(1984)), which depends on three parameters: the Damk6hler number Da, the Zeldovich

number Ze, and the heat. release parameter a, where Ze and a only depend on the

chemistry.

Figure 1 shows S-shaped curves from solutions of Eq. (4.1) for different values of these

parameterst. It is well known and will be shown in the following discussion that stable
solutions can only be achieved for the upper and the lower branch, whereas solutions

given by the middle branch are unstable. Considering the fact that the S-shaped curves

shown in Fig. 1 represent states with zero convection velocity in the direction of 0st, it can

be seen from Eq. (2.44) that the convection velocity Ve,_ is positive for scalar dissipation

rates smaller than Xln(_st ) as given from Eq. (4.1) and negative for larger values. The

consequence is that the convection velocity in the P-direction is always directed away from
the intermediate branch, which shows that these solutions are unstable. It also shows that

starting from an unburnt solution, the scalar dissipation rate has to be decreased below

the value at the lower turning point of the curve to be able to auto-ignite. This value will,

therefore, be referred to as ignition scalar dissipation rate xig. Correspondingly, starting

from a burning solution, the flame can only be extinguished by increa_ing the scalar
dissipation rate over the value at the upper turning point. This value will, therefore, be
called extinction scalar dissipation rate xe_.

For non-premixed methane flames, the activation energy of a one-step global reaction

t For constant scalar dissipation rate this relation would be plotted as function of the
DamkShler number, which would be proportional to x_ 1. In the present paper these curves
are plotted over xl_ and therefore mirrored. However, we still use the phrase S-shaped curve.
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FIGURE 1. S-shaped curve determined from Eq. (4.1) for different parameter variations.
Parameter changes are indicated by arrows.
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can be assumed to be E = 150kJ/kg (Seshadri (1999)). This implies a value of flref = 8.03

for a methane/air-system at ambient conditions. Then, the solid line in Fig. 1 corresponds
to a case with preheated air at T2 = 800K and the dotted line to an air temperature

of 7"2 = 300K. For both cases the fuel temperature is assumed to be T1 = 300K and

the pressure to be lbar. It is clear from Eq. (4.1) and it can be seen in Fig. 1 that a

variation in the Damk6hler number simply shifts the curve. In contrast, a variation of

the Zeldovich number leads to moderately lower scalar dissipation rate for extinction and

a strongly decreased ignition scalar dissipation rate.

The strongest influence however, can be seen by changing the heat release parameter.
Although by increasing c_ the extinction scalar dissipation rate is only slightly increased,

the ignition scalar dissipation rate is decreased very strongly to a value of approximately

371n,ig_ -40 corresponding to Xig _ 10 -17 for the example shown in Fig. 1. This merely

shows that auto-ignition of methane at ambient conditions is almost impossible.

Figure 2 shows a two-dimensional vector representation of the velocities of particles in

the 0_t-zl,, space, where the term particle is defined by a point and the associated velocity

in this space. This figure again clearly shows that the pdf tends to move to xln = 0 and

generally away from the unstable branch. However, at low temperature and low scalar

dissipation rate on the left side of the S-shaped curve, for instance, the driving force in

the direction of the mean scalar dissipation rate is so strong that particles might cross the

unstable branch. Even though these particles were initially in a regime which would for

constant zm lead to ignition, these particles will then be attracted by the lower branch.

In the present example this effect is not so obvious for particles originating from a

burning state with a scalar dissipation rate higher than the extinction limit, which would

be located in the upper right corner in Fig. 2. These particles can also change during the

extinction process to lower scalar dissipation rates and might cross the S-shaped curve.

This would lead to a recovery to the burning state. It has been discussed before and is

indicated in Fig. 1 that, in the absence of scalar dissipation rate changes, all particles

on the left side of the unstable branch of the S-shaped curve will change to the burning
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state, whereas particles on the right will change to the non-burning state. However, it has

clearly been demonstrated here that this is different in the case of a fluctuating scalar

dissipation rate, where the unstable branch does not uniquely separate these two regimes.

4.2. Numerical results

For the numerical solution of the equation for the joint pdf of 0st and Xl,, Eq. (2.44),

the parameters appearing in this equation have been set to Da = 200, Ze = 4.91, and

= 0.679. As mentioned above, this corresponds to a methane/air-system, where the

air is preheated to 7"2 = 800 K. Results of the numerical simulations at time 7- = 5 are

presented exemplarily for a = 1 in Fig. 3. All calculations have been started with a 5-

function at 0st = 0.9 and x_ = 0 as initial condition for the probability density function,

which is then given by p(T = 0, x_, 0st) = 5(Xl_, 0_t - 0.9).

The joint pdfs of 0st and xt_ are given in Fig. 3 for different values of the scalar

dissipation rate variance a. It can be observed that even for the low variance case a =
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0.5, the distribution of high probability density is already rather broad, extending from

approximately -1 < xln < 1 and mainly around the upper branch of the S-shaped curve.

Even though this cannot be seen in Fig. 3, the numerical results show that there is

already some probability to find the extinguished state around xln = 0.

It follows from the above discussion that extinguished particles originate from burning

particles, which, because of the fluctuations of the scalar dissipation rate, have experi-

enced a scalar dissipation rate high enough to completely extinguish the particle without
crossing the unstable branch of the S-shaped curve. This would result in re-ignition. The

low probability of finding these high scalar dissipation rates then forces the extinguished

particles to a state around Xln = 0. In a real turbulent diffusion flame, these extinguished

areas could re-ignite by heat conduction from the surrounding, still burning gas. This

effect, however, is not included in the current analysis. Therefore, re-ignition can only

occur here if the scalar dissipation rate of an extinguished particle becomes smaller than

the ignition limit. This, however, is prohibited in the present simulations by choosing the

lower boundary for xl_ larger than the ignition scalar dissipation rate. This allows study

of the extinction process without the influence of auto-ignition.

It is important to recognize that because of this assumption the steady state solution

is always completely non-burning. This means that, for this dynamic system scalar dis-

sipation rate, fluctuations even of small amplitude lead to a phase transition from the

burning to the non-burning state. This dynamical character would not be observed in
the deterministic case.

For a = 1 the distribution is even broader, revealing substantial probability for -2 <

xtn < 2. Also, the probability of finding extinguished states is already of comparable

magnitude as for the burning states. As for a = 0.5 the region of high probability is still

concentrated around the S-shaped curve, indicating that the chemistry is fast enough to

compensate scalar dissipation rate fluctuations. It is also interesting to note that similar

to the findings of Oberlack et al. (1999) there is only a very low probability of finding

states between burning and extinguished. This shows that the extinction process is fast

compared to other time scales of the system.

The solution for an even larger scalar dissipation rate variance of a = 2 shows that
the probability distribution is further broadened and the fraction of extinguished states

is even higher. Most interesting here is the observation that, particularly at high scalar

dissipation rates close to extinction, the high probability region clearly departs from

the S-shaped curve. This can also be observed in Fig. 3 but to a smaller extent. The

departure from the S-shaped curve indicates that the chemistry is not fast enough to

relax the temperature in accordance with large scale scalar dissipation rate fluctuations

to the steady solution. At low scalar dissipation rate, the high probability region is still
very close to the S-shaped curve.

5. Conclusions and future work

In the present work the flamelet equations have been formulated for a one-step global

reaction and used for the investigation of the influence of scalar dissipation rate fluc-

tuations on non-premixed turbulent combustion. By modeling the diffusion term in the

flamelet equation, ordinary stochastic differential equations were derived for the temper-

ature and the scalar dissipation rate at stoichiometric mixture. From these, a Fokker-

Planek equation for the joint probability density function of temperature and the scalar
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dissipation rate has been derived. The equation has been discussed and numerical solu-

tions for varying scalar dissipation rate variance provided.

The analysis shows that the S-shaped curve, which represents the steady-state solution

for a given scalar dissipation rate in the absence of scalar dissipation rate fluctuations,

separates the 0st-xln space into two regimes, which will either lead to the burning or

the extinguished state. It is also shown that scalar dissipation rate fluctuations even of

small amplitude will under the present simplifications cause a phase transition from the

burning to the completely extinguished state.

Numerical solutions show an increasing fraction of extinguished states for increasing

scalar dissipation rate variance at a given time. It is also found that particles with a scalar

dissipation rate higher than the extinction limit can recover to a burning solution during

the extinction process. Therefore, for a fluctuating scalar dissipation rate, particles can

cross the S-shaped curve, which thereby no longer separates regimes that uniquely lead

to the extinguished or the burning state.

Furthermore, it is found that the low probability of finding high scalar dissipation rate

forces particles which have been extinguished at high scalar dissipation rate to rapidly

change to a state with lower scalar dissipation rate, where re-ignition could occur. For

higher scalar dissipation rate variance it is observed that the high probability region

clearly departs from the S-shaped curve. This indicates that the chemistry is not fast

enough to relax large scale scalar dissipation rate fluctuations to the steady state solution.

This has been shown to have an important implication in the application of flamelet type
models in non-premixed turbulent combustion.

The presented method has been shown to provide a useful tool to study the effect of

random scalar dissipation rate fluctuations. In future work, the model is to be corrobo-

rated with results from direct numerical simulations of turbulent reacting flows and the

re-ignition process is to be included. The investigation of the influence of scalar dissipa-

tion rate fluctuations on auto-ignition delay times and pollutant formation could also be
a worthwhile extension of the present work.
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A level-set approach to large eddy simulation of

premixed turbulent combustion

By L. Duchamp de Lageneste AND H. Pitsch

1. Motivation and objectives

Large eddy simulation (LES) of premixed turbulent combustion is now considered to

be a promising field. It has the potential to improve predictions of reacting flows over
classical Reynolds-averaged Navier-Stokes (RANS) approaches.

Since the reaction zone thickness of premixed flames in technical devices is usually

much smaller than the LES grid spacing, chemical reactions occur completely on the

sub-grid scales and hence have to be modeled entirely. There are several ways to treat
the problem.

One approach by Veynante et al. (1997) and Colin et al. (2000) is to thicken the flame

by artificially increasing the diffusivity to be able to resolve the flame on the LES grid.

In order to correct the effect on the flame propagation speed, the chemical source term
has to be modified by the use of efficiency functions obtained from direct numerical

simulations (DNS) (Angelberger et aI. (2000)). The main drawback of this method is

that it changes the principle underlying physical process from a transport controlled to

a chemistry controlled combustion mode.

Chakravarthy et al. (2000) have suggested a method in which the scalar processes

that can be resolved spatially and temporally are simulated on a 3D LES grid while

small scales and faster subgrid combustion processes within each LES cell are simulated

using the one dimensional Linear Eddy Model (LEM). This multiple scale approach, can

lead to a significant increase in the complexity of the code due to the introduction of a

Lagrangian volume-of-fluid (VOF) transport scheme used to track the flame in each cell
and due to the definition of a grid-subgrid coupling procedure.

Another possible approach proposed by Peters in the context of RANS (Peters (1999))

is the use of a level-set approach to describe the turbulent flame front. In this methodol-

ogy, the flame front is represented by an arbitrary iso-surface Go of a scalar field G whose

evolution is described by the so-called G-equation. This equation is only valid at G = Go

and is hence decoupled from other G levels. There have been various attempts to use this

approach in LES of premixed turbulent combustion as well as in RANS. As the solution

of the G-equation is not uniquely defined, different ways of defining the scalar G have

been proposed. While Menon et al. (1991) and Chakravarthy et aI. (2000)) are consid-
ering G as a progress variable (G=0 in the fresh gases, unity in the burnt gases), Peters

(1999), for instance, suggests defining G as a distance function which can be described

by the condition IVG(x, t)l = 1, where the flame front is given by G0 = 0.

The latter approach seems very suitable for the description of premixed flames prop-

agation as it allows to precisely define some important geometrical quantities such as

curvature or strain. Furthermore, the numerical treatment of the step profile, inherent

for the progress variable formulation, is very difficult, often leading to the introduction

of diffusive terms, which incorrectly broaden the flame (Kim et al. (2000), Menon et al.

(1991)).
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However, we will see below that the evolution equation for G does not conserve G as a

distance function, and, consequently, this property has to be enforced at each time step
by a so-called reinitialization procedure. Issues related to this important aspect of the
level-set method will be addressed below.

Once the proper ansatz is chosen for the scalar G, one can apply the LES formalism

to the evolution equation for G. We will explain the consequent modeling of the subgrid

terms arising from this process in further detail in the next section. In particular, since

we are interested in performing realistic 3D simulations of reactive flows, we will try
to avoid introducing any artificial diffusion term in the model that would influence the

accuracy of our computation.

The model is validated using data from a turbulent Bunsen burner experiment by Chen

et al. (1996). Numerical results from the LES are compared with measured velocity and
temperature data for the cold and the reactive flow.

2. Level-set approach for premixed turbulent combustion

2.1. The G-equation

The level-set approach for premixed turbulent combustion is based on the assumption
that the reaction zone is much smaller than the LES grid.

The flame front can then be treated as being infinitely thin and represented by a

particular iso-surface of a scalar field G. This iso-surface is then convected by the velocity

field u while it propagates normal to itself with the laminar burning velocity SL. The G-

field satisfies the following Hamilton-Jacobi equation known as the G-equation (Williams
(1985)):

OG

P-_ + P_ : pSLIVG[ (2.1)
Convection Propagation

In this equation the balance of diffusion and chemical reactions within the flame is

represented by the laminar burning velocity. Since this quantity is only defined for the
flame front, Eq. 2.1 is valid only at the G = Go level.

There are two major issues concerning the numerical treatment of Eq. 2.1: The first is

the necessity to avoid the formation of cusps that naturally arise from solving Eq. 2.1 and

would result in numerical problems. The second is related to the fact that, if one initially

defines G as the signed distance function from the flame front by setting ]VG(x; t = 0)[ =

1, this property is not naturally conserved throughout the simulation, in particular when
large velocity gradients are present (Sethian (1996)).

2.2. Regimes in premixed turbulent combustion

Premixed combustion can be classified in different regimes as illustrated in Fig. Fig. 1
(Peters (1999), Peters (2000)).

If IF is the laminar flame thickness, 15 = 51F the inner layer thickness, where 5 can

be viewed as a measure for the reaction zone thickness (see Fig. 2), 77 the Kolmogorov

length, l the integral turbulent lengthscale, and u' the turbulent velocity fluctuation, one
can define the turbulent Reynolds number Re and two different Karlovitz numbers Ka
and Ka5 as

Re- u'l 12 12
SLIp Ka-- F = _ (2.2), - _-_, Ka5 _2 "

The two regimes of particular practical interest are the corrugated flamelets regime
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and the thin reaction zones regime and are defined by Re> 1, Ka< 1 and Re> 1, Ka> 1,

Ka5 < 1, respectively. In the corrugated flamelets regime, the entire flame structure

including the preheat zone is smaller than the Kolmogorov scale (IF < 71). The interaction

between flame and turbulence is, therefore, mainly kinematic, and the flame structure

depicted in Fig. Fig. 2 remains quasi-steady. In the thin reaction zones regime, while

the reaction zone is still smaller than the Kolmogorov scale, the smallest eddies can

enter the pre-heat zone (l_ < ,_ < lF) and carry pre-heated fluid away to the unburnt

side. This enhanced mixing is mainly responsible for the advancement of the front and a

considerable thickening of the preheat zone.

In an LES framework, due to local variations in the turbulence intensity, combustion

in both regimes might be present in a particular configuration. Hence, it is necessary to

reflect the characteristics of both regimes in the governing equations.

A G-equation, valid in both regimes, has been derived by Peters (1999) as

OG

P-_7 + pu. vG = pSLIVGI - pDr_IVG]. (2.3)

In this equation for both regimes, only the leading order terms which have been identified

by an asymptotic analysis are included. These are the propagation term SLIVG[ in the

corrugated flamelets regime and the curvature term D,clVGI with D being the molecular
diffusivity in the thin reaction zones regime.

2.3. LES modeling of the filtered G-equation

Following the classical LES filtering approach, we will decompose G and u in their Favre-
filtered values (G = pG/-_, fi = _--_/_) and subgrid fluctuations (G', u').

Applying this formalism to Eq. 2.3 leads to:

P-_-_+ _ + _ = _(psL)IVGI - _(P/))_IVGI (2.4)
II III IV V

I
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Terms I and II depend only on the filtered variables and do not require any modeling.

Term V is proportional to the molecular diffusivity. This term can be expected to be small

for the relatively large Reynolds numbers considered here and will therefore be neglected.

As noted in Peters (1999) and Peters (2000), the turbulent transport term III cannot
be modeled by a classical gradient transport approximation since this would result in an

elliptic equation for G and contradict the mathematical nature of the original G-equation.

Instead, according to Peters (1999), we will rewrite this term as the sum of a normal
diffusion and a curvature term, where the normal diffusion term has to be included in

the turbulent burning velocity and the curvature term is modeled as _Dt_]VG], where
Dt is the turbulent eddy-diffusivity and _ the filtered front curvature. Besides the fact

that this model preserves the mathematical nature of the filtered G-equation, it also

has the numerical advantage that the flame front will not develop any cusps since the

propagation of the flame front is now a function of its own curvature (Sethian (1996)).

The turbulent eddy-diffusivity Dt can be determined using the dynamic procedure (Moin
et al. (1991)).

The remaining term to be modeled is the turbulent propagation term IV. This term

can be modeled by introducing a turbulent burning velocity ST and enforcing that the

mass flow rate through the filtered and unfiltered fronts are the same, which leads to
(psL)lVal = _STIVal .

Introducing the modeled terms in the filtered G-equation reads

o4
_-_- + _. VG = _STIVGt - pDt_IVG] • (2.5)

Propagation Curvature

To close the problem, an expression for the turbulent burning velocity ST has still to
be provided.

2.4. Modeling the turbulent burning velocity

There have been various attempts to model the turbulent burning velocity, and this

problem remains one of the most important in premixed combustion.
Most models for this quantity are generally of the form:

ST = 1 + C , (2.6)
SL \SL/

where n is a value that is found to depend on the combustion regime and C is a constant.

However, as pointed out by Peters (2000), in the thin reaction zones regime the turbu-

lent burning velocity does not only depend on the ratio of the subgrid turbulent velocity

to the laminar burning velocity ul/sL, but also on the ratio of the subgrid length scale

to the flame thickness A/lB. An expression for ST, valid in both the corrugated flamelets

and thin reaction zone regime, has recently been proposed in the context of RANS by
Peters (1999).

For LES it can be written as

ST--SL a4b] A r(a4b_ _)2 2vQ_ _]½
SL 2b1 1F + [\ 2bl _F + a4b3----;-| , (2.7)SLtFJ

where A is the filter size and a4, bl, and ba are constants given in Peters (2000) for

RANS. For LES, a4 can be evaluated to be a4 = 1.37. The other constants might also
differ from the RANS case and can be determined by DNS.
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3. Reinitialization procedure

The level set method is currently a popular method to study problems in which an

interface separates regions of different physical properties (Sethian (1996)). It has been
discussed above that it is often useful to define G as a distance function, and since this

property is not conserved by the level set equation, this condition needs to be enforced

in a different way, which is commonly called reinitialization. Several methods have been

derived for the reinitialization of the level set function to a signed distance (Sethian

(1996), Sussman et al. (1999), Russo et al. (2000)).

3.1. Problem formulation

Given the numerical context of our work, we decided to use the following method, first

described in Sussman et al. (1994) and extended by Russo et al. (2000). It is based on

solving the following p.d.e, to a steady state:

{ 0G = sgn(_O)( 1 _ (VG--$1)

-_- , (3.1)

=

which can be also written as:

0G + sgn((_0)n VG sgn(G °) (3.2)
__ . -- ,

Ot

where n = Vt_/IVG I is the unit normal to the level sets and sgn(G °) is the sign function

defined by:

1 if G°>O
sgn(G °)-= -1 if _o<0 (3.3)

0 otherwise

Equation 3.2 clearly displays the hyperbolic nature of this equation, for which the
characteristics are propagating away normally from the _0 level. The steady solution

of Eq. 3.2 obviously satisfies [VG I = 1 and has the same zero-level as G °. It is therefore

the desired signed distance function.

3.2. Practical implementation

3.2.1. Narrow band method

Because the G-equation is only valid at the flame front, Eq. 3.1 does not need to

be solved to a stead.), state in the entire domain, but only in a specified neighborhood
of width L of the G = 0 surface (Sussman et al. (1999)). This so-called narrow-band

strategy is used here to limit the impact of the reinitialization procedure on the overall

computational efficiency.

3.2.2. Discretization

Due to the hyperbolic nature of Eq. 3.1, upwind methods can be used to compute
the spatial derivatives. Since all of the information propagates outward from the G = 0

surface, boundary conditions do not have to be prescribed on the lateral boundaries of

the domain. In the direct neighborhood of the front, a second order scheme is used to

evaluate the signed distance function, and a first order scheme is used elsewhere.

A second order Runge-Kutta scheme is used for the time advancement. Furthermore,
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FIGURE 3. Uniform convection (Ucon_ = 1) of a sphere at different instants. Top: Eq. 3.1 is
solved in the entire domain. Bottom: an exact method is used to determine the distance for the
neighboring points of the front.

since the mesh can potentially be locally refined, we use a local time stepping strategy

to alleviate the CFL condition and accelerate convergence to a steady state.

From a computational point of view, this method can easily and very efficiently be
implemented in a parallel code.

3.2.3. Sub-cell accuracy

Some authors (Sethian (1996), Sussman et al. (1999), Russo et al. (2000)) have noticed
that under certain conditions repeated reinitializations of the level set function could lead

to a significant motion of the front. This is often attributed to the relative crudeness of

the sign function involved in Eq. 3.1 and the fact that values of G at points on one side

of the front are used to estimates spatial derivatives on the other side, which violates the

upwind nature of the scheme (Russo et al. (2000)).
In a three-dimensional implementation, this can lead to a considerable loss of area of

the d ° surface. An example of this phenomenon will be given in the next section.

In a method described by Russo et al. (2000), a precise estimate of the distance to

the _0 level is computed for the points surrounding the _o surface. If this is used as a

boundary condition for the upwind scheme described above, the surface of the (_o level
is essentially conserved.

We will also show that this method can initialize any given field to a signed distance

function without any modifications, while preserving the shape of a prescribed interface.
This is of practical importance when no a-priori initial location of the front can be

proposed, as for instance during an ignition process.

3.3. Validation

3.3.1. Uniform convection of a sphere

In order to validate the reinitialization procedure described in the previous section, we
compute the convection of a sphere in a uniform flow field.

The computational domain is a cylinder of radius R = 1 and length L = 2. It is
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FIGURE 4. First-time initialization.

discretized using 32 points in the axial, radial, and azimuthal directions, respectively.

The mesh is stretched in the radial direction towards the centerline to test the grid

sensitivity of the algorithm.

The convection velocity of the sphere is prescribed by imposing a uniform inflow con-

dition Uconv = 1 on the x = 0 boundary. All other boundaries are "free" (i.e. advective

condition on x = 2 and R = 1). The G field is set to G(x, r, 8; t = 0) = _ + r 2 - 0.25.

In a first calculation, Eq. 3.1 is solved in the whole domain. Results at different instants

in time are displayed on the upper part of Fig. 3. Due to the multiple reinitialization

iterations, the sphere loses area and shrinks rapidly as it is convected. Also, an influence

of the mesh refinement near the centerline can be observed clearly.

In the second calculation, the upwind scheme is no longer used to reinitialize the

points adjacent of the _0 level. Instead, a direct estimate is used for the value of the

signed distance function for these points. These values for G are then used as a boundary

condition for the upwind scheme method. The resulting improvement of this method is

demonstrated in the lower part of Fig. 3, where the sphere perfectly preserves its original
form. Furthermore, the results do not reveal the grid sensitivity detected in the previous

example.

3.3.2. First-time initialization

The ability of this method to initialize a given field to a signed distance function

without altering the G = 0 level is demonstrated in Fig. 4. Here, a field initially defined

by G(x, r, 8;t = O) = f(x, r). x/_ + r 2 - 0.25, where f(x, r) = 0.1 + (x - 1) _ + (r - 0.5) 2

is a function designed to generate both _rge and small gradients near the _0 sphere, is

reinitialized to a distance function. The G field is progressively set to the signed distance
from the G ° level, while the shape of the G = 0 level is exactly preserved.

4. Numerical simulation

4.1. Experimental setup

The experimental setup studied by Chen et al. (1996) is a stoichiometric premixed

methane-air flame, stabilized by a large pilot flame. Both incoming streams, the main

jet and the pilot, have the same composition. The nozzle diameter D of the main stream

is 12mm. The pilot stream issues through a perforated plate (1175 holes of lmm in
diameter) around the central nozzle, with an outer diameter of 5.67D. The main stream
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FIGURE 5. Instantaneous flame front location and axial velocity.

is turbulent with a Reynolds number of 23486, based on the inner nozzle diameter and

a bulk velocity of U0 = 30 m/s.

Experimental data is available for the cold and reactive flows at downstream stations

located at x/D = 2.5, x/D = 4.5, x/D = 6.5, and x/D = 8.5, respectively.

Based on the estimated characteristic length and time scale given in Chen et al. (1996)

(u'/SL = 11.9, I/l I = 13.7), flame F3 can be identified in the combustion diagram shown
in Fig. 1 to be located well within the thin reaction zones regime.

4.2. LES

We are using the code developed at the Center for Turbulence Research by Pierce (Pierce
& Moin (1998)), in which the governing equations, here the filtered zero-Mach number

approximation of the Navier-Stokes equations and the filtered G-equation, are solved in

cylindrical coordinates. The mesh is structured and is refined in regions of high gradi-
ents around walls and in shear layers. The numerical method consists of a conservative,

second-order finite-volume scheme on a staggered grid. A second-order semi-implicit time

advancement is used, which alleviates the CFL restriction in regions where the grid is

refined. Details about the method can be found in Akselvoll et al. (1996a). The code has

been thoroughly validated in various studies (see Akselvoll et al. (1996b), Pierce & Moin
(1998)).

The computational domain extends to 20D downstream of the nozzle and 4D in the

radial direction. The LES grid is 256 x 96 x 64, corresponding to approximately 1.6M

cells. At the inflow boundary, instantaneous velocities extracted from a separate LES of a

fully developed pipe flow are prescribed. Convective conditions (AkseIvoll et al. (1996a))

are prescribed at the outflow boundary while traction-free conditions (Boersma et al.
(1998)) are imposed on the lateral boundary in order to allow entrainment of fluid into
the domain.

5. Results and discussion

5.1. Instantaneous and mean flame front

A typical example of the instantaneous flame surface is shown in Fig. 5. The presence of

small regions of high negative curvature (forming cusps toward the products side) and

large regions of lower positive curvature is consistent with the fact that the flame prop-

agation is accelerated in regions of negative curvature and slowed in regions of positive
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FIGURE 6. Mean flame front location and mean flow streamlines.

curvature. The acceleration of the burnt gases behind the flame front caused by the heat

release is illustrated by the instantaneous field of the axial velocity given in the same

figure.
This effect of dilatation induced by heat release is even more obvious in the mean quan-

tities. The radial deflection of the mean streamlines around the time-averaged position

of the turbulent flame front, which is given by a thick line, is illustrated in Fig. 6.

Due to the consumption of the unburnt mixture, the mean flame front position is

converging toward the centerline. The computed time averaged axial position, where
the fuel is completely consumed is at approximately x/D = 8.6, which is very close to

the experimental value of x/D = 8.5 obtained by Chen et al. (1996). This result shows
that the model for the turbulent flame speed ST leads to a reasonable prediction of the

averaged flame location.

The incoming streamlines through the upper boundary of Fig. 6 also illustrate the

importance of imposing boundary conditions allowing for the entrainment of fluid into

the computational domain.

5.2. Mean temperature and axial velocity

The mean radial profiles of temperature and axial velocity are shown in Fig. 7 for the

different locations shown in Fig. 6 where (0) is the time-averaged non-dimensional tem-

perature defined by (0) = ((T) - T_) / (Tb - T_) and (U) is the time-averaged velocity

normalized by the bulk velocity Uo.

Significant differences can be observed between the cold and the reactive case. In the
cold flow, the mean axial velocity at tile centerline is decreasing much faster than in

the reactive case, where the potential core with an almost constant mean axial velocity

extends to an axial position where the fuel is almost consumed. Gas expansion in the

reacting jet case causes the spreading rate to be higher than for the non-reactive case.
Although this effect is slightly overestimated in the computation, the overall agreement

between computational results and experimental data is very reasonable.
While the evolution of the mean temperature shows generally good agreement with

the experimental data, the maximum temperature close to the nozzle is overestimated

in the present computation. This can be attributed to heat losses to the burner surface,

which are currently being neglected.

5.3. Turbulent kinetic energy

The radial profiles of the mean turbulent kinetic energy k are shown in Fig. 8 for differ-
ent downstream locations. For the cold flow case, the predictions of the turbulent kinetic

energy are in very good agreement with experimental data for all downstream locations.
The evolution of k at the centerline is found to be very different in the cold and reactive
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cases. For the cold flow case, the turbulent kinetic energy is progressively increasing in

downstream direction and reaches a maximum at x/D = 8.5, whereas it stays approx-

imately constant for the reacting case. This result confirms that combustion strongly

influences transport of turbulence toward the centerline by preventing radial mixing of

turbulent kinetic energy produced within the shear layers. This important result (Chen
et al. (1996)) is well reproduced in the simulation.

In the reactive case, the turbulent kinetic energy profile reveals two maxima, one on

the burnt and one on the unburnt side of the mean flame position. At axial positions up

to x/D = 6.5, the maximum in the unburnt is very well reproduced. Also the appearance

of the second maximum on the burnt side can be observed in the predictions. However,

the maximum value starts to be overpredicted at x/D = 4.5.

6. Conclusion and future plans

A level-set approach based on the G-equation has been formulated as a model for

large-eddy simulation of turbulent premixed flames. Important issues concerning the

proper implementation of this methodology in the context of LES, particularly the so

called reinitialization procedure, have been discussed. To validate the model numerical
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simulations have been performed for a turbulent methane/air Bunsen flame. The results

are compared with experimental data, showing very good agreement for the mean axial

velocity and turbulent kinetic energy for the cold flow case. For the reactive case mean

temperature and axial velocity are essentially well predicted. However, the jet spreading

rate is slightly overpredicted and the computed turbulent kinetic energy in the post-flame

region is too high. In the future, a more elaborate model for the turbulent burning velocity

will be applied. The resulting model will be used to study industrial-like combustor

configurations.
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Local extinction-reignition in turbulent
nonpremixed combustion

By Paiboon Sripakagornt, George Kos_ily_ AND Heinz Pitsch

1. Introduction

Recent reports demonstrate progress in the modeling of burning diffusion flames in

the absence of extinction (International Workshop on Measurement and Computation

of Turbulent Nonpremixed Flame(2000)). However, the prediction of flames whose burn-

ing is frequently interrupted by local extinction-reignition events still presents a major

modeling problem (Peters (2000)).
A recent report by Xu & Pope (1999) shows promising results in modeling of a com-

busting flame with considerable extinction. Xu & Pope use a PDF modeling approach
that is known to be expensive computationally. There is incentive, therefore, to study

possible generalizations of the mixture fraction based approaches (flamelet, CMC) that
would account for local extinction-reignition events.

The present paper reports on direct numerical simulation (DNS) of initially non-

premixed fields of fuel and oxidizer developing in a turbulent field. Initially, the scalar

dissipation rate is increasing due to straining leading to localized extinction events. At
later times molecular diffusion starts to decrease the scalar dissipation rate, resulting in

gradual reignition.
Flame element tracking is utilized to show the fields as they would appear in local

coordinate systems fixed to different points on the Zst surface. The resulting data are

used (a) to study the mechanism of extinction and especially reignition, (b) to elucidate
the applicability of the fiamelet model to describe these processes, and (c) to examine a

possible extension of the model to account for lateral heat diffusion along the Zst surface.

2. DNS of local extinction-reignition and flame element tracking

2.1. Direct numerical simulation

2.1.1. Velocity field

The simulated velocity field is incompressible decaying isotropic turbulence comparable

to the turbulence downstream of a laboratory grid. The main parameters of the initial

velocity and scalar fields are shown in Table 1.

As pointed out by Eswaran & Pope (1988), to resolve the small scales, the resolution

condition 7/kkm_x >1 must be met (see also Mell et al. (1994)). Here the parameter kmax
is the wave number cutoff while 7]k is the Kolmogorov scale of the velocity. To resolve

quantities involving derivatives, _kkmax >1.5 is to be satisfied (Yeung & Pope (1989)).
The computational domain is a cube with the size of 27r using periodic boundary

conditions at all sides. The integral length scale, l, must be kept adequately small so that

the boundary conditions do not influence the results. The condition is IAk <_ O(l) where

the smallest nonzero wavenumber is Ak = 2n/L for the computational box of size L.

-_ University of _,Vashington, Seattle, WA 98195-2600
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k .... r/k l(cm) u/l (l/s) I/_k 11 (cm/s 2) Re)_ N a lz/l Sc

1.94 0.879 1.04 27.2 0.01 33 1283 0.968 0.7

TABLE 1. Initial conditions used in the DNS of the flow field and the mixture fraction field.

1.5 t ,,

1/ \\ x

0.5

X_

O0 0.5 1 1.5 ....

t

FIGURE 1. The time evolution of X_t. Here X_t is the scalar dissipation rate at Z = Zst = 0.5.
-- : (Xst), ---- : 99% envelope of the fluctuations of Xst- The horizontal line is drawn at
X_t = Xq -- 1.02. This is the largest possible value of X_t where the steady flamelet equation has
a burning solution. The numerical value refers to the chemistry parameters shown in Table 2.

2.1.2. Scalar fields

The initial mixture fraction is arranged in blobs of Z=0 and Z=I. The fuel blobs fill

half of the computational domain; the average value of the mixture fraction ((Z)) is close
to 0.5. In the quasi-steady flamelet model (Peters (1983)), the mass fractions depend on

space and time through the local, instantaneous values of Z and X (X = 2DIVZI _, the

scalar dissipation rate). The fuel and oxidizer fields are initialized via the quasi-steady
ftamelet model.

The scalars are initialized when the characteristic length scales of the velocity field

start to increase with time. This condition corresponds to a fully developed turbulent

flow undergoing full spectrum decay. Once the scalars have been injected, turbulent strain

creates large scalar gradients, and the magnitude of the scalar dissipation rate X increases
significantly. Due to the many different turbulent scales involved, the scalar dissipation

rates induced by the straining fluctuate strongly (Fig. 1). It is only later that molecular

mixing overcomes the influence of turbulent straining and leads to the decrease of the

scalar gradients. This paper examines the extinction-reignition phenomena caused by the

increase and subsequent decrease of the scalar dissipation rate shown in Fig. 1.

2.1.3. Simulations

The simulated velocity field evolves according to the incompressible Navier-Stokes
equations,

V-7/= 0 (2.1)

0-'/ = fix u3 - V{p - } + t, Vefi, (2.2)
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where _ denotes the vorticity vector and p is the hydrodynamic pressure. The kinematic

viscosity, u, is independent of the temperature.
The mixture fraction and species mass fractions satisfy the conservation equation

OY, 2 r (2.3)-- = -u. VYi + DV } i-wi.
Ot

Here D is the coefficient of molecular diffusion, D = u/Sc. In the Z-equation the reaction

rate is zero.

The set of governing equations was solved using a pseudospectral code developed by

Nilsen (1998). The spatial derivative fields were evaluated in Fourier space while nonlinear
terms such as _2x u_ or _- VY/were computed in physical space. The time advancement

was done by a second-order Adams-Bashforth scheme.

2.2. Flame element tracking

2.2.1. Flame elements

Unless the chemistry is slower than molecular mixing, the reaction zone is close to
the instantaneous stoichiometric surface, defined as Z(2, t) = Zst. The phrase "flame

element" in this paper means a point on the instantaneous Zst surface.

The Zst surface moves relative to the laboratory reference frame. Gibson (1968) points

out that the velocity of a point fixed on an isoscalar surface relative to the laboratory

reference frame can be given as

DV2 Z_ 2 VZ

= _ IVZl ,z = _2- DV ZlS-_= (2.4)

Here fi is the fluid velocity and _z is the unit vector in the direction of local mixture

fraction gradient. Since the Zst surface is an isoscalar surface, the instantaneous velocity

of a flame element can be calculated from Eq. (2.4).
Note that flame elements are not fluid particles. Fluid particles are convected by the

velocity field. The second term on the RHS of Eq. (2.4) accounts for propagation due

to molecular diffusion (Gibson (1968)). While several authors have used simulated and

laboratory data to track fluid particles (Shlien & Corrsin (1974), Sato & Yamamoto

(1987), Yeung & Pope (1989)), the technique of flame element tracking has been intro-
duced by Mell et al. (1994). This paper uses flame element tracking to show the fields

as they would appear in the frame of reference of an observer fixed to a point on the

instantaneous Zst surface.

2.2.2. Methodology

A number of selected points located on the Zst surface were tagged in the initial

scalar field. Since the velocity and mixture fraction fields are known from the DNS, the

velocity of the points on the isoscalar surface is available from Eq. (2.4). Since the DNS
fields are available on a 3-dimensional grid, an accurate interpolation scheme is needed

to determine the velocity data between grid points. The updated positions of the flame

elements can be obtained by integrating the equations of motion.

The accuracy of the interpolation scheme is crucial to the particle tracking routine.

Yeung & Pope (1988) have compared results obtained from a 3rd-order, 13 points Taylor

series (TS13) scheme and another scheme working with 4 th order cubic splines. The

approach via cubic splines was found to be our method of choice. The goal of this method

is to get a formula that is smooth in the first derivative and continuous in the second

derivative, both within an interval and at its boundaries. The resulting twice continuously
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TABLE 2. Numerical values used for the thermochemistry parameters defined in Section 3.1.

differentiable approximation of the interpolated variables leads to a low level of numerical

noise in the time series obtained. Regarding the integration scheme, Yeung & Pope (1988)
have shown that an explicit 2rid-order Runge-Kutta scheme works welt. This method has

been also applied by Squires & Eaton (1991) and Elghobashi & Truesdell (1993).
In this study the 4th-order accurate cubic spline interpolation has been implemented

for the interpolation scheme. For the time stepping, the 2'_d-order Runge-Kutta scheme

has been employed. The details of the interpolation method can be found in Yeung &

Pope (1988). Note, however, that due to the possibility of large flame stretching and the

highly three-dimensional structure of the isoscalar surface, the tagging location might
start to wander away from the isoscalar surface by a small amount every timestep. A

surface-searching module has been added to the tracking code to return the tagged flame

element onto the the Zst surface once every few timesteps.

3. Turbulent combustion model

3.1. Chemistry scheme

A single-step reversible reaction has been considered with an Arrhenius-type pre-exponential
factor.

r+rO --m (r + 1)P (3.1)

Considering identical equilibrium constants for the forward and backward reactions, the

production rate of the product can be written (Lee & Pope (1995))

w,=(r+ 1)Aoexp (-_)exp [-j3(1--___) (yiyo_ 1 2

Here r is the mass of oxidizer disappearing with unit mass of fluid; I_), Yo, and Yp stand
for the mass fractions of fuel, oxidizer, and product in order.

Throughout the paper the fresh values of the fuel and oxidant mass fractions are

considered unity; therefore, the stoichiometric value of the mixture fraction is given as
Zst = 1/(1 +r). The present choice is r = 1, this means, Zst = 0.5. The reaction kinetics

is characterized by the following dimensionless quantities:

T, Tb-T_,

Zel'dovich number, /3 - Tb Tb (3.3)

Tb- T,,
Heat-release parameter, a - Tb (3.4)

T- T_,

Reduced temperature, O - Tb - T_, (3.5)

where T_ is the activation temperature, Tb is the adiabatic flame temperature, and T_,
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FIGURE 2. The local coordinate system used in flamelet modeling. Point O is fixed on the
stoichiometric surface,

is the (equal) temperature of the fuel and oxidizer streams. For this case, O is equal to

lip. Table 2 shows the values of the thermochemistry parameters used in the simulations.
The parameters were selected to lead to local extinction-reignition in a strongly burning

flame (Overholt & Pope (1999)).

3.2. Flamelet modeling

Figure 2 shows a local coordinate system fixed to a point (point O) on the Zst surface.

Axes xl and x2 are locally (close to point O) tangential to the Zst surface, whereas

the mixture fraction coordinate is locally perpendicular to the surface. Note that this

coordinate system cannot be used to describe local burning unless the reaction zone
is sufficiently thin in space, and, therefore, the mixture fraction changes monotonically

along the direction that is locally perpendicular to the gst surface.

Prom the point of view of the observer located at point 0 (traveling with it) the mass
fractions are dependent on the variables t, Z, xl, and x2 . Straightforward calculations

show (Peters (1983), (1984)) that in the local coordinate system the mass fraction _ =

Yi( t, Z, Xl , x2) satisfies the following equation:

Ol_ X O_Y,

Ot 2 OZ 2

= - kv2-_2 + V3 0z3 ] +2D -_x2 0-Zff-Z2 + _xa O-_-Z3 + D k ff-_2 + OZ2 ] + wi

(3.6)

where the scalar dissipation rate, X is defined by X = 2D(VZ2) •

In the time dependent flamelet model (TFL) (Peters (1983), (1984)) the first three

terms on the RHS are neglected compared to the term describing mixing across the Zst

surface (second term on the LHS). The model equation reads then (Peters (1983), (1984))

OY_ x O_Y_
Ot 20Z 2 = wi

Neglecting the time derivative in Eq.

follows (Peters (1983), (1984))

(3.7)

(3.7) the (quasi) steady flamelet model (SFL)

x 02Y_
20Z 2 - wi. (3.8)

The three terms neglected on the RHS of Eq. (3.6) represent lateral convection, curvature,

and lateral diffusion at O. The neglection of these terms in Eq. (3.7) and the neglection of

the time derivative in Eq. (3.8) are related to the thinness of the reaction zone in mixture

fraction space. Thin reaction zones are due to high values of the local Damk6hler number.

Presently we assume that the scalar dissipation rate (X) appearing in Eqs. (3.6-3.8)
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can be modeled using

x(Z) = XstF(Z), (3.9)

where the form function, F(Z) = exp[-2(erf -t (2Z- 1)2)] has been used. This modeling

assumes that close to point O the mixing is "counterflow-like". The simulations were

designed such that this approximation shall be approximately valid.

3.3. Interacting flamelet model

According to Eqs. (3.7-3.8) the temperature at a point on the Zst surface evolves under

the influence of its own scalar dissipation rate; neighboring points have no influence oil its

temperature. Even the closest neighbors extinguish and reignite as isolated counterflows

(auto-ignition). This behavior is due to the neglection of the first three terms on the RHS

of Eq. (3.6) that represent lateral coupling (interaction) between neighboring points (cf.

Fig. 2). We presently refer to Eq. (3.6) as the model equation of the interacting flamelet
approach.

One of the goals of the present paper is to examine the role of the lateral interactions

in extinction-reignition phenomena. To simplify the task let us write Eq. (3.6) at point

O (Z=0.5, Z2 = Z3 = 0 in Fig. 2). The coordinate system shown in Fig. 2 propagates
with the velocity of O, and at O the Z2 - Z3 plane is tangential to the Zst surface. This

means that at point O the first two interaction terms in Eq. (3.6) are zero; only the

lateral diffusion term is left in the equation. We denote this lateral diffusion term by ia.

