Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Sara Conrad, Editors

Volume 213

BOREAS TF-11 Decomposition Data
over the SSA-Fen

David W. Valentine
University of Alaska, Fairbanks

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Sara Conrad, Editors

Volume 213
BOREAS TF-11 Decomposition Data
over the SSA-Fen

David W. Valentine
University of Alaska, Fairbanks

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

November 2000
BOREAS TF-11 Decomposition Data over the SSA-Fen

David Valentine

Summary

The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains decomposition rates of a standard substrate (wheat straw) across treatments. The measurements were conducted in 1994 as part of a 2 x 2 factorial experiment in which we added carbon (300 g/m² as wheat straw) and nitrogen (6 g/m² as urea) to four replicate locations in the vicinity of the TF-11 tower. The data are stored in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification

BOREAS TF-11 Decomposition Data over the SSA-Fen

1.2 Data Set Introduction

This data set contains decomposition rates of a standard substrate (wheat straw) across treatments. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/m² as wheat straw) and nitrogen (6 g/m² as urea) to four replicate locations in the vicinity of the Tower Flux (TF)-11 tower.
1.3 Objective/Purpose

Much of the area within the boreal forest biome consists of wetlands, in which large carbon stores and high water tables drive fundamentally different atmospheric interactions than occur under the other forest types studied by the BOREal Ecosystem-Atmosphere Study (BOREAS). One key difference is in the form carbon is emitted following soil microbial respiration; in wetlands, much of it is emitted as methane. Wetlands are the dominant influence of boreal forests on atmospheric methane.

This study was undertaken in order to assess responses of methane emissions in northern wetlands to potential changes in plant productivity, nitrogen availability or both. Whiting and Chanton (1993) recently observed that methane emissions from wetlands across the globe are well related to net primary productivity (NPP). This may be for a variety of reasons, including enhanced plant transport, increased methanogenic substrates from root exudates, increased litter input cascading to enhanced substrate availability for methanogenesis, or enhanced C and N mineralization of decomposing residues. Previous work by us (Valentine et al., 1994) and others has shown that substrate availability is a key constraint on methane production in wetlands. The present study was an effort to test whether substrate manipulation results from laboratory studies could be mirrored under field conditions.

1.4 Summary of Parameters

We report the mass loss of a standard plant material (wheat straw) over the course of ~50 days as a function of treatment and location. We also report the initial and final concentrations of carbon and nitrogen (mass basis).

1.5 Discussion

These data were collected from a set of small locations within the fen, and therefore no one location represented the entire study site. In fact, the fen in which this work was conducted was characterized by a large-scale gradient of vegetation, microtopography, and hydrology such that the study site itself is representative only of the portion of the fen in which it was located (i.e., the lower 1/3).

1.6 Related Data Sets

- BOREAS TE-06 Biomass Estimate Data
- BOREAS TE-18 Biomass Density Image of the SSA
- BOREAS TGB-03 Plant Species Composition Data over the NSA-Fen

2. Investigator(s)

2.1 Investigator(s) Name and Title
David Valentine
Assistant Professor
Department of Forest Sciences
P.O. Box 757200
University of Alaska
Fairbanks, AK 99775-7200

2.2 Title of Investigation
Influence of Substrate Characteristics and Other Environmental Factors on Methane Emissions from the BOREAS Southern Study Area Fen Site. III. Standard Litter Decomposition
2.3 Contact Information

Contact 1:
David Valentine
Department of Forest Sciences
P.O. Box 757200
University of Alaska
Fairbanks, AK 99775-7200
(907) 474-7614
(907) 474-6184 (fax)
ffdwv@aurora.alaska.edu

Contact 2:
Jeffrey A. Newcomer
Raytheon ITSS
Code 923
NASA GSFC
Greenbelt, MD 20771
(301) 286-7858
(301) 286-0239 (fax)
Jeffrey.Newcomer@gsfc.nasa.gov

3. Theory of Measurements

Litter bags were constructed from fiberglass screen to hold ~3 g of plant material. Once filled with wheat straw and weighed, they were placed within each of the treatment/location replicates and allowed to remain for ~50 days. They were then collected and reweighed, and the fraction of the original weight remaining is reported in the accompanying file.

