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A TECHNIQUE OF TREATING NEGATIVE WEIGHTS IN WENO SCHEMES· 

JING SHIt, CHANGQING HUt, AND CHI-WANG SHU§ 

Abstract. HIgh order accurate weIghted essentIally non-oscIllatory C\vENO) schemes have recently been 

developed for fimte dIfference and fimte volume methods both m structured and m unstructured meshes 

A key Idea m 'VENO scheme IS a lmear combmatIOn of lower order fluxes or reconstructIOns to obtam a 

lllgher order approxImatIOn The combmatIOn coeffiCIents, also called lmear \velghts, are determmed by 

local geometry of the mesh and order of accuracy and may become negatIve 'VENO procedures cannot 

be applIed dIrectly to obtam a stable scheme If negatIve lInear weIghts are present PrevIOus strategy for 

handlmg tillS dIfficulty IS by eIther regroupmg of stencIls or reducmg the order of accuracy to get nd of the 

negatIve lmear weIghts In tIus paper we present a sImple and effectIve techmque for handlIng negatIve lmear 

weIghts wIthout a need to get nd of them Test cases are shown to Illustrate the stabIlIty and accuracy of 

tIus approach 

Key words. weIghted essentIally non-oscIllatory, negatIve weIghts, stablhty, lugh order accuracy, shock 

calculatIOn 

Subject classification. Apphed and Numencall\lathematIcs 

1. Introduction. HIgh order accurate weIghted essentIally non-oscIllatory (\vENO) schemes have re­

cently been developed to solve a hyperbohc conservatIOn law 

Ut + V' f(u) = 0 (1 1) 

The first 'VENO scheme was constructed m [18] for a thIrd order fimte \olume verSIOn m one space dImensIOn 

In [10], thIrd and fifth order fimte dIfference 'VENO schemes m multI space dImensIOns are constructed, wIth 

a general framework for the desIgn of the smoothness mdlcators and nonlmear wClghts Later, second, tlurd 

and fourth order fimte volume WENO schemes for 2D general tnangulatIOn have been developed m [4] and 

[8] Very hIgh order fimte dIfference WENO schemes (for orders between 7 and 13) have been developed m 

[1] Central WENO schemes have been developed m [12], [13] and [14] 

WENO schemes are desIgned based on the successful ENO schemes m [7, 23, 24] Both ENO and 

'VENO use the Idea of adaptIve stencIls m the reconstructIOn procedure based on the local smoothness 

of the numencal solutIOn to automatIcally aclueve hIgh order accuracy and non-oscIllatory property near 

dlscontmmtles ENO uses Just one (optImal m some sense) out of many candIdate stencIls when domg the 

reconstructIOn, wlule 'VENO uses a convex combmatIOn of all the candIdate stencIls, each bemg assIgned 

a nonhnear weIght WhICh depends on the local smoothness of the numencal solutIOn based on that stencIl 

'VENO Improves upon ENO m robustness, better smoothness of fluxes, better steady state convergence, 

better provable convergence propertIes, and more efficIency For a detaIled reVIew of ENO and 'VENO 

schemes, we refer to the lecture notes [21, 22] 

'Research supported by ARO grants DAAG55-97-1-0318 and DAAD19-00-1-0405, NSF grants DMS-9804985 and ECS-

9906606, NASA Langley grant NAG-1-2070 and Contract NASl-97046 whIle the thIrd author was In resIdence at ICASE, 

NASA Langley Research Center, Hampton, VA 23681-2199, and AFOSR grant F49620-99-1-0077 
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tDlvlslOn of ApplIed MathematICs, Brown UnIversIty, ProvIdence, RI 02912 Current address Oracle, 30P6, 500 Oracle 

Parkway, Redwood Shores, CA 94065 E-maIl phu@us oracle com 
§DlvlslOn of ApplIed MathematICs, Brown UnIversIty, ProvIdence, RI 02912 E-maIl shu@cfm brown edu 
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WENO schemes have already been wIdely used m apphcatlOns Some of the examples mcIude dynamIcal 

response of a stellar atmosphere to pressure perturbatlOns [3], shock vortex mteractlOns and other gas 

dynamIcs problems [5], [6], mcompresslble flow problems [26], HamIlton-JacobI equatlOns [9], magneto­

hydrodynamIcs [11], underwater blast-wave focusmg [15], the composIte schemes and shallmv water equatlOns 