0"_] )_st (02Y/'_ - ia = wi (3.10)
Ot 2 \-_Y.] z=o.5,z_=za=o

fo2 
ia - D \_ + _ . (3.11)OZa ] z=o s,z==z3=o

3.4. Implementation

The tracking procedure provides us with the entire temperature and scalar dissipation

rate history of the flame elements we are tracking. Hence, it is possible to implement

the time-dependent flamelet model (TFL), i.e. Eq. (3.7), for each tracked flame element.

Since the DNS is initialized with the steady flamelet model, the TFL computations are
initialized the same way.

The flamelet equation is solved by the flux-splitting technique. The diffusion term
is advanced by the implicit Crank-Nicolson method while the source term is handled

using the 2'_d-order Adam-Bashford approach. For simplicity a uniform grid of sufficient

gridsize is used. The steady flamelet solution (SFL) is identified as the burning branch of

the S-curve and is evaluated from Eq. (3.8) using the same set of codes. For the present

chemistry parameters (Table 2), SFL gives Xst = Xq = 1.02 as the extinction limit. Above

this limit Eq. (3.8) has no burning solution.

We remind the reader that Eq. (3.10) is valid only at point O indicated in Fig. 2. We will

use information from the vicinity of this point to investigate the possibility of describing

extinction-reignition via TFL and to look for possible correlation between the reignition
process and the time evolution of the i3 term. To obtain the value of the i 3 term, instead

of evaluating the two 2_d-derivative terms separately, the following relationship is used.

02}_ 02Y} OZYi

OZ 2 + OZ_ - V2YI - Ox----_ (3.12)
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FIGURE 3. Extinction-reignition behavior on the Zst surface. -- : burning solution of the
steady-flamelet equation, o : average temperature for chosen values of the scalar dissipation
rate (((_[Zst,_l_st)). The grey dots represent the temperature of 5000 randomly selected flame
elements. The vertical dotted line is at Xst = Xq-

The Laplacian of Yi is easy and accurate to use to evaluate from the laboratory coor-

dinate; the 2_d-derivative in the Z-direction can be obtained from Eulerian data in the
DNS. The 4th-order central-difference formula was used to return the 2_d-derivative on

the right-hand side of Eq. 3.12.

4. Results and discussion

4.1. Extinction and reignition: DNS

Figure 3 exhibits the extinction and reignition behavior of the DNS field. The figure
refers to Z = Z_t. The broken line indicates the burning branch of the steady-flamelet

solution, the circles show the conditional average of the temperature for fixed value of

Z = Z_t and X = Xst as computed from the data ({OlZst , )('st)). The vertical dotted line

is at Xst = Xq. The reacting scalar field was initialized on the broken line (Fig. 3a). Very
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early in the simulation, the flame burns vigorously with little extinction and SFL predicts

the conditional average well (Fig. 3b).

As more and more flame elements experience scalar dissipation rate values that are

higher than Xq (see Fig. 1), their temperature starts to decrease and the conditionally

averaged temperature increasingly deviates from the SLFM prediction (Fig. 3c). At a
later time, however, the local values of the scalar dissipation rate starts decreasing. Points

whose temperature dropped down when their scalar dissipation rate was larger than Xq
are getting transported back into the X < Xq region of the Oat - Xst plane. Figure 3d

demonstrates a bimodal situation where steadily burning and nearly extinguished points

exist at identical values of Xst- Eventually, the temperature of the "extinguished" points

starts increasing, the conditional average (OIZ_t,Xst _ starts rebounding, and gradual
reignition takes place.

4.2. Extinction and reignition: flame element tracking

Figure 4 shows the paths of flame elements in the O-X space over a time interval of t=0-

0.50. In the figure the burning branch of the steady flamelet solution is continued into the

middle, unstable branch (broken line). Only a few of the flame elements shown in Fig. 4a

are associated with X values that exceed Xq = 1.02. Accordingly, the temperatures in
this figure stay close to the steady burning branch at all times. Figure 4b refers to flame

elements whose scalar dissipation rate gets higher than Xq; therefore, their temperatures

drop below the unstable branch and get reignited from there.

Figure 4 demonstrates that, in the present simulations, the Xq value derived from the
flamelet model is a valid measure of the characteristic value of the scalar dissipation rate

that leads to extinction. A similar conclusion has been reached recently by Overholt &

Pope (1999).

According to the TFL approach for a fixed value of X_t, any flame element that is

above the unstable branch will reignite, while flame elements that are below this branch

will extinguish. It follows that crossing the broken line contradicts flamelet modelingf.

The reignition observed in Fig. 4b is certainly not the autoignition of isolated flamelets.

t If the flow "moves" the scalar dissipation rate of an element faster than the characteristic
times of extinction or reignition, the flamelet can cross the broken line horizontally (Pitsch &
Fedotov (2000)).
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Almost all of the flame element temperatures plotted in Fig. 4b are already on the

increase when they cross the unsteady branch. Since all the paths shown in Fig. 4b

reignite through the broken line, the figure demonstrates that TFL is not consistent with

the reignition of flame elements whose scalar dissipation rate at some point in time was

well above XQ.
It is also interesting to note that different flame elements exhibited quite different

behavior. Some flame elements reignited fast; other elements did not reignite at all in

the time interval considered. Some of these features are expected to be explained by the

inclusion of the interaction term, i3.

A variety of extinction-reignition behavior is shown in Fig. 5-7. In the figures the

full line indicates the DNS result, the dash-dot line the TFL calculations, while the

respective grey full and broken lines depict the burning and unstable branches of the

steady-flametet (SFL) solution. The DNS and SFL results are denoted similarly in the
lower figures, whereas the broken line shows the time evolution of X_t. For the bottom

figure, the full line is (dO/dt)/w from the DNS data while the dotted line is the i3/w
term.

In Fig. 5a, X_t exceeds XQ only slightly and for a short time; in Fig. 5b, Xst exceeds

Xq by a larger margin but still for a relatively short time. TFL predicts the temperature
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FIGURE 6. (See Fig. 5 for captions.)

correctly in both cases. It is interesting to notice, however, the difference between tile

data and the flamelet prediction in the uppermost part of Fig. 5b. The flamelet prediction

crosses the unsteady branch horizontally (see footnote before), whereas the trace taken

from the data shows slightly oblique crossing• This effect is obviously due to neighboring

hot flame elements that are not considered in the flamelet approximation. In Fig. 5, the

i3 term is quite small and exerts no major influence on the results.

Figure 6-7 show flame elements undergoing major extinction followed by reignition.

TFL predicts the initial extinction process quite well but fails to reignite the flame

element except in Fig. 7b. In Figs. 6a,b and 7a, TFL predicts full extinction after the

element gets below the unsteady branch. In Fig. 7b the flamelet model reignites due to

crossing the broken line horizontally, but the data show very different behavior.

We believe that the reignition process in Figs. 6 and 7 is influenced by hot flame

elements in the vicinity of the flame element we are following. Our expectation has

been that i3 would exhibit a positive peak at the time when the temperature of the

extinguished element starts to increase. Physically speaking, the expectation is that it is

a "bump" in i3 that helps the flame element to cross the unsteady branch.

Close inspection of the i3(t) time evolution in Figs. 6 and 7 indeed shows behavior

reminiscent of the expected behavior, but the effect seems to be influenced by resolution

errors. We will investigate the matter further using better resolution.
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5. Conclusions and future work

Direct numerical simulations have been performed to investigate the local extinction-

reignition of initially nonpremixed fields of fuel and oxidant. The extinction-reignition

process is due to the increase and decrease of the scalar dissipation rate caused by the

initial strong straining followed by the dominance of molecular diffusion. To elucidate the

applicability of the flamelet modeling, the entire time history of different fluid elements

(points fixed on the Zst surface) have been tracked. An extended flamelet model has been
introduced that contains a term (i3 in Eq. (3.10)) that accounts for lateral heat diffusion

along the gst surface.
The results shows that the extinction criterion derived from flamelet modeling ()/st >

Xq) works well. The data demonstrate, furthermore, that time dependent flamelet mod-

eling correctly predicts the behavior of flame elements with little or no extinction. Even
the extinction phase of the history of a flame element is captured by the model, approx-

imately. Standard flamelet modeling was found to break down during reignition.

In flamelet modeling the flame elements extinguish and reignite as separated coun-
terflows. We believe that this is the reason behind the failure of the model to describe

reignition correctly. Our expectation is, therefore, that the i3(t) term in Eq. (3.10) has a

decisive role in the reignition process. Due to our limited resolution, we could not confirm
this behavior. Presently we are working on a better resolved simulation that will clarify

this issue. We are also planning to use the new simulations to study the influence of

(a) premixed pockets created by mixing in extinguished regions and (b) the interaction
between extinguished and burning flame elements due to curvature.
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Doubly-conditional moment closure modeling of
turbulent nonpremixed combustion

By Chong M. Cha, George Kosfily_, AND Heinz Pitsch

1. Motivation and objectives

The accurate treatment of extinction and reignition phenomena is thought to be an

important factor in determining how flame stabilization occurs in practical, nonpremixed

combustion systems (Peters (2000)). In the joint probability density function (PDF) ap-

proach (Pope (1985), Dopazo (1994)), extinction/reignition can be treated with improved

mixing models (Xu & Pope (1999)). However, joint PDF methods employ a Monte-Carlo

type solution procedure and thus become computationally expensive when many species
increase the dimensionality of the modeled joint PDF evolution equation. Presumed PDF

approaches such as flamelet modeling (Peters (1983), Peters (2000)) and conditional mo-

ment closure modeling (Klimenko (1990), Bilger (1993), Klimenko & Bilger (1999)) can be

computationally tractable when many species are to be described, as is generally the case

in problems of practical importance. First-order flamelet modeling and conditional mo-
ment closure modeling with singly-conditional, first-moment closure breaks down when

extinction and/or reignition phenomena are present (Peters (2000), Klimenko & Bilger

(1999)). The focus of the present paper concerns extensions of first-order conditional
moment closure modeling to describe extinction/reignition.

Currently, a fundamental closure approximation in singly-conditional moment closure

modeling is first-order closure of the average nonlinear chemical source terms, #¢, condi-

tioned on the mixture fraction, _(t, x) = rl:

('&(Y(t, x), T(t, x), p(t, x))l_(t, x) = e) _ "_((YlrJ), (Tie), (Pin)),

where Y are the vector of mass fractions of the reacting species, T and p are the tem-

perature and density of the mixture, respectively, and e is the sample space variable of

_. The first-order closure approximation is not valid when fluctuations about the condi-

tional means become significant. Figure 1 shows local extinction/reignition events in (i)
space from experiments of a turbulent methane/air reacting jet (Barlow & Frank (1998))

and (ii) in scalar dissipation rate space at the stoichiometric value of _ from a direct
numerical simulation (DNS) of a single-step chemical reaction in grid turbulence (Sri-

pakagorn (2000)). The scalar dissipation rate is X = 2:D(V() 2, where _D is the molecular

diffusion coefficient. 0 is the reduced temperature,

T- To_
O----

Tf-Too'

with T I the adiabatic flame temperature and Too the reference temperature. The figure
illustrates how extinction/reignition events appear as large fluctuations about (0Je).

Two strategies have been proposed to improve singly-conditional moment closure mod-

eling (Klimenko & Bilger (1999)):

t University of Washington, Seattle, WA 98195-2600
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FIGURE 1. Motivation of the work: Scatter plots of the reduced temperature from (i) a planar
cut at x/D = 15 of the piloted methane/air turbulent reacting jet F of Barlow & Frank (1998)
and (ii) from a DNS of turbulence in a box of Sripakagorn (2000) at t* -- t/Teddy = 1/2 with
a single-step, reversible reaction. D is the jet nozzle diameter, teddy is the initial large-eddy
turnover time• In (i), the stoichiometric value of the mixture fraction is _st = 0.351; in (ii),
values are at _,t = 0•5.

(a) higher-order closures and/or

(b) use of additional conditioning variables.

Testing of (a) have already begun (Swaminathan & Bilger (1998), Mastorakos & Bil-

ger (1998)). This paper introduces the use of a second conditioning variable as a more

promising alternative to a second-order closure strategy. The presumption is that the

extinction/reignition events, seen in Fig. 1 for example, can be described in the space of
X (in addition to _ and x).

The paper is organized as follows: In the next section, an existing second-order closure

remedy is reviewed. This extension is compared to a new conditional moment closure

model where the scalar dissipation rate is introduced as a second conditioning variable•

In Sec. 3, a priori modeling comparisons are made with DNS experiments of a single-step,

second-order, reversible reaction in grid turbulence. Finally, the two conditional moment
closure modeling extensions are assessed and future directions outlined.

2. Combustion model

2.1. DNS experiment

Presently, the a priori combustion modeling comparisons are made with DNS experiments

performed by Sripakagorn (2000). Briefly, fuel (F), oxidizer (O), and product (P) involved

in a one-step, second-order, reversible reaction,

k
F+O @-- 2P

k/K

(_st = 0.5) evolve in isotropic, homogeneous, and decaying turbulence. The flow is in-

compressible. The forward reaction rate, k, has an Arrhenius temperature dependence
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with the equilibrium constant, K, held fixed. The reaction-rates are given by

ly#Ze(1 - 0) (YFYo )
WF = _b, _bO -----tb, and tbp = -2w. A is the frequency factor (multiplied by density and

divided by molecular weight, assumed equal for all species), _ - (T I - Too)/T I is the

heat release parameter, Ze - _T_/T! is the Zetdovich number, and T_ is the activation

temperature. The Sehmidt number is 0.7 and Lewis numbers unity. Figure 2 shows the

level of extinction/reignition from the DNS experiment with A = 8 x 104/see, c_ = 0.87,

Ze = 4, and K = 100 (c]. Sripakagorn (2000) for details of the simulation).

2.2. Second-order closure

A strong nonlinearity of the chemical source terms is due to the exponential temperature

dependence of the Arrhenius function, k = A exp(-Ta/T). A second-order closure strat-

egy in singly-conditional moment closure results from conditionally averaging a series

expansion of the Arrhenius function (Mastorakos & Bilger (1998)):

Ze(1 - {0[rl}) B) (2.1a)
{kJrl),,_-Aexp(--_)exp[. I :-_-(T _- _-) ) ] (1 +

B = [1 --_(i----i0T_))] a [1 - c_(i---(0[r/))] - 1 (2.1b)

valid for 0'/(01r_} < 1. For the present case of a single-step reaction, the conditional

averages of all species and temperature can be obtained from the single equation for the

singly-conditional average of Ye:

dQe (xlr/) 022 Or]2 QP - 2_b(qF, Qo, QP, (01rJ})(1 + B), (2.2)

where QF = 71- Qp/2, Qo = 1 - _ - Qp/2, and (01r/) = Qp. B is given by EQ. (2.1b),
where (0'21r/} is to be taken directly from the DNS experiment. Details of the derivation

are found in Klimenko & Bilger (1999). Briefly,

(a) Terms representing the diffusion of the conditional averages in physical space in

Eq. (2.2) have been ignored (eQ closure).
(b) A closure hypothesis involving contributions to the balance of the conditional aver-

age by fluctuations about singly-conditional means has been invoked (ey closure), allow-

ing the resulting terms to be ignored for the present fully-homogeneous case (Klimenko
& Bilger (1999)).

Assumption (a) is strictly valid only at high Reynolds numbers in non-homogeneous

(shear) flows (Klimenko & Bilger (1999)), has been shown to be valid at low Reynolds

numbers for a semi-homogeneous flow (Bushe et al. (1999)), and is exact for the present

spatially degenerate (homogeneous, isotropic) case. The closure hypothesis invoked in

(b) has been validated against a DNS database of a temporal mixing layer (Bushe &

Bilger (1999)). Thus, we offer both singly-conditional moment closure with and without

a second-order closure of the chemical reaction-rate as baseline comparisons to the strat-

egy of multiply-conditioning. We refer to Eq. (2.2) as the cmcl model throughout the

remainder of the paper. Setting B = 0 gives the standard (singly-) conditional moment
closure model and is referred to as model cmc0.
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FIGURE 2. DNS experiment of spatially isotropic, homogeneous, and decaying turbulence per-

formed by Sripakagorn (2000). The reduced temperature is shown at (_t = 0.5 as a fimction of

the local scalar dissipation rate, X =- 273(V_) e.
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FIGURE 3. Illustration ofl(i ) the (XJr/) -- (xo)F(q) dependence in the present DNS experiment
with F(r/) -- exp{-2[erf- (2r/- 1)] } (counterflow function) and (ii) the approximate indepen-
dence of Xo - x/F with {. The variance is represented by the filled circles. Note, Xo = X at
_st = 0.5 for the present case.

2.3. Second conditioning variable

In Klimenko & Bilger (1999), the derivation of the multiply-conditional moment closure

equations assumes a multi-stream mixing problem which is characterized by multiple

conserved mixing variables. Two distinctions are to be made with the present formulation

using a second conditioning variable:

(a) Only a two-stream mixing process is considered, where the advantage of multiply-

conditioning expectations (in addition to the mixture fraction) is to account for additional

fluctuations about the singly-conditional means.

(b) The scalar dissipation rate, used as the second conditioning variable presently, is
not conserved. The source term for X is (Ruetsch & Maxey (1992))

(O ) -4D(V{®V{):Vu
L(X) = + u. V- DV 2 X=

P

-4_(v{ ® v{) : (v{ ® v{) (2.3)

for the present case of constant p and 7:).

The choice of the scalar dissipation rate as the second conditioning variable follows,

most recently, from the line of research pursued by Bushe & Steiner (1999). There,
conditional source-term estimation is used to better approximate the chemical reaction-

rates in physical space. In contrast, the present model performs combustion calculations

in the space of X (and {) and would convolve the conditionally-averaged solutions into

physical space through the joint pdf of { and X. Presently, we choose Xo -- x/F({) (with

F({) = exp{-2[erf--l(2{- 1)]2}) as the second conditioning variable, further specializing

the combustion modeling to the present DNS experiment where { and X0 have been found

to be statistically independent (cf. Fig. 3).

Following the decomposition procedure (Klimenko & Bilger (1999)), the doubly-condi-
tional moment closure equations with { and X0 as conditioning variables can be derived
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using the differentiation rules:

OYp OQp OQp O_ OQp Oxo OY_
- + + +

Ot Ot 07I cOt cO)Co Ot Ot

COQPV_ OQp v_ow =VQp+ +vY ,

where Y_ represents fluctuations about the doubly-conditional mean (YPlq, X) = Qp
(with X the corresponding sample space variable for )¢0). Substitution into the local,

instantaneous equation for Yp and conditionally averaging yields

_+ao_-_ eP= --0r/----_+_30_--/+')'o0--_--X.y QP

-2v_(QF, Qo, QP, (01,1, X)) (2.4a)

(L_px [,, X} 1 dE 1_ 2cO2F

s0 - F + + (24b)
/_o = (D(V:yo)2[7/, X) (2.4c)

70 -- (2DV_ • VXolq, X} (2.4d)

where F(_/) - exp{-2[erf -1 (2q - 1)]2}. Again, for the present simplified chemistry case,

QF : 71- Qp/2, Qo = 1- 7I- Qp/2, and (Olq ,X) = Qp. The relation X - XoF(_)

has been used in Eq. (2.3) to obtain the source term of L(Xo ) - pa0. Qp in Eq. (2.4),

henceforth termed model cmc2, is to be distinguished from the singly-conditional means

of models cmc0 and cmcl. With the exception of the convection term in X space (the

second term on the left-hand side of Eq. (2.4a)), the same unclosed terms involving
fluctuations about the conditional means result as detailed in the derivation in Klimenko

& Bilger (1999). These terms are neglected following analogous arguments used in relation

to Eq. (2.2). With doubly-conditioned moments, fluctuations are presumably reduced

and their neglect a more accurate approximation. In particular, first-moment closure of

the chemical reaction-rate in Eq. (2.4a) is expected to yield improved results over the

analogous closure with singly-conditioned means (the cmc0 model). It is to be shown that

first-order doubly-conditional moment closure modeling yields further improvements to
croci as well.

2.4. Implementation issues

All coefficients in Eq. (2.2) and (2.4) are calculated directly from the DNS experiment.

Binning of the DNS experimental data is done with equal points per bin as opposed to

using equally incremented bin sizes. Cubic interpolation is used in _ and :Y0 space, and

cubic splines are used to interpolate the one-dimensional profiles ((XIr/) and (Y_21r_) for

the cmc0 and cmcl models) and the two-dimensional profiles (s0, _0, and _f0 for the cmc2
model) in time where the DNS data are not available.

Boundary conditions for the singly-conditional case (at r/ = 0, 1) are Qp(t,0) =
Qp(t, 1) = 0. For the doubly-conditional case, boundary conditions must be specified

for 77C [0,1] at X = Xmin,Xma x and for X E [Xmin,Xmax] at q = 0,1. Qp(t,O,X) =

Qp(t, 1, x) = 0; at Xmin _ 0, equilibrium solutions are used while pure mixing solutions

are used at some Xma, >> Xq- Xq is the quenching value of the scalar dissipation rate.

A value of Xma. = exp(3) was found to be large enough to not influence solutions. Cubic

interpolation is also used to fit the DNS data at the initial time in (r/, X) space for the
initial conditions.
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Figure 3 (i) shows a typical profile illustrating the q dependence of (xJr/) and (X '217/).

(Y_2[r/) behaves similarly in q space: zero at the boundaries of fl and maximum at q =

_st. Both (X[r/) and (Y_2[r/) are taken directly from the DNS for the singly-conditional

moment modeling calculations. Singly-conditional moment modeling calculations show

no appreciable effect on the solutions with (XIq) modeled as (xo)F(_I) (cf. Fig. 3). This

modeling has been used in all cmc0 and cmcl results to follow.

Figures 4 and 5 show the _ and Xo dependence of the coefficients ao, rio, and ?o

(round symbols). Also shown are the analogous coefficients if X were used as the second

conditioning variable (square symbols): (L(x)/p]_ = _t, X = X) (analogous to ao, but

with second conditioning on X instead of Xo), (T_(VX)2[_ = _st, X = X) (analogous to

/30), and (2I)V_. VXI_ = fl, X = X) (analogous to %). With regard to Fig. 4, % and

(2:D_7¢ • VXI_ = r/, X = X) are independent of X and are not shown. With regard to

Fig. 5, ao, /30, and % are approximately independent of r/, further corroborating the



136

5

0

-5

-1C

-15

15.

10

t ° = 3/4

0•1 • °e

Ouo • tg

• wOO

o a

o0oooO°°0° °0°0°OOOoo °

O o O

o 0

o o

C. M. Cha, G. Kosdly, _4 H. Pitsch

t* = 3/2
15

10

5

0

-5

-10

-15

_O000U_u_uuuO0000

0 00 0 O0 °

O0
0

0

0

02 0.4 0.6 0.8

4

3.5

3

2.5

_2

1.5

1

0.5

t* = 3/4

o

t_

=

I. •ll o8

% % ".,,,,._ oo
0OoO o ° 0 0 O0_OObO_ 0 0 0 ° 00000

O.2 0.4 O.6 0.8

4

I IFI
0.5 _

t* = 3/2

• g
o

"-%__ ._ .._

:......'¢_ ._.....'.'.oo
0 o 0°°_oOO0000o°°

0•2 0.4 0.6 0.8

t* = 3/4

:[ oooo
o

0 m_oooooo o o o o o%
v_O o 0 o 0 0000o0oo_

--' a D -1

D

o f' __-1
a

-3

t* = 3/2

1}" aoo °

°°OOo

o

-3_ 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FIGURE 5. /vIixture fraction dependence of the coefficients in doubly-conditional moment closure

modeling: c_o_ rio, and 70 (circles) and <L(x)/p[ _ = Y,X = X1) (note conditioning on X, not
Xo), (D(VX) ]_ = 77,X = X1), and <2DV_. VX]_ _7,X X1) (squares)• Filled symbols are
corresp0nding rms information.



Conditional moment closure modeling 137

independence of :go and (. Doubly-conditional moment modeling calculations with and

without the cross derivative term, 02Qp/OrjOX (corresponding to the assumption of

7o = 0), shows no appreciable effect on the solutions. Hence, only values for no and _0

need to be specified on the X boundaries of the computational mesh. At fl(min, both are

set to zero; at Xmax, Cto = 0 and a value for flo is extrapolated from a power law fit of

the data (cf. Fig. 4).

3. Results and discussion

Figure 6 shows cmc0 (-----), cmcl( .... ), and cmc2 (--) modeling results against

the DNS data (symbols). Comparisons are made for increasing times from t* = 1/4 (top

row of subplots) to t* = 3/2 (bottom row) and conditional on three representative values
of the scalar dissipation rate: a relatively low value (left column of subplots), moderate

(center column), and a relatively high value (right column). More precisely, the center
column of subplots are conditioned on X = (X0), X = (X0) -X_ in the left column (with

X_) = V/_0:/), and X = (Xo) + )C_ in the right column of subplots. Filled symbols are
doubly-conditioned rms information of ¥_ taken from the DNS experiment. As can also

be seen from Fig. 2, the rms of Yp (filled circles in Fig. 6) increases with time (moving

from the top row down in Fig. 6) and higher scalar dissipation rates (moving from the

left column to the right in Fig. 6).

Comparing overall modeling performance:

(a) The doubly-conditional moment approach (cmc2) yields the most significant im-

provement over both singly-conditional moment closure approaches (cmc0 and creel) for

times t* _< 1/2 and at relatively high scalar dissipation rate values (subplots (iii) and (vi)

in Fig. 6). For all times, all three models are comparable at relatively low to moderate

values of X0, where the effects of extinction are not significant in the mean, and represent
the data well.

(b) For increasing times, t* >_ 3/4, when reignition occurs in the mean (globally), the

doubly-conditional model slowly converges to the cmc0 and cmcl results and diverge from
the data (witness subplots (ix) and (xii) in Fig. 6). This implies that the cmc2 model

predicts reignition too soon (or, alternatively, the level of extinction is underpredicted).

With regard to (a), the mean value of Xo never exceeds )/q in the DNS experiment,

hence the singly-conditional modeling results could never predict any extinction events.

cmc2 modeling accounts for the fluctuations of Xo, which can exceed Xq by over a factor of

5 (cf. t* = 1/4 in Fig. 2), and thus can yield the improved predictions seen in subplots (iii)

and (vi) of Fig. 6 at the relatively large X > (X0). With regard to (b) (t* _> 3/4 = bottom
half of Fig. 6), when extinction begins to occur at even moderate values of X = (X0},

the required diffusion in X space is evidently insufficient to yield the reduction in the

conditional means (seen in subplot (ix), for example). This may be due to the neglect
of the influence of the fluctuations of the dissipation rate of the scalar dissipation rate,

_0, the coefficient of the diffusion term in X space (cj ¢. Eq. (2.4)). The present doubly-

conditional moment closure model also neglects fluctuations about n0 and ")'0, which

could also contribute to diffusion in scalar dissipation rate space.

Shortcomings of the cmc2 model are due to the fluctuations (rms of Yp) seen in Fig. 6

not accounted by the fluctuations of _ and )Co. Accounting for fluctuations about c_0, f_o,

and % may represent a fruitful course of action to improve results further. However, a
second-order closure strategy (in conjunction with second-conditioning) cannot be used

to improve the doubly-conditional moment closure modeling results where required. This
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can readily be seen from comparisons between cmc0 and croci modeling results, where the

second-order closure strategy for w (used in the cmcl model) yields larger Qp predictions.

The reason that the cmcl model gives larger conditional averages than cmc0 can be

seen from Eq. (2.2), where B for the present case is greater than zero. In fact, B will

always be greater than zero at _st if Ze > (9 (1), a realistic constraint on the Zeldovich
number. Hence, the analogous strategy in doubly-conditional moment closure modeling

will actually cause results to deviate more quickly from the data.
Within the framework of the current modeling then, this leaves eQ and ey closure

to be reexamined (in both the singly- and doubly-conditional approaches). These terms

represent laminar (eQ) and turbulent (ey) diffusion of the conditional averages in physical

space (Klimenko & Bilger (1999)). These effects can only be incorporated into the present
homogeneous, isotropic case if global averaging is abandoned. For example,

under conditional spatial-filtering. Terms of this form appear in both the eQ term and the

closed form of ey (Klimenko & Bilger (1999)). This again means a more local treatment

of the modeling may be required (even for the present homogeneous, isotropic case).

4. Conclusions and future work

Singly-conditional moment closure (with and without a second-order extension of the

chemical source-term) is unable to describe the extinction and reignition seen on average

in the current DNS experiment. A new conditional moment closure strategy using the

scalar dissipation rate as a second conditioning variable describes extinction in the mean

well, but predicts the onset of reignition too early. Shortcomings of the model are thought

to be due to the neglect of "local effects" such as the influence of the fluctuations of the

dissipation rate of the scalar dissipation rate and/or the neglect of the spatial diffusion

of the conditional means due to the global averaging procedure.

Continued a priori studies to test these extensions are in progress. With regard to

practical application, the doubly-conditional moment closure strategy in its present form

may be able to account for a significant fraction of the extinction/reignition events seen

in the jet-flame of Fig. 1 (a current benchmark data set for competing combustion mod-

els). A mapping of these events in scalar dissipation rate space would readily determine

whether the present doubly-conditional moment closure strategy would yield good pre-
dictions. However, the necessary experimental data do not currently exist and so a poste-

riori doubly-conditional modeling studies are also underway to predict only the existing

singly-conditioned data.
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Mapping closure approximation to conditional

dissipation rate for turbulent scalar mixing

By Guowei lie AND R. Rubinsteint

1. Motivation and objectives

The probability density function (PDF) approach has been shown to be a useful tool

in turbulence research. The systematic approach for determining PDFs is by means of

solving the transport equations for PDFs. In the PDF equations for turbulent scalar fields,
conditional dissipation rate (CDR) appears as the only unclosed term (Pope (1985)).

Recently developed large-eddy simulation schemes for turbulent reactive flow, such as the

filtered PDF approach (Colucci, et al. (1998)), the conditional moment closure (Bushe

& Steiner (1999)), and the Lagrangian flamelet model (Pitsch & Steiner (2000)), also

require models for the CDR.
No satisfactory closure model for CDR had been constructed until the mapping closure

approach (Kraichnan (1989), Chen, et al. (1989)) was formulated. Amplitude mapping

closure suggests a CDR model (O'Brien & Jiang (1991)) whose form is separable in
scalar and time variables. The model is in good agreement with direct numerical sim-

ulation (DNS) for initially symmetric binary mixing but fails in describing asymptotic
behavior of the CDR for initially unsymmetric binary mixing (O'Brien & Sahay (1992)).

Girimaji (1992) has developed a novel amplitude mapping closure approach in which
the reference fields are time-dependent. The CDR model obtained from a time-evolving

Gaussian reference field still fails to describe the asymptotic behavior, but the one from

a time-evolving Beta reference field can successfully describe the asymptotic behavior.

This strongly suggests that the amplitude mapping closure is inadequate to describe the

asymptotic behavior by itself.
In the present research, we will develop a novel mapping closure approximation (MCA)

to make successive approximations to statistics of a scalar in homogeneous turbulence.

This technique will be used to construct a CDR model which accounts for the asymptotic
behavior of the CDR. In Section 2.1, we will investigate the asymptotic behavior of the

CDR model from amplitude mapping closure and explain the reason why it fails to

describe the asymptotic behavior correctly. In Section 2.2, we will outline the MCA

technique for successive approximation. In Section 2.3, we will use the MCA technique
to formulate a novel CDR model and compare it with DNS results. We will conclude

with a summary in Section 3.

2. Accomplishments

2.1. Asymptotic behaviors of amplitude mapping closure

In this section, we will show that the CDR model from amplitude mapping closure has

incorrect asymptotic behavior for unsymmetric binary mixing. We consider the simple

case of a single conserved scalar Z(x,t) in incompressible homogeneous and isotropic

t ICASE, NASA Langley Research Center, Hampton, VA 23681-2199
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turbulence. With u(x,t) being the velocity field and n the molecular diffusivity, the

evolution equation for scalar Z is

OZ

0_- + u. VZ = t_V2Z. (2.1)

Here the boundary condition is periodic and the scalar is initially homogeneous and

isotropic. Therefore, the scalar Z(x,t) will remain homogeneous and isotropic for all

time. We further assume that the scalar is binary (0 or 1) and its initial PDF is a
double-delta distribution:

A if Z = 0
P(Z,O)= 1-A if Z=I (2.2)

0 if ZC0or 1,

where 0 _< A _< 1. A = 0.5 implies that the binary scalar has the same weights and

the corresponding PDF P(Z,O) is symmetric with respect to Z = 0.5, while A # 0.5

implies that the binary scalar has different weights and the corresponding PDF P(Z, O)

is unsymmetrie. DNS Eswaran & Pope (1988) has shown that the scalar PDF P(Z,t)

asymptotically approaches a Gaussian distribution whether the initial double-delta dis-

tribution is symmetric or unsymmetric. The mean (Z) = 1 - A remains unchanged in

turbulent mixing. The CDR )_(Z,t) = _((VZ)2rZ) is nearly parabolic. At early stages,

the CDR maximum is located at Z = 0.5, the mean of the initial interface of the binary

scalar. The maximum then moves and finally approaches the mean (Z} of the scalar, ac-

companied by a distortion of the parabola. Therefore, for an initially symmetric binary
scalar (A = 0.5), the maximum will remain fixed at Z = 0.5, where the mean of the

scalar and the mean of the initial interface are coincident. For an initially unsymmetric

binary scalar (A # 0.5), the maximum will shift to the mean Z = 1 - A of the scalar
from the mean Z = 0.5 of the initial interface.

Amplitude mapping closure assumes

Z = X(¢0, t), (2.3)

where ¢0(x) is a homogeneous Gaussian random field. The governing equation for the

mapping function X is

ox ( ¢o ox0-5-= (¢g) O¢o+ 0¢o ] ' (2.4)

where ¢o_ is the spatial gradient of the scalar ¢o. The initial mapping function corre-

sponding to (2.2) is

X(¢o,0)= ( 0 if ¢o_<3' (2.5)
1 if ¢o > %l

where 3' = v_erf-l(2A - 1). The exact solution of Eq. (2.4) with the initial condition
(2.5) is
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1[x(¢0,t) = 1 + erf [Oo--Te _ (2.6)

where

=  /exp(2T) - 1.

We can calculate the CDR from the exact solution (2.6)

(2.7)

x(Z,t) = g (¢02z)(__v f_-_E1 exp (-2 [erf-l(2z - 1) 2j])

--- x(O.5, t) exp (-2 [erf-l(2z - 1)]2). (2.8)

The most striking feature of the CDR model (2.8) is the separability of its form in

Z and t. The separability suggests that the CDR's shape remains unchanged although

its amplitude decays with time. The CDR maximum is located permanently at Z = 0.5

without any shift for either symmetric or unsymmetric initial conditions. The permanent
location of the maximum for unsymmetric initial condition (Girimaji (1992), O'Brien &

Jiang (1991), O'Brien & Sahay (1992)) is contrary to the known asymptotic behavior

of the CDR. Therefore, the CDR model (2.8) from amplitude mapping closure is not

able to describe the asymptotic behavior of the CDR. The amplitude mapping closure

with a time-evolving Gaussian reference field gives a similar CDR model whose form is

separable in t and Z and also fails to describe the shift of the maximum. Therefore, the

separation in form is the main reason for the incorrect asymptotic behavior of the CDR

model from amplitude mapping closure.

2.2. Mappin9 closure approximation

The basic idea of mapping closure is to represent an unknown random field by mapping
of a known random reference field. The statistics of the unknown random field can be

calculated from the mapping function and the known reference field. The governing

equation for the mapping function can be obtained from the evolution equation of the

unknown random field and the governing equation of its PDF.

Amplitude mapping closure assumes that the unknown random field can be mapped by

a single known Gaussian reference field: Z = X(¢(x_), t) and a coordinate transformation

dxt/dx = J(d¢(x')/dx _, t) that accounts for turbulent stretching. The assumption Gotoh

& Kraichnan (1993) holds if and only if the spatial level crossing frequency at which
the unknown random field passes through a given value has a single maximum as a

function of that value. Therefore, the existence of the mapping function as well as the

coordinate transformation is not ensured for arbitrary unknown random fields. Physically,

a turbulent field exhibits eddies of different length and time scales so that it cannot be

mapped by a single reference Gaussian field with a compact spectrum. Therefore, it is

necessary to introduce more reference fields accounting for different eddies of different

time and length scales:
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z = X(Oo(x, t), ¢1(x, t),..., On(x,t); x, t) (2.9)

where ¢i, i = 1,--- ,n, are reference fields. So far, we have not imposed any constraints

on the reference fields so that we have some freedom in choosing the reference fields. For

example, ¢o could be Gaussian but ¢1 could be a Beta random field.

A one-to-one mapping could be established artificially between (Z,¢1,..-,¢n) and

(¢0, ¢1,"" , On). Thus, we can calculate the PDF and the conditional dissipation rate of
the scalar

P(Z;x,t) / P(¢o,¢1, Cn) (0_o) -1.... , d¢1 ' den, (2.10)

((VZ)2IZ) = ((VX)2]Z). (2.11)

Here thc integration is taken over the entire subspace of the composition ¢1, • • • , Cn. The

ensemble average is taken over the level surface on which (¢0,¢1,"" ,¢_) satisfies the

constraint X(¢o(x, t), ¢1 (x, t),.-. , Cn(X, t); x, t) = Z for a given Z.

Introduction of more reference fields is expected to improve the approximation accuracy

of mapping closure. The reference fields might be chosen to be statistically orthogonal

so that more information can be introduced at less expense. MCA provides a successive

non-perturbative approximation approach which is different from the Wiener-Hermite

expansion (Orszag & Bissonnette (1967)).

2.3. The model for conditional dissipation rate

Broad classes of mapping function are admissible to MCA approach. The form to be
considered here is

Z = V(¢0(x), ¢1 (t); t), (2.12)

where ¢0(x) is a homogeneous random Gaussian field in space and ¢1 (t) an inhomoge-

neous random Gaussian field in time. Amplitude mapping closure requires ¢1(t) = 0,
which fails in the asymptotic behavior of conditional dissipation rate due to lack of an

independent time-evolving reference field.

Following the standard method (Gotoh & Kraichnan (1993), Kimura & Kraichnan

(1993)), we can formulate the mapping equation:

OY OY d¢1.,

+ b-_(--_l_1 = -(uVYlZ) + _(v2YlZ). (2.13)0--/-

The conditional averages in (2.13) can be evaluated by homogeneity of the velocity and

scalar fields and Gaussianity of the reference fields

(uvvlz) = o,
d¢1 ¢1

(-_ IZ} = 2(¢3} dt '

¢(_ 0Y(V2Y[Z) = -¢o 0¢o
2 02Y

+ (¢o_) 0¢g (2.14)
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FIGURE 1. Normalized CDRs x(Z, t)/F(t) for the initially unsymmetric double-delta distribution
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An exact solution can be obtained from (2.13) with the evaluated conditional averages

(2.14) and the initial condition (2.5) which requires ¢1(0) = 0

( ]: __,_ _ j+ l-e_EO_-_l_÷/o'_I_l_l)(_(_-_•
(2.15)

We will calculate the CDR x(Z, t) = a((_YY)2tZ), where ensemble average is taken over

the level surface on which (¢o, ¢1) satisfies Y(¢o, ¢1;t) = Z. The expression obtained is

then simplified by the first-order approximation of its Taylor expansion with respect to

(¢1 (t)). This leads to

x(Z,t)=F(t)exp[-2(erf-l[(2Z-1)-(1

where

1 )2]_)(2(Z) - 1)] ,
(2.16)

F(t)- leo

((¢_o)_)
f¢o:_ (¢o_) ,

d(¢ 2) 1(¢2). (2.17)
f¢,= -_

The time scales leo and f¢1 are parameters of the present closure which must be input
externally. Usually, they are reset at each time using a dynamical scheme, such as fro =

a((VZ)2)/(Z 2) and fvl -- leo, so as to give correct evolution of the CDR. The CDR
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model (2.16) is compared with DNS of the diffusion equation with _ = 1. In the case of

homogeneity, the use of the diffusion equation to validate the CDR model for turbulent

mixing has a reasonable justification. Figure 1 shows the initial and final CDRs obtained

by the DNS and the CDR model (2.16) for the initially unsymmetric binary scalar with

mean (Z) = 0.4. For exhibiting the shift of the maximum, the CDRs are normalized by

their amplitudes F(t) and (2.16) rescated by the scalar's variances.

The CDR model (2.16) is no longer separable in Z and t. Its shape will shift while

its amplitude decays with time. It is easy to verify that X(0.5,0)/F(t) = 1 and that

x((Z),c_)/F(t) = 1. Therefore, Eq. (2.16) correctly describes asymptotic behaviors of

CDR: the CDR's maximum asymptotically approaches Z = (Z1, while initially being at
Z=0.5.

It has been shown that the mapping (2.12) is an appropriate approximation for a

scalar gradient field. However, it is not expected that the mapping (2.12) makes the same

accurate approximation to the scalar field as it does to the scalar gradient field itself.

The reason is that a homogeneous random field is statistically orthogonal to its gradient

field. The amplitude mapping (2.3) is an appropriate approximation to scalar fields but

fails to approximate its gradient field. Generally speaking, the mapping closure carried

out at the level of single-point PDFs is not valid for two-point PDFs such as gradient

fields. This is the motivation to develop mapping closure approximation of higher orders.

3. Conclusions and further plans

We have developed a novel model of the conditional dissipation rate for turbulent

mixing. The model is able to describe the asymptotic behavior of the CDR for either

symmetric or unsymmetric initial double-delta distributions. The amplitude mapping
closure has unsatisfactory asymptotic properties for the shift of the CDR's maximum.

The problem can be solved using the extended mapping closure approximation developed

in tiffs paper. Further research will involve extending the CDR model (2.16) to account

for the evolution of scalar variance. MCA can incorporate the effect of multiple time and

length scales of practical interest in its predictions using more than one reference field.

It provides a useful approach to describe statistics of turbulent mixing.
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Extended flamelet model for LES of non-premixed
combustion

By Heinz Pitsch

1. Motivation and objectives

In recent years large-eddy simulation (LES) of turbulent combustion has become a

subject of intensive research and modeling efforts. The focus of most activities has been

model development using a priori studies and LES of simplified flow configurations and

chemistry for comparison with direct numerical simulations (DNS). The first application

of LES for non-premixed combustion in a turbulent jet flame with detailed comparison

with experimental data has recently been conducted by Pitsch & Steiner (1999, 2000). In

this study the Lagrangian flamelet model (LFM), first introduced by Pitsch et al. (1998),
has been used. In this model, rather than using steady state flamelets, unsteady fiamelets

are solved, which are introduced at the inlet nozzle and assumed to be transported down-

stream, essentially by convective transport. The time coordinate in the fiamelet equations

hence becomes a Lagrangian-like time. The scalar dissipation rate appearing as a param-
eter in the flamelet equations is modeled by its conditional average over cross-sectional

planes perpendicular to the jet axis. The model has been applied to the so-called D-
flame of the Sandia flame series, experimentally investigated by Barlow & Frank (1998a,

1998b). The results are compared to mean and conditionally averaged temperature and

species mass fractions, showing in general very good agreement. However, in the rich part
of the flame, mainly CO and H2 are overpredicted. This has been attributed to the fact

that in order to prevent formation of aromatic hydrocarbons, which would interfere with

the experimental techniques, the fuel has been diluted with air and is hence partially

premixed. This causes the occurrence of heat release in the rich premixed region in the

predictions of the LES, which in turn leads to overpredictions of mass fractions of CO,
H2 and other species. Interestingly, similar trends appear in many other modeling studies

using the steady flamelet model, the conditional moment closure model, the transported

pdf model, and the linear eddy model (Barlow (1998, 1999)), which are mainly used in
RANS simulations.