4. Equipment

4.1 Sensor/Instrument Description
Not applicable.

4.1.1 Collection Environment
The litter bags were set out around the end of July (21-Jul or 02-Aug-1994), then retrieved on 17-Sep-1994. Half the bags were placed on the surface of the peat, and half were inserted 0.1 m below the surface.

4.1.2 Source/Platform
Not applicable.

4.1.3 Source/Platform Mission Objectives
Recent papers (e.g., Whiting and Chanton, 1993) have suggested that CH₄ emissions are positively related to plant productivity. One possible mechanism by which enhanced NPP or other factors may result in higher CH₄ emissions is through enhanced decomposition rates, perhaps indexing a more rapid substrate supply rate from fermentative processes. We therefore wanted to evaluate whether enhanced litter decomposition rates (i.e., mass loss) covaried with CH₄ emissions rates or varied as a function of our C and N additions.
4.1.4 Key Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAC</td>
<td>Not applicable</td>
<td>Fraction of wheat straw mass remaining</td>
</tr>
<tr>
<td>C</td>
<td>Not applicable</td>
<td>C fraction of wheat straw</td>
</tr>
<tr>
<td>H</td>
<td>Not applicable</td>
<td>H fraction of wheat straw</td>
</tr>
<tr>
<td>N</td>
<td>Not applicable</td>
<td>N fraction of wheat straw</td>
</tr>
</tbody>
</table>

4.1.5 Principles of Operation

Not applicable.

4.1.6 Sensor/Instrument Measurement Geometry

Not applicable.

4.1.7 Manufacturer of Sensor/Instrument

Not applicable.

4.2 Calibration

4.2.1 Specifications

Not applicable.

4.2.1.1 Tolerance

Not applicable.

4.2.2 Frequency of Calibration

Not applicable.

4.2.3 Other Calibration Information

Not applicable.

5. Data Acquisition Methods

Approximately 3 g of wheat straw was sealed into each fiberglass mesh screen. Oven dry equivalent weights for each were determined based on additional subsamples. Two replicate bags for each treatment/platform combination were either laid on the surface or inserted 0.1 m into the peat near the end of July, then collected in mid-September. Each bag was oven-dried at 30 °C for 48 h, then weighed. Subsamples were ground and analyzed using a Leco CHN analyzer for C, H, and N concentrations.

Subsamples from the initial (undecomposed) wheat straw were similarly analyzed for C, H, and N concentrations:

C_ADDED, N_ADDED, DURATION, REPLICATE_ID, LITTER_MASS_FRACTION, C_CONC, H_CONC, N_CONC

Initial, 0, 0, 0, 0, 0, 1, .446, .061, .005

6. Observations

6.1 Data Notes

Vegetative growth lifted some of the bags off the peat surface during the decomposition period, and the resultant drying likely retarded those.

6.2 Field Notes

None.
7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
All measurements were made along two transects identified by their location relative to the TF-11 micrometeorology tower: a north transect (NA and NB platforms) and a south transect (SA and SB platforms). All measurements were made within 70 m of the TF-11 tower, whose North American Datum of 1983 (NAD83) coordinates are 53.80206°N, 104.61798°W.

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
The data are from point measurements at the given locations.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
Litter bags were placed either on 21-Jul-1994 (north transect) or 02-Aug-1994 (south transect). All bags were collected on 17-Sep-1994.