[16], [17], real gas computatlOns [19], wave propagatlOn usmg Fey's method of transport [20], etc 

A key Idea m \VENO schemes IS a hnear combmatlOn of lower order fluxes or reconstructlOns to obtam 

a hIgher order approximatlOn The combmatlOn coeffiCIents, also called hnear weIghts, are determUled by 

local geometry of the mesh and order of accuracy and may become negatIve \VENO procedures cannot 

be apphed dIrectly to obtam a stable scheme If negatIve lmear weIghts are present PrevlOus strategy for 

handhng tlns dIfficulty IS by either regroupmg of stenCils (e g III [8]) or reducmg the order of accuracy (e g 

m [12]) to get nd of the negatIVe hnear Weights In thIs paper we present a sImple and effectn e techmque 

for handhng negative hnear weIghts WIthout a need to get nd of them Test cases WIll be shown to Illustrate 

the stablhty and accuracy of thIs approach 

We first summanze the general \VENO reconstructlOn procedure, consIstmg of the followmg steps \Ve 

assume we have a gIVen cell 6 (whIch could be an mterval mID, a rectangle m a 2D tensor product mesh, 

or a tnangle m a 2D unstructured mesh) and a fixed pomt xC wlthm or on one edge of the cell 

1 \Ve IdentIfy several stenCIls S), J = 1, ,q, such that 6 belongs to each stenCil \Ve denote b} 
q 

T = U S) the larger stencIl winch contallls all the cells from the q stencIls 
)=1 

2 \Ve have a (relatIvely) lower order reconstructlOn or mterpolatlOn functlOn (usually a polynomial), 

denoted by p)(x), associated WIth each of the stenCils S), for J = 1, ,q \Ve also have a (relatively) 

hIgher order reconstructlOn or lllterpolatlOn functlOn (agam usually a polynomial), denoted by Q(x), 

associated WIth the larger stencIl T 
3 \Ve find the combmatlOn coeffiCIents, also called hnear weIghts, denoted by /'1, , /'q, such that 

q 

Q(xc ) = L /'lPJ(X
C

) (1 2) 
)=1 

for all pOSSIble gIven data m the stenCIls These hnear weIghts depend on the mesh geometry, the 

pomt xc, and the speCific reconstructlOn or mterpolatlOn reqmrements, but not on the gIven solutlOn 

data m the stenCils 

4 We compute the smoothness llldicator, denoted by (3), for each stenCIl SJ' wincIl measures how 

smooth the functlOn p) (x) IS III the target cell 6 The smaller thIS smoothness mdlcator (3), the 

smoother the functlOn p) (x) IS m the target cell In all of the current \VEN 0 schemes we are USlllg 

the followmg smoothness mdlcator 

(1 3) 

for J = 1, ,q, where k IS the degree of the polynomial p)(x) and 161 IS the area of the cell 6 m 2D 

This factor IS dIfferent for ID or 3D the purpose of It IS to bnng the smoothness mdlcator mvanant 

under spatial scahng 

5 \Ve compute the nonlmear weIghts based on the smoothness mdicators 

(1 4) 
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where "/J are the lmear weIghts determmed m step 3 above, and c: IS a small number to aVOId the 

denommator to become 0 We are usmg c: = 10-6 m all the computatIOns m tIllS paper The final 

WENO approXImatIOn or reconstructIOn IS then gIven by 

q 

R(xG
) = 2:= w)p) (xG

) (1 5) 
;=1 

We remark that all the coefficIents m the above steps whIch depend on the mesh but not on the data of 

the numencal solutIOn, should be computed and stored at the begmmng of the code after the generatlOn of 

the mesh but before the time evolutlOn starts 

\Ve now use a sImple example to Illustrate the steps outlIned above \Ve a')sume we are gIven a umform 

mesh I, = (X,-1/2,X,+1/2) and cell averages of a functIOn u(x) m these cells, denoted by u, \Ve would 

lIke to find a fifth order \VENO reconstructlOn to the pomt value U(X,+1/2), based on a stencIl of five cells 