An obvious disadvantage of the LFM as it is applied in Pitsch & Steiner (2000) is

that only an averaged scalar dissipation rate is used. This is also the case for most

other models, particularly in the context of RANS, where only the time averaged scalar

dissipation rate is known. It has been shown in Pitsch _: Steiner (2000) that the filtered

scalar dissipation rate including the resolved and the sub-grid part in a jet flame is a

strongly fluctuating quantity appearing in large-scale organized structures. Figure 1 in
Pitsch & Steiner (2000) shows the two-dimensional instantaneous distribution of this

quantity from the LES of the Sandia flame D. It is obvious that regions of high scalar

dissipation rate might be present on one side of the axis, while the scalar dissipation

rate is very low on the other side. This spatial structure is being lost in the cross-

sectional conditional averaging procedure applied in Pitsch & Steiner (2000). In recent

work we have investigated the influence of fluctuations of the scalar dissipation rate

in non-premixed combustion (Pitsch & Fedotov (2000) and Sripakagorn et al. (2000)),
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showing that these can have a strong impact and can lead to local flame extinction, even

if the conditional mean scalar dissipation rate is well below the extinction limit.

In the present work the LFM will be extended to account for local inhomogeneities

of the scalar dissipation rate. In the following sections, first the governing equations will

be derived and the relation to the flamelet equations derived in earlier work by Peters

will be discussed. Following this, the numerical implementation of the resulting equations

will be described, and finally, numerical results from the LES of a turbulent jet diffusion

flame will be discussed and compared to the results obtained from the LFM and to

experimental data.

2. Governing equations

In this section a new formulation of an unsteady flamelet model for LES of non-

premixed combustion, the extended flamelet model (EFM), will be developed. The un-

derlying ideas are similar to the LFM, but a different formulation allows for a more

detailed consideration of local effects. We will first derive the flamelet equations as pro-

posed by Peters (1983, 1994, 1987). This procedure is very well described, for instance,

in Peters (1984), but will still be outlined in this section in order to clearly expose the

underlying assumptions. The analysis here will only be discussed for the species mass
fractions equations since the derivation for other scalar equations such as the temperature

or enthalpy equation can be performed analogously.

We start with the governing equation for mixture fraction Z and species mass fractions

}], which can be written as

OZ
p--_ + pv . VZ + V . (pDVZ) = 0 (2.1)

oE
P--5_-+ P" v_ + v. (pDV5) - m, = 0. (2.2)

Here, p is the density, t the time, v the velocity vector, rhi is the chemical source term of

species i, and D the molecular diffusivity of the mixture fraction and all chemical species.

For simplicity, all Lewis numbers are assumed to be unity for the following derivation of

the flamelet equations. Non-constant Lewis numbers can be considered by applying the

method of Pitsch & Peters (1998). In order to derive the flamelet equations, we consider

the coordinate system introduced in Eqs. (2.1) and (2.2) such that one coordinate, say

xl, at a given instant in time is normal to the surface of stoichiometric mixture. The

origin of the coordinate system can be chosen to be traveling with the stoichiometric

surface or to be independent of this surface without any implications on the results

of the following procedure. According to Peters (1983, 1994, 1987) we then perform a

Crocco type coordinate transformation, such that xl is replaced by the mixture fraction

Z, where the other coordinates remain. The transformation is then given by

t, Xl,X2,X3 _ 7, Z, Z2,Z3. (2.3)

For this transformation to be valid, Xl has to be uniquely representable by the new

coordinate Z, which is the case in many simplified laminar configurations but is not

generally satisfied in a turbulent flow. We therefore have to assume that the reaction

zone is smaller than the small scales of the turbulence and restrict the analysis to a small

region around the reaction zone. This requirement will be used again in the subsequent

derivation and can be called the flamelet assumption. Also the possible rotation of the new
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coordinate Z with respect to the original coordinate xl during the temporal development

of the flow field will be neglected. However, it has recently been pointed out by Klimenko

(2000) that this error is small if the curvature radius is large compared to the reaction
zone thickness, which is the case if the reaction zone is assumed to be thin compared to

the turbulent scales.

After this formal transformation, an asymptotic approximation is performed. Again,

we invoke the flamelet assumption of a thin reaction zone. Then, changes along mixture
fraction iso-surfaces in the vicinity of stoichiometric mixture are small compared to the

changes in the direction of the mixture fraction and can be neglected. The resulting

equations are the so-called flamelet equations given by

OY_ x o2Y,
rh, = 0, (2.4)

p-_ - p-_ OZ 2

where the scalar dissipation rate X has been introduced as

X = 2D (VZ) 2 . (2.5)

It should be noted that in this equation the newly introduced time v is the time defined

in the new coordinate system, which means that the time derivative O/OT is to be evalu-

ated at constant mixture fraction Z. Hence, r is a Lagrangian-like time coordinate. With

respect to a point in space which is independent of the stoichiometric surface, this new

coordinate system moves with the velocity of a point on the stoichiometric surface. The
unsteady flamelet model using Eq. (2.4) in a model for turbulent non-premixed combus-

tion has, therefore, been called the Lagrangian Flamelet Model (Pitsch (2000) and Pitsch

& Steiner (2000)).
We now want to derive an Eulerian form of the flamelet equations. For the Lagrangian-

like time coordinate r follows

0 _ 0 Oxz
Or Ot + --_-" V, (2.6)

where Oxz/Ot is the velocity of a point on the mixture fraction iso-surface. The velocity
of the scalar iso-contours has been discussed in connection with the LFM in Pitsch &

Steiner (2000) and can, according to Gibson (1968), be given as

Oxz V. (pDVZ) VZ (2.7)
--_-V

ot ivzi

where the first part is because of convection and the second part because of diffusion of
the mixture fraction.

Introducing Eqs. (2.6) and (2.7) into Eq. (2.4) and for the reasons discussed in Pitsch

& Steiner (2000) neglecting the diffusive part in Eq. (2.7) leads to the flamelet equations

in an Eulerian system

OY_ x 02Y_
p-_ + pv . VYi - P20Z 2 rhi = 0. (2.8)

The same equations could have been derived using a two-scale asymptotic analysis as

recently suggested by Peters (2000). In this approach a short scale is defined in terms

of the mixture fraction covering the range in the close vicinity of the flame surface. A

second coordinate is assumed to describe variations on the long scales only and essentially

replaces the spatial coordinates. Since the long scale coordinate is still Eulerian, the

convection term remains during the derivation in the equation, and a transformation as

given by Eq. (2.6) is not needed.
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Equations 2.8 have been derived to be valid locally and instantaneously. To apply these

flamelet equations as a sub-grid combustion model for LES, closure will be achieved as

suggested by Pitsch et al. (1998). The scalar dissipation rate and the velocity in the

flamelet equations will be replaced by the conditional means of the instantaneous local

conditionally filtered values of the scalar dissipation rate and the velocity. Consequently,

the species mass fractions obtained by solving the flamelet equations are also to be

interpreted as conditional mean quantities. This implies that the influence of the sub-

grid fluctuations of the scalar dissipation rate and the velocity is small, which excludes
the validity of the current model for situations, where local extinction phenomena are

important. Note, however, that the sub-grid part of the scalar dissipation rate certainly

needs to be accounted for in the model for the filtered scalar dissipation rate.

The flamelet equations derived here show close resemblance to the first order condi-

tional moment closure model (CMC) proposed by Klimenko (1990) and Bilger (1993).

Only the turbulent transport term is missing here, which has been omitted because it is

small in the present application. However, it could be included in the model by similar

arguments as given in section 3.12 in Peters (2000).

The reason for the similarity of the flamelet equations given here and first order CMC

is that both models assume the conditional fluctuations to be negligible. In flamelet

modeling these fluctuations would be taken into account by averaging over ensembles of
flamelets with different scalar dissipation rates and presuming a pdf of the scalar dissipa-

tion rate. In contrast to this, in CMC the conditional fluctuations appear as additional

unclosed correlations in the CMC equations. These correlations then have to be modeled.

Therefore, differences in both models only appear if conditional fluctuations are taken
into consideration.

3. Numerical implementation

Unlike the application of steady state flamelet models, which is very straightforward,

the numerical implementation of the present model needs some further consideration.
The reason for this is that the flamelet equations derived here are time dependent, three-

dimensional in space, and also depend on mixture fraction. Also, the intended use of

complex chemistry requires solving Eq. (2.8) for a large number of chemical species. It

seems, therefore, that the current approach is prohibitive in LES since this is known to

be an expensive technique already for simulations of non-reactive flows.

However, an important aspect here is that in a spatially discretized form of Eq. (2.8) we

solve in each computational cell not only for scalar values of Y/, but for the function Yi (Z).

Under the assumptions made earlier, this function is not likely to change rapidly in space.

Strong changes of Y/, however, are to be expected in the direction of Z. Therefore, the

spatial discretization of Eq. (2.8) can be much coarser than the resolution of the remaining

equations. The present simulations have been performed using a computational mesh in
spherical coordinates with 192 x 110 x 48 cells in the downstream (s), radial (0), and

circumferential (¢) direction, schematically shown in Fig. 1. The flamelet equations are
spatially discretized in the downstream and circumferential direction only, using 48 x 8

cells. Since the mixture fraction varies mainly in 0-direction, changes of Yi(Z) with respect

to 0 are expected to be small. Therefore, for the solution of Eq. (2.8) the 0-direction is

assumed to be homogeneous.

In the time discretization of Eq. (2.8), the unsteady term, the diffusion in Z, and the
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FIGURE 1. Schematic representation of the coordinate system.

chemical source term are solved implicitly. The convection term is explicit and treated

as source term in the implicit solution of the remaining terms.
In order to further reduce the computational effort, a reduced 20-step mechanism has

been derived for the present simulation. The reduced scheme is based on the GRI 2.11

mechanism by Bowman et al. (1998).

4. Results and discussion

In this section numerical results of the presented model will be presented and compared

with earlier results obtained by the LFM (Pitsch & Steiner (2000)) and experimental

data. Numerical simulations have been performed for a piloted methane/air jet diffusion

flame (Sandia Flame D), experimentally investigated by Barlow & Frank (1998a, 1998b).

As mentioned earlier, the fuel has been diluted by 75 vol. % of air in order to minimize

the formation of polycyclic aromatic hydrocarbons and soot, which would interfere with

the applied experimental techniques. The fuel nozzle is enclosed by a broad pilot nozzle

and a co-flow of air. The Reynolds number based on the fuel stream is Re = 22400.

The time averaged mixture fraction development along the centerline predicted by

the EFM and the LFM is given in Fig. 2 on the left. The overall agreement with the

experimental data is very good. The differences between the two models are small and

can, particularly in the far downstream part, be attributed to the statistical error, which

should disappear for longer sampling time of both simulations. Also shown in Fig. 2 is

the time averaged root mean square (RMS) along the centerline. Again the agreement

with the experimental data is quite good, and the differences between the models are

negligible. These trends were to be expected since the combustion model influences the
conserved scalar field only through the density, which already seemed to be predicted

quite well in the simulations using LFM and cannot be expected to change largely.

As an example for the main reaction products, centerline profiles of carbon dioxide and
water mass fraction are also shown in Fig. 2 as function of the mean mixture fraction.

The predictions of the EFM are in very good agreement with the experiments. For CO2
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there are hardly any differences to the LFM. However, for H20 the new model seems to

give some improvement on the fuel rich side, where the mean mixture fraction is larger

than 0.45. This corresponds to the region closer to the nozzle. The region with the largest
discrepancies between the models is at Z _ 0.6, which can from the left part of Fig. 2 be

estimated to be at x/D ._ 30. The reason for these differences will be explained in the

following discussion of the conditional averages.

Conditional mean quantities are given in Figs. 3, 4, and 5 at x/D = 15, 30, and 45,

respectively. Temperature and NO mass fraction are given in the left-hand figures. As

stable intermediates CO and H2 mass fraction are shown in the respective right-hand
figures. Again the results of the EFM are compared to the LFM and experimental data.

In the region close to the nozzle, at x/D = 15, the maximum temperature can be

observed to be slightly overpredicted by both models. This has been discussed by Pitsch

& Steiner (2000) in a comparison with the single shot data from the experiments. It has

been found that the temperature is well predicted provided the flame is burning. The

decreased conditionally averaged temperature found in the experiments is only caused by

relatively few local extinction events, which are neglected in both the extended and the

Lagrangian flamelet models. On the rich side the temperature is slightly overpredicted by

the LFM, but well predicted by the EFM. Also for the NO profile given in Fig. 3 the new

model leads to a significant improvement showing very good agreement with the experi-

ments, whereas the predictions by the LFM overpredict the maximum NO concentration

slightly. Since NO is well known to be strongly dependent on the temperature, it seems

m
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at first surprising that NO agrees well even though the temperature is overpredicted.

The reason is that the high activation temperature of the NO formation causes NO to be

formed essentially at the highest temperatures. As explained earlier the local tempera-

ture seems to be well predicted and the overprediction of the temperature is only caused

by a small volume fraction with significantly lower temperature, which in any case does

not contribute to the formation of NO. Similarly to the temperature, but much more

obvious, CO and H: mass fractions at x/D = 15 in the rich part of the flame are also

overestimated by LFM. The predictions of the EFM again predict the experimental data

very well. The reason for these differences will be explained in the following discussion.

At x/D = 30, shown in Fig. 4, the temperature profile predicted by the LFM shows a

distinct heat release region approximately Z = 0.6. This heat release is caused by the high

air content of the fuel stream mentioned earlier. The interaction with the main diffusion

flame, located at approximately Z = 0.35, causes consumption of fuel and oxidizer,

which essentially forms a rich premixed reaction zone. Within this region, because of the

high local equivalence ratio, rich stable intermcdiates such as CO and H2 are formed

in large concentrations as shown in the same figure. However, the rich premixed heat

release region cannot be observed in the experimental data. Hence, the temperature in

this region is slightly overpredicted, and the CO and H2 mass fractions are strongly

overpredicted.

The main difference between both combustion models discussed here is that in the

LFM the scalar dissipation rate is conditionally averaged over cross sections, whereas the

EFM is able to take the local fluctuations of the scalar dissipation rate and the unsteady
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response of the mixing process and the chemistry into account. The consideration of these

fluctuations in the present simulations using the EFM obviously changes the turbulence-

chemistry interaction in such a way that chemical reactions in the rich premixed part

cannot occur, which is consistent with the experimental findings. Therefore, all quantities

predicted by the EFM are in much better agreement with the experimental data. This is

reflected in the temperature profile, which does not reveal the rich heat release region as

well as in the conditionally averaged mass fractions of the stable intermediates. Both, CO

and H2 mass fraction show excellent agreement with the experiments. For NO this effect

does not have a large influence since the mass fraction in the rich part is more governed

by transport of NO from the formation region at the maximum temperature, which is

only weakly influenced by the rich heat release region, even in the predictions by LFM.

However, as shown in Fig. 4, at Z _ 0.6 the LFM predictions reveal an NO consumption

region caused by the heat release in this region. Even though NO seems underpredicted

even by the results of the EFM, these do not show NO consumption, which is consistent

with the experiments. A similar discrepancy as seen in the comparison of NO obtained

from the EFM, and the experimental data has been found in a comparison of predictions

of a laminar counterflow diffusion flame with experiments using the same fuel (Barlow
(2000)), indicating that this underprediction might be caused by the chemical reaction
scheme rather than the combustion model.

The observed trends continue for the farther downstream positions. In Fig. 5 the con-

ditionally averaged quantities are given for x/D = 45. Here, the heat release in the rich

region is even more pronounced in the temperature predictions by the LFM simulation.

Interestingly, this can also be observed in a much weaker form in the predictions of the

EFM and in the experimental data. This can be very clearly seen in the right-hand figure

of Fig. 6, where the conditional averages of methane and molecular oxygen are shown for

x/D = 45. Obviously the oxygen is depleted not only in the reaction zone of the diffusion

flame at Z = 0.35, but over a much wider region, ranging from stoichiometric conditions

to approximately Z _ 0.6. Also the consumption of fuel starts at higher values of the

mixture fraction as compared to x/D = 30, which is shown in the left-hand figure of

Fig. 6.

The influence of the rich heat release on CO and Ha at x/D = 45 is still quite strong.
The results of the EFM again provide significantly improved predictions as compared to
the LFM.
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5. Conclusions

In the present paper an Eulerian formulation of the unsteady flamelet model for LES

of non-premixed combustion is presented, which in contrast to the Lagrangian flamelet

model, as formulated in an earlier study, accounts for local fluctuations of the scalar

dissipation rate.
The model has been applied to the Sandia flame D and the predictions are compared

to results obtained by the LFM and to experimental data. It is demonstrated that in-

accuracies in the LFM predictions in the rich part of the flame are mainly because of

wrongly predicted heat release in this region. It is shown that the results using the new
model formulation provide a significant improvement over the LFM results, and are in

excellent agreement with the experimental data.
The main conclusions of this study are that the most important reason for the im-

provement over the earlier model formulation is the consideration of the locally resolved
fluctuations of the modeled scalar dissipation rate and the unsteady response of the

interaction of molecular mixing and chemistry.

It seems noteworthy that these fluctuations of the scalar dissipation rate can only be

observed in LES-type calculations, which implies that the level of accuracy obtained in

the present study cannot be achieved using Reynolds averaged methods.
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A high-order approximate-mass spline collocation
scheme for incompressible flow simulations

By Olivier Botella

1. Motivation and objectives

The development of numerical methods based on B-spline methodology is motivated

by the substantial computational cost of large-eddy simulations (LES) of complex turbu-

lent flows. Indeed, the large number of grid points needed in turbulent boundary layers

remains one of the principle obstacles to a wider application of LES to flows of engineer-

ing interest. An active part of research in LES is devoted to reducing these resolution

requirements by the formulation of approximate wall conditions (see e.g. Nicoud et al.

(2001)) and by the development of highly accurate numerical methods for the precise

representation of near-wall structures.
Several works (Shariff & Moser (1998); Kravchenko et aI. (1999); Kravchenko & Moin

(2000)) have been devoted to the development of B-spline methods on semi-structured
embedded meshes. This technique allows a substantial reduction in the computational

cost of a simulation by using fine grids in physically significant flow regions only. The

use of B-splines is motivated by the development of robust and non-dissipative LES

schemes on arbitrary meshes. The conservation of physical invariants such as kinetic

energy is highly desirable for the simulation of turbulent flows (Kravchenko & Moin

(1997)), and these requirements are difficultly reproduced by finite-difference schemes
on non-uniform meshes (Vasilyev (2000)). Moreover, the resolution power of B-splines of

maximum continuity allows the representation of a broad range of scales of a turbulent

flow (Kravchenko et al. (1999)).
The work of Kravchenko et al. (1999) and Kravchenko & Moin (2000) has shown

the high suitability of B-spline methods for the computation of complex turbulent flows.

However, the Gaterkin approximation that is employed is too cPu intensive. The method

is burdened by the cost of evaluating nonlinear terms where, as observed in Kravchenko

et al. (1999), 50% of the computational time is spent on their evaluation.
This report represents a follow-up to the work initiated in Botella (1999, 2001) for

developing a cost-effective B-spline Navier-Stokes solver. The equations are discretized

with the collocation method, which allows a drastic reduction of the cost of evaluating

nonlinearities. A stable approximation of the pressure is obtained by constructing stag-

gered bases for the velocity and pressure which are, in a sense, the B-spline equivalent
to the popular staggered finite-difference discretization (Harlow & Welch (1965)). The

time-discretization employs a fractional step scheme.

In association with "local" (or "explicit") discretizations such as finite-difference or

finite-volume approaches, fractional step techniques are widely considered as the most
cost-effective method for solving the Navier-Stokes equations. Indeed, they provide a

maximum decoupling of the velocity and the pressure so that only sparse elliptic problems
need to be solved at each time-cycle. However, for "global" discretizations such as B-

sptine methods that yield a non-diagonal mass matrix, a straightforward application

of these methods retains some coupling between the velocity and pressure: the pressure
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operator associated with the projection step, which involves the dense inverse of the mass

matrix, is dense and can only be constructed for modestly sized problems. As suggested

in Botella (1999, 2001), the pressure equation can nonetheless be solved by means of a

Uzawa algorithm, but the CPU cost of this iterative solution, even accelerated by modern

Krylov subspace methods (Saad (1996)), is prohibitively high for large scale problems.

In order to make this B-spline method attractive with respect to CPU cost, we have

made an effort to modify the fractional step scheme in order to obtain a simpler linear

system for the pressure that would be sparse and to eliminate the need for Uzawa itera-

tions. A modification of the mass matrix to get a sparse approximation of its inverse is

a key element in this endeavor.

The modification of the "consistent approximation", which generates the non-diagonal

mass matrix, has always been a critical issue for finite-element type methods. A common

ad hoc simplification consists in approximating the mass matrix by a diagonal matrix,

usually by summing its rows and putting the result on the diagonal (the "lumped mass"

approximation, see e.g. Gresho &: Sani (1998)). For compressible flow simulations, this

simplification is motivated by the use of explicit time-stepping such that, when the time-

derivative term is lumped, the inversion of the consistent mass matrix is no longer needed

at each time cycle. This mass lumping technique, however, diminishes the accuracy of

the resulting scheme, most notably for unsteady flows dominated by convection effects

(Gresho et al. (1978)), since this approximation is, in general, a first-order approximation
of the consistent mass matrix.

So far, the most satisfying application of the lumping technique to incompressible flow

computations is represented by the "projection 2" scheme of Gresho & Chan (1990).

It uses a semi-consistent mass matrix approximation (SCM), i.e. the mass matrix is

lumped in front of the pressure gradient only, while the continuity equation is unaltered.

As a consequence, the pressure operator is sparse and can be efficiently inverted by stan-
dard elliptic solvers. Early applications of the SCM technique to the B-spline collocation

method were reported in Botella (1999, 2001). For low-order spline approximations, this
scheme performed accurate Navier-Stokes benchmark computations with only a fraction

of the CPU time needed by the original consistent scheme. However, due to the crude

approximation represented by the lumping of the mass matrix, the SCM scheme led to

a loss of the accuracy that would be expected for high-order B-splines.

In order to preserve as far as possible the high accuracy of the B-spline method, it is

thus necessary to build more accurate approximations of the consistent mass matrix than

the lumped approximation. These considerations led us in this work to the development

of approximate inverses of the mass matrix, i.e. highly-accurate sparse approximations

of the inverse of the consistent mass matrix. This concept of approximate inverse is

somewhat similar to the one developed for the iterative solution of linear systems, where

the approximate inverse is an explicit preconditioner whose application in an iterative

procedure requires a sparse matrix-vector multiplication only (see e.g. Saad (1996)). The

main difference is that we are able to replace the solution of a mass matrix problem by

a single sparse matrix-vector multiplication while keeping the order of accuracy of the

B-splines.

For the B-spline collocation method, such sparse approximations are obtained by ap-

plication of local interpolation schemes. These schemes of quasi-interpolation were devel-

oped in e.g. Lyche &: Schumaker (1975); de Boor (1978) to build spline representation of

a function from data values. The B-spline coefficients are not determined as the solution

to a collocation system, as the consistent approximation would require, but rather as the
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linear combination of the function values at a small number of data points. When these

data points are chosen among the collocation points, this linear combination defines the

entries of the approximate inverse of the mass matrix. The number of data points affects
the order of accuracy of the approximate inverse. The case with a single data point cor-

responds to the low-order lumped approximation. The increase in the number of data

points raises the order, and a sufficient number of points yields the order of accuracy
of the consistent approximation. These approximate inverses thus represent a high-order

generalization of the mass lumping technique.
The concepts of approximate inverse and local interpolation may have important ap-

plication to numerical algorithms where a fast transformation from the physical (collo-

cation) space to the B-spline coefficients space is required. Among others, we cite the
development of restriction operators for spline multigrid methods (Christara & Smith

(1997)) and the evaluation of nonlinearities in collocation space, as in the pseudospectral
method. In this report, the use of an approximate inverse allows us to solve the pres-

sure equation of the Navier-Stokes scheme with a fraction of the CPU time required by

the consistent approximation, with the same order of accuracy. The slight loss of the

resolving power of the semi-consistent schemes, caused by the replacement of the con-

sistent mass matrix, is greatly counterbalanced by their computational efficiency. These

issues are carefully addressed here by presenting numerical tests and Fourier analysis.

The combination of these approximate inverses with the SCM fractional-step technique

allows the construction of a highly-accurate cost-effective Navier-Stokes solver, as proved

by the benchmark tests reported in this paper.

2. Background on B-spline numerical schemes

2.1. Construction of B-spline bases

A spline function is a piecewise polynomial of order k (the polynomial degree is k - 1 at

most) defined on the interval A =]a, b[, whose derivatives at some order possess jump-

discontinuities at breakpoints _ = {_i, i = 1,... ,I + 1} defined by

a=_l <_2<'"<_i<"'<_l<_t+l=b. (2.1)

In the following, we focus on the characterization of the so-called smoothest splines, which

have jump discontinuities in their k- 1 derivative, since previous studies in Botella (1999,

2001) have assessed their superior resolving power in the collocation approach.

A spline function f(x) is commonly described in its B-representation

N

?(x)=
i=1

(2.2)

N = l + k- 1. (2.3)

The B-splines of order 1 are step functions defined by

1 ifx C [t,,ti+l[,B_ (x) = 0 otherwise,
(2.4)

where B_ (x) is a special spline function of order k called a B-spline which has, in partic-

ular, the property of having compact support (see e.g. de Boor (1978)), and the number

of the B-splines is
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and an efficient construction of the B-splines of order k _> 2 is given by the recurrence

relation of Curry and Schoenberg (see e.g. de Boor (1978)):

Bk(x)_ x-ti B__l(x) + ti+k-z B_+l(x)" (2.5)
ti+k-1 -- ti ti+k -- ti+l

Formulae (2.4) and (2.5) introduce the knots {t_, i = 1,-.. , N + k}, which enforce the

regularity of the B-spline basis by requiring

tk+i-1 = _i for i = 2,.-. ,l, (2.6)

i.e the knots coincide with the breakpoints in the interior of the domain. The construction

of the basis given by Eqs. (2.4)-(2.6) leaves freedom in the first k and last k of the knots.

A convenient choice for the approximation of boundary value problems is to set these
end-knots as

tl ..... tk = a, tg+l ..... tN+k = b. (2.7)

In that case, by using basic properties (de Boor (1978)) such as that of compact support,

B_(x) = 0 for x __ [ti, ti+k], (2.8)

and partition of unity,

N

EBb(x) = 1 for x E [a,b], (2.9)
i----I

the spline function (2) satisfies

?(a) = _1 and f(b) = O_N, (2.10)

so that Dirichlet boundary conditions are strongly imposed. A choice analogous to (2.7)

for the first k and last k knots that is suitable for imposing periodic boundary conditions

is discussed in de Boor (1978) and Kravchenko et al. (1999).
A useful property is that a B-spline basis of order k can represent elements of the space

/Pk (A), i.e. polynomials of degree k-1 at most. More precisely, Lyche & Schumaker (1975)
established the identity

N

 ,TimB (x) = m = 1,2,...,k, where (2.11a)
i=1

k-1

- 1)! ¢}k_m)(O) ' with ¢i(x) = II (x- ti+p). (2.11b)7ira = (-1) m-1 - 1)!
p=l

In the following, the superscript referring to the order of the B-splines will be dropped

for the sake of brevity.

2.2. Semi-consistent fractional step scheme

Numerical approximation of the Navier-Stokes equations for incompressible flows are

obtained by approximating the velocity and the pressure as

N N--2

V = E vi,jBi(x)Bj(y), P= E pi,jBi(x)Bj(y), (2.12)

i,j=l i,j=l
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where {Bi(x),i = 1,...,N} and {Bi(x),i = 1,...,N- 2} are the compatible B-spline

bases of order k introduced in Botella (1999, 2001). The Navier-Stokes equations are

discretized on the collocation grid {(xi,yj); i,j = 1,...N} that will be defined later.

The time-integration is based on the following prototype fractional step scheme, where

the nonlinear terms are discarded,

M U- U '_
At )_U -t- J_'_J_/[A 1 5P n -- f n+l, (2.13)

and

Un+ l _ -_

.,td At + jk4 ,_4A17_(p,_+; _ pn) = 0, (2.14a)

79U n+l = 0. (2.14b)

In these equations, At is the time step, U and P are vectors representing the unknown

spline coefficients of the velocity and the pressure respectively, F is a source term, 3//is

the (non-diagonal) mass matrix, K is the viscous diffusion matrix, and 79 and 79 represent

first derivatives of velocity and pressure respectively. In contrast to the standard B-

spline discretization considered in Botella (1999, 2001), which will be referred to as the

consistent method (CM), this scheme considers a modification of the pressure gradient in

Eqs. (2.13) and (2.14a) by introducing the matrix .Ad_ 1, which is the approximate inverse
of the mass matrix 3d in a sense to be defined later. The divergence equation (2.14b)

is identical for both methods and expresses that the continuity condition be satisfied at

the inner collocation points. Note that when M A1 = 3/1-1 the semi-consistent scheme

(SCM) (2.13)-(2.14) reduces to the original CM scheme.
The main interest of the SCM scheme is that the projection step (2.14) yields the

pressure equation

¢4A(pn+; _ gn) = 79U/At, (2.15)

where the pressure operator

.AA = 79.A/[AI_, (2.16)

is sparse when .A/_A1 is sparse, resulting in a pressure equation that can be efficiently
solved by standard iterative methods for elliptic problems.

The principle of scheme (2.13)-(2.14) was introduced by Gresho & Chan (1990) for

the finite-element method with J_4A 1 -1= .M L , i.e. an approximate inverse generated by

the lumped approximation which is, in general, a first-order approximation of the mass

matrix. The use of a highly accurate approximate inverse is motivated by investigating
the truncation error of the SCM scheme. When combining Eqs. (2.13) and (2.14a) to

eliminate the provisional velocity U, we get

Un+l - Un + T)P'_+; F n+l (2.17)J_ EU n+l nc $S -t- $A = ,
At

where, in addition to the O(At 2) splitting error

gS = -At lCJMA15(P '_+1 - pn), (2.18)

common to fractional-step schemes, the approximation error

gA = (.h.4 - .A/IA).AdAI_.)P n+l , (2.19)
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is a spatial error expressing the degree of accuracy to which :_¢_A approximates the con-

sistent mass matrix 3d. The use of an approximate inverse whose accuracy is consistent

with the B-spline discretization is thus mandatory for preserving the accuracy of the
SCM scheme.

3. Construction of approximate inverse of the mass matrix using local spline

approximation

3.1. Consistent interpolation vs. local interpolation

The consistent interpolation of a function f(x) consists in finding a spline function

N

f(x) = E _i(f) Bi(x), (3.1)
i=I

that takes on the values of f(x) at a given set of collocation points {x j, j = 1,..., N}, i.e.

N

E_i(f) Bi(xj)=f(xj), for j=I,...,N. (3.2)
i=1

This linear system takes the matrix form

jQa = f, (3.3)

where o_ = (o_l(f),...,o_g(f)), f = (f(xt),...,f(xN)) and _S_ = (B_(xj))i,j=l ..... N is

the consistent, non-diagonal mass matrix of bandwidth k. The solution of a linear system

of equations is thus needed for determining the spline coefficients.

In contrast, local interpolation methods were developed in e.g. Lyche & Schumaker

(1975); de Boor (1978) such that the determination of the coefficients does not require

solving a collocation system. These methods are local in the sense that the evaluation

of the coefficients depends on the value of the function and/or its derivatives at a small

number of data points. In the following, we focus on local schemes involving function
values, i.e. schemes such that the i th sptine coefficient is determined as

kl

= (3.4)
j=l

where {Tij,j = 1,..., kl} is a given set of distinct data locations in A, kl < k is the number

of data points used for the evaluation of each spline coefficient and will be referred to as

the order of the local scheme, and (/3ij, j = 1,..., kl) are coefficients to be determined.

In the case where the data points are chosen from the set of collocation points, scheme

(3.4) can be written in matrix form as

ot = .A_A' f, (3.5)

where the coefficients {/_ij} in (3.4) define the entries of the square matrix ,QA 1 that

is precisely the approximate inverse of the consistent mass matrix ,Q we are seeking.

The matrix MA 1 is sparse, each of its row possessing kl non-zero entries at most. Thus,

the linear system solution required by the consistent approximation is now replaced by

a sparse matrix-vector multiplication involving the same right-hand side.
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3.2. Derivation o] the local interpolant

The local interpolation scheme we use for the determination of the entries of 3d_ 1 is

the scheme based on point evaluations considered in Example 3.4 of Lyche & Schumaker

(1975). This construction is valid for B-spline bases of any order k and an arbitrary
distribution of knots.

Given kl < k and some data points {_'ij;i = 1,...N, j = 1,..., k,} such that

{r/l,... ,'rik_} are distinct for all i, the coefficients {¢?ij ; i = 1,...,N, j = 1,..., k_}

in (3.4) are determined so that the local scheme reproduces polynomial of order kl, i.e.

f=], VIE_k,(A), kj_<k. (3.6)

For this purpose, it is convenient to write Eq. (3.4) as

kl

ai(f) = E _ij [ril, . . . , rij] f, (3.7)
j=l

where [., • ]f represents the divided difference of f(x) (see e.g. de Boor (1978)). Condition

(3.6) amounts to representing each monomial x "n-l, m = 1,..., kl, as

#ij[Tn,...,riy]X m-1 Bi(x) = x m-1. (3.8)
i=1

By using (2.11), the coefficients Pij are obtained as the solution of the lower triangular

linear system, for each i = 1,..., N

kl

Z ,ij [ril,.-.,Tij] X rn-1 = "_irn, for m = 1,...,kl, (3.9)

j-=l

from which the PO can be obtained by back-solution. The values of ptij for j = 1,..., 4
are given in Lyche & Schumaker (1975) and are listed hereafter for completeness:

tLgil : 1, (3.10a)

#i2 = 7i2 - rfl, (3.lOb)

Pi3 : 7i3 -- (ril -4- ri2) ]2i2 -- r21, (3.10c)

tti4 m "Yi4 -- (Til -4- Ti2 + Ti3) _ti3 -- (T_ 7u TilTi2 + 4) _ti2 -- T/31 • (3.10d)

Due to the structure of system (3.9), the values of the {ttij} do not depend on kl. Thus,
the coefficients of a scheme of order k, < 4 are given by the first kl lines in Eq. (3.10). The

extra effort to determine the coefficients of a scheme of order 5 would only be to calculate

#i5 from (3.9). Once the [_ij are determined, the _ij can be obtained by equating (3.7)

to (3.4).
Lyche 8z Schumaker (1975) have shown that this local scheme yields an accuracy of

order k] in the maximum norm. In particular, for the case kl = k, it is thus possible to

obtain a local interpolant that preserves the order of accuracy of the consistent approx-
imation.

Another important case occurs for kl = 2: if, to obtain the ith B-spline coefficient, the

first data point rn is chosen to be equal to x_ defined as

k-1

x_. = 7i2, where from (2.11b) 7'i2 = E ti+p/(k - 1), (3.11)
p----1
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then #i2 = 0 in Eq. (3.10b) for any choice of the second data point Ti2. Thus, the spline
fimction

N

f(z) = _ f(x*) Bi(x), (3.12)
i=1

is a second-order approximation to f(x). This scheme is precisely the variation-diminishing

approximation of Marsden & Schoenberg (see e.g. de Boor (1978)), and the collocation

points (3.11) will subsequently be referred to as the Marsden-Schoenberg points.

A last important remark concerns the accuracy of the imposition of Dirichlet boundary

conditions with the local scheme in the case where the end-knots are set using Eq. (2.7).

From Eqs. (2.10) and (3.7), the value of the spline at the end-point x = a is

kl

]'(a)=al(f), with oq(f)=Eplj[rll,...,Tljlf, (3.13)
j=l

where the coefficients {Plj,---, Pike} are solution to

ki

E #lj[Tll'''''TIjIXm-1 -=am-l' m = 1,...,kl. (3.14)
j=l

If 7-11 is chosen to be equal to a, the unique solution is then/Zll = 1, 1112 ..... /Zlkl ---- 0.

From Eq. (3.13) we get "f(a) = f(a) and, correspondingly, ]'(b) = f(b) at the other end-

point, showing that Dirichlet boundary conditions are satisfied exactly just as in the

consistent approximation (Eq. (2.10)).

3.3. Approximate inverse of the mass matrix

The local interpolant allows us to build an approximate inverse ,QA 1 of the mass ma-

trix when the data points {Ti,j} are chosen from the set of collocation points {xi,i =

1,..., N}. For the imposition of Dirichlet conditions with the end-knots (2.7), an addi-

tional constraint would be to set 711 = a and 7N1 = b, the choice of the remaining data

points {rlj ,j = 2,..., kl} and {TNj ,j = 2,..., kl} having no consequence.

A case of special interest arises when the approximate inverse reduces to JQA _ = Z.

This approximate inverse corresponds to the lumped mass matrix widely used in the

finite-element community (see e.g. Gresho & Sani (1998)), obtained by summing the

rows of the consistent mass matrix ,Q and putting the result on the diagonal. For the

spline-collocation method, the local interpolant of order kl = 1 with Til = Xi generates

such a matrix, and thus yields first-order accuracy in general. However, as shown by the

variation-diminishing scheme (3.I2), the lumped mass matrix is second-order accurate

when the Marsden-Schoenberg collocation points (3.11) are used.

The latter case identifies the Marsden-Schoenberg points as an alternative to the usual

choice of the collocation points, i.e. the location of the maximum of the B-splines. These

two definitions are equivalent in particular cases only, such as a periodic domain with

uniform knots. They nonetheless yield the same characterization of the first and last

collocation points when the end-knots (2.7) are used, namely xl = a and xy = b. In the

following, the Marsden-Schoenberg points will be used as much as possible even though

no advantages have yet been observed when local interpolants of order higher than 2 are

employed.

As sketched in Fig. 1, the approximate inverse generated by a local scheme of order

kl > 3 can be viewed as a high-order generalization of the mass lumping technique.
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FIGURE 1. Sketch to illustrate the approximation of a function f(x) with a B-spline basis of order
k = 4, on l + 1 = 10 equidistant breakpoints (o) with end-knots (2.7). The coefficient associated
to the 6 th B-spline (_) is evaluated with the values of f(x) at: all Marsden-Schoenberg
collocation points (.) with the consistent approximation; a unique collocation point (framed)
with the mass lumping approximation; and 4 collocation points (circled) when a local scheme
of order kl = 4 is used.

Since A4 -1 is dense, the evaluation of the spline coefficient ai(f) by the consistent

approximation involves values of f(x) at all collocation points. In contrast, the mass

lumping technique consists in identifying ai(f) to the value of f(x) at the collocation

point associated with the ith B-spline. More generally, the local approximation of ai(f)

involves values of f(x) at several collocation points, which are located in Fig. 1 in the

support of B,(x). This approximation has the consequence of expanding the bandwidth

of jQ_I while raising the accuracy of the evaluation of a,(f).
Several issues have to be addressed for generating approximate inverse of practical

interest. A loss in the spatial resolution power of the spline-collocation method would

predictably result from the replacement of the consistent mass by the local mass approx-

imation. Furthermore, while a O(N -k_) asymptotical accuracy is assured when ki data

points per coefficient are used, the definition of the local interpolant leaves freedom in

their positioning. The influence of the location of the data points on the accuracy of the

resulting local scheme is investigated in the next section.

4. Numerical results

4.1. Local approximation in a one-dimensional periodic domain

It is convenient to analyze the resolution properties of the local approximation for B-

spline bases on a uniform distribution of breakpoints, with periodic boundary conditions.

The investigation of the influence of the position of the data points used for generating

JQA 1 is then greatly simplified since, in this configuration, the bases are generated by
translation of the same cardinal B-spline (de Boor (1978)). As a result, the i th Marsden-

Schoenberg point is characterized as the maximum of the spline Bi(x), i.e. for k even

* i= 1, N. (4.1)X i _ tiTk/2_ ...,

Moreover, this configuration allows to perform the modified wavenumber analysis of the
semi-consistent schemes.

The influence of the choice of the data points on the accuracy of the resulting schemes

is performed for local interpolant of order kl = 4. For completeness, results are also

provide for the popular variation-diminishing scheme (i.e, mass lumping approximation,
kl = 2). Table 1 displays the various sets of data points that we consider. Those sets
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Set of data points Index of data points used Offset of nonzero diagonals of fl4,;l
for local interpolation with respect to the main diagonal

Set I {i} 0,
Seth {i-2, i-l,i,i+l} -1, O, 1,
Set//' {i-l,i,i+l,i+2} -1, O, 1,
SetIII {i,i+l,i+2, i+3} O, 1, 2, 3,
Set III' {i-3, i-2, i-l,i} -3, -2, -1, O,
Set IV { i- 2, i- l, i + l, i + 2 } -2, -1, 1, 2,

TABLE 1. Description of the sets of data points used for local interpolation. The index i refers
to the collocation point associated with the i th B-spline.

of points are located as close as possible to the support [ti, ti+k] of Bi(x) in order to

minimize the bandwidth of JQA 1.

Set I corresponds to the variation-diminishing scheme, while the five other sets use the

local interpolant of order 4.

Sets H and H' represent the two possible choices of data points that yield approximate

inverses with the shortest bandwidth. For the particular case of equidistant knots with

periodicity conditions considered in this section, these two sets happen to generate the

same symmetric tridiagonal matrix ,CI.21. In general, this property is lost when the knots
are not distinct and equally spaced. As an example, for a B-spline basis on a uniform

distribution of breakpoints with Dirichlet boundary conditions, the tridiagonality of,Q_

is lost at its first and last k - 1 lines due to the fact that the end-knots are identical (see

Eq. (2.7)).

Sets III and III' correspond respectively to a left and right biasing of the data points

with respect to x*. It should be noted that even though these sets generate distinct
approximate inverses, they yield identical results on the accuracy tests and the modified

wavenumber analysis presented below. This phenomenon is understood by observing

that these numerical examples do not reflect the influence of the biasing direction on the
behavior of the resulting schemes.

Finally, set IV is designed to generate an approximate inverse, with a sparsity pattern

that is symmetric on arbitrary grids, by not considering the datum at point x*.
The first numerical test concerns the interpolation of the periodic function

f(x) = sin(10zrx) + cos(2zrx + 2), in A =]0, 1[. (4.2)

We recall that the consistent approximation requires a linear system solution while the

semi-consistent schemes require a single sparse matrix-vector multiplication. The max-
imal value of the error, sampled on a fine grid of 1001 equidistant points, is displayed

in Fig. 2 for splines of order k = 4. The poor accuracy of the lumping approximation is

obvious, yielding second order accuracy. The order of accuracy of the consistent approxi-
mation is recovered for all the local schemes of order 4. These results show the importance

of data point positions. Not surprisingly, the lowest error of the local schemes is obtained

with set II. Note also that for a moderate spatial resolution (N _< 25), sets III and IV

yield results inferior to those obtained with the lumping approximation.