7.2.2 Temporal Coverage Map
None.

7.2.3 Temporal Resolution
Ideally, the litter bags would have been placed at the beginning of the growing season. Because of a miscommunication from the Principal Investigator (PI) to the field crew, the bags were not placed until much later than optimal.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>START_OBS_DATE</td>
</tr>
<tr>
<td>END_OBS_DATE</td>
</tr>
<tr>
<td>PEAT_DEPTH</td>
</tr>
<tr>
<td>C_ADDED</td>
</tr>
<tr>
<td>N_ADDED</td>
</tr>
<tr>
<td>DURATION</td>
</tr>
<tr>
<td>REPLICATE_ID</td>
</tr>
<tr>
<td>LITTER_MASS_FRACTION</td>
</tr>
<tr>
<td>C_CONC</td>
</tr>
<tr>
<td>H_CONC</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS in the format GGGGG-III, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>START_OBS_DATE</td>
<td>The date and time at which collection of the referenced data commenced.</td>
</tr>
<tr>
<td>END_OBS_DATE</td>
<td>The date and time at which collection of the referenced data was terminated.</td>
</tr>
<tr>
<td>PEAT_DEPTH</td>
<td>The depth below the peat surface.</td>
</tr>
<tr>
<td>C_ADDED</td>
<td>Estimated amount of carbon contained in the wheat straw that was added to the plot.</td>
</tr>
<tr>
<td>N_ADDED</td>
<td>Estimated amount of nitrogen contained in the urea that was added to the plot.</td>
</tr>
<tr>
<td>DURATION</td>
<td>Duration of time that the samples were in the field since 21-JUL-94 or 02-AUG-94.</td>
</tr>
<tr>
<td>REPLICATE_ID</td>
<td>Replicate id, where 2 denotes a replicate.</td>
</tr>
<tr>
<td>LITTER_MASS_FRACTION</td>
<td>Fraction of original litter mass remaining.</td>
</tr>
<tr>
<td>C_CONC</td>
<td>Carbon concentration of remaining littermass</td>
</tr>
<tr>
<td>H_CONC</td>
<td>Hydrogen concentration of remaining littermass</td>
</tr>
<tr>
<td>N_CONC</td>
<td>Nitrogen concentration of remaining littermass</td>
</tr>
<tr>
<td>SITE_COMMENTS</td>
<td>Descriptive information to clarify or enhance the site information.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data.</td>
</tr>
<tr>
<td></td>
<td>Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-?? (CPI but questionable).</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>START_OBS_DATE</td>
<td>[none]</td>
</tr>
<tr>
<td>END_OBS_DATE</td>
<td>[none]</td>
</tr>
<tr>
<td>PEATDEPTH</td>
<td>[millimeters]</td>
</tr>
<tr>
<td>C_ADDED</td>
<td>[grams C][meter^-2]</td>
</tr>
<tr>
<td>N_ADDED</td>
<td>[grams C][meter^-2]</td>
</tr>
<tr>
<td>DURATION</td>
<td>[days]</td>
</tr>
<tr>
<td>REPLICATE_ID</td>
<td>[unitless]</td>
</tr>
<tr>
<td>LITTER_MASS_FRACTION</td>
<td>[unitless]</td>
</tr>
<tr>
<td>C_CONC</td>
<td>[grams C][grams litter^-1]</td>
</tr>
<tr>
<td>H_CONC</td>
<td>[grams H][grams litter^-1]</td>
</tr>
<tr>
<td>N_CONC</td>
<td>[grams N][grams litter^-1]</td>
</tr>
<tr>
<td>SITE_COMMENTS</td>
<td>[none]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source
The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>START_OBS_DATE</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>END_OBS_DATE</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>PEAT_DEPTH</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>C_ADDED</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>N_ADDED</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>DURATION</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>REPLICATE_ID</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>LITTER_MASS_FRACTION</td>
<td>[Balance]</td>
</tr>
<tr>
<td>C_CONC</td>
<td>[Leco CHN analyzer]</td>
</tr>
<tr>
<td>H_CONC</td>
<td>[Leco CHN analyzer]</td>
</tr>
<tr>
<td>N_CONC</td>
<td>[Leco CHN analyzer]</td>
</tr>
<tr>
<td>SITE_COMMENTS</td>
<td>[Investigator]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range
The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
<th>Missng Value</th>
<th>Unrel Value</th>
<th>Below Value</th>
<th>Data Detect Value</th>
<th>Not Detect Value</th>
<th>Limit Value</th>
<th>CDlctd Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-FEN-FLXTR</td>
<td>SSA-FEN-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TF11-DEC01</td>
<td>9TF11-DEC07</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>START_OBS_DATE</td>
<td>21-JUL-94</td>
<td>02-AUG-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>END_OBS_DATE</td>
<td>17-SEP-94</td>
<td>17-SEP-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SITE NAME, SUB_SITE, START_OBS_DATE, END_OBS_DATE, PEAT_DEPTH, C_ADDED, N_ADDED, DURATION, REPLICATE_ID, LITTER_MASS_FRACTION, C_CONC, H_CONC, N_CONC, SITE_COMMENTS, CRTFCN_CODE, REVISION_DATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'SSA-FEN-FLXTR', '9TFII-DECOI', 21-JUL-94, 17-SEP-94, 0, 300, 6, 58, 1, .87, .446, .061, .008, 'North of Tower, along transect A', 'CPI', 01-OCT-98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. Data Organization

8.1 Data Granularity
The smallest unit of data tracked by the BOREAS Information System (BORIS) is the measurement(s) made for a given site on a given day.

