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It is often desirable to be able to determine the temperature field in the interiors of opaque fluids

forced into convection by externally imposed temperature gradients. To measure the

temperature at a point in an opaque fluid in the usual fashion requires insertion of a probe, and to

determine the full field therefore requires either the ability to move this probe or the introduction

of multiple probes. Neither of these solutions is particularly satisfactory, although they can lead

to quite accurate measurements. As an alternative we have investigated the use of ultrasound as

a relatively non-intrusive probe of the temperature field in convecting opaque fluids. The

temperature dependence of the sound velocity can be sufficiently great to permit a determination

of the temperature from timing the traversal of an ultrasound pulse across a chamber. In this

paper we will present our results on convecting flows of transparent and opaque fluids.

Our experimental cells consist of relatively narrow rectangular cavities made of thermally

insulating materials on the sides, and metal top and bottom plates. The ultrasound transducer is

powered by a pulser/receiver, the signal output of which goes to a very high speed signal

averager. The average of several hundred to several thousand signals is then sent to a computer

for storage and analysis. The experimental procedure is to establish a convective flow by

imposing a vertical temperature gradient on the chamber, and then to measure, at several

regularly spaced locations, the transit time for an ultrasound pulse to traverse the chamber

horizontally (parallel to the convecting rolls) and return to the transducer. The transit time is

related to the temperature of the fluid through which the sound pulse travels. Knowing the

relationship between transit time and temperature (determined in a separate experiment), we can

extract the average temperature across the chamber at that location. By changing the location of

the transducer it is then possible to find the average temperature at different locations along the

chamber, thereby determining the temperature profile along the system. (In the future we will

construct an array of transducers. This will give us the capability to determine the temperature

profile much more rapidly than at present, an important consideration if time-dependent

phenomena are to be studied.)

To validate our procedure we introduced encapsulated liquid crystal particles into glycerol. The

liquid crystal particles' color varies depending on the temperature of the fluid. A photograph of

the fluid through transparent sidewalls therefore gives a picture of the temperature field of the

convecting fluid, independent of our ultrasound imaging. A representative result is shown in the

Figure 1, which reveals a very satisfying correspondence between the two techniques. Therefore

we have a great deal of confidence that the ultrasound imaging approach is indeed measuring the

actual temperature profile of the fluid. The technique has also been applied to convecting liquid

metal flows, and representative data will be presented from those experiments as well.

[1] Supported by NASA NAG3-2138.
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Figure 1: Relation between temperature field in convecting glycerol as revealed by suspended

encapsulated liquid crystals, and a temperature profile from ultrasound transit times.
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Aim of the work

* Interesting flows of opaque fluids abound:

crystal growth, molten metals, polymers

* Current techniques and their limits:

- Optical techniques (transparent fluids)

- Thermistors, thermocouples, hot wire

probes (invasive and local)

- Ultrasound velocimetry (requires

seeding)

- X-rays (requires very thin samples)

Therefore, attempt to use

use ultrasound to map thermalfields
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The Concept

Sotmd velocity is a function of temperature

along the path of sound propagation
Z
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Moving transducer

T: temperature

C: sound velocity
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Experimeni al Procedure
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Sample Signal
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Calibration for Glycero

Temperature vs time of flight
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!!!!!!!!1Results with Glycerol
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Thermochromic liquid crystals
0 _

(T = 29 °C" red start, T = :,3 C" blue start)

ST: deviation from the mean temperature

Cell dimensions" 7.77 cm long, 2.00 cm wide, 1.3 cm hi,,h

AT = 14 °C -)'Rayleigh Number Ra = 1.2 Ra_, (critical value)

NASAJCP--2000-210470 740



Calibration of Mercury
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Tall Cell--Inverted Gradient
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Conclusions

* Development of a new technique:
_ _....._ t _"thermal fieldsmcasmemen o.,

using ultrasound

" " " .... 1" '..... 1* Applmatl.on to a t.ranspale_, t fluid (Glycero.)

--Tempe1 at ui c resolut:lon of _ (}.1 °C

--Validation: pattern visualization with

therlnochromic liquid crystals

* Application to an opaque liquid (Mercury)

* Future Transient states using an array of

transducers
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