For completeness, Fig. 3 displays analogous results obtained with splines of order 6. As
in the previous case, fourth-order accuracy is obtained with local schemes of order 4 and,

again, set H displays the lowest magnitude error. The results obtained with these local
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FIGURE 2. Maximal error vs. N, number of B-splines of order k = 4, for the various approxima-
tion methods. Local scheme with kl = 2 (a): set I .... ; local schemes with kl = 4 (o): set
II ------, set III ........ , set IV ----- ; consistent approximation --
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FIGURE 3. Maximal error vs. the number of points N with splines of order k = 6. See the
caption of Fig. 2 for the labeling.

schemes are, of course, far from the 6th-order accuracy of the consistent approximation.

This rate of convergence would nonetheless be obtained with local schemes of order 6.

A classical evaluation of the resolving power of a scheme is given by the modified

wavenumber analysis of the first derivative (e.g. Lele (1992)). For this purpose, the eigen-

value problem

u' = A u in h =] - zr, lr[, (4.3)

is solved numerically with periodic boundary conditions. The complex eigenvalues with

real imaginary part are denoted {/A,_, n = 0,..., N/2}, the remaining ones being their
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FIGURE 4. Modified wavenumber of the first derivative yielded by the different methods for
splines of order k = 4. Local scheme with kl = 2: set I .... ; local schemes with kl = 4: set II
------, set III ........ , set IV ----- ; consistent scheme -- ; exact

conjugates. The discretization of (4.3) by the consistent approximation is

.ATt(_= ATPa, (4.4)

where _) = (B[(x_)) is the first derivative collocation operator. Correspondingly, the
spectrum of the local schemes is obtained by solving

a = A 2JUlia. (4.5)

For splines of order k = 4 and 6 respectively, Figs. 4 and 5 sketch the modified wavenum-

ber spectrum _,, = 2_A,_/N versus the wavenumber wn = 27rn/N given by the different

approximations. As expected, the local scheme I degrades the resolving power compared
to the consistent approximation. For the local schemes of order 4, the location of the data

points has a great influence on their resolving ability, yielding very disparate wavenumber

plots. It is particularly striking that set IV gives lower resolving power than even the

lumped mass approximation.

A more quantitative measurement of the resolving ability of a scheme is given by the

resolving efficiency r,, i.e. the fraction of wavenumbers accurately represented within a

relative tolerance of e. This quantity is defined as re = 2M_/N, where M¢ is the number
of the modified wavenumber _,_ that satisfies the error tolerance

[_-w_l _<¢, n=0,...,N/2. (4.6)
03 n

The resolving efficiency r_ of the various schemes are given in Table 2 for characteristic

values of c. We observe that this measurement gives, once more, set H as the most

accurate of the local schemes. In particular, for splines of order k = 4, set H recovers

up to 80%, 79% and 75% of the resolved fraction r¢ of the consistent approximation

for e = 10 -_, 10 -2 and 10 -3 respectively. In comparison, the lumping approximation

recovers only 57%, 57% and 32% of this resolved fraction.

In summary, accurate approximate inverses that preserve the order of accuracy of the
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FIGURE 5. Modified wavenumber of the first derivative for splines of order k = 6. See the
caption of Fig. 4 for the labeling,
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Order k = 4 Order k = 6
Schemes e=O.1 e=O.O1 e 0.001 e=O.1 e=O.O1 e=O.O01

Consistent 0.61 0.56 0.44 0.73 0.67 0.61
Set I 0.36 0.32 0.14 0.30 0.27 0.16
Set // 0.49 0.44 0.33 0.45 0.41 0.30
Set III 0.48 0.43 0.28 0.46 0.42 0.26
Set IV 0.29 0.27 0.20 0.28 0.26 0.19

TABLE 2. Resolving efficiency r_ of the first derivative for the various approximations with
N/2 = 750.

consistent approximation can be generated when a sufficient number of data points is

used. The location of these data points is nonetheless of crucial importance. These nu-

merical tests have found the best position of these data points on a periodic uniform grid

to be set II. The resolution properties of the consistent approximation are, nonetheless,

not fully recovered by the local schemes. The marginal loss in accuracy is greatly coun-

terbalanced by their much lower computational cost, as it will be illustrated in the next
section.

In the case of Dirichlet boundary conditions, set//is used as a template for building

approximate inverses of order kl = 4 on a uniform distribution of breakpoints. The local

approximation of coefficients with indices i = k,..., N- k + 1 is performed with this set,

generating a centered tridiagonal approximation as in the periodic case. A modification

has to be performed for the first and last k- I deficient B-splines, i.e. which display

multiple knots in their support. The first and last coefficients use the datum at the end-

point a and b respectively, leading to the exact imposition of the Dirichlet conditions. For

the remaining B-spline coefficients with indices i = 2,..., k - 1 and i = N - k,..., N - 1,

we use the collocation points with indices {i - 1,i,i + 1,i + 2} and {i - 2,i - 1,i,i + 1}

respectively.



172 O. Botella

4.2. Semi-consistent approximation of the Div-Grad problem

We are now ready to describe the semi-consistent approximation (SCM) of the projection

step (2.14) by considering as model equations the Div-Grad problem:

av+Vp=f in f2=]0,1[ 2, (4.7a)

V.v=O infl=]0,1[ 2 , (4.7b)

v = g on 0f2. (4.7e)

This new discretization follows essentially along the lines of the consistent method (CM)

introduced in Botella (1999, 2001). Eqs. (4.7a) and (4.7b) are evaluated on the (N - 2) x

(N - 2) inner collocation points, while the remaining boundary points are used for the
determination of the boundary conditions (4.7e). The discretization of the divergence

equation (4.7b) is identical for both methods and reads in matrix form:

DU = G, (4.8)

where the velocity coefficients determined from the boundary conditions are put in the

right-hand side (RHS).

The SCM approximation of Eq. (4.7a) is now described with some details related to

the imposition of non-homogeneous boundary conditions. For this purpose, we denote by

27i the set of indices of collocation points in the interior of domain, and, correspondingly,

77B refers to the indices of the boundary nodes. The discretization of Eq. (4.7a) at the

interior collocation point (xi, Yk) is

a E A4i,k,J, 'AUj,t + Z _,k,j,lPjl, = Fi,k , (4.9a)
(j,l) E Zt (j,l) E Zt

where {_,k,j,I} are the gradient coefficients of the pressure spline, and

Fi,k = f(xi, Yk) _r _ J_i,k,j,la Uj,t , (4.9b)
(j,l) C Z_

corresponds to a RHS augmented with boundary velocity coefficients. The matrix form

of (4.9a) reads

aU + A4AI_P = J_dAIF, (4.10)

where AJA 1 is constructed from the tensor product of one-dimensional matrices .ATfA1in

each spatial direction, which use the distribution of data points for DirichIet conditions

described in the previous section.
On the other hand, the entries A{f_i,k,j,l) in Eq. (4.9b) need to be determined for the

imposition of the boundary conditions. For this purpose, the sum in (4.9b) is expanded
as

E A Uj,l _ -A -A Uj,t (4.11)fi/_ i,k,j,l = "/_¢_i,j "/_ k,l ,

(j,I) E Zo (j,l) E ZB

by using tensor product properties. For j = 1,..., N, the coefficients {-&li,j,-A. i = 2,..., N-

1} in the x-direction are then obtained by solving the one-dimensional problems

.E'talx j = ,5_, with 5 j = (_j,m ; m = 1,..., N), (4.12)

giving as solution x j = (._IAj ; i = 1,..., N). An analogous procedure is performed for
determining the coefficients in the y-direction.
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FIGURE 6. Sparsity pattern of.AA on a 13 × 13 uniform grid for splines of order k = 4, generated
with the mass lumping approximation (left) and the approximate inverse of order 4 (right).

Equations (4.8) and (4.10) yield the pressure equation

1AAP = 1D_MAI F - G,
O" O"

where the pressure operator

(4.13a)

An = DM_t/3, (4.13b)

is constructed by multiplication of sparse matrices. These operations are performed with

the SPARSKIT package (Saad (1990)).

Raising the order of the approximate inverse increases the number of non-zero entries of

AA. In two dimensions, when a natural ordering of the unknowns is used, a modification of
the block structure of AA is observed. As all illustration, Fig. 6 compares the structure of

pressure operators generated by the lumping approximation and the approximate inverse

of order 4. These operators have a similar block-structured pattern where the 11 × 11

blocks are more or less filled according to the order of the approximate inverse. For

splines of order 4, we observe that an approximate inverse of order 4 doubles the number
of non-zero entries of the pressure operator compared to the lumped mass approximation.

Correspondingly, an increase of 70% of the entries is observed for splines of order 6.
The semi-consistent method is now evaluated against the consistent method by nu-

merically solving problem (4.7) with a = 1, for the solution

v = rot sin 4rrx sin 4r_y, p = cos 47rx cos 4r_y,

on a uniform distribution of knots. For comparison with results obtained in Botella (1999,

2001), the collocation points are set as the location of the maximum of the velocity B-

splines. The maximum error on the first-component of the velocity u and the pressure,

sampled on a 300 x 300 uniform grid, is reported in Fig. 7. For splines of order 4 (Fig. 7(a)),

the use of an approximate inverse of order 4 maintains the order of accuracy of the

consistent approximation, namely O(N -4) for u and O(N -2) for p. It is striking to

observe that the magnitude of the error on p is almost identical for both schemes, while

the velocity errors of the SCM scheme are only marginally higher. The latter is certainly

the consequence of the inferior resolving power of the semi-consistent approximation
that we observed in Section 4.1. As it would be expected, the 6th-order accuracy on u

displayed in Fig. 7(b) by the CM scheme with splines of order 6 is not recovered by the
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FIGURE 7. Solution of the Div-Crad problem with (a) sp]ines of order 4, and (b) splines of order
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approximate inverse of order 4, and a fourth-order convergence rate is observed in this
case.

It is valuable to compare the CPU cost required by the iterative solution of the CM

and SCM equations. To give a fair evaluation, both systems are solved by similar iterative

techniques with the error tolerance (i.e. the l2 norm of the discrete divergence (4.8)) set
to e = 10 -s.

Since the pressure operator of the CM discretization is dense and thus cannot be

stored, the equations are solved by the Uzawa algorithm developed in Botella (1999,

2001), which is accelerated by the Bi-CGSTAB method (see e.g. Saad (1996)). The

preconditioner of this system is AL = 73A4Ll_, i.e. an SCM pressure operator where

the lumping approximation is used. The use of this preconditioner has the effect of making

the number of Uzawa iterations independent from the mesh size. Each step of the Uzawa

algorithm requires inversions of the consistent mass matrix and the preconditioner. These

problems are respectively solved by a direct method and the Bi-CGSTAB algorithm with

ILU(m) preconditioning. The value m = 0 is used for splines of order 4 and m = 2 for

splines of order 6, and the error tolerance is set to 10 -1°.

The SCM system precludes the use of Uzawa iterations, resulting in a far less cum-

bersome solution procedure. The pressure equation (4.13) is solved with the same Bi-

CGSTAB algorithm used for inverting the preconditioner AL of the CM system. The
velocity is then recovered by using Eq. (4.10).

Table 3 reports the CPU time observed for solving these systems on a sequence of

increasingly fine grids. The savings in CPU time yielded by the SCM method are tremen-

dous: for splines of order k = 4 the CPU cost is divided by 30, while this ratio reaches

100 for k = 6. Intuitively, these savings can be understood when observing that the com-

putational cost of the solution of the SCM pressure equation is roughly equivalent to a

single inversion of the preconditioner of the CM solution procedure. The ratio of savings
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Splines of order k = 4 Splines of order k = 6

N SCM CM Ratio N SCM CM Ratio
28 0.06 2.57 42.8 30 0.05 5.53 110.6
53 0.46 14.76 32.1 55 0.29 26.52 91.4
83 1.88 60.80 32.3 85 1.11 131.63 118.6
153 12.32 399.34 32.4 105 1.98 211.71 106.9

TABLE 3. Comparison of CPU time (in seconds) observed for the solution various
approximation of the Div-Grad problem.

is thus proportional to the number of Uzawa iterations required for convergence. Since
the number of Uzawa iterations is independent of the grid size but increases with the

order of the B-splines, the SCM solution method becomes more attractive as the order
of the discretization is raised.

5. Conclusion and future plans

Preliminary results on the application of the SCM scheme to the solution of the Navier-

Stokes equations have been obtained. These important tests assess (a) the high spatial

accuracy of the Navier-Stokes solver and (b) its robustness for unsteady computations.

The time-integration is based on scheme (2.13)-(2.14), with second-order backward-
differentiation of the time-derivative and Adams-Bashforth discretization of the nonlin-

ear term. This fractional step scheme yields second-order time accuracy for both velocity

and pressure (Botella (1999, 2001)). In order to obtain a fourth-order spatially accurate

method, B-spIines of order k = 6 are used in each direction, with the approximate inverse

of order kl = 4.
The first test concerns the validation of the spatial accuracy of the SCM scheme on a

uniform grid. For this purpose, we consider the steady solution

v = rot sin rrx sin rry, p= l(cos27rxcos2rry) + 10(x + Y),

in the domain ft =] - 1, 1[2. Fig. 8 displays the normalized 12 errors obtained when

the steady-state is reached. This figure confirms that the method is indeed fourth-order

accurate for both velocity and pressure.
The second test illustrates the accuracy and stability of the method for computing

unsteady solutions. We consider the computation of the periodic flow in the regularized

driven cavity flow at Re = 12,000, taking as a reference the spectral computation of

Shen (1991) performed with 65 Chebyshev polynomials in each direction and the time
step At = 5 x 10 -a. For comparison purpose, the SCM computation uses the same

discretization parameters with a similar grid refined near the boundary by a Chebyshev

distribution of knots. The initial condition is defined as the steady flow at Re = 10,000.

Fig. 9 displays the time-evolution of the kinetic energy on nearly half a million time-
steps. The periodic state is asymptotically reached with the same period T = 3.085 -1-At

measured by Shen (1991). This result shows the ability of the SCM method to conserve

kinetic energy on a long time integration and to reproduce spectral results with a similar

coarse spatial resolution.
The use of highly accurate approximate inverse in association to the SCM scheme led

to the development of a Navier-Stokes solver that preserves the accuracy of the B-spline
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FIGURE 9. Time evolution of the kinetic energy in the driven cavity at Re = 12000 computed
by the SCM fractional-step scheme on a 65 x 65 grid with At = 5 × 10 -3.

in a cost-effective way. The high computational interest of the fractional step method is

indeed recovered: the full decoupling of the velocity and pressure allows the solution to

sparse elliptic problems only at each time-cycle.

This solver would serve as the building block for performing highly-accurate LES

simulations of complex flow on semi-structured meshes. The solver is currently updated

for the handling of more general geometries, the flow past a circular cylinder being

considered as a first application. The semi-structured multidimensional approximations

will be constructed by using the mesh embedding algorithm of Shariff & Moser (1998).

Several issues related to the extension of the tensor product B-spline approximation have

to be addressed. The algorithm should be modified to generate in a compatible fashion the

semi-structured staggered bases of the velocity and pressure. In addition, the construction

of approximate inverse has to be extended to the case of these multidimensional B-splines.
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Construction of commutative filters
unstructured meshes

for LES on

By Alison L. Marsden, Oleg V. VasUyev t AND Parviz Moin

1. Motivation and objectives

Application of large eddy simulation (LES) to flows with increasingly complex geom-

etry necessitates the extension of LES to unstructured meshes. A desirable feature for

LES on unstructured meshes is that the filtering operation used to remove small scale

motions from the flow commutes with the differentiation operator. If this commutation

requirement is satisfied, the LES equations have the same structure as the unfiltered
Navier Stokes equations. Commutation is generally satisfied if the filter has a constant

width. However, in inhomogeneous turbulent flows, the minimum size of eddies that need

to be resolved varies throughout the flow. Thus, the filter width should also vary accord-

ingly. Given these challenges, the objective of this work is to develop a general theory for

constructing discrete variable width commutative filters for LES on unstructured meshes.
Variable width filters and their commuting properties have been the focus of several

recent works. Van der Ven (1995) constructed a family of continuous filters which com-
mute with differentiation up to arbitrary order in the filter width. However, this set of

filters applies only to an infinite domain without addressing the practical issue of bound-

ary conditions in a finite domain. More recently, a class of discrete commutative filters

was developed by Vasilyev et al. (1998) for use on nonuniform structured meshes. Their

formulation uses a mapping function to perform the filtering in the computational do-

main. Although this type of mapping is impossible for the unstructured case, the theory
developed in Vasilyev et al. (1998) was used as a starting point for the present work.

In this paper we present a theory for constructing discrete commutative filters for
unstructured meshes in two and three dimensions. In addition to commutation, other

issues such as control of filter width and shape in wavenumber space are also considered.

In particular, we wish to specify a desired filter width at each point in space and obtain a

discrete filter which satisfies this requirement regardless of the choice of the computational
mesh.

2. Commutation error of filtering and differentiation operations in physical

space

Recently Vasilyev et al. (1998) developed a general theory of discrete filtering in ar-

bitrarily complex geometries. With the use of a mapping function, the filtering is done

in the computational domain. Here, we extend the theory of commutative filters devel-

oped in Vasilyev et al. (1998) to the physical domain. We begin by discussing filtering in

one-dimensional space and then extend it to three spatial dimensions.

t Dept. of Mechanical & Aerospace Engr., University of Missouri, Columbia, MO 65211
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2.1. Commutation error in one spatial dimension

Following Vasilyev et aI. (1998), an operator to measure commutation error is defined as

follows. Given a function ¢(x), the commutation error is

de] (2.1)

where over-bar denotes the filtered quantity. The continuous filtering operation is defined

by

I b x-y

where A(x) is the filter width and G (_, x) is the location dependent filter function. With

the change of variables r] = _--_), Eq. (2.2) can be written as

z-a

¢(x) = ]._L[, G (77,x) ¢ (x - A(x)o) dq. (2.3)

Taking the Taylor series expansion of ¢ (x - A(x)r/) in powers of A gives

/=0

where /)_ = d/dz is the derivative operator. This series was proven to be convergent

in Vasilyev et al. (1998) for the case of uniform A by assuming that the spectrum did

not include wavenumbers higher than some finite cutoff wavenumber k,na_- The proof

is analogous for the case of varying A and with the same assumptions the radius of
convergence in this case is considered to be infinite. Substituting (2.4) into (2.3) and

changing the order of summation and integration, we have

= (2.5)
/=0

Defining the filter moment as

z-a

Ml(z) = ]_' ,/G(_?, z)d_ (2.6)

and substituting (2.6) into (2.5), we obtain

+c_ l

¢(x) = Z (-1) , l t--[_-. A (x)M (x)Dx¢(x). (2.7)
l----0

In the same manner as in Vasilyev et aI. (1998) we let

1 I = 0 (2.8)Ml(x)= 0 l=l,...,n-1.

With this definition we have

+ (2.9)

=
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The filter of the derivative of the function is

+ -Ty-, A (z)M ¢(x).
l=n

The derivative of the filtered quantity is

(x) = z! dx (2.11)
/=n

Applying the chain rule to (2.11) and subtracting (2.11) from (2.10), we obtain an ex-

pression for the commutation error:

d (2.12)
l_-n

Using the properties in (2.8) it follows that

dM t
dx (x) =0 forl=l,...,n-1. (2.13)

As a result, the local commutation error is

_xx =O A _(x) , (2.14)

provided that dA/dx = O (A), which is true for most of the smoothly varying grids.

For highly stretched grids dA/dx is O (A_), _ < 1, which results in lowering the order

of the commutation error to O (An+'_-l). The extension to three dimensions is quite

straightforward, and has been presented in Marsden (1999).

3. Construction of discrete commutative filters

The filters developed by Vasilyev et al. (1998) were constructed by applying the nec-

essary number of constraints to the filter weights to achieve both commutation and

an acceptable filter shape. The following constraints were imposed in finding the filter

weights. The. zeroth moment should be one, a specified number (order of commutation

error) of higher moments should be zero, and other constraints were added for defining

the filter shape.
These ideas were used as a starting point for developing filters for the unstructured

case. However, in the unstructured mesh formulation it is impossible to use the same

discrete filter at all points on the mesh as was possible in Vasilyev et al. (1998). Instead,

filter weights must be computed at each mesh point and stored in a table. This restriction
means that the algorithm must have a way to assess the filter shape at each point since

the user cannot adjust the filter constraints by hand at each mesh point.
An initial formulation for filter construction on an unstructured mesh used the ideas

presented in Vasilyev et al. (1998) generalized to physical space. Given a mesh point to

filter about, a set of neighboring points was chosen to make up the filter. Then, constraints

were applied directly on the filter moments and shape in order to determine the filter

weights. This procedure followed directly from Vasilyev et al. (1998). Two problems arose
in implementing this method. First, it was found that in the case of a non-uniform point
distribution such as an unstructured mesh, the shapes of the resulting filters were highly
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unpredictable. In order to overcome this problem, the filter construction algorithm would

have to choose the most appropriate constraints to apply based on some filter shape

criterion. Second, the nature of unstructured meshes is such that a point may have any

number of neighboring points. The algorithm would, therefore, have to decide which
points to include and possibly apply different constraints at each mesh point, leading to

inconsistencies in the filters from one part of the mesh to another.

Greater predictability and ease of implementation can be gained by using interpolation
based filters to achieve commutation rather than directly implementing constraints as
discussed above. The construction of discrete filters on unstructured meshes is motivated

by work on interpolating wavelets Donoho (1992) and the theory of second generation

wavelets Sweldens (1996), Sweldens (1997), Daubechies & Sweldens (1998). To illustrate

the idea of construction of discrete filters based on polynomial interpolation, let us con-

sider a one-dimensional example. Suppose we have a set of N unevenly spaced grid points

xi and the values of the function f, are known at these points. We can uniquely define

the N - 1 order polynomial PN1 (x) that passes through the data. Polynomial coefficients

are uniquely determined by locations xi and values fi. Evaluating this polynomial at the

point x0 and substituting the values of the polynomial coefficients expressed in terms of
• g •

the values fi, we easily find that PN-1 (xo) = _-,k=l wifi. If we treat these weights as the

weights of the corresponding discrete filter, then this filter will have the unique property

that when it is applied to the polynomial of degree less than N - 1 it does not change

this polynomial. Then the discrete filter moments defined by

N

M t = __, Wk(Xk -- XO)' (3.1)
k=l

automatically satisfy the conditions (2.8) since (x - xo) l is exactly zero at x = x0 for

l = 1,..., N - 1 and 1 for I = 0. Consequently, the discrete filters based on polynomial

construction automatically guarantee an /'V th order commutation error. To control the

shape and other properties of the discrete filters, we can construct a filter as a linear

combination of as many polynomial based filters as we like while preserving the com-
mutation properties of the filter. The same idea can be easily extended to n dimensions

using an n-dimensional polynomial. This simple idea gives us all the flexibility we need

to construct filters with the desired shape and properties in any dimension, yet it is very

straightforward to implement.

In general, with an IY th order numerical scheme, the filtering operation must commute

to order N. Reducing error further has no significant impact on overall accuracy because

the discretization error is also of order N. As in the case for a structured mesh, the filters

developed here must]_ave N - 1 zero moments to commute to order N. In developing fil-

ters for an unstructured mesh, we will begin by assuming a second order finite difference

scheme. However, as discussed above, the extension to a higher order method is straight-

forward. With this second order scheme in mind, we proceed with the goal of developing
filters which ensure a second order commutation error• A two-dimensional discrete filter

based on first order polynomial interpolation can be constructed using a triangle where

(x0, Y0) is the point where we want the filtered value. A triangle is chosen because in two

dimensions three points are needed for exact reconstruction of a first order polynomial.

Weights are calculated by fitting a polynomial to the vertices of the triangle, and they

are then used to find a weighted average at the central point (Xo, Y0). The shape of the

resulting filter in wavenumber space is very well defined, and the number of points used

can be the same at each mesh point because any three close points can be chosen to
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make up a triangle. The method for finding the filter weights using a triangle in two

dimensions is presented here, but is extended to three dimensions in Marsden (1999).

Details on choosing which points to use in the filter are discussed in Sections 4.1 and

Marsden (1999).
The vector of interpolating weights, w is calculated as follows. Let (xx, yl), (x2, y2),

and (x3, Y3) be coordinates of the points where the function is given and (Xo, Yo) be the

coordinates of the point to interpolate to. Let

P(x, y) = aoo + alo (x - Xo) + aol (y - Yo) (3.2)

be a first order polynomial interpolant. Requiring that interpolant (3.2) goes through the

data points fi (i = 1,... ,3), we obtain the following set of linear equations

fl = aoo + alo (xi - xo) + aol (Yl - Yo),

f2 = aoo + alo (x2 - xo) + aol (Y2 - Yo), (3.3)

f3 = aoo + alo (x3 - Xo) + aol (Y3 - Yo).

Note that interpolant (3.2) is chosen such that aoo is the value of interpolant at point

(xo, Yo). This value is also the weighted sum of the functional values given by

P(Xo, Yo) -= WlI1 + w2f2 + war3, (3.4)

where, wi are the filter weights.
Some manipulation shows that the weights can be simply calculated with a single

matrix inversion. If

1 xl-xo Yl-Yo \

k

A= 1 x2-xo y2-Yo )1 x3--x0 Y3--Y0

(3.5)

and

b-- ( 1 0 0 ) (3.6)

the vector of weights, w, is given by

W = b. A -1 . (3.7)

We now have weights which make up a two-dimensional discrete filter which satisfies
commutation to second order. The three-dimensional equivalent is straightforward and

requires four points instead of three to satisfy commutation. The extension to three

dimensions is discussed in Marsden (1999).

4. Implementation of commutative filters

4.1. Two-dimensional filters

In Section 3 we demonstrated construction of discrete two-dimensional filters with second

order commutation error using polynomial interpolation. The result was a set of discrete

triangular filters with weights assigned to each vertex and the central point. Using these

triangular filters as a basis, the topic of this section is the construction of commutative

filters which combine multiple triangles into one filter and allow for a variable filter width.

Although one triangular filter satisfies the properties of commutation, it is undesir-

able because it offers no flexibility in filter width or shape. Also, an ideal filter would
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FIGURE 1. Example of filter constructed with triangles on an unstructured grid.
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FIGURE 2. Transfer function corresponding to filter in Fig. 1.

include more neighboring points to obtain a nice distribution. To take advantage of the

predictability of simple triangle based filters while adding flexibility in filter width, it is

possible to use a linear combination of multiple triangular filters. This method offers the

advantage of a predictable and well defined transfer function shape while ensuring that

the resulting filter will satisfy commutation to the same order as the basis triangles.

Figure 1 shows an example of a 2-D filter constructed from three triangles. The cor-

responding transfer function, which has very nice characteristics, is shown in Fig. 2. To
achieve flexibility in filter width, each triangle as well as the central point is assigned a

weight which applies equally to all vertices of the triangle. We will refer to the weights

on triangles as _i whereas the filter weights on individual vertices calculated in section
3 are w=. The value of _i can be varied from 0 to 1 as long as the sum total is 1. The

optimum value of _ for the central point is 1/2 because this results in the most desirable

filter shape.

4.2. Implementation in two dimensions

We are now ready to discuss details of filter construction in two dimensions. The first

task for the filter construction algorithm is to choose the set of points to include in the

filter. Each included point is part of a triangle which will later be linearly combined with

other triangles to form the total filter as discussed in section 4.1. The number of triangles

included in each filter may be specified by the user; however, the filters presented in this

paper consist of three triangles because this provides a nice distribution of points on a
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FIGURE 3. Example of mesh used for filter development.
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regular unstructured mesh in two dimensions. After the set of points is chosen, the next
step is to calculate the weights associated with each mesh point included in the filter.

From these, we calculate the transfer function G and apply the filter to the discrete data.

Figure 3 shows an example mesh which was used in testing the algorithm which chooses

filter points.
Points to include in the filter are selected based on chosen criterion for the triangles

which make up the filter. Given a point to filter about, surrounding points are searched

in groups of three until a set of triangles to use in the filter is settled on. It is obviously
undesirable to search points on the entire mesh because of computational cost. Because

of this, the first step in the algorithm is to come up with a set of neighboring points to
include in the search. This is done by using the tree structure of the mesh connectivity

to obtain a set of surrounding points. In two dimensions, three levels of the tree are

sufficient for obtaining a large enough group of points.

Having found a group of surrounding mesh points, the next step is to calculate the
distance to each point in the group as well as the angle from the x axis. The points are

then sorted according to angle into three zones of 120 ° each. The zones are created to

ensure that the chosen points have a nice distribution of angles about the central point.

Figure 4 shows these three zones. Within each zone, the points are sorted by distance

from the certtral point.

Triangles are systematically formed by taking a point from each zone, starting with
the closest point in each, and then seeing if the chosen triangle meets the criterion for

being included in the filter. For each triangle formed, we must determine whether to use
it in the filter or continue the search by trying the next combination of three points.

When three triangles have been found, the choice of points for the filter is complete.

Triangles must satisfy two criterion to be selected for use in the filter. First, the central

point must be inside the triangle and second, the central point must be as close to the

centroid of the triangle as possible. Both criterion involve drawing lines from the central

point to each vertex of the triangles to form three sub-triangles. If the summed area of

the sub-triangles exceeds that of the larger triangle, the central point is outside. If the

area of any of the sub triangles is a large percentage of the total area of the triangle, the

central point is too close to the side of the triangle. The allowable percentage is a user

specified parameter. If one of these checks is true, the triangle is rejected and we advance

to the next row of the table, continuing until the desired number of triangles has been
found.
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This procedure has one drawback• When the best choice of triangle has two points

in the same region, usually very close to the region boundaries, it is never tried as a

possibility for the filter. As a solution to this problem, the next step in the algorithm is

to rotate the zone boundaries as shown in Fig. 5, and the procedure of choosing triangles

is performed again, returning a new set of triangles. The set of triangles whose collective
weights are closest to one third is then chosen to make up the final filter.

We now have a set of three triangles to make up the filter which can be linearly

combined to create the complete filter as described in Section 4.1. Flexibility is gained

by applying the same filter over again with different triangle weights, fl,, to capture

low and high wavenumbers and achieve a nice transfer function shape. In addition, by

applying the same filter more than once, it is possible to increase the filter width until

the desired value is reached. With this method it also becomes possible to exactly specify

the filter ratio for use in the dynamic model.
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5. Prescribing the filter width

The main advantage of the filtering method presented is that the filter width can be

prescribed by the user a priori. For example, in a boundary layer it is typical to use

an exponential form of the fi.lter width function since the scale of eddies increases with

distance away from the wall. The filter width can be defined as the radius A of an

equivalent circular top hat filter. The corresponding second moment, M2, can be defined

by the following integral.

_j2 = _2_ foAr2 cos2 0-_rdrdO. (5.1)

Evaluating this integral we have a relation between the second moment and the filter
width.

A = (5.2)

Given a target value for the filter width, which is specified by the user, the above relation
can be used to prescribe target values for the second moment. This second moment target

value can be used to find the values of fl which will result in the closest value to the desired

value of A. The values of ;3 are chosen by solving the following set of equations using

least squares method with constraints on the values of ;3 as follows, where/_0 is the value

assigned to the central point and f_l, ;32, ;33 are assigned to the three triangles in the filter.

flo = 1/2 (5.3)

;31 + ;32 + ;33 = 1 (5.4)

The target second moment values in x, y, and xy are M °2, M 2°, and M 11 respectively
o2 20 and 11and m i , m i , m_ are the moments of the individual triangles.

MO2 m02 1 02 o2= A- rrt2 ;32 A-m3 83

M2O = m_Ofll 20 20 (5.5)+ms ;32+m3 _3

= +ms _2 +m3 J33

6. Demonstrating commutation

In order to validate that the filters developed commute to the desired order, a series of

numerical tests were performed. Measuring the commutation properties of the directional

derivatives was found not to be a good test, since the accuracy of derivative calculations

strongly depends on the orientation of the mesh element, and as a consequence the the

resulting truncation error is very nonuniform. As it was demonstrated in Perot (2000),
a more natural operation to perform on an unstructured mesh is to calculate the curl

at each mesh point. It is relatively straightforward to demonstrate that commutative

properties of filtering" and the curl operators are the same as discussed in Section 2.

Using the curl operator and the notation of Section 2.1, the commutation error is

defined by

IV × f] = V ×/- V × f (6.1)

where f is the value of the prescribed function at each mesh point. The trivial case of

the linear function f = ax + by + c was used to verify that the resulting error was within

machine zero range. With this check complete, the commutation and truncation errors

were calculated on a series of consecutively finer meshes, using the equations describing
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FIGURE 6. Streamlines of vortices in a box.

a vortex in a box.

u = - cos031x + ¢1) sin(/32y + ¢2) (6.2)

v = sin(/31x + Cx) cos(/32y + ¢2) (6.3)

A plot of streamlines of these equations for the case/31 =/32 = 2zr, ¢1 = ¢2 = 0 is shown

in Fig. 6. The truncation error for the above function is the difference between the exact
value of the curl

Cexact : (ill -I- fl2)[COS(fllZ -F ¢1) COS(/_2y + ¢2)] (6.4)

and the numerically calculated value.

The procedure for calculating the commutation error at each mesh element center

using the curl operator is as follows. First, the functional values are calculated at the

cell centers. These values are filtered discretely at the cell centers using the method

described in Section 4.2, and then the curl of the filtered value is found numerically

using surrounding filtered values. This gives the first term in Eq. 6.1. The second term

in Eq. 6.1 is found by first taking the curl of the functional values at all cell centers and

then filtering these values using the values of the curl which were found at adjacent mesh

elements. The commutation error can then be compared to the truncation error at each
mesh element center.

Both high and low order integration schemes were used to calculate the curl. For

simplicity, only filters with with one triangle, or three filter points, were used. Using

the low order integration method, the circulation is computed by interpolating values

from the cell centers to the midpoints of the edges to find the velocity tangent to the

side of the element and then integrating over the three triangle edges. The curl is then

obtained by dividing by the cell area. Overall this is a first order operation. Using this

method, it was found that the resulting commutation and truncation errors had first

order convergence. Thus, the second order accuracy of the filtering method had been

reduced when integration was performed. A plot of the commutation and truncation

errors using the curl operation is shown in Fig. 7. All error plots are the Lo_ error vs.

square root of the number of mesh points, and all use the same series of increasingly finer

meshes to demonstrate convergence. Plotted in this way, the slope of the error is equal

to the order of accuracy. All errors have been normalized with the maximum value of the
curl.

The high order integration method was developed for a uniform symmetric unstruc-
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tured mesh. While use of a "structured" unstructured mesh is ludicrous for any practical

application, it serves the purpose of demonstrating commutation of the filtering method.

As discussed earlier, the filtering method presented here can be applied to any unstruc-

tured mesh. The integration method first requires interpolating to the vertices from

twelve surrounding cell centers, using weights 2/9 for the nearest six cells and -1/18 for

neighboring cells. The routine then interpolates to the edges using the two vertices and

two cell centers which lie on the line connecting the edge midpoint and the vertices of the

neighboring points using the weights (-1/16, 9/16, 9/16, -1/16). Finally, integration

can be carried out along each edge of the cell using the value at the edge midpoint and

the values at the two vertices using the weights (1/6, 2/3, 1/6). A plot of the high order

method using the curl operator is shown in Fig. 8. Due to the division by area, the curl

operator is second order regardless of integration scheme. So, we see second order conver-
gence of both commutation and truncation error as expected. However, it is important to
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note that the magnitude of the commutation error is consistently less that the truncation

error.

The results using the curl operator show that the truncation error is associated with

division by area even for the higher order scheme. In order to eliminate this difficulty, we
can introduce the discrete values of circulation that correspond to each mesh element.

We can therefore compute the commutation error using values of circulation. In this

way, we can clearly demonstrate that the truncation error will be higher order, and the

commutation properties of the filter will become apparent. The exact value of circulation
must be found for each mesh element to compute the truncation error. This is done by

integrating the function exactly along the sides of each mesh element.
The commutation error using the circulation was analyzed using the low order method,

and results are shown in Fig. 9. These plots also show a first order convergence in which

the commutation error was contaminated due to the truncation error.

We are able to show that with this low order integration scheme, using both the curl and

circulation, the commutation error is contaminated by the truncation error due to high

frequency components. Figure 11 shows the truncation error and the filtered truncation

error and proves that, without these high frequency components, the truncation error is

a full order of magnitude decreased. Therefore, the commutation error is contaminated
and the values of the commutation error and truncation error are nearly identical.

The high order method applied with the circulation shows a third order convergence in

the truncation error and a second order convergence in the commutation error. This time,

the order of integration was high enough that the commutation error was not affected,

and we can confirm that it has second order convergence. The results for this case are

shown in Fig. 10. The convergence of the truncation error for the cases using circulation,
compared with the cases using the curl, confirms that dividing by the area reduced the

order of magnitude by two. These tests confirm that the filtering method has a second

order commutation error, which was predicted in section 3. Although filters consisting

of one triangle were used, it is fully expected that filters with multiple triangles will
have similar convergence properties, thus giving the user control over the filter width. In

addition, even though it was necessary to use a uniform mesh for the numerical tests, it

is fully expected that the filtering method used will have similar convergence properties

for any unstructured mesh.

7. Conclusions

A method of constructing commutative filters for unstructured LES has been developed
and validated. The method is intended for use in the ASCI unstructured solver at the

Center for Turbulence Research for use in a wide variety of applications. The convergence

tests performed confirm that the filtering method leads to a second order commutation
error and can therefore be used in conjunction with a second order accurate numerical

scheme.

One important feature of the method of filter construction presented here is that it has

no requirements on the type of mesh used. Because the filter can be constructed simply

from a set of points in two- or three-dimensional space, there are no constraints on the

shape of mesh elements or the connectivity. It is possible to use connectivity to improve

the efficiency of the algorithm, but the method remains general to any mesh. In addition,

the filters presented have a consistent filter shape and flexible filter width. This allows

the filter width ratio to be exactly specified for use in the dynamic model.
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It would be relatively straightforward to extend the filter construction procedure devel-

oped here to higher order accuracy. For example, if one desired to use a third order finite

difference scheme, the polynomial interpolant would have to be second order, requiring

six neighboring points in two dimensions.
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Shock-capturing in LES of high-speed

By M. P. Martin

1. Motivation and objectives

The bursting events that are present in a turbulent boundary layer bring low-momentum

fluid from the near wall region into the boundary layer edge. In high-speed boundary lay-

ers, shocks form where the low-momentum fluid meets the incoming free-stream. Thus, to

perform accurate large-eddy simulations (LES) of these flows, shock-capturing techniques

are necessary.
There are two types of shock-capturing techniques: total variation diminishing (TVD)

and essentially nonoscillatory (ENO) schemes. TVD shock-capturing techniques reduce to

first-order accuracy near shocks and damp the small-scale flow features. Thus, this type of

technique is not desired for turbulent flows. ENO schemes are designed to maintain high-

accuracy but not high-bandwidth, which is necessary for performing accurate numerical
simulations of turbulent flows. Also, ENO schemes are inherently dissipative due to the

upwinded, optimal difference stencils and the smoothness measurement. Recently, Weirs

and Candler (1997) designed an optimized ENO scheme for simulating compressible
turbulent flows based on the weighted essentially nonoscillatory (WENO) scheme of

Jiang and Shu (1996). Weirs and Candler used bandwidth optimization techniques and

developed symmetric optimal stencils with reduced dissipation and greater resolving

efficiency than those provided by typical ENO schemes. Martfn and Candler (2000) show

that this WENO scheme gives good results for the direct numerical simulation (DNS) of

supersonic turbulent boundary layers.
In the present work, the presence of shock waves in high-speed boundary layers is

illustrated and the results from the LES of a supersonic boundary layer using the WENO

scheme are assessed.

2. Flow conditions

In the present work we use the perfect gas boundary layer database from the DNS of

Martin and Candler (2000) and the LES of Martfn et al. (2000a). The boundary layer

edge conditions are Reo = 7000, Moo = 4, Too = 5000 K, and poo -- 0.5 kg/m 3. These

conditions represent the boundary layer on a 26 degree wedge at Mach number of 20 and

20 km altitude and are illustrated in Fig. 1.
The numerical method combines a WENO scheme for the inviscid fluxes with an

implicit time advancement technique. The third-order accurate, high-bandwidth, WENO

scheme was designed for low dissipation (Weirs and Candler, 1997) and provides shock-

capturing. The time advancement technique is based on the Data-Parallel Lower-Upper

(DPLU) relaxation method of Candler et al. (1994), which was extended to second-order

accuracy by Olejniczak & Candler (1997). The derivatives required for the viscous terms

are evaluated using 4th-order central differences. The subgrid-scale terms appearing in
the conservative form of the momentum and total energy equations are described in

Martfn et al. (2000b).
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FIGURE 1. Flow conditions.
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FIGURE 2. Density contours in a (a) streamwise-wall-normal plane and (b)
spanwise-wall-normal plane.

3. Results

3.1. High-speed boundary layer flow physics from DNS

In this section, the presence of shock waves in high-speed boundary layers is illustrated.

Figure 2 shows density contours in streamwise-wall-normal and spanwise-wall-normal

planes, respectively. The large-scale bursting events cause strong density gradients near

the boundary layer edge. Figure 2b illustrates the three-dimensional character of the

strong compression regions. To determine the presence of shock waves, the entropy and
pressure changes along a streamline that cross the strong density gradients are considered.

The non-isentropic flow condition and a pressure jump are necessary conditions for a

shock to occur. Thus, the isentropic and constant pressure relations given by

p, T'

(p)----_= (-_- 1)(T)),, ' (3.1)

p' T'
- (3.2)

(p)_ <T)_ '

must not be met across the shock, where (P}v and (T)v are the average density and

temperature in the volume that encloses the streamline. Figure 3 shows a scatter plot of

the normalized density and temperature fluctuations along the streamline crossing the

strong gradients shown in Fig. 2a. The solid line represents the isentropic flow relation.

The dashed line represents the constant pressure condition. A turbulence field is non-

conservative, thus we do not expect that the data will line up along the solid line. As

it can be seen in Fig. 3, the flow is not isentropic. For the most part, the fluid particle

follows a constant pressure path. However, the red symbols show that somewhere along

the streamline the flow undergoes a pressure change. Jumps in the density, temperature,
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FIGURE 3. Scatter plot of the normalized temperature and density fluctuations along the
flow-particle path across the density gradients shown in Fig. 2. Symbols, DNS data; -- ,
isentropic relation; ---, constant pressure relation.
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FIGURE 4. Ratio of the Kotmogorov scale to the molecular mean free path.

and dilatation are also associated with the red symbols. The pressure increases by 2 and

5% across the two weak shocks that are shown in Fig. 2. Also the entropy changes by 6%

and the Mach number is reduced by a factor of 1.3 along the streamline. These shocks

have also been observed experimentally in a Mach 6 boundary layer (Huntley, 2000).

The thickness of a shock is of the order of magnitude of the molecular mean free path

AB. Figure 4 shows the ratio of the Kolmogorov scale 7j to Ap. For the conditions chosen,

Ap is one to two orders of magnitude smaller than 77.Today, the type of resolution required
to resolve such a small length scale is not practical.