8.2 Data Format(s)
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

9. Data Manipulations

9.1 Formulae
Not applicable.

9.1.1 Derivation Techniques and Algorithms
None.

9.2 Data Processing Sequence

9.2.1 Processing Steps
None.

9.2.2 Processing Changes
None.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
None.

9.3.2 Calculated Variables
Not applicable.

9.4 Graphs and Plots
None.

10. Errors

10.1 Sources of Error
The most obvious source of error was the tendency for the litter bags to be lifted above the peat surface by vegetative growth, potentially retarding decomposition through excessive drying. Other sources of error include solubilization of straw constituents resulting in overstatement of decomposition rate, exclusion of soil fauna by the bag screen itself, and moss or other growth in the bag causing a mass gain during the period.
10.2 Quality Assessment

10.2.1 Data Validation by Source
 Not applicable.

10.2.2 Confidence Level/Accuracy Judgment
 Except for the bags that gained weight during the decomposition period, these data appear fairly robust. The aforementioned gainers should be deleted prior to analysis.

10.2.3 Measurement Error for Parameters
 Not applicable.

10.2.4 Additional Quality Assessments
 None given.

10.2.5 Data Verification by Data Center
 Data were examined for general consistency and clarity.

11. Notes

11.1 Limitations of the Data
 See Sections 9.1 and 10.1.

11.2 Known Problems with the Data
 None given.

11.3 Usage Guidance
 See Sections 9.1 and 10.1.

11.4 Other Relevant Information
 None given.

12. Application of the Data Set

Several avenues are being pursued in publications now being produced to answer the following questions:
 • How do CH$_4$ flux measurements compare by technique used in measurement?
 • How and why do CH$_4$ flux measurements vary through time and across the landscape?
 • Does plant productivity limit CH$_4$ emissions?

13. Future Modifications and Plans

None.

14. Software

14.1 Software Description
 We used only commercially available software, mostly the Quattro Pro spreadsheet.

14.2 Software Access
 Not applicable.
15. Data Access

The decomposition data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics
http://www-eosdis.ornl.gov/

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.
19. List of Acronyms

ASCII - American Standard Code for Information Interchange
BOREAS - BOREal Ecosystem-Atmosphere Study
BORIS - BOREAS Information System
CD-ROM - Compact Disk-Read-Only Memory
DAAC - Distributed Active Archive Center
EOS - Earth Observing System
EOSDIS - EOS Data and Information System
GIS - Geographic Information System
GSFC - Goddard Space Flight Center
HTML - HyperText Markup Language
NAD83 - North American Datum of 1983
NASA - National Aeronautics and Space Administration
NPP - Net Primary Productivity
NSA - Northern Study Area
ORNL - Oak Ridge National Laboratory
PANP - Prince Albert National Park
PBR - Productivity/Biomass Ratio
PI - Principal Investigator
SSA - Southern Study Area
TE - Terrestrial Ecology
TF - Tower Flux
TGB - Trace Gas Biogeochemistry
URL - Uniform Resource Locator

20. Document Information

20.1 Document Revision Date
Written: 29-Jan-1997
Last Updated: 06-Aug-1999

20.2 Document Review Date(s)
BORIS Review: 08-Oct-1998
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:

If using data from the BOREAS CD-ROM series, also reference the data as:
Also, cite the BOREAS CD-ROM set as:
Newcomer, J., D. Landis, S. Conrad, S. Curd, K. Huemmrich, D. Knapp, A. Morrell, J.
Nickeson, A. Papagno, D. Rinker, R. Strub, T. Twine, F. Hall, and P. Sellers, eds. Collected Data of

20.5 Document Curator

20.6 Document URL
The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains decomposition rates of a standard substrate (wheat straw) across treatments. The measurements were conducted in 1994 as part of a 2 x 2 factorial experiment in which we added carbon (300 g/m² as wheat straw) and nitrogen (6 g/m² as urea) to four replicate locations in the vicinity of the TF-11 tower. The data are stored in tabular ASCII files.