{II - 2,!,-I,!,,!,+l,!,+2}, WIth the target cell contammg the pomt X'+I/2 chosen as 6. = I, 
In step 1 above we could have the followmg three stenclls 

whIch make up a larger stencIl 

In step 2 above we would have three polynomials PJ(x) of degree at most 1\,0, wIth theIr cell averages 

agreemg WIth that of the functIOn u m the three cells m each stencIl S) The Illgher order functIOn Q(x) IS a 

polynomIal of degree at most four, WIth ItS cell averages agreemg WIth that of the functlOn u m the five cells 

m the larger stencIl T The three lower order approxImatIOns to U(X'+I/2), associated 'Hth p)(x), m terms 

of the gIven cell averages of u, are gIven by 

1 7 11 
PI (X,+1/2) = 3"U'-2 - GUI - I + (fu" 

1 5 1 
P2(X,+l/2) = -GU,-I + GU' + 3"U'+I, (1 G) 

1 5 1 
P3(X,+l/2) = 3"u, + GU,+1 - GU,+2 

Each of them IS a tlurd order approximatlOn to U(X'+l/2) The hIgher order approxImatIOn to U(X'+l/2), 

assocIated WIth Q(x), IS gIven by 

whIch IS a fifth order approxImatIOn to U(X'+I/2) 

In step 3 above we would have 

1 
"/1 = 10' 

3 
"/2 = 5' 

It can be readIly venfied, usmg (1 G) and (1 7), that 

for all possIble gIVen data UJ , J = Z - 2, Z - 1, Z, Z + 1, Z + 2 

3 

3 
"/3 = 10 

(1 7) 
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FIG 1 1 ReconstructIOns to U(X.+1/2) Solzd lmes exact functIOn, symbols numerzcal approximations Left fifth order 

WENO Right fifth order traditional 

In step 4 above we could easIly work out from (1 3) the three smoothness mdicators gIven by 

13 ? 1 ? 

/31 = 12 (U,-2 - 2U,-1 + u,t + 4" (U,-2 - 4U,-1 + 3u,t , 

13 _ _ _ 2 1 _ _ 2 
/32 = 12 (U,-l - 2u, + U,+l) + 4" (U,-l - u,+!) , 

13 ., 1 ., 
/33 = 12 (u, - 2u,+! + U,+2t + 4" (3u, - 4U,+1 + U1+2t 

\Ve notice m particular that the lmear weights 1'1,1'2,1'3 m step 3 above are all posItive In such cases, the 

\VENO reconstructIOn procedure outhned above and the scheme based on It work very well In Fig 1 1 we 

plot the approximatIOn to u(x) for a dlscontmuous functIOn u(x) = 2x for x :S 0 and u(x) = -20 otherWIse, 

by the fifth order \vENO reconstructIOn on the left and by the fifth order traditIOnal reconstructIOn (1 7) 

on the nght, WIth a mesh x, = (z - 0 4965)~x With ~x = 002 \Ve can clearly see that \vENO a"Olds the 

over and undershoots near the dlscontmUIty 

\Ve now look at another simple example where some of the hnear weights m step 3 above ",ould become 

negative \Ve have exactly the same settmg as above except now we seek the reconstructIOn not at the cell 

boundary but at the cell center x, TIns IS needed by the central schemes With staggered gnds [12] Thus, 

step 1 would stay the same as above, step 2 would produce 

1 1 23 
pdx,) = - 24 U,-2 + 12 U,-l + 24 u" 

1 13 1 
P2(X,) = - 24 U,-l + 12u, - 24 U,+l, (1 8) 

23 1 1 
P3(X,) = 24 U, + 12 u,+! - 24 U,+2 

Each of them IS a third order reconstructIOn to u(x,) The higher order reconstructIOn to u(xl ), associated 

With Q(x), IS gIven by 

(1 9) 
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whIch IS a fifth order reconstructIOn to u(x,) Step 3 would produce the followmg weIghts 

49 
12 = 40' 