Figure 5 shows the instantaneous density contours in a streamwise-wall-normal plane

given using a shock-capturing technique (Weirs & Candler, 1997) (a) and using a hybrid

scheme (Olejniczak et al., 1996) combining finite-difference and upwinding techniques

(b). For the solution given by the hybrid scheme, the lack of shock-capturing capabilities

generates noise near the boundary layer edge. As the simulation progresses in time,
the numerical noise penetrates the boundary layer and the solution is no longer physical.

Thus, a shock capturing technique is necessary for performing DNS and LES of hypersonic

and supersonic boundary layers.
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3.2. Shock capturing and LES

The weighted ENO scheme (Weirs & Candler, 1997) was designed for low dissipation. In

smooth regions, the convective fluxes are represented using a symmetric, six-point stencil
which provides third-order accuracy, high bandwidth, and low dissipation. In calculating

the flux, a smoothness measurement allows the stencil to adapt in regions where the data

is not smooth. The adaption mechanism selects a more dissipative, upwinded stencil to

approximate steep gradients without introducing spurious oscillations.

Figure 6 shows the performance of the WENO scheme when it is used for DNS and

LES. Whereas the DNS result is acceptable, the LES result is not good. The adaption

mechanism does not distinguish shock waves from turbulence fluctuations on coarse grids.

Thus, the WENO scheme provides too much dissipation when used in a LES.

If we could better predict the shock location on coarse grids, we could use no adaption

in smooth regions and full adaption near shocks. In the following, the compressibility ratio
is used to predict the shock location. Shock waves are a result of a compression. Thus,

the increased dissipation across a shock wave must be associated with the compressible

dissipation only. An index of the compressibility is given by

u'l=) (3.3)
x- (iv ×u'l 2)

Thus, a jump in the compressibility ratio represents a jump in the dilatation and, there-

fore, the location of a shock. Figure 7 shows that near the boundary layer edge the

compressibility ratio increases suddenly near z/6 = 1.25.

Using the compressibility ratio to find the shock location and control the adaption
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mechanism decreases the dissipation significantly and gives more accurate predictions.

Figure 8 plots the Van-Driest velocity versus the distance from the wall for the DNS, the
WENO and the WENO using local shock-capturing, LWENO. The more sophisticated

shock prediction mechanism decreases the error in the solution from 25% to 7%.

3.3. Conclusions and/uture work

The presence of shock waves in supersonic boundary layers has been illustrated. Since

the required resolution to resolve shock waves is impractical, shock-capturing techniques

are necessary for the DNS and LES of supersonic or hypersonic turbulent boundary

layers. It is found that the information provided by the smoothness measurement is

not enough to determine the shock location on coarse, LES grids. A new shock-location

prediction is obtained using the compressibility ratio. The local WENO shock-capturing
mechanism based on the compressibility ratio gives good predictions when performing

LES of supersonic boundary layers. Ongoing work includes the application of this new

shock-capturing technique to the LES of hypersonic flow configurations.
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A new method for accurate treatment of flow

equations in cylindrical coordinates using series
expansions

By G. S. Constantinescu AND S. K. Lele

1. Motivation and objectives

The motivation of this work is the ongoing effort at CTR to use large eddy simulation

(LES) techniques to calculate the noise radiated by jet engines. The focus on engine

exhaust noise reduction is motivated by the fact that a significant reduction has been
achieved over the last decade on the other main sources of acoustic emissions of jet

engines, such as the fan and turbomachinery noise, which gives increased priority to jet

noise. To be able to propose methods to reduce the jet noise based on results of numerical

simulations, one first has to be able to accurately predict the spatio-temporal distribution

of the noise sources in the jet. Though a great deal of understanding of the fundamental

turbulence mechanisms in high-speed jets was obtained from direct numerical simulations

(DNS) at low Reynolds numbers (Freund et al. , 1997), LES seems to be the only realistic

available tool to obtain the necessary near-field information that is required to estimate

the acoustic radiation of the turbulent compressible engine exhaust jets. The quality of

jet-noise predictions is determined by the accuracy of the numerical method that has to

capture the wide range of pressure fluctuations associated with the turbulence in the jet

and with the resulting radiated noise, and by the boundary condition treatment and the

quality of the mesh. Higher Reynolds numbers and coarser grids put in turn a higher

burden on tile robustness and accuracy of the numerical method used in this kind of jet
LES simulations.

As these calculations are often done in cylindrical coordinates, one of the most im-

portant requirements for the numerical method is to provide a flow solution that is not

contaminated by numerical artifacts. The coordinate singularity is known to be a source

of such artifacts ( Preund et al. , 1997, Mohseni and Colonius, 2000). In the present
work we use 6 th order Pade schemes in the non-periodic directions to discretize the full

compressible flow equations. It turns out that the quality of jet-noise predictions using

these schemes is especially sensitive to the type of equation treatment at the singularity
axis.

The objective of this work is to develop a generally applicable numerical method for

treating the singularities present at the polar axis, which is particularly suitable for highly

accurate finite-differences schemes (e.g., Pade schemes) on non-staggered grids. The main

idea is to reinterpret the regularity conditions developed in the context of pseudo-spectral

methods. A set of exact equations at the singularity axis is derived using the appropriate

series expansions for the variables in the original set of equations. The preient treatment
of the equations preserves the same level of accuracy as for the interior scheme. We

also want to point out the wider utility of the method, proposed here in the context of

compressible flow equations, as its extension for incompressible flows or for any other

set of equations that are solved on a non-staggered mesh in cylindrical coordinates with
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finite-differences schemes of various level of accuracy is straightforward. The robustness

and accuracy of the proposed technique is assessed by comparing results from simulations

of laminar forced-jets and turbulent compressible jets using LES with similar calculations

in which the equations are solved in Cartesian coordinates at the polar axis, or in which

the singularity is removed by employing a staggered mesh in the radial direction without

a mesh point at r = 0.

2. Accomplishments

2.1. Background

The singularities at the centerline of a cylindrical coordinate system are due to tile

presence of terms containing the factor 1/r, where r is the radial distance, in the equations

governing the flow. The flow field itself does not have any singularity at the polar axis, but

as the computational domain is defined as (0, 2_r) x (0, R), one has to specify numerical

boundary conditions at r = 0 even if physically there is no boundary at the polar axis.

Several numerical methods have been proposed to address the singularity of the flow

equations in cylindrical or spherical coordinates. At first sight they seem to vary greatly

depending on whether a pseudo-spectral, finite-volume or finite-differences framework is

adopted, but in fact there are many similarities among them. This is especially true for

the new finite-difference method on non-staggered grids proposed here and the treatment

used with pseudo-spectral methods. There are also common elements with methods that

use l'Hopital's rule (Griffin et al. , 1979) or use a 'shifted' distribution of points in tile

radial direction (Mohseni and Colonius, 2000) to eliminate the points on the polar axis.

The main idea behind using spectral methods in cylindrical coordinates is to seek

an approximation using polynomial expansions in the radial direction that satisfy some

regularity conditions which insure a well-behaved solution near the polar axis. There

seems to be great latitude in choosing the basis functions for the radial expansions.

For example, Patera and Orszag (1981) employed Chebyshev polynomials, Zhang et al.

(1994) used Jacobi polynomials as the expansion basis in the radial direction close to the

polar axis and Legendre-Lagrangian interpolants away from the axis, while Loulou (1996)

used B-splines polynomials expansions. The regularity conditions in spectral methods are

formulated in terms of having a certain behavior in r near the origin in the polynomial
expansions of the Fourier modes and are imposed as constraints on the coefficients of the

polynomials expansions. The conditions are essentially the same ones we are going to use
in our method, but in the present work everything is formulated in the physical (r, 0, z)

space as opposed to wavenumber space (r, ko, kz). In the spectral methods the essential

information is the order of the leading term in the polynomial expansions in r for each

mode of the Fourier expansion in 0. No explicit equations at the polar axis are derived,
and there is no need to calculate the values of the coefficients in these expansions.

Finite-volume and finite-differences methods are less accurate than spectral methods,

but they can handle complex geometrical configurations more easily. Finite-volume meth-

ods for flows in cylindrical geometries were employed by Eggels et al. (1994), Akselvoll

and Moin (1996), and Boersma et al. (1998) among others. The main difficulty here is
related to the fact that the azimuthal and streamwise fluxes are not defined at the cen-

terline. Due to the definition of velocity components at the center of the volume cells, the

singularity for the azimuthal and streamwise fluxes is removed. However, if the control

volume closest to the centerline is not wedge shaped, the flux at the first control-volume

surface off the polar axis whose normal is oriented in the radial direction must be eval-
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uated. Verzicco and Orlandi (1996) developed a second-order finite-differences scheme

in cylindrical coordinates for staggered grids. The main feature of their method was the
introduction of a radial flux (rut) on a staggered grid. As for finite-volume methods, this

is the only flux to be calculated right at r = 0, and its value there is obviously equal to
zero. These methods seem to be very appealing in the context of second-order schemes,

but extension to higher-order schemes is not straightforward.

Griffin et al. (1979) used finite differences and L'Hopital's rule to recast the governing

equations at the origin. For all the singular terms they calculated the radial derivatives

using one-sided second-order- accurate finite differences, while the azimuthal derivatives
for the variables that are multi-valued at the origin were formally evaluated using the

values at neighboring azimuthal locations and A8 = 27r/Ne, where No is the number
of cells in the azimuthal direction. This resulted in a set of new equations at the origin

that do not contain any singularities. Formally this treatment is not very rigorous as
all these values are physically located at the same point, but the second-order method

seemed to produce smooth solutions near the polar axis at least in the framework of the

inviscid calculation of an I.C. engine that they considered. However, its use for DNS or

LES simulations using higher-order schemes is doubtful, and in the next section we will

discuss in a more rigorous way using series expansions the errors introduced by the use

of L'Hopital's rule to remove the singularities at the polar axis.

Finally, Freund (1999) and Boersma and Lele (1999) used compact finite differences

on non-staggered meshes in cylindrical coordinates to compute the radiated jet noise of

compressible jets. They solved the equations at the polar axis using a Cartesian coor-

dinate system. The directions of the Cartesian system were arbitrarily chosen, and the

multi-valued variables (ur, ue) for the other directions were obtained by rotation of the

system at r = 0 where only modes m = 1 and m = -1 may exist. As the present numer-

ical scheme is very similar to the ones used in these studies, more details can be found in
the validation section. Another option to remove the singularities at the polar axis is to

eliminate the points at r = 0 by distributing the points in the radial direction starting

with Ar/2 (for a uniform grid spacing in r) and mapping the domain (0, 270 x (0, R) into

(0, 7r) x (-R, R) when radial derivatives must be computed. In this scheme no numerical
boundary conditions need to be specified at the polar axis. The radial derivative stencils

will span the centerline without evaluation at r = 0. This is essentially the method of

Mohseni and Colonius (2000). We will use their idea but recast it for the case in which

we have points at the polar axis. As we will derive a set of exact equations which are

well defined on the polar axis, we will not have to avoid the presence of such points at

the centerline.

2.2. Numerical method

Let's suppose that the system of governing equations may be written as:

OQ = RHS(Q) (2.1)
Ot

where, for instance, in the case of compressible flows Q = (pu_, pur, puo, p, e), and the

right-hand side term (RHS) contains the usual operators in cylindrical coordinates asso-

ciated with the continuity or the transport equations of momentum and energy, including

the terms associated with the sub-grid scale contributions in the case of LES simulations.
The numerical method we developed here is general enough so that the particular form

of the operators in the RHS is not really important. A detailed description of the present

method is given in Constantinescu and Lele, 2000. Here, we are just going to highlight its
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main points. The only important difference between the equations in (2.1) is determined

by whether the variable in the left-hand side of (2.1) is single valued or multi-valued

at the polar axis. Following Boyd (1989), the most general series expansion of a single

valued quantity (S) at the polar axis can be written as:

S(F, 0) = r m amn r2n COS(m0) -{- r m ,_mnr 2n sin(m0) (2.2)

rn----0 rn_--0

while the expressions for multi-valued quantities (e.g., ur and uo) assume the following
form:

M(r,O) = Ao,_r 2n-1 + r m-1 Amnr 2n cos(m0) +
n=l rn=l \n=O /

m=l n=0 m'_ ) sin(m0) (2.3)

The form of the series expansions for multi-valued quantities (e.g., for ur) can be de-

duced by observing that ur can be written in terms of the Cartesian velocity components

uy and uz as:

u_ = uy cos(0) + u_ sin(0) (2.4)

where the form of u u and u_'s expansions is given by (2.2). By regrouping the terms and

using algebraic identities of the form 2 cos(0) cos(m0) = cos((m - 1)0) + cos((m + 1)0),

one can easily recover (2.3). As we previously mentioned any scalar or Cartesian velocity

component is uniquely defined at the origin, so one can write:

os[ = 0 (2.5)

This relation holds in particular for u_ = uo cos(0)+u_ sin(0), so by taking the derivatives

with respect to 0 and requiring that the relation holds for any 0, one obtains:

Ou_ Ouo
0---0-= u° and O0 u_ at r = O (2.6)

There is another important constraint on the general form of the series expansions for

u_ and uo. If .._ja!_-), -,Jn!0, ..,_a!°), and B}] ) are the coefficients of the series expansions for

u_ and uo in (2.3), the following relation holds for all i _> 1:

A(o) = B_o ) and B}oe) - 4 0.) (2.7)i0 _ "--i0

This relation can be obtained by using the corresponding series expansions given by (2.2)

for u u and by (2.3) for u_ and Uo, respectively. These series expansions are plugged into:

uy = u_ cos(0) - uo sin(0) (2.8)

and using algebraic identities similar to the ones used to deduce the general form of the

series expansions for multi-valued variables at the polar axis (2.3), one can see that the

polynomial multiplying cos(20) in the RHS of (2.8) has the form:

1 +Alo+ )+...) (2.9)2

As this polynomial should have a double zero at the origin, one should require n(°/ -_10 --
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-A_o ). The other relations in (2.7) follow similarly from analysis of the form of polyno-

mials multiplying the other modes in the RHS of (2.8).

By calculating the derivatives with respect to 0 and r of the series expansions given by

(2.2) and (2.3) for all operators present in the RHS of (2.1) and taking the limit r --+ 0, a

new form of the governing equations that is valid at r = 0 is obtained. These are a set of

exact equations at the polar axis, provided that we can calculate exactly the coefficients
of terms present in the RHS of (2.1). For a system of PDE's with second-order radial

derivatives, it is sufficient to calculate at most the coefficients (Am,,, etc.) whose indices

m and n vary between 0 and 2, as we show next. The final expressions in the RHS of

(2.1) are dependent on the particular set of equations that is solved (inviscid, laminar,

turbulent, compressible, incompressible, etc.). For a complete description of the form of

the RHS expressions corresponding to the fully compressible equations, including the
treatment of the LES terms, the reader is referred to Constantinescu and Lele, 2000.

However, in the following discussion we will focus our attention on pointing out some

general features, regardless of the particular system of equations that is solved.

At this point it is relevant to look at the expressions for the series expansions of a

single-valued variable at the origin, let's say u_ (coefficients are labeled a (x) and _(x) _mn t_mnJ,

and for a multi-valued one, Ur, as well as their first and second order radial derivatives:

ux = a(o ) (2.10)

Ou_ _ O_io) cos(0) + ill0 ) sin(0) (2.11)
Or

02u_ - 2a_ ) + 2a_; ) cos(20) + 23_o ) sin(20) (2.12)
G_r2

ur = A_o ) cos(0) + B_o ) sin(G) (2.13)

Ou---L= A_] ) + A_o ) cos(20) + B_o ) sin(20) (2.14)
0r

O2ur - 2A_] ) cos(0) + 2Bf7 ) sin(0) + 2A_o ) cos(30) + 2B_0 ) sin(30) (2.15)
69r2

As expected, the series expansions of scalar quantities (e.g., u_) contain only the m=0

mode, while those of ur and u0 contain only the m=l (cos(0)) and m=-i (sin(0)) modes.

Meanwhile, the first derivative of a scalar quantity is multivalued as it contains the m=l

and -1 modes, while the second derivative contains the m=0,2 and -2 modes. In particular,

this applies to the pressure, p, which is a single-valued scalar, but Op/Or is multi-valued

at r = 0. If we go back to equation (2.1) for the u_ variable and take the limit as r -+ 0,
we obtain:

cgu_ _ Oa(oo) _ RHS_,. (2.16)
Ot Ot

where RHS_, contains terms corresponding to the convective and viscous operators that

would obviously involve modes m=0,1,-1,2,-2,3, and -3. For (2.16) to be valid, the coeffi-

cients resulting from the series expansions of the different variables and their derivatives
should be such that the coefficients multiplying all but the m=0 mode in RHS_, must

be equal to zero. Indeed, this is what happens when we sum the contributions coming

from all the terms contained in RHSu, and use (2.7). However, individual terms may
contain non-zero coefficients multiplying the m#0 modes. In fact, it can be proven that

this property holds not only for the RHS of the equations describing the transport of a
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single-valued variable at the polar axis as a whole, but also for independent operators

such as convective, viscous, dilatation, viscous dissipation in the energy equation, etc.
For instance, the dilatation operator, which is a scalar quantity and thus should contain

only the m=0 mode, can be expressed as:

Oux Our 1 f Oue'_ Oa(oo) 2A_; )
0--_-+ --_-r +- _,_r+ =--+

(2.17)
r 00 ] 0z

where the streamwise derivative can be calculated with exactly the same method used

(6 th order compact differences in the present work) for points situated away from the

polar axis. Another example is the Laplacian operator (e.g., the viscous term in the

u_-momentum equation):

02ux 02u, 10u, 1 02u_ 02a(0o)
+ _ + 7--_-r + r_ _ - _ + 4a(°_) (2.18)

For the u_ and u0-momentum equations, the RHS will contain only the m=-I and
m=l modes once contributions from all the terms are added. These two equations are

identical in the limit r --+ 0, thus it is sufficient to calculate the limit for only one of the

equations, e.g.:

Ou_._L= O(Alo ) cos(0) + B_0 ) sin(0)) = RHSm=I cos(0) + RHS m=-l sin(0) (2.19)
Ot Ot

In fact, we will end up with two scalar equations corresponding to the m=l and -1

modes, respectively, as one can see from the previous relation because as r -_ 0, u_

can be obtained from uo by a counterclockwise rotation of 7r/2. Relation (2.18) can also

be used to show an inherent problem with methods in which l'Hopital's rule is applied

numerically to remove singularities at the polar axis (e.g., see Griffin et al. , 1979). In

these methods the Laplacian will be calculated by numerically evaluating the following:

Ox------5- + 2--O-Tg-r_+ _ \ 002 ] - Ox 2 + 4a_] ) - 4a_o ) cos(20) - 4/3_o) sin(20) (2.20)

which introduces a finite error as the coefficients of modes m=2 and -2 are now present.

The last step is to describe how the series coefficients that are needed to evaluate the

RHS in (2.1) are computed. We will show that all that is required to calculate these

coefficients accurately is to be able to estimate numerically the first and second order

radial derivatives of all the variables in the RHS with the same order of accuracy as

at points away from the polar axis. In particular, in our compressible flow solver we are

using Pade schemes to calculate the radial derivatives. To do this, the following algorithm,

similar to the one used by Mohseni and Colonius (2000), is adopted. The computational
domain is mapped at every x = constant such as there is no need to specify numerical

boundary conditions at r = 0. The mapping function (r, 0) _ ((, 0) is:

{ ÷=r 0<0<rr { ÷=-r rr<0<2rr (2.21)0=0 0<r<R and 0=0-rr 0<r<R

All the signs of scalar quantities, streamwise velocities, and azimuthal derivatives are

left unchanged by the mapping, while u_, uo and the radial derivatives change sign for

7r < 0 < 2rf. The radial derivatives are now taken from -R to R with r = 0 being a

regular interior point instead of a 'numerical' boundary point.

Next, we will expand on the calculation of the required coefficients in the asymptotic
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expansions for u_ and its radial derivatives. All other variables are treated in a similar

fashion using the appropriate series expansions. Suppose that No + 1 is the number of

points in the azimuthal direction (with modes 0, +1, +2, ..., +No�2). According to

(2.13) only the m=l and -1 modes should be present in a series formed by these No

values. We will formally associate the No values with 0 going from 0 (n = 1) to 2;r

(n = No + 1). Supposing that No is divisible by 8, meaning that for every element in

the series there is another situated exactly ;r/4 away, one can take advantage of the

properties of sin(0) and cos(0) functions to evaluate the coefficients in (2.13), (2.14), and

(2.15). For instance, using (2.13) for 0 and 0 + 1r/2, a system of two linear equations with

two unknowns (Alo) and Bl0 )) is obtained:

ur(0) = A_o ) cos(0) + Bl0 ) sin(0) u_(O + zr/2) = -Alo ) sin(0) + B_o ) cos(0) (2.22)

To eliminate the bias toward a certain direction, one can solve the above system for

every 0 = (2;r/Ne)(n - 1) with n=l, N_, and average the results to get final values for

A_o ) and B_o ). Same kind of treatment can be applied to determine A(o_), A(r)20,B_0 ) by

first getting A_ } and then using (2.14) for 0 and 0 + 7r/4 to calculate the remaining two

coefficients. In a similar way, the coefficients involved in the expressions for the second

radial derivatives of u_ and u0 require solving three systems of two linear equations.

2.3. Validation of proposed numerical algorithm

The general numerical method is described in detail in Freund et al. (1997), while

Boersma and Lele(1999) give the details of the implementation of the dynamic LES

model in the original DNS code. It employs compact six-order Pade schemes for the

spatial derivatives in the non-homogeneous directions and Fourier spectral methods in

the homogeneous (azimuthal) direction. The number of modes is dropped near the polar
axis so that the CFL constraint will be determined by the radial (or axial) spacing.

The solution is advanced in time using a four-step Runge-Kutta method. The Reynolds

number is Re = U(2Ro)/U = 36,000 and the Mach number Ma = U/ca = 0.9, where

R0 is the initial radius of the jet in the inlet section. In all of the calculations discussed

here, the computational grid consists of 192 x 128 x 64 points in the (x, r, 0) directions,

which is about an order of magnitude coarser than the grid used by Freund (1999) to

calculate a similar jet at Re = 3,600 using DNS. The mean flow distribution at the inlet

plane is assumed to be a rounded top-hat profile.
In a first test case no randomized forcing is applied and the LES model is turned off. A

sinusoidal perturbation at a Strouhal number St = 0.5 is applied at the inlet. The forced-

jet solution is quasi-axisymmetrical and laminar as seen from the total vorticity contours

in Fig. la. The effects of the different treatments at the polar axis are investigated in

Fig. 2, where snapshots of the dilatation fields in the region x :> 20Ro are shown for

different treatments at the polar axis. We choose the dilatation because this quantity is

very sensitive to the centerline treatment and also provides relevant information for the

jet acoustics in the near field. Case L1 corresponds to the method where the equations are
solved in Cartesian coordinates, case L2 corresponds to the a grid with no points placed

at the polar axis, while case L3 corresponds to the treatment using series expansions at
the centerline. In the second test case randomized azimuthal forcing is applied in the

input plane to trigger the three-dimensional instabilities for the LES calculation. All

other parameters of the simulations as well as the computational mesh are kept the same

as those used in the first test case. As seen in Fig. lb the jet undergoes transition to

turbulence at the end of the potential core situated around x = 15R0. Results are shown
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(a) (b)

FIGURE 1. Total vorticity contours. Vorticity shown using 18 equally spaced contours between

0 and 2_Ro/U. (a) Laminar forced jet; (b) Turbulent jet.

in Fig. 3 for two simulations; the first (T1) uses the method of Mohseni and Colonius

(2000) while the second (T2) used the series expansion treatment.
As we are interested in simulating jets at very high Reynolds numbers (2 to 3 orders of

magnitude higher than the ones at which DNS is presently possible), the robustness of the

method on coarser meshes is an obvious requirement. Our simulation showed that even for

a laminar forced jet (case L1) strong oscillations in the dilatation field developed near the

centerline in the form of two-delta waves. They are evident in Fig. 2a in the region near

the polar axis starting with the streamwise (x _- 15Ro) location where ring vortices begin

to be shed from the jet. These point-to point oscillations in dilatation are of the order of

1.5Ro/U, which is more than one order of magnitude higher that the values of O.1Ro/U
associated with the maximum dilatation inside the coherent structures of the jet. For case

L1 the simulation did not diverge, but obviously the quality of the solution, especially the

sound information that can be collected from these fields, is poor. When used to calculate

a turbulent jet, we were not able to get a well-behaved solution on the relatively coarse
mesh used in these simulations without substantial filtering of the solution to remove

the two-delta waves (every couple of time steps), and the quality of the solution was

poor. This shows that the robustness of this polar axis treatment deteriorates rapidly on

coarse meshes and for high Reynolds numbers when strong non-linear interactions are

present in the flow. Several features of this method are suspected to be responsible for the

above-mentioned problems. First, the derivatives in the directions corresponding to the
Cartesian coordinates are evaluated using six-order explicit central-differences instead of

6 th order Pade schemes while in the evaluation of the radial derivatives with compact

differences numerical boundary conditions using one-sided differences of lower order have
to be formulated. Another source of errors may be associated with the bias introduced
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FIGURE 2. Dilatation contours in the laminar forced jet. (a) Cartesian coordinates;
(b) Method of Mohseni and Colonius; (c) Series expansions treatment.

in the solution by the arbitrary choice (Ne/2 possibilities) of the two perpendicular

directions after which the flow equations are solved at the centerline. Both of these

approximations are automatically removed when a staggered mesh in the radial direction

is employed in simulation L2. However, our results using the technique proposed by
Mohseni and Colonius showed that in the absence of filtering the solution would diverge

after approximately 1000 time steps. That was due to a very local instability situated

at the first point off the polar axis at a certain streamwise location. The dilatation

field remained fairly smooth at all other streamwise locations close to the polar axis in
contrast to the results seen in case L1. However, when a 6 th order accurate explicit filter

was applied every 300 time steps to smooth the velocity field, the dilatation contours

shown in Fig. 2b remained smooth and no unphysical oscillations were observed near the

polar axis.

Finally, in case L3 where the new treatment using asymptotic series expansion was
used at the polar axis, the dilatation fields are smooth (Fig. 3c) and the flow features

are very similar to the results obtained with the method of Mohseni and Colonius, but
no filtering was necessary to avoid numerical instabilities near the polar axis.

Based on the results from the first test case, we focus our attention for turbulent

calculations on the method proposed by Mohseni and Colonius and the method based on

series expansions. Filtering of the solution every 30 time steps, while sufficient in keeping

the solution from diverging, does not remove the unphysical spurious oscillations in the

dilatation field that are observed very close to the polar axis at all streamwise locations

for x > 15Ro (Fig. 3a. In fact, the maximum values of the dilatation in these elongated

structures very close to the polar axis are around 1.2Ro/U, which is significantly higher
than the levels of dilatation recorded in the rest of the computational domain. That

is true even if the filter is applied more often. One should point out that this amount

of filtering was found to have non-negligible effects if sound sources were calculated

from these fields. Thus, even though their method gives comparable results with the

series-expansions based technique for laminar forced jets, in turbulent simulations the
robustness and accuracy of their method seems to be inferior. The turbulent case is much
more difficult to handle because the level of non-linear flow interactions is much higher

and jet structures are passing through the centerline. Convergence of the solution on

relatively coarse meshes can be obtained only by filtering the solution when the method
of Mohseni and Colonius is used.

In simulation T2, patches of high dilatation are observed in a region of about 10R0
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(a) (b)

FXGURE 3. Dilatation contours in an area situated after the end of the potential core for the
turbulent jet. Dilatation fields are shown with 18 equally spaced contours between -O.08Ro/U
and O.08Ro/U. (a) Method of Mohseni and Colonius; (b) Series expansions treatment.

in the streamwise direction starting at the end of the inviscid core. The position of

these patches is not very close to the polar axis (Fig. 3b, except at times when they are

convected by the mean jet motion through the polar axis. The maximum absolute value
of the dilatation field in the turbulent region is at all times around 0.2Ro/U, including at

the polar axis. The short waves that are seen at the top of Fig. 3b are, rather, related to

the high aspect ratio Ax/Ar of the present grid and are not a consequence of centerline

instabilities. Spurious waves or unrealistically high values of the dilatation (Fig. 3a - case

T1) or vorticity at the first 2-3 points off the centerline are not observed. The level of the

unphysical spurious dilatation oscillations present in the domain close to the polar axis

is greatly reduced compared to the case in which the method of Mohseni and Colonius
was used, while filtering was practically eliminated. The 6 tt_ order filter was applied every

500 time steps to eliminate the high-frequency waves that form because of the high grid

stretching ratio. As we are primarily interested in extracting sound information from the

near fields, elimination of filtering that may compromise substantially the quality of the

sound data is a key factor in assessing the different methods.

3. Summary and future plans

In this paper a general method for handling the singularities arising at the polar axis of

the governing flow equations in cylindrical coordinates based on power series expansions
in the radial direction and Fourier series in the azimuthal direction was presented. Using

the most general form of these series expansions, a new set of equations at the polar axis

was derived by calculating the limit of the various operators appearing in the governing
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system of equations (2.1). The new method is computationally easy to implement and is

less expensive than solving the equations in Cartesian coordinates at the centerline.

The present algorithm avoids the loss in accuracy at the centerline where most of the
finite-volume and finite-differences methods use some kind of one-sided differences to

approximate the operators at the centerline. This is because in the context of the present
method we were able to calculate the radial derivatives at the origin with the same

order of accuracy as in the rest of the domain (6 th order compact differences) by using a

domain mapping so that the points on the polar axis become regular interior points. As

this is the only information needed to calculate the coefficients of the newly derived polar

equations, there is no loss in the overall accuracy of the method. The coefficients in the

asymptotic expansions are unique, so we do not have to choose any arbitrary directions
as is the case when the equations are solved in Cartesian coordinates at origin. One of

the advantages is that the first point off the axis, where the various terms with singular
behavior have to be evaluated, will be situated at Ar as opposed to At�2 (as is the case

in the method of Mohseni and Colonius, 2000). This may avoid an important source of

errors or instabilities (e.g., due to the nonlinear interactions of eddies near the polar axis

in a DNS or LES simulation).

The robustness of the proposed approach was tested successfully by comparing results

for a deterministically forced jet with similar calculations using same numerical method

but with the equations solved at the centerline in Cartesian coordinates, or without any

points at r = 0 using the method proposed by Mohseni and Colonius. Finally, the present
technique was shown to give improved results compared to the method of Mohseni and

Colonius for the simulation of a compressible jet using LES on relatively coarse meshes,

in which the flow interactions taking place near the polar axis are very important and

where a flow solution that is not contaminated by numerical artifacts originating at the

singularity axis is required to accurately calculate the jet noise sources.

The algorithm presented here to deal with the polar-axis singularities is not restricted

to the use of the present numerical method that uses sixth-order Parle schemes to evaluate
the derivatives in the radial and streamwise directions, or to solving the compressible

flow equations. As spherical coordinates are locally cylindrical coordinates near the two

singularity axes, the application of the method in spherical coordinates is straightforward.

Acknowledgments

This work was supported in part by Grant No. NAG2-1373 from the NASA Ames

Research Center. The authors gratefully acknowledge valuable discussions with Prof. J.

Freund and Prof. B. Boersma.

REFERENCES

AKSELVOLL K. _z MOIN, P. 1996 An efficient method for temporal integration of the

Navier-Stokes equations in confined axisymmetric geometries. J. Comp. Phys. 125,
454-462.

BOERSMA, B. J., BRETHOUWER, G. _z NIEUWSTADT, F. T. M. 1998 A numerical

investigation on the effect of the flow conditions on the self-similar region of a round

jet. J. Comp. Phys. 10(4), 899-909.

BOERSMA, B. J. _z LELE, S. K. 1999 Large eddy simulation of compressible turbu-



210 G. S. Constantinescu _ S. K. Lele

lent jets. Annual Research Briefs-1999, Center for Turbulence Research, NASA

Ames/Stanford Univ. 365-377.

BOYD, J. P. 1989 Chebyshev and Fourier Spectral methods. Springer-Verlag.

Berlin/Heidelberg, 1989.

CONSTANTINESCU, G. S. _ LELE, S. K. 2000 A highly accurate technique for the

treatment of flow equations at the polar axis in cylindrical coordinates using series

expansions. Submitted to J. Comp. Phys.

GRIFFIN, M. D., JONES, E. & ANDERSON, J. D. 1979 A computational fluid dynamic

technique valid at the centerline for non-axisymmetric problems in cylindrical coor-

dinates. J. Comp. Phys. 30, 352-360.

EGGELS, J. G. M., UNGER, F., WEISS, _,I. H., WESTERVEEL, J., ADRIAN, R. J.,

FRIEDRICH, R. _: NIEUWSTADT, F.T.M. 1994 Fully developed turbulent flow: A

comparison between direct numerical sinmlation and experiment. J. Fluid Mech.

268, 175-209.

FREUND, J. B., 3/IOIN, P. _ LELE, S. K. 1997 Compressibility effects in a turbulent

annular mixing layer. Report No. TF-72, Dept. of Mech. Engr., Stanford University.

FREUND, J. B. 1999 Acoustic sources in a turbulent jet: A Direct Numerical Simulation

study. AIAA Paper 99-1858, 5th AIAA/CEAS Aeroacoustics Conference, 10-12 May

1999, Seattle, WA.

LOULOU, P. 1996 Direct numerical simulation of incompressible flow using a B-spline

spectral method. Ph.D. Thesis, Department of Aeronautics and Astronautics, Stan-

ford University.

MOHSENI, K. _: COLONIUS, W. 2000 Numerical treatment of polar coordinate singular-

ities. J. Comp. Phys. 157, 787-795.

PATERA, A. T.& ORSZAG, S. A. 1981 Finite amplitude stability of axisymmetric pipe

flow. J. Fluid Mech. 128, 347-361.

VERZICCO R. _; ORLANDI, P. 1996 A finite- difference scheme for three-dimensional

incompressible flows in cylindrical coordinates. J. Comp. Phys. 123, 402-414.

ZHANG, Y., GANDGI, A., TOMBOULIDES, A. G. _z ORSZAG, S. A. 1994 Simulation of

pipe flow. AGARD-Volume CP-551, Symposium on application of direct and large

eddy simulation to transition and turbulence, 17.1-17.9.



Center for Turbulence Research 211

Annual Research Briefs 2000

An evaluation of a conservative fourth order
code in turbulent channel flow

By Jessica Gullbrand

DNS

1. Motivation and objectives

Direct numerical simulation (DNS) and large eddy simulation (LES) of turbulent flows

require a numerical method that is able to capture a wide range of turbulent length scales.

In DNS, all the turbulent length and time scales are resolved. In LES, the large energy

carrying length scales of turbulence are resolved and the small structures are modeled.
The separation of large and small scales is done using a filtering procedure that is applied

to the Navier-Stokes equations. The effect of the small scale turbulence on the resolved

scales is modeled using a subgrid scale (SGS) model.

Widely used SGS models are tile scale similarity models by Bardina et al. (1980) and

Liu et al. (1994) and the eddy viscosity based dynamic Smagorinsky model proposed by

Germano et al. (1991). In general, scale similarity models do not dissipate enough energy,

and eddy viscosity models do not carry enough stress (Baggett et al. (1997) and Jim6nez

(1998)). SGS models tend to over- and underpredict velocity fluctuations (Kravchenko

& Moin (1997), Domaradzki & Lob (1999), Sarghini et al. (1999)).
SGS models typically use information from the smallest resolved length scales to model

the stresses of the unresolved scales. Therefore, it is of great importance that these re-

solved length scales are captured accurately. This requires that the numerical error of the

scheme is sufficiently small. One approach is to use high order finite difference schemes.

However, high order schemes require that the differentiation and filtering operations
commute. This is generally not the case in inhomogeneous flow fields where the required

smallest resolved length scales vary throughout the flow field. For this situation, the fil-

ter width varies introducing commutation errors of O(A 2) where A represents the filter

width (Ghosal & Moin (1995) and Ghosal (1996)).

High order finite difference schemes with good conservation properties and three-
dimensional commutative filters have been developed by Morinishi et al. (1998), Vasilyev

et al. (1998) and Vasityev (2000). These discretization schemes can conserve energy, which
ensures a stable simulation free of numerical dissipation. The proposed commutative fil-

ters are discrete and can be constructed to commute up to any desired order.

The objective of this work is to investigate the SGS shear stresses predicted by different

SGS models and investigate the influence of numerical errors and filtering in three dimen-

sions. This is done using a fourth order finite difference channel flow code. The code was

developed by Morinishi et al. (1998), Vasilyev et al. (1998) and Vasilyev (2000). It con-

serves kinetic energy and uses commutative filters. Most channel flow simulations have

been made using either spectral codes or second order finite differences using filtering in

the homogeneous directions only.

To validate the fourth order algorithm, both DNS and LES have been performed of a

turbulent channel flow for different Reynolds numbers. Mean velocity profiles, fluctuation

velocities and energy spectra are compared to results from a second order finite difference

code and to DNS data computed with a spectral code.
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2. Numerical method

2.1. Governing equations

The governing equations for incompressible flow are the continuity equation and the
Navier-Stokes equations

-- =o (2.1)

Ou_ Ouiuj cgp 1 02ui
+ - + (2.2)

Ot Oxj cgxi ReT Ox_"

Here, ui is the velocity component in the xi direction, t denotes time, and p denotes

pressure. All terms are normalized with the friction velocity, uT, and channel half width,

h. ReT = u_h/v is defined as the Reynolds number.
In LES, a filter function is applied to the flow variable f

F-](x, A, t) = C(x, x', A)f(x', t)dx' (2.3)
OO

where G is a filter function and A the filter width. Filtering Eqs. 2.1 and 2.2 in space

yields

-- = 0 (2.4)
Oxi

0_ O_,_j Op 1 02_i Orq-- + - + (2.5)
Ot Oxj Oxi ReT cOx_ Oxj

where rij is the SGS stress tensor defined as rij = uiuj -uiuj. This stress tensor describes
the interaction between the large resolved grid scale (GS) and the small unresolved SGS.

The SGS stress tensor contains the unknown velocity correlation uiuj, which cannot be
expressed in the resolved flow quantities. This term has to be modeled.

2.2. Subgrid scale models

The goal of SGS modeling is to account for the SGS stresses using resolved flow field

variables. The most important requirement of a SGS model is that it has to be dissipative.

Tile most widely used SGS models are the scale similarity models by Bardina et al.

(1980) and Liu et al. (1994) and the Smagorinsky model (Smagorinsky (1963)) with the

dynamic approach proposed by Germano et al. (1991) to calculate the model coefficient.

The scale similarity models and the dynamic procedure uses the assumption that similar
behavior exists between the resolved and unresolved stresses. When the filter function

can be expressed as a polynomial of differentials, there exist an explicit relation be-

tween unfiltered and filtered flow variables (Fuchs (1996)). This approach results in an

explicit expression of the SGS stress in terms of the resolved flow variables, i.e., an exact
differential SGS model.

2.3. Solution algorithm

In the code used, the continuity and Navier-Stokes equations are discretized using a fourth

order finite difference scheme on a staggered grid. The convective term is discretized in
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a skew-symmetric form

Ouiuj 10uiuj 1 Oui

-Oxj - 20xj + 2uj Oxj"

This ensures conservation of kinetic energy (Morinishi et al. (1998) and Vasilyev (2000)).

The no slip boundary condition is applied at tile wails and the flow is assumed to be peri-

odic in the streamwise and spanwise directions. A semi-implicit time marching algorithm

is used in which the diffusion terms in the wall normal direction are treated implicitly

with a Crank-Nicolson scheme. All other terms use a third order Runge-Kutta scheme

described by Spalart et al. (1991). The splitting method of Dukowicz & Dvinsky (1992)
is used to enforce the solenoidal condition. The resulting discrete Poisson's equation of

pressure is solved using a penta diagonal direct matrix solver in the wall normal direc-
tion and a discrete Fourier transform in the periodic directions. A fixed mean pressure

gradient is used in the streamwise direction.
The initial flow field is set to a parabolic profile in the streamwise direction with

randomly generated fluctuations. The initial flow field in the wall normal direction and

in the spanwise direction consist of these random fluctuations. The initial guess of the
flow field is advanced in time to a statistically stationary solution before statistics are

sampled.
To obtain a commutative system, a general class of discrete filters applied to nonuni-

form filter widths was proposed by Vasilyev et aI. (1998). The procedure applies mapping

of the nonuniform grid onto a uniform one in computational space in which the filtering

is applied. The filters are constructed by applying a number of constraints to the filter

weights to achieve both commutation and an acceptable filter shape. The filter weights

are calculated by forcing the zeroth moment to be one and a number of higher moments
to be zero. This determines the order of the commutation error. Other constraints are

added to adjust the filter shape.

3. Turbulent channel flow simulations

In order to validate the fourth order finite difference (FD) scheme, numerical simu-

lations of turbulent channel flow were performed using both DNS and LES. The same

simulations were made with a second order FD code by Morinishi (1995) to compare the
influence of the numerical scheme on the results. The FD results are compared to DNS

data obtained using a spectral code (Kim et al. (1987) and Moser et al. (1999)).

The DNS and LES were carried out for Reynolds numbers ReT=ISO and Rer=395,

respectively. In both computations, the grid is stretched in the direction normal to the

wall according to tile following hyperbolic-tangent function,

tanh(7(1 - _. )) j = O, ..., N2 (3.1)
xj = - tanh(7)

Here, N2 is the number of grid points in the j direction and 7 is the stretching parameter.

3.1. DNS results

DNS was performed for ReT=180. The grid resolution is 1283 and the computational

domain is (47rh,2h,4/37rh), which is the same as in the spectral simulations. The stretching

parameter is 3' = 2.8.
The mean velocity profile normalized with the friction velocity as a function of the
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FIGURE 1. Mean velocity profile U as a function of the distance to the wall y+. Re_=180. DNS
o: spectral code, -- : 4th order FD code and .... : 2rid order FD code.
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FIGURE 2. Velocity fluctuations in streamwise fu'i, wall normal Iv'i and spanwise [w' l direction
as a function of tile distance to the wall y+. Re_=180. DNS o: spectral code, -- : 4th order
FD code and .... : 2nd order FD code.

dimensionless distance to the wall is shown in Fig. 1. The comparison with the spectral

code shows an underprediction of the mean velocity profiles by the FD codes.

Velocity fluctuations are plotted in Fig. 2. Again, the difference between the second

and fourth order codes is negligible. Note that the streamwise velocity fluctuation is
underpredicted by the FD codes, which is to be expected due to the drop in the modified

wavenumber (Kravchenko & Moin (1997)).
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FIGURE 3. Energy spectrum of the streamwise E_, wall normal E_ and spanwise E_, velocity
correlation as a function of the streamwise wavenumber k,. ReT--180 at y+ _180. DNS o:

spectral code, -- : 4th order FD code and .... : 2nd order FD code.

The energy spectra as a function of the wavenumber in the streamwise direction are

shown in Fig. 3. The second order code deviates fi'om the energy spectra from the spectral

code for smaller wavenumbers than compared with tile fourth order code. Both FD results

show a steep slope of the energy spectra in the high wavenumber part of the spectra.

3.2. LES results

LES was performed for ReT=395 using the dynamic Smagorinsky model proposed by

Germano et al. (1991) to model the SGS stresses. To calculate the model coefficient

dynamically in the Smagorinsky model, the least square approximation by Lilly (1992)

and averaging in the homogeneous directions as in Germano et al. (1991) are used.

The grid resolution is (64,49,48), which is a quarter of the grid points in each direction

compared to the DNS grid. The domain is (2rch,2h,lrh). The mesh is stretched normal

to the wall with 7 = 2.75.

The mean velocity profiles are shown in Fig. 4. The fourth order code predicts the

mean velocity profile closer to the DNS data. The second order code predicts a larger
mass flow.

Velocity fluctuations are plotted in Fig. 5. The streamwise components are overpre-

dieted using LES, while the wall normal and spanwise fluctuations are underpredicted

when compared to the DNS results. Note that the overprediction of the streamwise ve-

locity fluctuation is larger with the second order FD code than with the fourth order

code. Kravchenko & Moin (1997) reported that this is due to the truncation error of the
second order scheme.

The energy spectra in the streamwise direction are shown in Fig. 6. As for Re_=lS0, the
second order code deviates for smaller wavenumbers from the spectral results compared

to the fourth order code. The slopes of the energy spectra in the high wavenumber part of

the spectra are steep for the FD codes. This is of concern because most SGS models use
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FIGURE 4. Mean velocity profile U as a function of the distance to the wall y+. Re_=395. o:
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4th order FD code and .... : LES 2nd order FD code.

information from the smallest resolved length scales (highest wavenumbers) to model the

SGS stresses. Fig. 6 clearly shows that even when a high order scheme such as the fourth

order FD scheme is used, the high wavenumber part. of the spectra is contaminated with
numerical errors.
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4. Current work

The fourth order finite difference scheme requires further evaluation with the use of

the three-dimensional commutative filters in order to perform a "true" LES, defined

as a a solution that converges to an LES solution and not to a DNS solution as the

computational grid is refined. This can be made by separating the filter width from the

computational grid size. By keeping the filter width constant while the computational

grid is refined, the solution should converge to the "true" LES solution.

Different SGS models will also be investigated as well as the influence of numerical

errors. The influence of the finite difference schemes on the high wavenumber part of the

energy spectra and its influence on the predicted SGS stresses need to be determined. An

approach to reduce the influence from the numerical error might be to use information

from the length scales (or wavenumbers) that are not contaminated with large numerical

errors and still is in the inertial subrange of the energy spectrum.

The cause of the over- and underprediction of the velocity fluctuations needs to be

determined. The problem depends upon the SGS model, the grid resolution and the

numerical method.
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Large-eddy simulation of gas turbine combustors

By Krishnan Mahesh, George Constantinescu AND Parviz Moin

1. Motivation and objectives

The objective of this study is to develop tools to perform large-eddy simulation (LES)

of turbulent flows in realistic engineering configurations. Of particular interest is the flow

inside gas-turbine combustors. LES is an attractive approach for these flows, which are

at relatively lower Reynolds numbers than external flows, and involve scalar mixing as
a central component. This report discusses our progress towards developing a numerical

algorithm and solver for this purpose. As outlined in last year's report (Mahesh et al.
Annual Research Briefs 1999), we have developed a conservative numerical algorithm

that staggers the dependent variables to simulate incompressible flow on unstructured

grids. Our report last year outlined the algorithm as well as some details of its implemen-
tation on parallel platforms. It was noted that the algorithm was applicable to hybrid

elements, the data structures used compressed storage formats to reduce memory use,

a grid reordering technique was developed, and validation simulations were just being
initiated.

2. Accomplishments

Our progress in the last year is as follows:
• A more efficient version of the constant density algorithm was derived for hybrid

grids.

• Severe memory' bottlenecks in the pre-processor part of the solver were removed. The

pre-processor was rewritten to store data out of core; as a result, memory requirements

of the order of gigabytes were reduced to the order of megabytes.
• The solver was validated for a variety of steady and unsteady flows.

• Simulations in a combustor geometry provided by Pratt & Whitney geometry were

initiated; the unsteady flow in a subset of the overall geometry was simulated; the simu-

lations retained the geometrical complexities of the full configuration.

• The dynamic Smagorinsky model for LES was extended to unstructured grids and

implemented.

• The algorithm was extended to tow Mach number, variable density flows; validation

is in progress.

2.I. Algorithm improvements

2.1.1. Base algorithm

Recall that the constant density algorithm stores pressure at the centroids of the

elements and velocity at their faces. As shown in Fig. 1, only one component of velocity

is stored and advanced in time; the other two components are reconstructed. The velocity

component v, satisfies

0 (_)10p (V2ff) ft. (2.1)
8vn (ff x S) . g +
8t -_n p On + _' "
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2D 3D

FiauaE 1. Positioning of variables in staggered algorithm.

Note that the convection term is written in terms of velocity and vorticity. The pressure-

projection approach is used to ensure that the velocity field is discretely divergence-
free; the resulting Poisson equation is solved using the conjugate gradient method with

diagonal preconditioning. As shown in Fig. 1, v,, is not necessarily aligned with the
face normal. As a result, the projection step involves the tangential velocities, which

have to be reconstructed at every iteration. A more efficient formulation was therefore

derived the face normal velocity is now stored at the face centroid. Storing the normal

component makes the projection step cheaper, while storing velocities at the centroid
makes flux calculations more accurate.

2.1.2. The dynamic model

The dynamic Smagorinsky model (Germano ct al. 1991) was extended to unstructured

grids. Recall that the LES equations are

__ Ogigj 0¢ 1 02_i OqijON + -- + (2.2)
Ot Oxj Oxi Re OZjXj OZj

where qij denotes the anisotropic part of the subgrid-scale stress, uiuj - uiuj, and the
overbar indicates filtered variables. Note that the above equation can equivalently be
written with the convection term in rotational form.

The details of the dynamic modeling procedure may be found elsewhere and are not

repeated here. We only note that tile Smagorinsky model assumes that

qij _- - 2C-_2JSISij (2.3)

where Sij denotes the filtered strain-rate tensor. Application of the dynamic procedure

using the least-squares approach (Lilly 1992) yields the following expression for C:

C_2_ 1 LijMij (2.4)
2 ?JktMkt

where

and

A AA

nij=uiuj -- UiUj (2.5)

: "'ix/x)tSis,L-ISlSG (2
The dynamic procedure requires definition of a test-filter and the ratio of test to

grid filter widths. The ratio of filter widths is commonly assumed to be 2; we do the

same. We define the filter width at the faces of the grid as VW3 where V denotes the

average of the volumes of the elements that straddle the face. This yields a filter width

of (A_A_A_) 1/3 for a Cartesian grid. The test filter is assumed to be a top-hat filter
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(a) (b)

FIGURE 2. Streamlines in the immediate vicinity of the cylinder. (a) : Re = 20, (b) : Re = 100.
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FICURE 3. The vorticity and pressure coefficient (Cp) on the cylinder surface at Re = 20 are

compared to experimental data. The solid lines are from the calculations, while the symbols are
experimental data from Nieuwstadt & Keller (1973). (a): Cp, (b): vorticity.

and uses information from the neighboring volumes to obtain test-filtered values of the

velocity at the faces. In practice, the dynamic model constant C is usually averaged

over homogeneous directions, should such directions be present. Other approaches have

been proposed for flows without homogeneous directions; e.g. Ghosal et al. (1994),

Meneveau et al. (1996). Ghosal's approach requires solution of a variational problem

and was successfully applied to flow over a backstep by Akselvoll & Moin (1995). The

Lagrangian averaging proposed by Meneveau et al. (1996) has been successfully applied

to channel flow but can exhibit sensitivity to the Lagrangian averaging time (D. You,

private communication). In this report, we have chosen to filter the dynamic model

coefficient in space instead of Lagrangian averaging. This implementation of the dynamic

model is considered preliminary; the rationale for test-filtering the coefficients is that

spatial filtering is consistent with the assumption in the dynamic procedure that the

model coefficient does not vary over the test filter width.

2.1.3. Variable density flow

The constant density algorittnn has been extended to variable density flow in the low

Mach number limit. The dependent variable is now pv,_ instead of v,, and the convection

term is rewritten in terms of pff and its curl. Again, a pressure-projection approach is

used to enforce the continuity equation. The energy equation may either be solved for, or

temperature may be obtained by mapping from the scalars. Validation is in progress and

is composed of two parts--evolving the scalars for constant density flow and evolving

the variable density equations while specifying the density, and combining the two. The
first two validations have been completed; similar computations in other simple laminar

flows were performed.
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FIGURE 4. Lift coefficients at Re = 100. -- (Clv), ---- (Cz_), "....... (Cz). The subscripts
p and v stand for contributions from pressure and viscosity respectively.

2.2. Results

Several computations were carried out to validate the numerical method. Some of these
are discussed below.

2.2.1. Flow over a cylinder

The flow over a cylinder has been studied extensively by both experiments and com-
putations. The flow is sensitive to Reynolds number, has attached and separated regions,

and exhibits steady and unsteady regimes. It was therefore used for validation. Four

simulations are planned: direct numerical sinmlation at Re = 20, Re = 100, Re = 300,

and LES at Re = 3900. The first two calculations are completed and are reported here,

while the latter two are in progress. Note that tile flow at Re = 20 is two-dimensional and

steady, that at Re = 100 it is two-dimensional and unsteady, while those at Re = 300 and

3900 are three-dimensional and unsteady. Regardless of the regime and dimensionality

of the flow, all simulations reported solve the three-dimensional unsteady equations.

Figure 2 shows streamlines in the immediate vicinity of the cylinder at Re = 20 and
100. The asymmetry in the presence of shedding is apparent. Quantitative validation is

provided in Figs. 3 and 4 and tables 1 and 2, where good agreement with experiment

and other computations is found.

2.2.2. Flow over a sphere

The flow over a sphere was chosen as a validation case since it exhibits Reynolds

number sensitivity while being three-dimensional even in the laminar regime. Currently

a computation at Re = 50 has been completed, and the results are reported here. Al-

though not a complex geometry, the use of unstructured grids allows the problem of

polar singularity to be side stepped; the surface of the sphere is paved with quadrilateral

elements which are then extruded normal to the sphere surface to generate the volume

grid. As shown in Fig. 5, good agreement is obtained with structured-grid computations

by Johnson & Patel (1999).

2.2.3. Flow in a coaxial combustor

The flow in a coaxial dump combustor geometry has been extensively studied experi-

mentally (Roback & Johnston 1983, Sommerfeld & Qiu 1991) as well as computationally

using LES (Pierce & Moin 1998). Data for both cold and reacting flow are available. It

is therefore used for validation purposes. Figure 6 shows a cross-section of the geometry.
Two cases were considered. Prior to inclusion of the LES model in the code, laminar
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]Present results]Computations[Experiments

Drag coefficient

Pressure drag

Viscous drag

Separation angle

Min. vel. in bubble

Position of rain. vel.

2.01

1.18

0.83

42.5 °

-0.032U

0.42D

1.99

43.8 °

-0.031U

0.42D

2.05

1.22

0.83

41.6 °

-0.040U

0.36D

TABLE 1. Comparison to experiments (Taneda 1956, Coutanceau & Bouard 1977, Nieuwstadt

& Keller 1973), and computation (Beaudan & Moin 1994) for Re = 20.
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FmUaE 5. The vorticity and pressure coefficient (Cv) on the sphere surface at Re = 50 are

compared to experimental data. The solid lines are from the calculations, while the symbols are

experimental data from Johnson & Patel (1999). (a): Cv, (b): vorticity.

flow in the same geometry was computed. The objective of the laminar calculations was

to validate the code by comparing to computations by Pierce (personal communication)

using a structured solver in cylindrical coordinates. The three components of the coaxial

geometry--core inlet, annular inlet, and test section--were independently considered.

The solutions in the inlets are trivial and are not shown here. Figure 7 compares the

solution in the test section to results from Pierce, and good agreement is observed.

Currently LES in the same geometry is in progress at conditions corresponding to

those of Roback and Johnston, 1983.

2.3. Flow in a Pratt _ Whitney combustor

Our goal is to perform LES in an industrial gas turbine combustor as part of the overall

integrated simulation. A step in that direction is to simulate cold and then reacting

flow in an industrial combustor. Pratt & Whitney has provided us with a combustor
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Presentresu,tsIComputationslntsI
Drag coeff. (max)

Pressure drag (max)

Viscous drag (max)

Lift. coef. (max)

Lift coef. (amp)

Pressure lift (max)

Viscous lift (max)

Strouhal no.

-Cpbase

-Cpstag.

Sep. angle

1.329

0.989

0.340

0.328

0.684

0.290

0.043

0.166

0.77

1.08

116.1 °

1.314- 1.365

1.021

0.344

0.314 - 0.328

0.657

0.297

0.045

0.164 - 0.166

0.73 - 0.74

1.11

117.4 °

1.35

1.01

0.34

0.164

0.72

117.0 °

TABLE 2. Flow over a cylinder at Re = 100. Comparison to experiments (Williamson 1991,

Henderson 1995) and computation (Beaudan & Moin 1994, Mittal (private communication),

Kravchenko &: Moin 1998).
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FIGURE 6. Cross-section of coaxial combustor.
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FIGURE 7. Laminar validation in the coaxial combustor geometry. The profiles at x = 2 are
compared to results from Pierce (private communication) using a structured grid solver. (a): u,
(b): Scalar -- (Pierce), o (present results).

FIGURE 8. Cross-section of combustor.

geometry for which they have data. Simulating flow in the real combustor geometry tests

the algorithm and the code as well as our grid generating capability.

Our first step has been to assess our ability to handle the intricate internal details of

the combustor geometry and to assess the resolution requirements in the different regions
of the flow. Towards that end we have extracted from the original three-dimensional

geometry a plane containing important features such as the pre-diffuser, outer diffuser,

fuel and air nozzle, and injection holes (Fig. 8). The midplane was extruded in the

spanwise direction, and a completely hexahedral grid of about half a million elements

was generated. Figure 9 illustrates a portion of the grid.

Plug flow at a Reynolds number of around 3000 was specified at the inlet; the cal-

culations were started from rest and monitored for qualitative accuracy. Figures 10 and

11 show instantaneous streamlines in the pre-diffuser, nozzle, and dilution hole regions

respectively. The computation is seen to capture separation, reattachment, and recircu-

lation regions at both large scales (such as in the diffuser and downstream of the nozzle)

and small scales (e.g. small corners around the nozzle). Also, the evolution of the flow

was tracked, and unsteady details such as starting vortices and separation at sharp edges

were seen to be captured. Animation shows a flow that appears periodic and is driven by

periodic shedding in the pre-diffuser. This is consistent with the presence of sharp edges
and the absence of three-dimensional features.
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FIGURE 9. A closer view of the grid used in the nozzle.

FIGURE 10. Streamlines in the prediffuser and nozzle regions respectively.

Our next step is to generate a suitable grid for the three-dimensional geometry and

then simulate scalar mixing in the full configuration.

2.4. Parallel performance

The constant density solver was tested on the SGI Origin 2000 and found to scale quite

well with the number of processors. Figure 12 shows results from calculations on two

different grid sizes, 64000 and 216000 nodes. Note that these grids are quite small as

compared to the grids commonly used for turbulence simulations. The computations

with 64000 nodes scales linearly almost up to 32 processors, at which point there are only

2000 nodes per processor. The simulations with 216000 nodes is seen to scale linearly far

beyond. An empirical rule of thumb used in our calculations is to partition the grid into

as few as 5000 elements per processor, should that many processors be available.
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FIGURE 11. Streamlines illustrating flow around the dilution holes.
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FIGURE 12. Results of a scaling study on the Origin 2000. Two different grid sizes were
considered: 64000 nodes (o), and 216000 nodes (o).

3. Summary

This report describes our progress in the last year towards large-eddy simulation of

gas turbine combustors. Our progress in the last year is as follows:

• A more efficient version of the constant density algorithm was derived for hybrid

grids.

• The constant density algorithm was implemented for hybrid grids, and validated for

a variety of steady and unsteady flows.

• Simulations in the Pratt & Whitney geometry have been initiated; the unsteady flow

in a subset of the overall geometry was simulated.

• The dynamic Smagorinsky model was extended to unstructured grids, and imple-
mented in the code.
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• The algorithm was extended to tow Mach number, variable density flows; validation

is in progress.
• The spray module is being incorporated.
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Towards LES models of jets and plumes

By A. T. Webbt AND N. N. Mansour$

1. Motivation and objectives

As pointed out by Rodi (1982) standard integral solutions for jets and plumes developed

for discharge into infinite, quiescent ambient are difficult to extend to complex situations

- particularly in the presence of boundaries such as the sea floor or ocean surface. In such

cases the assumption of similarity breaks down and it is impossible to find a suitable

entrainment coefficient. The models are also incapable of describing any but the most

slowly varying unsteady motions.

There is therefore a need for full time-dependent modeling of the flow field for which

there are three main approaches - Reynolds averaged numerical simulation (RANS),

large eddy simulation (LES) and direct numerical simulation (DNS). Rodi (1982) applied

RANS modeling to both jets and plumes with considerable success, the test being a match

with experimental data for time-averaged velocity and temperature profiles as well as

turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still

relies on empirical constants, some eleven in tile case of the buoyant jet, and so would

not be applicable to a partly laminar plume, may have limited use in the presence of

boundaries, and would also be unsuitable if one is after details of the unsteady component

of the flow (tile turbulent eddies). At the other end of the scale DNS modeling includes all

motions down to the viscous scales. Boersma et at. (1998) have built such a model for the

non-buoyant case which also compares well with measured data for mean and turbulent

velocity components. The model demonstrates its versatility by application to a laminar
flow case. As its name implies, DNS directly models the Navier-Stokes equations without

recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re)
the cost can be prohibitive - the number of required grid points scaling with Re 9/4 and

the number of time steps with Re 3/4 (Piomelli and Chasnov, 1996).

The middle road is provided by LES whereby the Navier-Stokes equations are formally

filtered with tile filter chosen to only exclude the smallest turbulent motions. If successful,

LES should provide much of the detail available to DNS but at more bearable cost. Fatica

et al. (1994) in comparing LES with DNS for a low Reynolds number jet showed that

the LES could simulate the temporally evolving behavior including growth of the jet
thickness.

It is the intention of this report to explore the application of an LES model to jets

and plumes. As always, before tackling complex situations, the model must be tested for

the simplest of cases and so we address only two, a non-buoyant axisymmetric jet issuing

steadily from an orifice into a semi-infinite stationary environment and a buoyant jet in
the same environment. The work is a continuation of Basu and Mansour (1999).

t University of New South Wales, Australian Defence Force Academy
:_ NASA Ames Research Center, Moffett Field, CA
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2. Numerical method

2.1. Governing equations

In the present study, we aim to compute the evolution of a circular jet and plume in

uniform surroundings. Since the density differences away from the source of a plume

are typically small compared to ambient density, we take advantage of the Boussinesq

approximation, whereby the effects of density variations are neglected, except in that they

are modeled by a source or buoyancy term in the momentum equations. The equations to

be solved are the modified incompressible Navier-Stokes equations under the Boussinesq

approximation together with the continuity equation and a scalar transport equation

where for the buoyant case the scalar represents buoyancy or temperature deficit.

The non-dimensional governing parameters for this flow are:

Reynolds number = Re = UoDo/u,

Prandtl number = Pr = v/a ,

Grashofnumber = Gr = gto/D3o/_ ,2,

where Uo is the mean vertical velocity of the fluid leaving the source (used to non-

dimensionalize all velocities), Do is the diameter of the orifice (used to non-dimensionalize

lengths), v is the kinematic viscosity of tile fluid, _ the scalar diffusivity, and gto the initial

buoyancy. For the non-buoyant case, Gr is set to zero.

In the following we use T to represent the dimensionless scalar concentration (eg.

pollutant, buoyancy, temperature deficit etc).

2.2. Large eddy simulation

To create a computational model, the LES approach is to spatially filter the Navier-

Stokes/continuity/tracer equations with the filter cutoff chosen to retain the energy-

containing wavenumbers. In the present study, the SGS stresses and fluxes are modeled

using the dynamic approach (Germano et at., 1991, Lilly, 1992, and Cabot and Moin,

1996), which automatically determines, using different filter widths, the spatial distri-

bution of the magnitude of eddy viscosity as required by the subgrid-scale Smagorinsky

model; this procedure obviates the need for any empirical determination of the Smagorin-

sky constant. A major attraction of this method is that it is much more likely to be

successful for inhomogeneous flows, particularly in cases where part of the domain is

laminar as we have in jets and plumes. This issue was explored by Liu et al. (1994)

who compared the Smagorinsky and the dynamic models with particle image velocime-

try laboratory measurements in the far field of a turbulent round jet. The Smagorinsky

model was found to correlate poorly with the real turbulent stress, while the dynamic

model yielded appropriate coefficients. The inadequacy of the Smagorinsky model was

also demonstrated by Bastiaans et al. (1994) in an LES model of transient buoyant plumes

in an enclosure where they found they could only get a match of the evolving plume by

tuning the Smagorinsky constant. Such tuning reduces the generality of a model.

2.3. Numerical scheme

The numerical scheme for the Navier-Stokes/continuity equations is a fractional step

method similar to that of Kim & Moin (1985) who extended the method of Chorin

(1968). At the start of each step the subgrid model results are converted to a viscosity

to be added to the molecular value and the corresponding diffusivity is estimated from

the viscosity with a constant Prandtl number.

We use the LES code of Boersma, an adaptation of DNS code used in a study of

pure jets (Boersma et aI., 1998). A spherical polar coordinate system (R, _, ¢; along the
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radial vector, lateral and azimuthal directions respectively) is used here because, for the

present flow with its conical mean growth, a spherical coordinate system allows for a

well-balanced resolution of the flow field without excessive grid points. For presentation

purposes, however, and for comparison to laboratory data, the results are converted to

the axisymmetric cylindrical coordinate system (z axial and r radial). The symbols U
and V are used for velocities in tile z and r directions respectively. Further details of the

computational scheme can be found in the above references.

2.4. Boundary conditions and test parameters

For the chosen staggered grid only velocities normal to the boundary need be specified

- i.e. six components. The equation for the tracer (T) is second order in each spatial

direction and so we need six boundary conditions for temperature as well.

For the bottom boundary outside the orifice, the velocity is set to zero (i.e. a solid

wall). Inside the orifice the vertical velocity profile is specified as a log profile matching

smoothwall pipe flow (although the wall boundary layer is not resolved). Other profiles

were also tested (tophat and parabolic) with little difference in the substantive results. In

addition to the prescribed inlet velocity profile we impose a random white noise pertur-

bation of peak magnitude 2% on the axial velocity component at the inlet; this roughly

corresponds to the reported fluctuation level near the inlet in the experiments of Shabbir

& George (1994). Similar conditions are applied to temperature, viz tophat profile of zero

outside and unity inside.

At the lateral boundary of the computational domain we apply a stress-free condition

(Boersma et al., 1998, Gresho, 1991) which in spherical coordinates reads:

-P + 2_, \r-O0- + = O.

As adopted by Boersma et a/. (1998) the value of P at this boundary is set to a constant

value (assumed zero) representing its value at infinity. We will revisit this choice at the

end of the Report.

At the outflow boundary or the top end of the current computational domain, we

use the so-called adveetive boundary condition, which has been applied successfully by

many for similar flows (e.g. Boersma et aI., 1998). Negative values of uR at the outflow

boundary are set to zero in order to ensure that no flow enters the computational domain

from the outflow region at the top. Corresponding values of T are likewise set to zero at

these points.

Periodic boundary conditions are used along the azimuthal ¢ direction boundaries and

lateral velocity (uo) is set to mean value at 0 = 0.

The test conditions were originally chosen to match the particular conditions of round
turbulent buoyant plume reported in Shabbir & George (1994) although we subsequently

compare with a broader range of experiments. Together with the boundary conditions

the following parameters completely determine the flow:

Re = 3500, Pr = 0.7, Gr = 9.25 x 106 for plume, Cr = 0 for jet.

There are two points to made about these values - viz whether we would expect the

flow to be turbulent and secondly for the buoyant case, at what point we would expect

the buoyancy effects to dominate the initial momentum effects.

On the first issue, although there are no critical values of these parameters to guarantee
turbulent flow, the value of Re is within the range of experimental data for which the

plume is turbulent at or near the nozzle (see Chen and Rodi, 1980, for a discussion
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on this issue). Note that for the buoyant case, the value of Gr, would not in itself be

high enough to guarantee a turbulent plume. However the concomitant high Re and our

random perturbation at the source do yield turbulent flow from the nozzle.

From the experiments of Ricou & Spalding (1961) transition from jet-like to plume-like

behavior occurs at a dimensionless height scaled by the so-called Morton length. In our

terms the scaling length is .557/.254v_/_25DoRc/v/Gr .._ 2DoRe/v/-G-_, and so in our

buoyant case the transition to plume occurs within about 2.5 diameters of the source.

A third issue that cannot be related quantitatively to the test parameters is the distance

over which a core region characterized by the flow profile at the source persists. From

experimental data this distance is of order 6D0 (Chen and Rodi, 1980) although fully

developed jet flow may take some additional distance.

The computations are carried out in a domain that extends to 50 diameters downstream
of the source. The domain encompasses a conical volume of lateral angle 7r/12, with a

virtual origin that is 15 diameters upstream of the orifice. For the purpose of LES,

this volume is discretized using a grid of size (Nr = 128, N0 = 40, N, = 32), where

A_, No, N¢ are the number of finite-volume cells along the (r, 8, ¢) directions respectively.
The grid spacing along r increases linearly from 0.1 near the source to 0.7 near the outflow

boundary. Grid spacing is maintained constant along t7 and ¢. Time stepping was chosen

to satisfy CFL conditions Boersma et al. (1998) and for the jet model a typical time step

in dimensionless time units (Do/Uo) was 0.01 while for the plume it was 0.003. Spatially

the grid is an order of magnitude smaller than the expected large scale (typically 0.4z,

although there is an arbitrariness about the definition of the plume edge) and an order

of magnitude larger than the Kolmogorov length scale (see Papantoniou and List, 1989)

as appropriate for LES modeling. Temporally the sampling is much smaller than the

Kolmogorov time scale - i.e. instantaneous.

The computations are carried out for over 100,000 time-steps (a non-dimensional time

of about t = 300). Averaging for statistical quantities was done towards the end of the
simulations when we were convinced the flow was statistically stationary. The throughput

on a 195 MHz 8-processor SGI Origin 2000 is about 0.7 seconds per time step.

3. Results

3.1. Jet imaging

A meridional section of tracer concentration simulates a Schlieren photograph that might

be captured in the laboratory and enables visualization of several features. Figure 1 is a

sequence of three such sections at time steps of 7.4 dimensionless time units.

From any one of these one can see, for example, the zone of flow establishment (zfe)

between z = 0 and z _ 7. The dark central region with concentration of unity represents

source fluid, the edge of which is being eroded by vortices whose dimensions are quite

large compared to the nozzle diameter. These vortices grow until they encompass the

full radius of the source fluid core. Moreover, there is a regularity in these vortices that

results in pulses of higher than locally averaged concentration that advect away from the
zfe.

The arrow in the three images follows an eddy apparently in the process of engulfing

a patch of ambient fluid. This large scale process is distinctly different from an image

implied by integral models of a smooth diffusion process whereby there would be a gradual

increase in concentration from the jet edge to the center. Engulfing eddies can be seen
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sequence of meridional tracer slices. The arrows track a particular eddy as it

engulfs ambient fluid.

throughout the images with speed decreasing and size increasing with distance (z) from

the origin.

3.2. Quantifying scale

The apparent underlying regularity in the image sequence suggests that we can seek a

reliable way of defining time and space scales for the dominant eddies. For time, the
obvious method is to look for a spectral peak computed from a time series and indeed

when that is done one finds a clear peak somewhat higher than the expected large scale

frequency but much lower than the Kolmogorov frequency.

One could invoke the Taylor frozen-field assumption to deduce a spatial scale but

an impediment to computing such a scale is tile obvious inhomogeneity. However we

can make use of the scaling determined from the mean and variance to transform an
axial sample of the tracer to a homogeneous equivalent. Subtracting the mean centerline

temperature and then dividing by the mean removes these two trends but still leaves

a z-dependent wavelength. However if we transform the z-axis by the antiderivative of

the expected inverse growth rate the z-dependence is removed. In this case the growth

is expected to be linear and hence the transformation is simply logarithmic. A sample

centerline record and its transformed homogeneous equivalent are shown in Fig. 2. The

spectra of 100 such records were averaged to yield the spectrum shown in Fig. 3. The

interpretation of the peak at 5 transformed wave number units is that the centerline eddy

length is equal to 0.2z. This provides a definitive measure of the large scale motions and

may be a better representation than the plume width with its uncertainty in definition.

The small peaks to the right of the peak are not due to uncertainty in the spectral

estimates. Rather they arise because of the asymmetry of the shape of the puffs. This
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feature can be clearly seen in the transformed centerline trace (Fig. 3b) where the front of

an advancing eddy is typically steeper than the back. The manifestation of this feature

in the spurious spectral peaks was confirmed by finding the spectrum of an artificial

asymmetrical wave shape (results not shown here).

3.3. Comparisons with laboratory data

To have confidence in the exploration of scale we must be assured that the model is

producing reliable results and one way of doing that is by comparing with laboratory
data. There is a wealth of such data and we use a selection reviewed by List (1982). The

data represent air in air and water in water. Despite the range of fluids and laboratory

conditions there is a surprising consistency between the results and hence we would

expect our model to be able to match them well.

To produce the model results for comparison we have averaged first moment and second

moment statistics (third moment statistics were also computed but are not shown here)

over many snapshots. For the results shown here a total of 324 snapshots spaced at 100
timesteps were used. The data were also averaged azimuthally so we have a total of

about 10000 samples and if they were independent, the uncertainty for a mean quantity

(such as the centerline axial velocity) would be about 0.3%. Now the samples are far

from uncorrelated (particularly the azimuthal values) but even discounting the azimuthal

averaging gives an uncertainty estimate of 2%.

3.3.1. Mean flow statistics

Here we examine two statistics, the mean z-direction velocity (U) and the tracer con-

centration (T). The procedure for reducing the data was to fit Gaussian curves (using

Matlab's routine nlinfit with emphasis on the inner radius) to the r-direction profiles.

The fitted e-folding radius (re) and the fitted maximum value were used to scale the
data. A typical collapse of the data is given in Fig. 4 along with the fitted Gaussian.

There are two checks we can perform on this data - that the centerline value of U or T

decays as z -_ and that the jet e-folding width grows linearly at 0.107z for U and 0.126z

for T. The uncertainty for the growth rates is 3% for both U and T (List, 1982).

The model centerline averages (Fig. 5) show an initial region of approximate length 4

where there is little change from the source value. The decay profile then steepens until
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it approaches something like a constant slope. The effect of an imperfect downstream

boundary condition is evident in the region beyond about 30. For both U and T the

slope approaches z -1 as expected from the laboratory results.

We choose the segment between z = 20 and z = 30 where the centerline most closely

matches the expected value to check for the width growth rate (Fig. 6). The matches are

remarkably close to the laboratory data and well within the data uncertainty. The poor

Gaussian fit in the zfe and the influence of the downstream boundary are also evident in

these plots.

3.3.2. Turbulent statistics

If we were only interested in mean flow information, there would be no point in using

anything but the asymptotic models. But we are also interested in the variability as given

by the second moment statistics. Of the many such statistics that were computed we
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present only three - the z-velocity fluctuations, Urm_ = V/-_, the turbulent momentum

transport, uv = ulvt (v is the r-direction velocity) and the turbulent scalar transport
uT = utTT.

For an LES model we would expect the resolved field to provide most of the variance

information and we can check that by computing subgrid scale estimates at least for the

= u ( OU av) and uT_g = u_g(-_:)/Pr.two transport statistics using UVs9 sg_ Or + Oz

As for the mean statistics we scale these data using centerline velocities and scalars as

appropriate• The radius is also scaled, although to match the data quoted by List (1982)

we use rl/2, the point at which the velocity is half maximum rather than the e-folding

radius. (They are related by rl/2 = _/- log(1/2)r_.)

The z-direction turbulent velocity is plotted in Fig. 7. The model results can be seen to

lie at the lower end of the laboratory data, appropriately because this data corresponds

to z = 15 and z = 20, while the higher data corresponds to z > 50, outside our model

domain, the implication here is that we have not truly reached the self-similar region

despite the naatch for the mean statistics. It is unlikely that subgrid scale would contribute

significantly to these values.

Turbulent momentum transport (Fig. 8) is an even closer match - well within the

spread of both model and data. The subgrid contribution has been computed here and

can be seen to have little bearing on the total turbulent transport. An observation worth

making is that the maximum subgrid transport appears to be near r/r1�2 = 1.2 which
ou

corresponds to r/r_ = 1, the point of maximum mean _--7"

The turbulent tracer transport (Fig. 9) is perhaps the least satisfactory comparison.

the model results do sit in the region of one of two data sets - notably not the higher

one which includes some co-flow. However the spread appears a little wide and the peak

appears too close to the axis.

Two other comparisons were made but are not shown here• They were u_ms/u,,,_-m

and Trms/Trrns-m, where the subscript m signifies a centerline value. In both cases the

match to data was excellent (better than that shown Figs. 7 and 9) and it leaves open

the question as to why Fig. 9 did not show a better match.
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3.4. Plume modeling

The model was then run with the same boundary conditions and with buoyancy switched

on (Gr _ 0). The mean z-direction velocity and temperature show the same sort of

excellent collapse by fitting Gaussian profiles and the centerline decay matches the slopes
of z -1/3 for Um and z -4/3 for Tm as expected from laboratory data of many sources.

However the growth of the plume width is about 25% lower than expected and recent

effort has been targeting the reason for this mismatch. Three candidates have come to

mind - (i) failure of the Boussinesq assumption, (ii) misapplication of the stress-free

lateral boundary condition, and (iii) an error in the model for the (now active) tracer.

3.4.1. The Boussinesq assumption

Of the several requirements for this assumption to hold (see Tritton, 1988) one is

that the relative density difference 5p/p should be much lower than unity. However our
numerical model was set up to match a particular data set of Shabbir & George (1994)

who induced buoyancy by heating air to about 300°C. Near the source 5pip is about

one, well outside the range for which Boussinesq should apply.
To check whether this could cause the narrowing of the numerical plume we lowered Gr

from 9.25 x 106 to 2 x 10 _, a value well within the Boussinesq range and furthermore, one

which should result in an initially momentum-dominated jet transitioning to a buoyancy

plume within the model domain.
However the jet width remains too narrow, particularly towards higher z where buoy-

ancy would be taking over from momentum as the dominant driving mechanism. While

the density differences in the original model are high near the source, the Boussinesq

assumption would be applicable over most of the domain and hence this would not sig-

nificantly affect the results.

3.4.2. The stress-flee lateral boundary condition

Given that our problem is apparently related to entrainment it is natural to examine

the lateral boundary condition and the uniform pressure assumption. From the laboratory

data and integrals models we know that whereas entrainment for a jet is constant, for

a plume it increases with z. We explore this issue by developing simple irrotational flow

models for the entrainment fields. The assumptions are: velocity and pressure are zero

at r = 0% there is a reflection at z = 0, along the axis (r = 0) there is a line sink with

strength matching that found from integral models. The zone of flow establishment is

ignored. The solutions are found by superposition of point sinks (Batchelor, 1970).

For the jet, the sink strength is given by m = -0.25W0v/-A where A is the area of the

inlet (Fischer et at., 1979), and the entrainment velocities are U = 0 for the z-component

and V = m/(27rr) for the r-component.
For the plume, the sink strength is m = -O.155/3B1/3z 2/3 = -az 2/3 (Fischer et al.,

1979), where B = 5p/pgUoA is the initial buoyancy flux. The entrainment velocities

are found by numerically integrating the following expressions (the singularities in these

integrals at z = 0 and z = oo are managed by appropriate transformations.):

a (21o

U = _ /__ (z- zl)zl 2/3=

V= a /_ _ (:fi/3zt)2)a/2 dz'-_r _ (r 2 + ---
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FIGURE 10. Entrainment flowfield pre-
dicted by a linesink model for a pure plume.
The dashed line is the approximated edge
of a plume (2a). The solid line is the model
boundary.
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FIGURE 11. Entrainment flowfield pre-
dicted by a linesink model for a pure jet.
The linestyles match Fig. 10

The solutions have been checked for consistency with the entrainment velocities for

integral jet and plume models (i.e. the radial velocities at the e-folding radius match)

and hence we can be confident of the applicability of these line sink solutions for the

whole of the entrainment region including at the model boundary.
An examination of the velocities at the lateral boundary shows (Fig. 10) that there is

a tangential component. With little curvature in the streamlines that means that there

is indeed a pressure gradient along the boundary and hence the stress-free assumption

is not strictly correct. However this true for the jet model as well (Fig. 11) and if the

inaccuracy of the boundary condition were to cause the too-narrow plume then it should
do so for both models. Therefore it appears that this is not a factor in the plume width

problem and it may be that the generous volume of the entrainment region in the model

allows circulation to adjust for the slight error at the boundary.

In fact the jet model does produce 8-direction boundary velocities consistent with those

predicted by the line sink model (Fig. 12).

4. Future plans

Elimination of the Boussinesq approximation and the stress-free boundary conditions

as culprits in the erroneous plume result leaves us with the third candidate - the subgrid
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FIGURE 12. Normal velocity at lateral boundary. The points are the average model velocities,
while the solid line has been obtained from a line-sink model.

scalar model. We have assumed that the subgrid diffusivity can be scaled from the subgrid

viscosity using a constant Prandtl number of 0.7. Other experiments with LES models
have found that lower Prandtl numbers, about 0.4, are consistently obtained for a range

of molecular Prandtl numbers (Moin et al., 1991). We will experiment with a range of

Prandtl numbers. We can go further, however, and build in an explicit model for the

subgrid diffusivity. In a way this would be more satisfying in that it would remove the

imposition of what could be viewed as a tuning parameter which may be dependent on

such things as the dimension of the LES filter.
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Dynamic wall modeling for LES of complex
turbulent flows

By Meng Wang

1. Motivation and objectives

Large-eddy simulation (LES) of wall-bounded flows becomes prohibitively expensive at

high Reynolds numbers if one attempts to resolve tile small but dynamically important

vortical structures (streaks) in the near-wall region. The number of grid points required

scales as the square of the friction Reynolds number (Baggett, Jim_nez & Kravchenko

1997), which is nearly the same as for direct numerical simulation (DNS). To circumvent
the severe near-wall resolution requirement, LES can be combined with a wall-layer

model. In this approach, LES is conducted on a relatively coarse grid designed to resolve

the desired outer flow scales. The dynamic effects of the energy-containing eddies in the

wall layer (viscous and buffer regions) are determined from a wall model calculation,
which provides to the outer flow LES a set of approximate boundary conditions, often
in the form of wall shear-stresses. Wall models which supply wall stresses to the LES are

also called wall stress models.

The simplest wall stress models are analogous to the wall functions commonly used

in Reynolds-averaged Navier-Stokes (RANS) approaches except that they are applied
in an instantaneous sense in time-accurate calculations. The wall function provides an

algebraic relationship between the local wall stresses and the tangential velocities at
the first off-wall velocity nodes. This approach was first employed in a channel flow

simulation by Schumann (1975), who assumed that the streamwise and spanwise velocity

fluctuations are in phase with the respective surface shear stress components. A number

of modifications to Schumann's model have been made by, for example, GrStzbach (1987)

and Werner & Wengle (1991) to eliminate the need for a priori prescription of the mean

wall shear stress and to simplify computations, and by Piomelli et al. (1989) to empirically

account for the phase shift between the wall stress and near-wall tangential velocity due

to the tilting of near-wall eddies. See Cabot _: Moin (2000) and Nicoud et al. (2000) and
the references therein for a review of the various wall stress models.

The algebraic wall stress models mentioned above all imply the logarithmic (power)

law of the wall for the mean velocity, which is not valid in many complex flows. To

incorporate more physics into the model, wall stress models based on boundary layer

approximations have been proposed in recent years (Balaras, Benocci & Piomelli 1996;

Cabot 1995; Cabot & Moin 2000). In this method, turbulent boundary-layer equations

are solved numerically on an embedded near-wall mesh to compute the wall stress. These

equations are forced at the outer boundary by the tangential velocities from LES, while

no-slip conditions are applied at the wall. The turbulent eddy viscosity is modeled by

a RANS type model, such as the mixing-length model with wall damping. Reasonable

success has been achieved in predicting attached flows and flows with fixed separation

points, such as the backward facing step flow. Cabot _: Moin (2000) found that, in the

case of the backward facing step, improved solutions were obtained when the mixing-

length eddy viscosity was lowered from the standard RANS value. A dynamic procedure

was suggested to determine the suitable model coefficient.
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The present work is concerncd with the use of wall models in the LES of complex

turbulent flows with strong favorable/adverse pressure gradients and incipient separation.

The wall model based on turbulent boundary layer equations (Cabot & Moin 2000) is

employed and extended to carry out LES of boundary layer flows past an asymmetric

trailing-edge shown in Fig. 1. The results are compared with those from the full LES with

resolved wall-layers (Wang _ Moin 2000) and the experimental measurements of Blake

(1975). In particular, we are interested in determining the predictive capabilities of this

hybrid LES/wall-modeling approach for flow separation, surface pressure fluctuations,

and aerodynamic noise.

It will be shown that the LES with wall modeling procedure can result in drastic savings

in computational cost with minimal degradation of flow statistics compared with the

fully resolved LES. The wall model based on boundary layer equations and dynamically

adjusted eddy viscosity is considerably more superior to its simpler variants based on

the instantaneous log law. A main objective of this article is to highlight the need for

reducing the value of RANS eddy viscosity when it is used in the LES context, which

has not been emphasized enough by Cabot & Moin (2000). We will show that this is

important for all flows, particularly attached flows. A modified dynamic procedure is

used to determine the mixing-length model coefficient, and the simulation results arc

found to be in very good agreement with those from the full LES.

2. Results

2.1. The trailing-edge flow

The flow configuration is shown in Fig. 1, which depicts contours of the mean streamwise

velocity of turbulent boundary layer flows past an asymmetric trailing-edge as computed

by Wang &: Moin (2000) using standard LES with wall resolution. This trailing-edge flow

was originally studied experimentally by Blake (1975). The chord Reynolds number is

2.15 x 106, and the trailing-edge tip-angle is 25 degrees. In the numerical simulation,

only the aft section (approximately 38% chord) of the model airfoil and the near wake

are included in the computational domain, and the inlet Reynolds numbers based on the

local momentum thickness and boundary-layer edge velocity are 2760 on the lower side

and 3380 on the upper side. These values, obtained from an auxiliary RANS calculation,

are used to duplicate the experimental conditions at the LES inflow station, although

some questions remain concerning their fidelity. Details of the trailing-edge LES can bc

found in Wang & Moin (2000).

The complexity of the flow is best illustrated in Fig. 2, which plots the distributions of

the mean pressure coefficient Cp (solid line) and skin-friction coefficient C I (x 100, dashed

line) along the upper surface of the trailing-edge. Distributions along the lower surface,

which is flat, resemble those of a flat plate boundary-layer and are thus not plotted.

As the flow approaches the trailing-edge, it first experiences favorable pressure gradient,

causing flow acceleration and increased skin friction. A region of adverse pressure gradient

ensues, leading to flow deceleration and eventually unsteady separation. The skin friction

decreases and becomes negative in the separated zone near the tip of the trailing-edge.

It is worth noting that the discontinuous slope at the skin friction peak corresponds to
the intersection of the flat surface with a circular arc (hence a discontinuity in surface

curvature). Given the presence of strong favorable/adverse pressure gradients and flow

separation, and the complex response of the skin friction, this flow provides a challenging

test case to evaluate the predictive capabilities of wall models.
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FIGURE 1. Boundary-layer flow past a trailing-edge. The contours (-0.081 to 1.207 with increment
0.068) represent the mean streamwise velocity normalized by the free-stream value (from \Vang
& Moin 2000).
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FIGURE 2. Distributions of the mean pressure and skin-friction coefficients along the upper
surface: -- Cp; .... Cf × 102.

2.2. Simulation method

The same energy-conserving finite difference scheme with dynamic subgrid-scale (SGS)
stress model used for the wall-resolved LES (Wang & Moin 2000) is employed. The

computational domain is also identical to that of the full LES. It is of size 16.5h, 41h,

and 0.5h, where h denotes the airfoil thickness in the streamwise (xl), wall-normal (xu or

y), and spanwise (xa) directions, respectively. The grid is coarsened to 768 x 64 x 24, 1/6
of the original number of points. The first off-wall velocity nodes (on staggered mesh)

are located at the lower edge of the logarithmic layer (x + _ 60 for u2 and x + _ 30 for Ul

and u3) near the computational inlet. The new grid is chosen to resolve the desired flow
scales in the outer layer and is thus not strongly dependent on the Reynolds number.

The total reduction in CPU time, due to both the smaller number of grid points and

larger time steps, is over 90% compared to the full LES.
Since the simulation does not resolve the viscous sublayer, approximate wall boundary

conditions are needed. They axe imposed in terms of wall shear stress components r_,i

(i = 1, 3) determined from wall models of the form (Balaras et al. 1996; Cabot & Moin

2000)

0 (u+ut) OuiOx---_ _ = F. i = 1,3, (2.1)
where

1 cgp Oui 0

F_- p Oz_+ _- + --u_uj. (2.2)bxj

The eddy viscosity vt is obtained from a RANS type mixing-length eddy viscosity model
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with near-wall damping (Cabot & Moin 2000):

v._..(_= + ( e__t+lA)_u nYw 1- , (2.3)

where y+ = y,_,ur/u is the distance to the wall in wall units (based on the local instan-

taneous friction velocity ur), n is tile model coefficient, and A = 19. The pressure in

(2.2) is assumed x2-independent, equal to the value from the outer-flow LES solution.

Eqs. (2.1) and (2.2) are required to satisfy no-slip conditions on the wall and match the

outer layer solutions at the first off-wall LES velocity nodes: ui = u_ at x2 = 5.
1 op have beenTwo simpler variants of the above wall model, with Fi = 0 and Fi = _ ox,,

considered previously (Wang 1999). These two cases, called equilibrium stress balance

models (without and with pressure gradient), are particularly easy to implement since

(2.1) can be integrated to give a closed-form expression for 7wi.

In the general case, however, the boundary layer equations (2.1)-(2.3) have to be solved

numerically to obtain ul and u3, and hence Twl and rw3. They are integrated in time

along with the outer flow LES equations, using tile same numerical scheme (fractional
step in combination with the Crank-Nicolson method for the diffusion term and third

order Runge-Kutta scheme for convective terms). The wall-normal velocity component u2

is determined from the divergence-free constraint. Note that no pressure Poisson equation

is required since pressure is assumed constant in the wall-normal direction. The grid for

wall layer computation coincides with the LES grid in the wall-parallel directions. In

the direction normal to the wall, 32 points are distributed uniformly between the airfoil

surface and the first off-wall velocity nodes for LES, with resolution of Ax + _, 1 near the

inlet. The computational cost for solving the boundary layer equations is insignificant

compared with that for the outer layer LES because (1) there is no need to solve the xz-

momentum equation and the pressure Poisson equation, and (2), more importantly, the

equations are solved in locally orthogonal coordinates instead of the general curvilinear
coordinates used for the LES.

2.3. The effect of model coefficient

A good indicator of wall model performance is the prediction of the mean skin friction

coefficient, which is shown in Fig. 3. The simple stress balance models, with Fi = 0 and
Fi= lO_, (dashed and chain-dashed lines respectively) and _ = 0.4 (the yon K/_rm_.n

constant), predict well the skin friction coefficient C I on the flat surfaces, but deviate

significantly from the full LES solution (dotted line) downstream of the C I peak, where

the flow undergoes a favorable-to-adverse pressure gradient transition. This suggests that
terms not included in the model, such as the convective terms, are important.

The skin friction coefficient computed using the full boundary layer equations (2.1)

(2.3) and the standard yon K_rm_n constant _ = 0.4 shows improved qualitative trend

(chain-dotted lines). However, the magnitude is overpredicted in most regions, particu-

larly on the flat surface, by up to 20%. This overprediction can be explained as follows:

If the streamwise component of (2.1) and (2.2) are integrated from the wall to y = 6 and

then time-averaged, one obtains

- _------ dy . (2.4)
f: v-_, p Oxl _, + vt p + ut

Note that to facilitate the analysis, ut has been treated as constant in the time-averaging

as a first approximation. The first term in the curly brackets, which is always posi-
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rive, represents the wall shear stress from an equilibrium stress balance model without

pressure gradient. The second term accounts for the mean pressure gradient effect, which
contributes positively (negatively) to the walt shear stress under favorable (adverse) pres-

sure gradient. The contribution from the nonlinear convective terms is represented by
the last term in the brackets. This part, denoted by g_l, can be expanded to give

{/o' /; /o'p 1 0 u_dy'dy + -_dy . (2.5)
"TC l - f: _@r't U -I- I/t C_X l I] -t- l/t J

The first term in (2.5) vanishes if the flow is homogeneous in the streamwise direction,
such as in a turbulent channel flow. In the case of a flat-plate boundary layer with zero

pressure gradient, it makes a positive, albeit small, contribution to the wall shear stress

due to the thickening of the boundary layer. The dominant contribution to Kwl comes

from the second term, which is positive for a fiat plate boundary layer.

Thus we have shown mathematically that, at least on the flat section of the airfoil,

the inclusion of the nonlinear terms in the wall model equation increases the wall stress,

causing the overprediction shown in Fig. 3 if contributions from other terms in (2.4)
are not altered. To offset this increase, the only option is to reduce the turbulent eddy

viscosity ut and hence the multiplication factor before the curly brackets in (2.4). This

mainly affects the equilibrium part of the wall stress (first term inside the brackets). The

pressure-gradient and nonlinear parts of the wall stress are insensitive to ut because it

appears both inside and outside the brackets with opposite effects.

The physical explanation for requiring lower ut, as pointed out by Cabot &: Moin (2000),

is the fact that the Reynolds stress carried by the nonlinear terms in the boundary layer

equations is significant. Hence, instead of modeling the total stress as in typical RANS

calculations, the eddy-viscosity model is expected to account for only the unresolved

part of the Reynolds stress. Cabot _: Moin (2000) suggested to compute the model

coefficient dynamically by matching the stresses between the inner layer (wall model)

and outer layer (LES) solutions. In the present case, since the horizontal grid is the same
for both the LES and wall model calculations, and because the velocities are matched

at the edge of the wall layer, the resolved portions of the nonlinear stresses from the
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FIGURE 4. Dynamic t_ for the mixing-length eddy viscosity model at three time instants.
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inner and outer layer calculations are the same. To match the unresolved portions of

the stresses approximately, we equate the mixing-length eddy viscosity to the SGS eddy

viscosity at the matching points, (ut) = (usgs), from which the model coefficient _ is

extracted using (2.3). The averaging denoted by the angular brackets is performed in

the spanwise direction as well as over the previous 150 time steps to obtain reasonably

smooth data. One difficulty with this method is that usg8 is poorly behaved at the first

off-wall velocity nodes because the velocities at the wall are not well defined (we used

slip velocities extrapolated from the interior nodes to compute the strain rate tensor and

us_). As a practical matter, the matching points for eddy viscosities are moved to thc
second layer of velocity nodes from the wall instead.

The dynamically computed _ at three time instants are exemplified in Fig. 4, where the
solid lines represent those on the upper side and dashed lines on the lower side. They are

found to be only a small fraction of the standard value of 0.4. This figure indicates that

on average, on the fiat surfaces, only less than 20% of the Reynolds stress is modeled by

the mixing-length eddy viscosity. The rest is directly accounted for by the the nonlinear

terms in the wall layer equations. By using the reduced, variable model coefficient n, the

computed skin friction coefficient is much improved, as demonstrated by the solid line in

Fig. 3. This modeling approach gives the best overall agreement with the results of the

resolved LES compared with other wall models tested.

2.4. Comparisons with full LES solutions

Comparisons of the velocity predictions using the wall modeling approach described above

and those from the full LES (Wang & Moin 2000) show very good agreement. In Fig. 5 the

velocity magnitude, defined as U = (U_ + U_) 1/2 and normalized by its value Ue at the

boundary-layer edge, is plotted as a function of the vertical distance to the upper surface,

at (from left to right) xl/h = -3.125, -2.125, -1.625, -1.125, -0.625, and 0 (trailing-

edge). With the exception of the trailing-edge point, these locations correspond to the

measurement stations in Blake's (1975) experiment. The mean velocity profiles obtained

with wall modeling (solid lines) agree extremely well with the full LES profiles (dashed

lines) at all stations, including those in the separated region which starts at xl/h =

-1.125. The agreement between both computational solutions and the experimental data



Dynamic wall modeling ]or LES of complex flows 247

0.6 I

.......... °--," ......... ,.

0 1 2 3 4 5 6

u/ue

FIGURE 5. Profiles of the normalized mean velocity magnitude as a function of vertical distance
to the upper surface, at (from left to right) xl/h = -3.125, -2.125, -1.625, -1.125, -0.625,
and 0 (trailing-edge). -- LES with wall model; .... full LES; • Blake's experiment.
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FIGURE 6. Profiles of the rms streamwise velocity fluctuations as a function of vertical distance
from the upper surface, at (from left to right) xl/h -- -4.625, -2.125, -1.625, -1.125, -0.625,
and 0 (trailing-edge). -- LES with wall model; .... full LES; • Blake's experiment.

is also reasonable, and the potential reasons for the observed discrepancies have been

discussed by Wang & Moin (2000).

Fig. 6 depicts the profiles of the rms streamwise velocity fluctuations at (from left to

right) xl/h = -4.625, -2.125, -1.625, -1.125, -0.625, and 0. Again, excellent agree-

ment between the present solutions and those of the full LES is observed, with the notable

exception at xl/h = -1.125, where the wail model solution agrees (perhaps fortuitously)

better with the experiment. It should be pointed out that the LES/wall-modeling predic-

tions shown in Figs. 5 and 6 are significantly more accurate, judging from comparisons

with the full LES data, than those reported by Wang (1999) using the simpler equilibrium
stress balance models.

In Fig. 7 the mean streamwise velocity profiles (normalized by free-stream velocity

Uo_) are compared at select near-wake stations xl/h = O, 0.5, 1.0, 2.0, and 4.0. The solid

lines are obtained from the present simulation, and the dashed lines are from the full

LES. The corresponding rms streamwise velocity fluctuations are depicted in Fig. 8. The
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FIGURE 8. Profiles of the rms streamwise velocity fluctuations in the wake, at (from left to
right) xt/h = O, 0.5, 1.0, 1.5, 2.0, and 4.0. -- LES with wall model; .... full LES.

agreements between the LES solutions with and without wall modeling are good near

the trailing-edge and deteriorate gradually in the downstream direction. This is caused

by the much reduced grid resolution in the case of LES with wall modeling. The grid

has been coarsened by the same factor in the wake as in the wall bounded region, even

though the wall model does not play a role there. Apparently, this has caused insufficient

grid resolution, particularly in the streamwise and spanwise directions.

Finally, Fig. 9 depicts the frequency spectra of surface pressure fluctuations obtained

from LES in conjunction with the walt model and compares them with those from the full

LES and Blake's experiment. The variable q_ used in the normalization is the dynamic

pressure, defined as pU_/2. Relative to the experimental data, the pressure spectra from

the simulation employing the wall model are of comparable accuracy as those from the

full LES, although the resolvable frequency ranges are narrower due to the coarser grid.

However, relative to the full LES spectra, the spectral levels are somewhat overpredicted,

particularly in the attached flow region (parts (a)-(c) of the figure). This phenomenon has

also been observed previously in channel flow LES with wall models. The discrepancies, as

pointed out by Wang (1999), may be attributable to the approximation of wall pressure
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by the cell-centered values adjacent to the wall and the fact that in the present LES

formulation the "pressure" actually contains the subgrid-scale kinetic energy. The latter

is negligibly small at the first off-wall pressure node if the wall layer is resolved but may

not be negligible in the present case because of the coarse mesh. This issue needs to be

examined in future investigations.

3. Conclusions and future work

In summary, we have developed a numerical procedure using a combination of LES

with wall modeling for simulating complex wall-bounded flows. It is demonstrated that

when a RANS type eddy viscosity is used in wall-layer equations that contain nonlinear

convective terms, its value must be reduced to account for only the unresolved part of

the Reynolds stress. A dynamically adjusted wall-model eddy viscosity is employed in

the LES of turbulent boundary layer flows past an asymmetric trailing-edge. The method

is shown to predict low-order velocity statistics in very good agreement with those from

the full LES and at less than 10% of the original computational cost. In particular,

the unsteady separation near the trailing-edge is predicted correctly. This cost-effective

approach will be very useful for simulating the high Reynolds number trailing-edge ex-
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periment currently underway in the Navy's large cavitation channel (Bourgoyne, Ceccio

& Dowling 2000) and for shape optimization in order to achieve passive noise control.

The latter two items are among the planned activities as an extension of the present

trailing-edge aeroacoustics project. In addition, we will continue to develop improved

approximate wall boundary conditions for LES applications and critically evaluate their

impact on the predictions of unsteady surface pressure and radiated noise.
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Flow in an impeller stirred tank using an

immersed boundary method

By R. Verzicco] _, G. Iaccarino, M. Fatica AND P. Orlandi{

1. Motivation and objectives

The present study is concerned with the flow induced by an impeller in a cylindrical

tank. Although this is a model problem, it is relevant to many chemical and food-industry

technological processes. In the last decade significant effort has been devoted to simu-
late and predict such flows since full-scale testing is very expensive and considerable

savings could be achieved if reliable numerical models could predict the performance of

prototypes.

Despite the relatively simple geometries and the low Reynolds numbers involved, the
simulation of these turbulent flows is considerably challenging. Some of the difficulties

encountered are the strongly inhomogeneous nature of the turbulence, the small surface of

the impeller blades, and the large disparity in time and length of flow scales. In particular,

given the short blade lengths, the boundary layers developing on their surfaces will not

be fully developed; therefore, all turbulence models based on wall functions would give

inaccurate results. In addition, RANS models, even when implemented in the unsteady

form, are unlikely to capture all of the time scales ranging from that of the vortex

shedding at the blade tips to the large scale meridional circulation induced in the tank.

DNS and LES approaches, in contrast, do not suffer from the abovementioned problems

although they are more computationally expensive, especially when applied to complex

geometry flows. However, in a recent paper by Verzicco et al., (2000), it has been shown
that the combination of the "immersed boundary" (IB) procedure with DNS and LES

simulations can efficiently be used for the accurate prediction and analysis of many

technologically relevant flows. In particular, since the presence of complex boundaries

is mimicked by body forces, the simulations are, in fact, carried out on "simple grids",

thus taking advantage of the efficiency and accuracy of optimized solution procedures.

IB/DNS simulations of complex-geometry turbulent-flows can be carried out with 1-2

million gridpoints on a PC with CPU times ranging between a few hours and a few days.

In this paper we will show some examples of these simulations for an impeller-stirred

cylindrical tank, and the results will be compared with experiments and RANS simula-
tions.

2. Physical problem and numerical set-up

The flow investigated in this study is intended to reproduce one of the experiments

by Dong et al., (1994). It consists of a cylindrical unbaffied tank stirred by an impeller

rotating at constant velocity _ at mid-height of the tank. The impeller has 8 blades

equispaced over the whole azimuthal span. A sketch of the device is given in Fig. 1

where all the lengths have been scaled with the blade radius, which is R = 1.25cm. The

t DIMeG, Politecnico di Bari, Via Re David, 200, 70125, Bari, Italy.
_t DMA, Universitk di Roma, "La Sapienza", Via Eudossiana, 18, 00184, Roma, Italy
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FIGURE 1. Sketch of the mixer geometry: Lr = 1, LB ----0.8, LA ----0.32, Ln = 4, Lz = 4 and
LH=8.

impeller rotation speed is fl = 100rpm, and the working fluid is water (u = 10-6m2/s),

thus yielding a Reynolds number Re = flR2/u = 1636.

For the numerical solution of the flow, the Navier-Stokes equations are solved in a

frame of reference fixed with the impeller and therefore rotating with constant angular

velocity _. When scaled with the velocity U = f_R and the length L = R, the equations

in the rotating frame read:

--_ 1(_ 1 2
OU__Vp_ xu+_e V u+f, V.u=0, (2.1)Dt Ro

with Ro = 1/2, _ the unit vector directed as the impeller rotation vector, and f a body
force to be described later. In this frame of reference the lateral cylindrical wall of the

tank has an azimuthal velocity b_ (Ln) = -_LR while the lower horizontal no-slip surface

moves according to V0(r) = -f_r with r the radial coordinate.

The computational domain is discretized by a mesh which is nonuniform in the radial

and axial directions in such a way as to cluster the gridpoints in the blade region and

close to the no-slip surfaces (Fig. 2). The mesh is uniform in the azimuthal direction.

An important aspect of this study was the initialization of the simulation. In the ex-

periments, in fact, it has been observed that starting from rest, the flow needs from 5 to

10 minutes to attain a statistically stationary configuration which corresponds to 500 to

1000 impeller revolutions. In the present DNS simulation each revolution is discretized

by about 300 time steps, thus requiring 3.105 time steps for the initial transient to be

exhausted. This computational overhead is clearly unacceptable since it would require,

on the finest grid, more CPU hours than the useful part of the simulation. Several strate-

gies have been followed in order to reduce the computation of the transient, and they

were only partially successful. The most straightforward approach consisted of several

simulations starting from a very coarse grid with a progressive refinement via succes-
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FIGURE 2. Example of grid in a meridional plane and boundary conditions (only one every 6
grid-points are shown). Open circles indicate the position of numerical probes used for the flow
analysis.

sive interpolations. The initial flow evolution was obtained by simulating only 1/8 th of

azimuthal domain and, therefore, only one impeller blade; the field was then replicated

in such a way to reproduce the whole impeller. Unfortunately, the adjustments of the

solutions from one grid to another introduced additional transients that turned out to be

also time consuming. As an alternative we tried to start from a low-Reynolds coarse-grid
flow and to increase grid and Reynolds number together. However, in this case the flow

adjustment was very slow as well, and almost a total of 500 impeller revolutions were

necessary to attain a developed flow field. Most of the transient, however, was simulated

over coarse grids; therefore, the total CPU time was equivalent to 40 impeller revolutions

on the finest grid.
The boundary body force f of Eq. (2.1) is prescribed at each time step to establish

the desired velocity Vb on an arbitrary surface that need not coincide with the grid. The

time-discretized version of Eq. (2.1a) can be written as,

u nd-I -- U n _-- At(RHS + f) , (2.2)

where At is the computational time step, RHS contains the nonlinear, pressure, and
viscous terms, and the superscript denotes the time-step level. To impose u '_+1 -- Vb,

the body force f must be,

Vb -- u n
f = -RHS + -- , (2.3)

At

in the flow region where we wish to mimic the solid body and zero elsewhere. In general,

the surface of the region where u '_+1 = Vb does not coincide with a coordinate line. In
that case, the value of f at the node closest to the surface but outside the solid body

is linearly interpolated between the value that yields Vb inside the solid body and the
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value in the interior of the flow domain. This interpolation procedure is consistent with

the centered second-order finite-difference approximation, and the overall accuracy of the

scheme remains second-order (Fadlun et al., (2000)).

Equations (1) have been spatially discretized in a cylindrical coordinate system using

staggered central second-order finite-difference approximations. Details of the numerical

method are given in Verzicco & Orlandi, (1996); only the main features are summarized

here. In a three-dimensional inviscid flow without immersed boundaries and free-slip con-

dition, kinetic energy is conserved, and this feature is retained in the spatially discretized

equations.

The discretized system is integrated in time using a fractional-step method where

the viscous terms are computed implicitly and the convective terms explicitly. The large

sparse matrix resulting from the implicit treatment is inverted by an approximate factor-

ization technique. At each time step the momentum equations are provisionally advanced

using the pressure at the previous time step, giving an intermediate non-solenoidal ve-

locity field. A scalar quantity _ then is introduced to project the non-solenoidal field

onto a solenoidal one. The large-band matrix associated with the elliptic equation for _I,

is reduced to a penta-diagonal matrix using trigonometric expansions (FFT's) in the az-

imuthal direction; this matrix is inverted using the FISHPACK package (Swartzrauber,

(1974)). A hybrid low-storage third-order Runge-Kutta scheme is used to advance the

equations in time, and the body-forces are enforced at each stage of the Runge-Kutta

scheme. It is worth noting that application of f, in fact, does not require the computation

of extra terms, but rather the cancellation of pre-existing ones. As a matter of fact, the

integration of the equations with the body forces only takes 5% more CPU time than in

absence of the forcing.

The simulation of the flow inside mixing devices is usually performed using RANS

modeling owing to their reduced computational cost. Since one aim of the present paper

is to compare the performance of DNS/LES vs RANS models, we have also performed

a couple of RANS simulations of the flow previously described. Steady RANS equations

in a frame rotating with the impeller are solved on a 1/8 th sector of the tank using a

commercial CFD code. Periodicity conditions are imposed in the azimuthal direction.

Low-Reynolds number turbulence models have been used, namely the k - e by Launder

& Sharma (1974) and the V2F model by Durbin, (1995).

3. Results

Several preliminary simulations were performed to investigate the mesh distribution
and grid resolution, the necessity for a turbulence model, possible effects of the upper

free-surface deformation, and how many blades of the impeller had to be simulated.

Concerning the first point, grids ranging from 5 × l0 s to 1.9 × 106 gridpoints have been

used in order to assess the reliability and grid independence of the results.

The need for turbulence modeling has been verified by running an identical case with

and without sub-grid-scale model. Given the operational conditions of the test, the

Reynolds number is quite small (Re = 1636) and direct numerical simulation (DNS)

is possible. Consistently, a simulation with the dynamic subgrid scale large eddy sim-

ulation (LES) model yielded results almost coincident with those of the DNS with a

turbulent viscosity close to zero. It must be noted, however, that DNS is possible only

for the present "simplified" model problem in which geometrical dimensions and rota-
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FIGURE 4. Averaged radial velocity profiles in a section crossing the impe!ler (x = 4). Left
azimuthal velocity, Center radial velocity, Right axial velocity: .... simulation on 1/8 th of

the domain (1 blade), -....... 1/4 th of the domain (2 blades), -- whole domain, symbols are
experimental data of Dong et al., (1994).

tion speed are both small. In contrast, for the simulation of practical cases, operational
conditions are more severe and the use of a turbulence model would be mandatory.

Free-surface deformation is induced by the azimuthal rotation and the resulting hydro-

static and centrifugal forces at the interface between fluid and air. This deformation is

often disregarded in numerical simulations, and the upper boundary of the tank is mod-

eled by a flat free-slip wall. This strategy was also followed in the main case presented in

this report. However, a few remarks about the free-surface effects are in order. Assuming
that the bulk of the flow is in solid body rotation, the shape of the free-surface would

be given by z = f_2r2/(2g), which for the present flow conditions yields a maximum
deformation Az _ 1.4cm. This displacement is larger than the blade radius; therefore,

it is in principle possible that the results would be changed by this additional effect. In

one case the free-surface deformation has been modeled by the same body forces used for
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FIGURE 5. Averaged velocity fields: (a) velocity vector field, contours of: (b) azimuthal, (c)
radial, (d) axial velocity components (Au = +0.025).

(a) (b) _ (c)

FIGURE 6. Comparison between averaged (a) and instantaneous (b), (c) velocity fields:
velocity magnitudes are shown, (section passing through the blade), (Au = 0.05)

the rotating impeller (and therefore rotating with the same angular velocity) with the

results being only slightly modified by this new effect (and only in the region close to
the upper surface). We will see that, in fact, the flow rotates much slower than a solid-

body rotation; therefore, the free-surface deformation would be smaller than previously

estimated. This implies that the approximation of the upper surface as a flat, stress-free

boundary is indeed appropriate.

Since the impeller consists of 8 equispaced blades, it is tempting, for computational

purposes, to reduce the domain to 1/8 th of the tank and only one blade; this assumption

yields a considerable reduction of computational effort. Nevertheless, it must be noted

that on a domain reduced to 1/8 th of the azimuthal span, only structures with 8-fold

symmetry and multiples can be supported. This prevents the development of modes
smaller than 8 and of all the modes which are not multiples of 8. We have verified by



000012

00001

8e-05

_ 6e-05

4e*05

2e-05

0

Flow in an impeller stirred tank

4e-05

3 5e-05

3e-05

2 5e-05

2e-05

1 5e-05

le-05

5e-06

0

01 I 10 0.1 I

I I
10

257

FIGURE 7. Frequency spectra of the axial velocity component for the probes at (r = 2, x = 4)
(Left) and (r = 2, x = 2) (Right). The probes are, respectively, in the radial jet emanating from
the impeller and in the center of the lower meridional recirculation. Note that the frequencies in
the abscissa have been rescaled so that .f = I corresponds to the rotation period of the impeller.

simulations which included one or two impeller blades, and therefore on 1/8 th and 1/4 th of

the domain, respectively, that this assumption is not appropriate for the present problem

and that the results were significantly different from the experiments. The inadequacy

of the simulation on 1/8 th of the domain is confirmed also by Fig. 3 showing the time

evolution of the azimuthal energy modes for a simulation over the whole domain but
initiated from a simulation performed over a 1/8 th sector. We can see that the energy in

the n = 8 mode slowly decreases in time while the lower modes experience an exponential

growth and after saturation attain an energy comparable or bigger than the original

mode. This shows that the 8-fold symmetry was only an artifact of the computational

domain while the system would tend to distribute the energy also among odd and low-

order modes. This point is further stressed by the velocity profiles shown in Fig. 4 where
it is shown that the radial velocity is severely overpredicted in the simulation over 1/8 th

of the domain. This overprediction is less evident when the simulation is extended over

two impeller blades while the best results are obtained for the whole domain. It is worth

mentioning that the prediction of the azimuthal velocity profiles is as accurate as in Fig. 4
for all the radial sections, and it is independent of whether a section or the whole domain

is simulated. Radial and axial velocity profiles, in contrast, are much more sensitive to

the azimuthal extension of the domain, and this point will be further discussed when

comparing the DNS with RANS results. From the above results it is concluded that, in

order to get accurate simulations, it is not possible to reduce the domain using impeller

symmetries, but the whole problem must be solved.
We shall now describe the results of the DNS simulation simulation and compare it

with the available experimental and RANS data. In Fig. 5 we report the computed mean

field, averages being performed in the azimuthal direction and in time.

It is evident that the meridional plane is roughly divided into two halves by the radial

jet emanating from the impeller. It can be noted, however, that the two recirculations

are not symmetric owing to the different boundary conditions on the upper and lower
horizontal surfaces. An important effect of the lower no-slip wall is the strongly positive

vertical velocity in the lower half of the domain in the region close to the shaft (Fig. 5d).

This effect is characteristic of wall-bounded rotating flows and is known as 'Eckman-

pumping'; it causes the fluid to be pushed radially inward at the plate (Fig. 5c) and
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axially upward at the axis of rotation (Fig. 5d). Because of mass conservation, a vertical

ascending fluid column at the axis induces a descending current at the external radial

wall, thus reinforcing the lower-half recireulation with respect to the upper one. This is

also well evidenced by the radial jet that does not point exactly in the radial direction,

but rather has a positive vertical velocity close to the blade region and then a weakly

negative vertical velocity.

In Fig. 6 instantaneous snapshots analogous to those of Fig. 5 are reported and com-

pared with an averaged field, thus confirming the strongly unsteady nature of the flow.

This point is further stressed by the analysis of the velocity signals taken from the nu-

merical probes whose positions are reported in Fig. 2. Spectra are computed from the

temporal series and are plotted in semi-log axes in order to separate the frequency peaks
due to coherent motion from the background turbulence (Fig. 7). It can be noticed that

many widely separated frequencies are present, and these range from the slow dynamics
due to the precession and meridional oscillation of the large-scale recirculation to the fast

vortex shedding at the blade tipsy. Given the different time-scales of the described flow

phenomena, it is very difficult for the RANS models to correctly parameterize all of the

flow fluctuations, and this is confirmed by the velocity profile results.

Radial profiles of azimuthal, radial, and vertical velocity components are compared

with experimental data and RANS simulations in Figs. 8, 9, and 10. The DNS prediction

for the azimuthal velocity component is quite accurate, in particular in the region near

the shaft above and below the impeller where a peak is observed. This is due to the large

t Note that in the spectra, the peak corresponding to the period of revolution of the impeller
is missing because the equations are solved in a frame of reference rotating with the blade.
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FIGURE 9. The same as Fig. 8 for averaged radial velocity.

scale recirculation that drives the fluid from the external radial region towards the axis,

thus increasing the azimuthal velocity owing to the conservation of angular momentum.

Except for the section crossing the impeller, RANS simulations severely underpredict the

peak velocity, thus confirming the findings of Jones, et al., (2000). As already mentioned,

the accurate DNS prediction of the azimuthal velocity profiles is independent of the

computational domain extension; therefore, the RANS velocity underprediction must be

attributed to the inadequacy of the modeling for this flow and not to the restriction of

the computational domain to 1/8 th of the full size.

Radial and vertical velocity components are also accurately predicted by the DNS

simulation with results that are generally better than RANS. This is especially true for the

radial velocity profile in the section crossing the blade where RANS results overpredicted

the velocity by more than a factor of two. This mismatch, however, can only partially

be attributed to RANS modeling since a major effect is induced by the limitation of the

computational domain to only one blade as shown in Fig. 4.

4. Conclusions

In this paper we have performed a DNS of flow in an impeller stirred unbamed cylin-
drical tank with an immersed boundary procedure to deal with the complex geometry.

The main motivation comes from the literature showing that, although the geometry is

relatively simple and the Reynolds number quite low, standard RANS simulations yield

a very poor flow prediction.

It is found that the flow is strongly unsteady and inhomogeneous even if the Reynolds

number is low enough to make the DNS affordable. Accordingly, an LES simulation with

a dynamic subgrid-scale model yielded the same results as the DNS with a turbulent vis-
cosity close to zero. RANS models, in contrast, can not automatically switch off when the
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resolution is fine enough, and they parameterize all the velocity oscillations as turbulent
fluctuations.

Since the impeller has 8 azimuthally equispaced blades, simulations in the literature

have always been performed over a sector of the domain spanning 1/8 TM of the domain.

Although this assumption reduces the computational cost by a factor of 8, the results do

not agree with the experiments since the flow is forced to maintain a symmetry that is

not physical. A posteriori this result is not surprising since, looking at Fig. 11 it is unlikely

that blades whose area is less than 1/50 th of the meridional section could enforce any

symmetry on the large-scale flow.

Some remarks of the computational costs of these DNS simulations are in order. In

contrast to RANS where a steady solution is forced, for unsteady simulations mean

quantities are obtained by averaging the solution in time. In the present case, the intense
velocity fluctuations required long-term averages (typically 15-20 impeller revolutions)

to obtain smooth converged statistics. This must be added to the initial transient that

consisted of an equivalent time of about 40 impeller revolutions on the finest grid. The

computation of this flow evolution is highly expensive compared to RANS simulations

where the mean field is directly obtained. Fortunately, the use of the immersed boundary

procedure makes the simulation of complex-geometry three-dimensional unsteady flows

quite affordable. As an example, in the present case on a grid of 1.9 x 106 points, the

code uses 85Mb of RAM and requires 32s for each 3rd Runge-Kutta time step (consisting

of three complete substeps) on a single 900MHz Athlon processor; the entire simulation

required slightly less than 5 days.
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Unsteady 3D RANS simulations using the v2-f
model

By Gianluca Iaccarino AND Paul Durbin

1. Motivation & background

Recent increased computational power has led to interest in the simulation of time-

dependent flows for problems ranging from noise prediction to fluid/structure interac-

tions. The computational cost and the resolution requirements are mainly related to the

inviscid flow structures induced by geometry and wall layers; nevertheless, turbulence

plays a crucial role in establishing such flow structures.

Several approaches can be used to numerically simulate the behavior of unsteady flows:

in the simplest, the Navier-Stokes equations are ensemble-averaged, converting turbulent

fluctuations into Reynolds stresses (Reynolds-Averaged Navier-Stokes equations, RANS),

while leaving the large scale, rotational motions to be resolved as unsteady phenomena.

The large eddy simulation (LES) approach, on the other hand, employs a spatial averag-

ing over a scale sufficient to remove scales not resolved by the particular grid being used.

The subgrid scale turbulence is then modeled.

A practical difference is in the degree of mesh resolution required: LES resolves the

larger eddies of the turbulence itself, whereas the unsteady RANS approach models the

turbulence and resolves only unsteady, mean flow structures - primarily larger than the

turbulent eddies. Consequently, LES typically requires much higher grid resolution, at

least locally, and is therefore more costly. On the other hand, LES only models the

subgrid turbulence structures and is universally applicable to the extent that a universal

grid-independent subgrid model can be established.

In addition, LES resolves the complete range of scales of random motion, up to the

cut-off frequency, while unsteady RANS aims to capture a single frequency (e.g. corre-

sponding to coherent shedding) and to model the random motions using standard turbu-

lence closures. Therefore, LES requires very long integration time to build a statistically-

averaged solution; on the other hand, a few shedding periods are usually enough to
obtain accurate phase-averaged solution with RANS, thus limiting its overall computa-
tional cost.

The objective of this work is to apply the RANS approach with the v 2 - f turbulence

model (Durbin, 1995) to the solution of the flow around a surface mounted cube. A com-

plete and reliable experimental database is available (Hussein & Martinuzzi, 1996) and,
in addition, LES simulations have been carried out with considerable success (Shah, 1998

and Krajnovic, 2000). This problem was one of the test case presented at the "Workshop

on Large Eddy Simulation of Flows Past Bluff Bodies"; several LES calculations were

compared, showing a high degree of accuracy (Rodi, 1997). RANS results were also in-

cluded for comparison; they were obtained using simple turbulence models derived from

k-e and, generally, gave worse agreement with the measurements than did LES.
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FIGURE 1. Schematic reprcsentation of the main flow features (Hussein & Martinuzzi, 1996).

2. Results

The flow around a cube exhibits characteristics common to other flows past three-

dimensional obstacles: strong three-dimensionality of the mean flow, separation, and

large scale unsteadiness. A schematic representation of the flow features (due to Hussein

& Martinuzzi, 1996) is reported in Fig. 1: a strong horseshoe vortex and an arc-shaped
vortex in the near wake are inferred from the analysis of the oil-flow patterns on the wind
tunnel floor.

The (steady/unsteady) RANS equations are solved on a structured grid made up of

500,000 grid cells with clustering close to the walls to capture the near-wall turbulent

regions (y+ is less than one everywhere). The Reynolds number is 40,000 (based on the

inlet bulk velocity, ub = 32m/s and the height of the cube, h = lm). The domain size

is the same as used by Shah (1998): 10h, 2h, and 3h in the streamwise, normal, and

spanwise directions, respectively. The cube is located at x = 3h from the inlet. A fully

developed channel flow solution is used at the inlet, and solid walls are considered in

the spanwise direction (this is the main difference with respect to the LES simulation by

Shah (1998) where periodic conditions were employed).

The eddy viscosity is computed according to the v 2 - f turbulence model (Durbin,

1995); the model requires the solution of three transport equations for turbulent quanti-
ties plus the solution of an elliptic equation. The model has a built-in realizability limiter

(Durbin, 1996) and does not require any damping or wall function to correctly capture

the near-wall turbulence (Durbin, 1991).

A second order discretization scheme (both in time and space) is used. Initially, a very

large time step is employed leading to a steady solution; later the time step is decreased

(to At = 0.00156 seconds) and a time accurate simulation is carried out. A coherent

vortex shedding is obtained after _ 3 seconds, corresponding to _ 10 flow through times.

Then, an averaged solution is computed on a period of _ 3 seconds, and in what follows

it is referred to as unsteady solution.

Comparisons of the available experimental data and the steady and the unsteady

solutions are presented; the LES results by Shah (1998) are also reported.

In Fig. 2 (left column) the streamwise velocity component (u/ub) on the symmetry

plane is reported. The experimental data (confirmed by the LES results) indicate a

separation length of _ 1.6h downstream of the block; the steady solution overpredicts
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FIGURE 2. Streamlines (left) and streamwise velocity (right) on the symmetry plane. Dashed
lines indicate negative velocity.

the extent by more than 100% (3.3h). On the other hand, the unsteady solution predicts

a reattachment length of .._ 1.gh in reasonable agreement with the measurements.

An analysis of the streamlines (Fig. 2, right column) suggests that the vortex cores are
in the same locations, and the reattachment lengths (both upstream and downstream of

the cube) are in remarkable agreement. The steady solution yields a too large recirculation

area in the wake of the cube but a fairly good agreement elsewhere.

In Table I a summary of the length of the downstream and upstream recirculation bub-

bles is reported together with the experimental data and the numerical results presented

in Rodi (1997), Shah (1998), and Krajnovic (2000).
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Mean Flow

FIGURE 3. Visualization of the Horseshoe
Vortex Using A2 (Jeong _: Hussain, 1994)

FIGURE 4. Visualization of the arch-vortex in
the wake using an isobar surface.

Contribution Model xv/h xn,/h xn2/h

Martinuzzi £: Tropea, 1993 Experiments 1.040 1.612

Rodi et al., 1997 LES 0.998 1.432 0.134

RANS 0.950 2.731 0.252

Shah, 1998 LES 1.080 1.690 0.160

Krajnovic & Davidson, 1999 LES 1.060 1.380

Present Calculations RANS Steady 0.640 3.315 0.310

RANS Unsteady 0.732 1.876 0.204

xF/h: upstream separation;

xR,/h and XRe/h: downstream primary and secondary recirculation.
Table I. Recirculation bubble lengths.

The LES calculations reported in Rodi (1997) used either the wall function approach

in conjunction with the Smagorinsky sub-grid scale (SGS) model, or the dynamic SGS
model; the latter gave better results, as reported in Table I. The calculations showed a

very good overall agreement with the measurements. The steady RANS computations,

on the other hand, were not accurate in capturing the length of the wake bubble; even

the best results (reported in Table I under Rodi, et al.), obtained using a two-layer

approach for the near-wall turbulence, severely overestimate the recirculation region. The

LES results of Shah (1998) and of Krajnovic (1999), both obtained with the dynamic

SGS model, confirms the reliability of LES in reproducing the mean flow behavior. The
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FIGURE 5. Time-history of the pressure distribution on the floor.

present time-averaged, unsteady computations are also in very good agreement with the

experimental data, with only a slight overprediction of the wake reattachment length

(xR1).
Two flow visualizations of the unsteady solution are reported. In the first (Fig. 3),

the horseshoe vortex is represented by using the vortex-detection criterion of Jeong and

Hussain (1995). The visualization of the arch vortex in the wake is performed using an

isosurface of the pressure (Fig. 4).

In addition, the time evolution (during a period) of the pressure distribution on the

wind tunnel floor is reported in Fig. 5. The flow is indeed periodic. The vortex shedding

from the side of the cube induces an oscillation (yaw) of the arch vortex. One leg becomes

stronger because of the vorticity contribution coming from the detached boundary layer
on the cube side; it moves downward while a new vortex is shed from the opposite side.

The shedding period is T = 0.184 seconds, corresponding to a Strouhal number of 0.17
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(experimental value 0.145). No vortex shedding is observed for the boundary on the roof

of the cube, and no unsteadiness related to the horseshoe vortex is seen.

The quantitative comparison between the computed results and the experimental data

is reported in Fig. 6. The streamwise velocity profiles at four stations on the symmetry
plane are shown. The agreement between the experimental data and the unsteady solution

is satisfactory. The main discrepancy is due to the inadequate prediction of the high-speed

flow between the cube and the wind tunnel roof. The underprediction of the velocity in

that region may be due to incorrect capturing of the separated boundary layer on the cube

roof (in conjunction with an unsteadiness not detected by the simulation). As expected,

the steady solution significantly overpredicts the strength of the recirculation velocity in
the wake.

In conclusion, good quantitative and qualitative agreement with the experimental re-

sults shows the ability of the present approach (unsteady RANS with the v 2-f turbulence
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model) to correctly reproduce the essential physics associated with massively separated
flows.

The presence of the horseshoe vortex and the arch-shaped vortex in the near wake,

inferred by the analysis of the experimental oil-flow patterns on the wind tunnel floor, has

been demonstrated by means of two vortex-detection criteria. In addition, the inadequacy

of steady RANS calculations for flows over bluff bodies has been confirmed by the present
results.

3. Future work

The results presented in this report show that the simulation of three-dimensional un-

steady flows can be carried out accurately using RANS; this confirms the results obtained

by Durbin (1995) for two-dimensional flows. The configurations analyzed, however, are

characterized by flow separation fixed at sharp edges (the cube herein, and a triangular

cylinder in Durbin, 1995). It remains to verify the ability of the model to accurately pre-
dict the unsteady wake development for separation occurring on a smooth surface. Future

work will be focusing on the simulation of the flow around a sphere; in this case, to elim-

inate uncertainties associated with the prediction of the laminar/turbulent transition,

high Reynolds number will be considered.
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Prediction of the turbulent flow in a
commercial CFD codes

diffuser with

By Gianluca Iaccarino

1. Motivation & background

There have been a few attempts in the literature to compare the performance of com-

mercial CFD codes; for instance, laminar and turbulent test cases have been proposed to

several CFD code vendors by the Coordinating Group for Computational Fluid Dynamics

of the Fluids Engineering Division of ASME (Freitas, 1995). A series of five benchmark

problems were calculated, with all the mesh generation and simulations performed by the
vendors themselves; only two of the problems required turbulent simulations. The first of

these benchmarks is the flow around a square cylinder: the flow is unsteady and all of the

codes predicted the measured Strouhal number reasonably well. However, poor accuracy
was obtained in the details of the wake flow field. It was also noted that, depending on

the code used (and assuming grid-converged results), the same k-e model predicted very

different results (from 2% to 16% accuracy in the Strouhal number, for example). The
reasons for this difference include different grids, non-demonstrated grid convergence,

different implementation of the models, and different boundary conditions. It must be

pointed out that the predictions for this problem are strongly affected by the treatment

of the stagnation point region: as reported in Durbin (1996), the k-e models predict a

spurious high level of turbulent kinetic energy near the stagnation point.

The other turbulent problem reported in Freitas (1995) was the three-dimensional,

developing flow in a 180-degree bend. In this case all of the solutions reported were

unsuccessful in predicting the measured data in the bend region. The resolved structure

of the flow field was significantly affected by the choice of the turbulence model.

The uncertainties associated with different computational grids (i), boundary condi-

tions definition (ii), convergence (iii), and numerical schemes (iv) do not allow specific

conclusions to be drawn from the comparison other than that further research into more

advanced turbulence models for use in commercial CFD codes is required (Freitas, 1995).

In order to complete a fair comparison between different CFD codes and to establish
concrete conclusion on the state-of-the-art of commercial CFD codes, all of the differences

(i-iv) must be fully addressed and, if possible, eliminated. In the present work an effort

has been made to control all of these parameters. The codes available to us for comparison

are CFX, Fluent, and Star-CD. The objective is to compare their predictive capabilities

for the simulation of a turbulent separated flow. Several turbulent closures are available

in these codes, ranging from k-e-type models to full Reynolds stress closures. In addition,
various near-wall treatment are available in the codes. Two models are selected', the k-e

Low-Reynolds model by Launder & Sharma (1974) and the _- f by Durbin (1995).
The test case is two-dimensional, turbulent flow in a diffuser. Due to the adverse

pressure gradient, the flow is separated and a long recirculation bubble exists. This

problem has been selected because a very reliable experimental database is available. In

addition to laboratory data, a detailed large eddy simulation (LES) study was carried
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FIGURE 1. Asymmetric diffuser geometry. FIGURE 2. Computational grid.

out at the Center for Turbulence Research, and the resulting numerical database is also

available for comparison.

2. Numerical method

The incompressible Navier-Stokes (NS) equations are solved, together with additional

equations for turbulent quantities as are needed to compute an eddy viscosity. The dis-

cretized equations are solved in a segregated manner with the SIMPLE (Semi-Implicit

Method for Pressure-Linked Equations) algorithm or its "consistent" variant, SIMPLEC

(Vandoormaal, 1984), used for stability to achieve the pressure-velocity coupling. In the

SIMPLE algorithm, the continuity equation is converted into a discrete Poisson equation

for the pressure.

The solution procedure can be described as follows: the differential equations are lin-

earized and solved implicitly in sequence, starting with the pressure equation, followed by

the momentum equations, by the pressure correction equation, and finally by the equa-

tions for the scalars (turbulence variables). Within this loop, the linearized equations for

each variable are integrated using a linear system solver.
Three codes have been used in this work: CFX, Fluent, and Star-CD. All of the codes

allow the user to implement customized models through user defined subroutines.

In all of the simulations SIMPLEC has been used (SIMPLE for Star-CD) with QUICK

(Leonard, 1979) space discretization for the mean flow and first order upwinding for the
turbulence equations. The same under-relaxation factors were used in all the calculations.

Several turbulence models are available in these codes; most of them are derived from

the standard k-e model with different treatment of the wall region._
The Low-Reynolds model of Launder & Sharma (1974) and the v 2 - / model (Durbin,

1995) are used in this work. The first model is available as a standard option in all the

codes (even if slightly different damping function are employed in Star-CD); the v 2 -/

model has been implemented using the user defined subroutines in each of the codes.

Such implementation ensures that exactly the same model is used in each of the codes.

3. Results

The two-dimensional diffuser considered here was a test-case for the 8th ERCOF-

TAC/IAHR/COST Workshop on Refined Turbulence modeling in Espoo, Finland, 17-18
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June 1999. The geometry is presented in Fig. 1 and the inlet conditions are specified

as fully-developed channel flow at Re=20,000, based on the centerline velocity and the

channel height. Separate channel flow computations were carried out using each code

and each turbulence model, and the resulting profiles were used as inlet conditions for
the simulation of the diffuser.

An experimental database is available from Obi (1993) and Buice £: Eaton (1997); the

data include mean and fluctuating velocities at various stations in the diffuser and skin

friction on both walls. The data can be obtained directly from the following Website

(www.aero.hut.fi/Ercoftac/ws8/case8_2).

A structured grid made up of 124x65 points in the streamwise and wall normal direc-
tion, respectively, was used. A detail of the computational grid in the region close to the

connection between the channel and the diffuser is included in Fig. 2.

The same grid was also used in the LES study by Kaltenback et al. (1999). In this

study a very detailed comparison between numerical and experimental data was carried

out, and the agreement was very good. The simulations provided insights into the physics

of the separation process and provided a verification of the suitability of this problem as
a CFD test case.



Turbulentflowin a diffuser 275

PP }

,, ii
20 25 3(3 35 40 45 50 55 60 65

500k+x

2

I

0

-I

_' -3

-4

-5

-6

-7

, o , o,, ,_o \ ,°o ,,o
- '_ _, 0 I 0 I 0 0: °oOl ,i Oo1/: OoI/i Oo
: °_-_o ,, _,,o, ,_oOo _ _ I \,_ oo __,, Ooll', oo

0 i 0 i C

_" / 1oO1-t oo 11, _l:

// o //,/oooO1//°o
- _.Z-' ].e lJ.'o °

2o 2_ 3o 35 4o 4_ 5o _5 6o _5
50Ok+ x

FIGURE 5. Turbulent kinetic energy profiles. Top: v2 - f model; bottom: Low-Reynolds k-e
model - Symbols: o Experiments, -- CFX, ---- Fluent, -....... Star-CD

In Fig. 3, convergence histories for the all simulations are presented. The residuals

have been normalized by their values at the first iteration. The convergence level reached

after 3,000 iterations is comparable in all the cases, although slightly lower residuals are

obtained using the v 2 - f in both Fluent and CFX, and vice-versa in Star-CD.

A comparison between the computations and the experimental data on mean velocity

is reported in Fig. 4 at several stations in the diffuser. The v 2 - f results are consistently

in very good agreement with the measurements for the mean velocity; in particular, the

separation zone is captured (even if the maximum intensity of the recirculating velocity

is underestimated). The predictions using the k-e model are in poor agreement with the

data because the model fails to respond correctly to the adverse pressure gradient and

misses the separation completely. The comparisons reported in Fig. 5 confirm the quality

of the v 2 - f predictions as compared to the k-e; in this plot the turbulent kinetic energy

is presented.

The peak of the turbulent intensity is very well predicted by the v 2 - f model in the

diffuser, but in the recovery region (after the reattachmen_, the model underestimates
the level of kinetic energy. This is consistent with the v 2 - f calculations shown in

Durbin (1995), the LES results reported in Kaltenback et al. (1999), and with the recent
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computations presented in Apsley & Leshziner (2000) using quadratic and cubic non-

linear k-e models. One possible reason for this disagreement is the presence of strong
three-dimensional effects after the flow reattachment.

The results using the k-e model fail to capture the asymmetric development of the

turbulent kinetic energy and underestimate its magnitude in the diffuser. In addition,

the three codes show some differences when nominally the same k-e model is invoked.

The disparities are in the mean velocity andespeciatly in the turbulence intensity. The

very good agreement obtained by using the v 2 - f suggests that the differences are not
related to the numerical technique used, but to the implementation of the turbulence

model itself. For example, different discretization or approximation of the source terms

in the k-e equations could lead to the mentioned differences.

Finally, in Fig. 8 the skin friction coefficients on the lower and upper wall are reported.

The separation bubble on the curved wall is indicated by a negative friction from x/H .._ 7
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to x/H ,,_ 30. The v 2 - f model predicts a bubble in very close agreement with the

experiments. The k-c model fails to predict any separation (as already noted); in addition,

the three codes predict quite different friction levels when the k-e closure is employed.

4. Conclusions

A comparison between three CFD commercial codes has been reported for the turbu-

lent flow in a planar asymmetric diffuser. Two turbulence models have been used: the first

is the Low-Reynolds k-e model (with Launder and Sharma damping functions) which is
available as a standard feature in the codes; the second is the v _ - f model, which has

been implemented through user defined routines.

The same grid and the same spatial discretization have been used for all the simu-

lations. In addition, a similar iterative procedure based on the SIMPLE technique has

been used. In terms of convergence behavior, all of the codes reach the steady state ap-

proximately in the same number of iterations, regardless of the turbulence model used.

The accuracy of the calculations as compared to the experimental and LES data is very

good using the v 2 - f model. The length of the recirculation region is captured within 6%

and the friction levels on both walls agree reasonably well with the data. The negative

velocity in the separation bubble is slightly underestimated. The results using the k-_

model do not show any recirculation. The flow is fully attached, and this leads to a severe

underprediction of the maximum velocity in the diffuser.

An effort has been made to control all of the aspects of the simulations so that exactly

the same results were expected using different codes; in particular, the implementation
of the v-'_- f turbulence model has been carried out consistently, v 2 - ] results do indeed

show an almost perfect agreement: CFX and Star-CD predict almost exactly the same

results, with Fluent being slightly more dissipative. The results using the k-e model,
on the other hand, show a strong sensitivity to the code used. The damping functions

used in CFX and Fluent are exactly the ones proposed by Launder and Sharma, but the

results are different, especially in terms of turbulent quantities and friction coefficients.

This may be due to differences in implementation details which are not specified in the

user manuals. In gener_..al, the differences between the k-c results are much larger than
those obtained using v _ - ], suggesting that they are less due to details of the numerical

procedure used in the code than to the definition of the turbulence model itself.

Today, one of the challenges in using commercial CFD codes is to choose between sev-

eral physical/numerical models available. The cross comparison presented in this work

proves that the basic numerical techniques are reliable and deliver the expected per-

formance in terms of accuracy and convergence. On the other hand, the selection of

the correct physical model is crucial for the success of the simulations. Using one of

the available turbulence models, the results were not accurate and, in addition, are not

reproducible between the codes.
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Computation of turbulent flow in a rotating pipe
using the structure-based model

By S.V. Poroseva, S. C. Kassinos, C. A. Langer AND W. C. Reynolds

1. Motivation and objectives

Mean rotation induces dynamical effects on turbulence that enter the transport equa-

tions through the non-local pressure-strain-rate correlation. It was shown in Kassinos &

Reynolds (1994) and Reynolds & Kassinos (1995) that, to describe this effect accurately

using one-point turbulence statistics, a turbulence model should include the transport
equations not only for Reynolds stresses, but also for additional tensors providing in-

formation on turbulence structure missing from the Reynolds stresses. Two second-rank

tensors, dimensionality Dij and circulicity Fij, as well as the third-rank stropholysis ten-

sor Qi*:k along with the Reynolds stresses Rij, form a minimal set of independent tensors
necessary for a one-point closure in the case of inhomogeneous turbulence. Relying on

these ideas, the structure-based model has been developed in Kassinos & Reynolds (1994-

1998) and tested successfully for a wide range of deformations of homogeneous turbulence
as well as for some simple wall-bounded flows (Kassinos et al., 2000).

Currently, the structure-based model is being used for the computation of complex

inhomogeneous turbulent flows with imposed system rotation. Here we report on the

case of a turbulent flow in an axially rotating pipe. Despite the simple geometry, the

structure of the turbulence in a rotating pipe flow changes substantially both as the flow

develops with downstream distance from the pipe entrance and with increasing rotation

rate, and as a result this flow serves as a severe benchmark for any turbulence closure.
From a practical point of view, the modeling of a turbulent pipe flow is of interest because

it relates to phenomena encountered in various engineering systems involving boundary

layers on rotating surfaces, e.g., heat exchangers and rotor cooling systems.

2. Model outline

Information carried by the turbulence structure tensors and the Reynolds stresses can

be obtained from a single third-rank tensor Q (Kassinos & Reynolds, 1994; Reynolds &

Kassinos, 1995), which relates to the other structure tensors as:

, 1
Qijk = _ [Q,jk + Q:ki + Qk_j + Q_kj + Ojik + Okji] ,

Rij = ei,,,pQ,njp, Dij = eirnpQprnj, Fij = eimpQjprn. (2.1)

Therefore, the structure-based model considered in this work includes a model transport

equation for the one-point third-rank tensor Q as well as the standard transport equations

for the mean velocity components

= vv ,z- < u uj >j -P, tp, (2.2)
U_,i = O, Dt
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and the standard model equation for the dissipation rate e with a rotation modification

(last term) to account for tile suppression of e due to mean rotation (Kassinos et al.,
2000):

[( )1 'De uSjk + C"T < ujuk > c,j - _ (Coc- C,P) - CnEv/_jakdjk, (2.3)
--_ _ O'e ,k

where

v0__ o
D---i= J Oxj + -57

The equations were derived in the generalized coordinates, but for the sake of simplicity

of presentation, the Cartesian tensor notation is used in (2.2)-(2.3) and in what follows.
Ui and ui are components of the mean and fluctuating velocities,/5 is the mean pressure,

p is the flow density, u is the kinematic viscosity, 6ij is the Kronecker delta tensor, eijk

is the Levi-Civita alternating tensor, q2 = 2k =< uiui > is the turbulent kinetic energy,

< IQuj >= Rij, P = -RijUi,j, dij = Dij/q 2, _i = £ijkUk,j is the mean vorticity vector,

Ca and _ are model coefficients. Time scale T is modeled as T = x/(k/¢) 2 + 36- u/e

(Durbin, 1993).

Now, let us consider the transport equation for Q-tensor. In homogeneous turbulence,

the transport equation for the Q-tensor is (Kassinos et al., 2000):

DOijk .... r_(v) _ _(") r'). C!_eit, Mjm,k Cmteit, Mj,mk(") + (2.4)
Dt k'T jrn t'g irnk Vmk "_Ca_jrn

(G_! + G (n)_ , _ 2G (n)y). _ fl*f,..(Oijk,., + Qjikm,)ms]'_tsmjK _ ms_dt3g_s

/ SpqSqpl"_m_sdms

-,1 ----_ . (Caeijm(nmk - Dmk) + Caeikm(Fmj - Omj))
V SpqSqp -[- _,_rn_ lsClrn s

(R)
-C4 vlflmfl,d,.,,,Qiik ;

1 2

QI_ ) = Qijk - 7(-¢ijkq - eikmDmj + 2ejimDmk - ekj,,_D,,_i), Cij = Ui,j.
o

C1, C2, C3, and 6'4 are model coefficients, which are chosen to be equal to 8.5, 0.2, 0.1, and
0.5 respectively. The detailed explanation of Eq. (2.4) is given in Kassinos & Reynolds

(1998) and Kassinos et al. (2000). Here, we just note that the fourth-rank tensor M can

be obtained from Qijkmn by contracting with eijk, and for weak anisotropies Qijkmn can

be modeled as a linear function of Qijk (Kassinos et al., 2000).

To take into account inhomogeneous effects such as turbulent transport and the in-

fluence of the wall on the turbulence structure, some modifications to (2.4) have been

suggested by Kassinos et al. (2000). Turbulent and molecular transport is incorporated

in Eq. (2.4) through the additional model term:

Fijk = a,ran -_- grQ < UmUn > Qijk,m .
a _rt

(2.5)

Model (2.5) is derived in such a way that after contraction with etik it gives the known

model presentation of the turbulent diffusion term (Daly & Harlow, 1970) in the transport
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equation for Rtj:

FlJ = QikFijk = V(_rnn -[- 6rQ '_ ltrnZln _> Rlj'rn ,n"

Near-wall effects are incorporated in the Q-equation through an elliptic relaxation

scheme based on ideas of Durbin (1993). If pijk denotes the right-hand side of (2.4),

then, all terms in Pijk that are not associated with either production or dissipation of
the turbulent kinetic energy are lumped in a term named IIijk. The simplest model for

I]ij k is

IIijk = Pijk -- Hijk, (2.6)

where

1 1 1Hijk = -GjmQ,nk - -_GtmetikRmj + (Qimk + Qkmi) - -_Qijk

(Kassinos et al., 2000).

Expression (2.6) is a model for redistributive processes that is valid for homogeneous

turbulence. Now, we use kfijk to denote an augmented version of this model that is valid

in inhomogeneous turbulence. The components of the tensorial function fijk are found

from the elliptic relaxation equation:

IIijk (2.7)
L2V2 fijk -- fijk = -T"

With models (2.5) - (2.7), governing Eq. (2.4) for Qijk in an inhomogeneous flow takes
the form:

DQijk U_mn -t- < UmUn > Oijk,m q- k fijk q- Hijk.

Dt crO _ ,n

3. Numerical procedure

To compute a pipe flow, all equations were written using the boundary layer approxi-
mation in the axisymmetric cylindrical frame of reference x i = (x, r, qa), where x, r, and qa

are axial, radial, and angular coordinates respectively. In such coordinates, the covariant

and contravariant components of the velocity are Ui = (U, V, rW), U i = (U, V, W/r). The

control volume technique (Spalding, 1977) was used to solve the transport equations.

In the computation we used the same conditions as those in the experiments of Zaets,

Safarov & Safarov (1985), where a swirling flow was obtained by conveying a fully-

developed turbulent flow (Uo = 103 cm/sec, v = 0.149 cm2/sec, friction velocity u,o =

43.5 cm/sec) from a stationary straight cylindrical pipe of 100-diameter length into a
rotating cylindrical section of the same diameter (D = 6 cm).

On the pipe axis the boundary conditions are:

OU cOc _ tV = O, U = Uo, cOQiJk
Or - Or Or -0 if i=j, or j=k, or i=k,

At the wall,

and Qijk=O, if i_j_k.

2tJkw

u=o_jk=0, W=g_, ew- y_ ,

where kw is the value of the turbulent kinetic energy at the last grid node next to the
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wall and yw is the distance between the wall and that node. This last condition ensures

that kw = O(y_).

The correct behavior of the different components of the Q-tensor was obtained by

applying appropriate boundary conditions on fijk. The limiting behavior for each Q¢_k-
component was derived by Kassinos (private communication). In particular, he showed

that the correct behavior of Qijk components should give the correct behavior of the

corresponding Reynolds stresses (Eq. (2.1)). Following these principles, the boundary

conditions for ]:ijk were derived and verified by comparison with DNS data (Moser, Kim
& Mansour, 1988) by Langer (private communication) for a channel flow. Comparison

of the DNS data for a channel (Moser, Kim & Mansour, 1988) and for a pipe (Eggels et

aI., 1994) shows that in the near-wall area turbulent statistics behave in the same way

in both flows. Therefore, in the present work, similar boundary conditions were applied

to fijk at the pipe wall:

f(w) _ 20v2Q_ f(w) _ 20u2Q_x f(w) 20v2Q_

wyw wyw

xx _wy4 , ._orz SwYw4 -xr_

s =o, =o, fc )=o, s:2 --o,ii J iix --_

fa(_) = 0 (no summation over a);

f_(w) -02_ (_)=0, f(_) -08f (_)=0,
Cx = • _zr_ Cxr = " Jzr_

-o =o, = -o =o

e_y4 '

The rest of the components are equal to zero at the wall. On the pipe axis, the boundary

conditions for fijk are the same as for Qijk.
Equation (2.7) was solved using a standard finite-difference scheme. The grid was non-

uniform in r, with the total number of N nodes being 64 for Reo = UoD/v = 4- 104 and

81 for Reo = 7.103 (D is the pipe diameter, R = D/2). The streamwise grid spacing _x
was 0.0001R.

For the length scale L in (2.7), various functional forms, including the ones suggested in

Durbin (1993) and Pettersson, Andersson & Brunvoll (1998), have been tested. However,
it was found that the best results were obtained by using a simple function like L 2 = 1,

at y+ < 60, and L 2 = 0, at y+ > 60. Despite its simplicity this form seems somewhat

unphysical, and even though here we are reporting results based on this form of L, we

are currently pursuing a more fundamental basis for the length scale profile. It is also

worth noting that in the initial section of the rotating pipe, where strong suppression

of turbulence statistics occurs in the whole flow area including the near-wall one, the

influence of this length scale is rather weak. At a rotation number of N = Wo/Uo = 0.6,

both the peak value as well as the extent of the profile of L from the pipe wall seem to

have practically no influence on the results of the calculations.

4. Results

As experiments demonstrate, it is possible to distinguish two regions in a rotating pipe

flow with different turbulence structure: the initial section of a pipe with the length of
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FIGURE 1. Stationary pipe flow: (--) Q-model, (o) DNS data.

about 30D and the fully developed turbulent flow which is observed at about 170D. In

the former region, strong turbulence suppression is observed (Zaets, Safarov & Safarov,

1985). In the latter one, profiles of statistical variables reach their limit shapes (Kikuyama

et al., 1983; Nishibori, Kikuyama & Murakami, 1987; Imao, Itoh & Harada, 1996, in

particular).

The components of the mean velocity behave monotonically along the pipe axis and

under rotation. The profile of the axial component tends to be parabolic as the one in

a laminar flow, but does not reach this shape. The profile of the angular component

has nearly parabolic limit shape (W/Wo = (r/R) 2, R is the pipe radius) instead of the

expected linear one as it would be in the case of a forced rotational flow.

In contrast to the mean velocity components, the velocity moments of second and

higher orders behave non-monotonically with increase of one of the parameters: down-

stream distance from the pipe entrance or rotation number. In the initial pipe section,

indeed, strong suppression of turbulence characteristics is observed (Zaets, Safarov &

Safarov, 1985). After suppression, however, they increase in the value and are stabilized

on the high level enough (Nishibori, Kikuyama & Murakami, 1987).

In the following subsections, the results of computations using the Q-model are pre-

sented for the various regimes of a turbulent pipe flow.

4.1. Stationary pipe

Calculations have been done for a turbulent flow in a stationary pipe at two Reynolds
numbers, Reo = 7 • 103 and Reo = 4 • 104, to verify an ability of the Q-model to give

reasonable results in both low and high Reynolds number regimes. The results were
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FIGURE 2. Calculations: (--) Q-model, (.... ) RSTM; experiments: (0) Zaets, Safarov &
Safarov (1985), (o) Laufer (1954).

compared for Reo = 4-104 (Fig. 2) with the experimental data of Zaets, Safarov & Safarov

(1985) and Laufer (1954). The latter were obtained at Reo = 5.104. For Reo = 7.103

(Fig. 1), the DNS data (Eggels et al., 1994) were used for comparison. As shown in Figs. 1

and 2, the model gives quite good results.

In Fig. 2, profiles are also shown from the calculations of Kurbatskii, Poroseva &

Yakovenko (1995) that used the linear Reynolds stress transport (RST) model (IP model

(Launder, Reece & Rodi, 1975) with the damping functions similar to ones suggested

in Gibson & Launder (1978) to describe wall effects). Though this model reproduces
turbulent characteristics and mean velocity well enough at the high Reynolds number, it

describes only qualitatively the features of the tow Reynolds number flow.

To describe flows at different Reynolds numbers, the coefficient Cs in Eq. (2.3) varies

from 1.58 at Reo = 4.104 to 1.65 at Reo = 7.103. In both cases this value differs from

the value found optimal for a homogeneous flow; that is, Cs = 1.5. The similar situation
is observed when the RST models are used. The other model coefficients are found to be

_rQ = 1, a_ = 1.1, C_ = 0.22.

4.2. Initial section of a rotating pipe

It was found that to describe the strong suppression of the turbulence observed in this

part of the flow, one has to modify the equation for the dissipation rate by including
the additional term with the Richardson number (Kurbatskii, Poroseva & Yakovenko,

1995). The Richardson number characterizes the influence of streamline curvature on
turbulence like that of medium stratification on turbulent transport (Bradshaw, 1969).

The same modification was introduced in a-equation (2.3) used with the Q-model; that
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is, the coefficient Co was changed by C*, where

Co = max(1.4, Co(1 - CRRi)), CR = 2, Co = 11/6, Ri=

OW W

-_r " -F
ow_ 2 (ou_ 2
Or ] + _ Or ]

The condition on Co* is applied to avoid excessive values of the dissipation rate close to

a wall, which can occur under rotation.

The turbulent flow in the initial pipe section (x/D <_ 25) was computed at Reo -- 4.104.

In Figs. 3-6 the calculated profiles are compared with the experimental data (Zaets,

Safarov & Safarov, 1985) and with the results of calculation by RST models: linear (IP)

and non-linear (SSG1) (Speziale, Younis & Berger, 2000). In both RST models, damping

functions similar to the ones suggested in Gibson & Launder (1978) were applied to

describe wall effects. Profiles in Figs. 3-5 correspond to the section x/D = 25. As shown,

the Q-model describes quite well the axial velocity profiles in the whole flow area: from

the wall to the pipe axis at different rotation numbers. Moreover, the Q-model catches

correctly dynamics of the axial velocity with increasing rotation. That is, at the low
rotation number N = 0.15, the axis value of U slightly decreases, but with further

increasing of N, it begins to grow. The behavior of the angular component of the mean

flow velocity also is well reproduced.

The behavior of turbulent statistics is reproduced very well, especially near the pipe

axis (Figs. 4-6). This is an important result because turbulent transport at the core of

a pipe flow at moderate swirl is similar to turbulent transport in concentrated vortex

formations in the atmosphere. The damping coefficient Kui on Figs. 5-6 is determined

2 (Y 2 (Y 0).asKui=<u, > > O)/ < u i > =

In experiments it has been observed that near the pipe entrance there exists a conical

core in which the developing turbulence is only weakly influenced by the rotation. The

streamwise extent of this conical core decreases with increasing rotation. The Q-model
is more sensitive to the influence of rotation on this initial pipe section and describes
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correctly the shortening of the conical core. In contrast, the RST model is less sensitive

to rotational effects in this section and tends to overpredict the extent of the conical core

(especially near the centerline) as the rotation is increased. This effect is shown in Fig. 6

where the streamwise evolution of Ku is shown along the initial pipe section.

Finally, it is worth noting that in the initial pipe section, the performance of linear

and non-linear RST models are comparable,

4.3. Fully developed flow

With increasing rotation and distance from the pipe entrance, the Q-model with e-

equation (2.3) using the modified C_ predicts full suppression of the turbulence, like

the RST models do, in contradiction with the experimental data. Therefore, a fully de-
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veloped turbulent flow in a rotating pipe was computed by the Q-model with c-equation

(2.3) without modification by C o. Some results obtained at Reo = 2 - 104 are shown on

Fig. 7 in comparison with the experimental data of Imao, Itoh & Harada (1996) and the
data obtained with the non-linear RST model (SSG2) (Speziale, Younis & Berger, 2000)

with a near-wall model developed in Durbin (1993).

The flow simulated by the Q-model reaches the fully developed state at the distance

close to the experimental value (Kikuyama et al., 1983; Nishibori, Kikuyama & Mu-

rakami, 1987). The model reproduces the evolution of the axial component of the mean

velocity better than the RST models do. For the angular velocity, the computational

results obtained with the Q-model are close to the profiles obtained with the linear RST

models (Pettersson, Andersson & Brunvoll, 1998; Speziale, Younis & Berger, 2000; Kur-

batskii & Poroseva, 1999). The non-linear RST model provides better agreement for W

with the experimental data.

The shear stresses are reproduced well with the Q-model. However, in this part of the

flow, like other turbulence models, the Q-model significantly overpredicts the turbulent

kinetic energy level in comparison with experimental data.

Most importantly, the Q-model is able to reproduce the correct behavior of turbulence
characteristics at relatively high rotation rates, e.g., N = 1, whereas RST models predict

relaminarization of the flow (Pettersson, Andersson & Brunvoll, 1998) already at this

N in contrast to the experiments of Kikuyama et aL (1983), which show no sign of

turbulence disappearance even at considerably higher N.

5. Conclusions and future plans

The main goal of the present work was to test the Q-model in a complex rotated

turbulent flow and compare its performance with that of RST models, using in all models

similar equations for the dissipation rate.
The Q-model is able to predict the flow accurately at various Reynolds numbers and

under stronger rotation than possible with a good RST model. In the fully developed pipe

flow at moderate rotation numbers, the Q-model slightly improves the profiles obtained

with the non-linear RST model, which gives the best results among RST models for this

part of flow. Most importantly, the Q-model is able to reproduce the correct behavior

of turbulence characteristics at relatively high rotation rates, e.g., N = 1, whereas the

RST models predict relaminarization of the flow in contrast to experiments. Also, under
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some parameter combinations (N, Re) computations using RST models fail to converge

(Pettersson, Andersson & Brunvoll, 1998; Kurbatskii & Poroseva, 1999), whereas such

difficulties have not been encountered with the Q-model.

However, the Q-model as tested in this work, does not solve all problems. One of the

possible reasons for this is that, in order to be consistent, a one-point turbulence closure

based on the transport equation for Q should also include structure information in the

equation for the dissipation rate e. We are currently working in this direction and hope

to be able to report on our progress soon. In the RST models, such modifications would

not be possible since they do not carry the necessary information. We are also working

on improving the length scale model used in the elliptic relaxation of Q. Finally, we
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are currently using these ideas as the basis for the development of a simplified algebraic

two-equation structure-based model.
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Towards a robust and efficient

implementation with application to

bump flow

By Georgi Kalitzin

v2-f
transonic

1. Motivation and objectives

In the last few years, Durbin's v2-f turbulence model has been extensively tested for

subsonic and transonic flows using different numerics for the discretization of the equa-
tions and for their solution. Three versions of the model have been successively developed.

The original model, Durbin (1995), includes a non-trivial wall boundary condition for

the quantity f, which represents the pressure-strain term and is obtained from an elliptic

relaxation equation. It also requires the distance to no-slip walls, albeit for the determi-
nation of the coefficient Cd which regulates the production of dissipation of turbulent

kinetic energy in the c equation. The version developed by Parneix & Durbin (1997)
defines a new expression for the coefficient C_I substituting the distance to the wall with

the ratio v2/k. Lien & Durbin (1996) developed another version of the model with a

trivial wall boundary condition for f to improve the numerical robustness of the model,

in particular for codes which solve equation by equation in a segregated manner.

An extensive, systematic comparison of each version has been conducted in Kalitzin

(1999a) and Lien & Kalitzin (2000) for external flow around airfoils, wings, and over a

bump. The conclusion of these studies was that all three versions predict in general very
similar results for the potential flow region and most of the boundary layer. However,

the Cd(v2/k) definition causes an overprediction of the boundary layer growth rate in
high Reynolds number flows with strong adverse pressure gradients. Forcing f to zero

at no-slip walls has been found to delay transition. This is often desirable in transitional

flow predictions, as RANS models generally trigger transition too far upstream. However,

it has also been found responsible for a significant overprediction of skin friction in flow

recovery regions, for example downstream of shock induced separation.

The present report is a continuation of this validation effort. It also describes the

current implementation of Durbin's v2-f turbulence model in the turbomachinery code

TFLO, CITS (2000). This RANS code will be used in the framework of the Accelerated

Strategic Computing Initiative (ASCI) at the Center for Integrated Turbulence Simula-

tions (CITS) for large scale computations of flow through the compressor and turbine

of an aircraft engine. This requires a robust and efficient implementation of the model.
A three-factored scheme which is able to handle the wall boundary conditions of the

original model has been developed for this purpose, and its description is included in the

report.

2. v2- f turbulence model

The v2-f turbulence model is an advanced eddy-viscosity model. It can be regarded

as an abbreviated Reynolds stress model consisting of three transport equations: for the
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turbulent kineticenergy k, the dissipation of the turbulent kinetic energy e, and for the

scalar quantity v _. Close to solid walls the latter represents the energy of the fluctuations
normal to the wall. The production term in the v 2 transport equation is a pressure strain

term. Its nonlocal dependency on the flow, in particular in the presence of solid walls,

is modeled with an elliptic relaxation equation for a quantity f. The equations of the

original model and of the modified version considered in the present study can be found

in Durbin (1995) and Lien & Durbin (1996), respectively. These model versions will be

referred to in this report as version A and B, respectively. The main differences between

version A and B are the wall boundary conditions for f, which are: fw = -20v2v_/ewY_

and fw = 0, respectively. Index w and 1 denotes the value at the wall and in the first

cell above the wall, respectively. To enforce, in version B, the trivial condition for f at

the wall, the term 5e_ has been subtracted from the v 2 transport equation and added

to the f e__quation. This modification preserves the correct asymptotic behavior of the
quantity v 2. The coefficients of version A and B are slightly different, most notable is the

coefficient C,1, which regulates the production of dissipation of turbulent kinetic energy.
In version A the coefficient C_1 is a function of the distance to the wall, and in version

B it is a function of the ratio of v2/k.

3. Implementation of v2-f in TFLO

The ve-f model is solved in TFLO in a separate set of subroutines segregated from

the mean flow. Multigrid is used for the mean flow, and at each multigrid cycle on the

finest grid the model's subroutines are called. They return an updated value for the eddy

viscosity and the turbulent kinetic energy. Only these two quantities are passed to the

mean flow solver for the determination of the Reynolds stresses.

Different solution algorithms have been employed for each model version. In both

versions, the k and _ equations are solved first in an implic__it, pairwise coupled manner
with a cell centered finite difference scheme. The f and v 2 equations of version A are

solved similarly coupled, allowing an implicit treatment of the f-wall boundary condition.

The solution follows the description in Kalitzin (1999). The f equation in version B is

solved separately with an elliptic solver. Its solution subsequently enters the production
term in the v 2 equation. The zero wall boundary condition for f basically decouples the

f from the v 2 equation. The net source term in the f equation is invariably non-negative,

ensuring a non-negative solution f in the entire computational domain.

In both versions, the diffusion terms are discretized with second order central differ-

ences. First order upwind differences are used for the discretization of the convective

terms. At the current stage, the model is implemented to provide a steady state solution

by marching in time from an initial guess. The time derivative term is discretized with a

first order forward difference. Local timesteps are used to accelerate convergence. These

timesteps are determined by the spectral radius analysis from mean flow quantities, the

eddy viscosity and the input CFL number. Multigrid is not used for the turbulence equa-

tions. The timesteps for the advancement of the turbulence variables have been weighted

with a constant factor. Except for the f-equation in version B, the algebraic system

of equations resulting from the implicit operators are solved with a three-factored, ap-

proximate factorization scheme. The f-equation in version B is solved with a conjugate

gradient method.

Next, a factorization scheme is described which has been developed to handle the wall

boundary conditions in the v2-f model, version A. The f wall boundary condition is a
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critical issue in the implementation. The value of fw at the wall depends strongly on

the value of v 2 in the first cell above the wall (see also the profiles of the scalars v 2

and f in Fig. 1 for flow over a flat plate). A small change of v_ in the first cell above

the wall changes the value fw at the wall, which affects in an elliptic manner the f

distribution across the entire boundary layer. This requires an accurate solution of the

model's equations close to solid walls.

The v 2-] equations can be written in matrix form notation as:

(I + S + L, + L_ + L¢)A¢ = RHS (3.1)

whereby LT, with 7 = _,7/,_, contains the convection and diffusion terms in a grid

oriented (_, r], _) coordinate system. S and A¢ contain the implicitly treated source terms
and the solution update, respectively. I is the identity matrix. RHS is the right-hand

side.

A computer memory and CPU time efficient algorithm for the solution of Eq. (3.1) is

critical in large three-dimensional computations. Ordinary ADI algorithms developed for

structured grids often converge better if certain directions of the computational coordi-

nate system are normal to walls. Only one direction may be normal to a solid wall for
turbulence models with stiff wall boundary conditions as in the case of the v 2-] model.

Even in a multi-block concept, this directionality of the factorization algorithm may lead

to severe constrains for the grid generation process for complex geometries, especially in
wall corners of cavities or wing-body junctions of an aircraft.

An ADI algorithm requires an approximation for Eq. (3.1), which allows a split into a
set of one-dimensional equations. As proposed in Kalitzin et al. (2000) the approximation

of Eq. (3.1) with

(I + S + L_) (I + S) -1 (I + S + L_) (I + S) -1 (I + S + L_) A¢ = RHS (3.2)

allows a split into the three one-dimensional equations

along _ grid lines,

along _ grid lines, and

(I+ S+ Ln) A¢' = P

(I + S + L_) A¢" = (I + S)A¢'

(3.3)

(3.4)

(I + S + L¢) A¢'" = (I + S)A¢" (3.5)

along _ grid lines. In contrast to earlier formulations in Krist (1998), the source terms

are treated implicitly in each computational direction. This leads to a consistent implicit

operator on the left-hand side in each computational direction and allows in the case of

the v2-f model different computational directions to be normal to solid walls.

The scheme described follows Klopfer et al. (1998). However, they derive a diagonally
dominant scheme for the solution of the Navier-Stokes equations which does not include

source terms. The efficiency of the scheme described is of the same order as of an ordinary
factorization scheme.

4. Flow over flat plate

The current implementation of the v:-f model in TFLO has been tested for subsonic

flow over a flat plate. The flow is computed for a Reynolds number of 6.108 and a Mach
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number of 0.2. The mesh of 64 x 96 cells is provided with version 5 of CFL3D (Krist

(1998)). An average of 40 grid points lie within the boundary layer.

A comparison of v2-f results is shown in Fig. 1. The log law and profiles of the normal-

ized turbulent quantities are shown for x/c = 0.9. The discrepancy in the results obtained

with version A in TFLO and CFL3D (the latter code has been previously extensively

validated against several applications) is particularly large for the ¢ and f distribution.
It could be traced back to the numerical dissipation of the mean flow solver. While

the turbulence transport equations are solved with a first order upwind scheme in both

codes, the mean flow is solved in TFLO with a dissipation scheme of Jameson, Schmidt

& Thrkel (1981) and in CFL3D with an upwind flux difference splitting of Roe (1986).

The discrepancy reduces by setting VIS4 in TFLO from the default value of 1 to 0.3,

reducing the artificial fourth order background dissipation.
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The same plots include the solution of version B. As shown in Fig. ld, f is larger

zero over the entire boundary layer, and its maximum value is significant larger than for

version A. At the wall f is zero. As shown in Fig. la, v 2 has the same asymptotic behavior

approaching the wall as for version A. The peak value of the turbulent kinetic energy,

k +, is about 5, and this is significantly lower than for version A. While it corresponds

to predictions with other models, this value might be too low. Turbulent kinetic energy

profiles obtained with version A for the Bachalo-Johnson bump described next agree

significantly better with the experiments.
The solution converged for both versions to a five orders of magnitude in the L2 norm

of the density, turbulent kinetic energy, and v 2 residual in about 2000 iterations. This

is usually required for this type of computation and comparable to other turbulence

models. Version B converges more robustly and for a wider range of various numerical

parameters.

5. Flow over Bachalo-Johnson bump

Transonic flow over the Bachalo-Johnson bump (Bachalo (1986)) has been chosen to

study the performance of TFLO/v2-f in predicting shock-boundary layer interaction.
This test case is an axisymmetric configuration, and the flow is not dependent on the

circumferential direction and is thus two-dimensional even in the case with massive sepa-

ration. The flow is computed for an inflow Mach number of 0.873 and a Reynolds number

of Rec = 2.66.106. The computational mesh consists of 192 x 100 × 8 cells. The two-

dimensional mesh, shown in Fig. 3, is the same as used in Kalitzin (1999) with some

additional cells at the exit in order to split the mesh in several multigridable blocks.

Cells are clustered in the region of the shock. The flow is computed fully turbulent,

neglecting the influence of wind tunnel walls.
The pressure and skin friction distribution on the wall of the cylinder and bump are

shown in Fig. 5. The bump geometry is shown in the background with the symmetry axis

coinciding with the frame line. The x-coordinate is chosen such that the bump is located

between 0 and 1. Note that the Cp-axis in the pressure plot is reversed. Versions A and

B predict roughly the same pressure distribution with the correct shock location and a

slightly higher pressure in the separation region. The latter indicates that the separation

bubble is underpredicted. The separation region is clearly visible in the negative skin

friction in Fig. 5b. There is no experimental data for skin friction available. However,

the plot shows that the flow computed with version B recovers faster with a significantly

larger skin friction downstream of the separation region. This is consistent with the
results obtained for the RAE 2822 airfoil in Lien & Kalitzin (2000).

In Figs. 2 and 4 velocity, shear stress, and turbulent kinetic energy profiles are shown

for 6 stations, the location of which is indicated in Fig. 3. The Reynolds shear stress

is consistently underpredicted for both versions, in particular in the separation region.

Note that, as described in Johnson (1987), the comparison of shear stresses in a shear

layer aligned coordinate system will result in better agreement of the computational and
experimental data. The computed turbulent kinetic energy profiles differ significantly for

both versions. As for the flat plate, Fig. la, the turbulent kinetic energy profiles obtained

with version A are significantly larger and agree well with the experimental data.

Results for the same test case using the v2-f model, version Parneix & Durbin (1997),

the Spalart-Almaras, and Menter SST are given in Kalitzin (1999).
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6. Conclusions and future work

Two versions of the v2-f model, version A and B, have been implemented in TFLO

and successfully tested for 2 two-dimensional test cases. In both cases, subsonic flow over

a fiat plate and transonic flow over a axisymmetric bump, the TFLO/v_-f code performs

similarly in terms of accuracy and computational costs to previous v2-f implementations.

The results for the Bachalo - Johnson bump support the conclusions from previous

computations. Version A and B predict main differences in skin friction and turbulent
kinetic energy profiles. The understanding of tile cause of these differences is important

for further development of the v2-f model.

Version B is due to the zero f wall boundary condition being significantly more ro-

bust. In addition to the test cases presented, its implementation in TFLO has also been

successfully tested for three-dimensional transonic flow at a turbine blade-endwall. The

results for this test case will be described in a future report. Version B is currently being

implemented in TFLO as the default version, and it is used for the initial iterations with

the v2-f model.

A three-factored approximate factorization scheme has been developed to handle the

wall boundary conditions of version A. In contrast to earlier schemes, it allows any

computational direction to be normal to solid walls. It is currently being tested for the
turbine blade-endwall test case.

Future work includes the implementation in TFLO/v2-f of a higher order time integra-

tion scheme which is required for unsteady computations. It is planned to implement a

dual time stepping scheme in which a pseudo timestep is used for the inner iteration to a

pseudo steady state. For rotational flows, modifications to the Boussinesq approximation

proposed by Pettersson-Reif et al. (1999) will be investigated. These modifications were

designed to sensitize the v2-f model to mimic rotational effects on turbulence.
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POSTDOCTORAL

FELLOWS

BOTELLA, Dr. Olivier
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CHA, Dr. Chong

4/00-present

CONSTANTINESCU,

Dr. George

10/99-5/00

DARVE, Dr. Eric
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DUCHAMP de LAGEN-

ESTE, Dr. Laurent
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FAVIER, Dr. Valerie

10/00-present
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HILGERS, Dr. Angela
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IDOWU, Dr. Olusola
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(Ph.D. Engineering, 1997
University of Nice

Sophia Antipolis, France)

(Ph.D. Mechanical Engr., 2000
University of Washington)

(Ph.D. Engineering, 1998

University of Iowa)

(Ph.D. Mathematics, 1999
Pierre et Marie Curie Univ.

Paris, Prance)

(Ph.D. Mechanics, 1999

Ecole Centrale de Lyon

Prance)

(Ph.D. Fluid Physics, 2000

INSA Rouen, Prance)

(Ph.D. Fluid Mech., 1999

Lund Institute of Technology

Sweden)

(Ph.D. Theoretical Phys., 1998

RWTH-Aachen/QMW London)

(Ph.D. Applied Math., 2000
University of Newcastle, U.K.)

Numerical methods
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Computational acoustics

Computational biology
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Cardiovascular mechanics

Large eddy simulation

Optimization and
cntrol

Protoplanetary accretion
disks
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PECK, Dr. Bill
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ASSOCIATES

CABOT, Dr. William H.

3/88-12/99
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iano
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University of Michigan)
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(Stanford University)

(Swiss Federal Institute
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Turbulent combustion
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