9 
13 =--

80 

NotIce that two of them are negatIve The smoothness mdicators m step 4 WIll remam the same TIns 

tIme, the 'VENO approxImatIOn, shm,n at the left of FIg 1 2, IS less satIsfactory (m fact, even worse than 

a tradItIOnal fifth order reconstructIOn show on the nght), because of the negatrve lmear weIghts 

\Ve remark that negatIve lInear weIghts do not appear m fimte dIfference \VENO schemes III any "patial 

dImensIOns for conservatIon laws for any order of accuracy [10], [1], and they do not appear m one dimenslOIldl 

as well as some multl-dlmenslonal fimte volume \VENO schemes for conservatIOn laws Unfortunately, tll('\ 

do appear III some other cases, such as the central \VENO schemes usmg staggered meshes "e ha\e sePlI 

above, Illgh order fimte volume schemes for two dImensIOns descnbed III [8] and m tins paper, and filllte 

difference WENO approxImatIOns for second denvatrves 

\VhJle on approXImatIOn alone the appearance of negatIve IIllear weights might be annoymg but perhap" 

not fatal (Fig 1 2), m sohmg a PDE the result mIght be more senous As an example, m Fig 13 we shm\ 

the results of usmg a fourth order fimte volume \VENO scheme [8] on a non-umform tnangular mesh shown 

at the left, WhICh has negatIve lInear weIghts, for solvmg the two dImensIOnal Burgers equatIOn 

(1 10) 

m the domam [-2,2] x [-2,2] With an mitral conditIOn uo(x,y) = 03+07sm(}-(x+y)) and penodlc 

boundary condItIOns \Ve can see that senous oscIllatIOn appears m the numencal solutIOn once the shock 

has developed The oscIllatIOn eventually leads to IllstabilIty and blowmg up of the numencal solutIOn for 

thIS example 

The mam purpose of thiS paper IS to develop a Simple and effectIve techmque for handlmg negative lInear 

WeIghts Without a need to get nd of them Test cases Will be shown to Illustrate the stabIlIty and accuracy 

of thiS approach 
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FIG. 1.,3. 2D Burgers' equation. Left: non-uniform triangular' mesh used in the computation. Right: fourth order- WRNO 

result at. t = 0.47:3, cjl=O.2, without any special treatment for the negative linear- weights. 

2. A splitting technique. We now introduce a splitting technique to treat the negative weights. It 

is very simple, involves little additional cost, yet is quite effective. Tlw WENO procedure outlined in the 

previous section is only modified in step 5 in the following way: 

5' If minb, , ... , rq) 2: 0 proceed as before. Otherwise, we split the linear weights into two parts: 

positive and negative. Define 

i = 1, ... ,q (2.1) 

where we take () = 3 all the numerical tests. We then seale them by 

q 

a± = Lit; i = 1, ... , q. (2.2) 
j=J 

We now have two split polynomials 

q 

L rtPj(:l/') (2.3) 
j=1 

which satisfy 

-Q-( G) a x. (2.4) 

We can then define the nonlinear weights (1.4) for the positive and negative groups r:f separately, 

denoted by cv;, based on the same Rmoothness indicator (3j. We will then define the WENO 

approximation R±(:rP) separately by (1.5), using w.f, and form the final WENO approximation by 

- R-( 0) a. x . 

We remark that the key idea of this decomposition is to make sure that every stencil has a significant 

representation in both the positive and the negative weight groups. Within each group, the WENO idea of 
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FIC.2.1. WENO approximations with the splitting treatment for negative linear weights_ Left: appr'oximation to v.(x;). 

Right: Burgers equation, solution at t 5/rr2 , cfi=O.2_ 

redistributing the weights subject to a fixed sum according to the smoothness of the approximation is still 

followed as before_ 

For the simple example of fifth order WENO reconstruction to U(:r:i), the split linear weights corrnspond­

ing to (2.1) are, before the scaling, 

9 

40' 
_+ _ 49 __ 49 
12 - 20' 12 = 40' 

_+ _ 9 _ 
I:) - 80' 1;3 

9 
40 

We notice that, as the most expensive part of the WENO procedure, namely the computation of the 

smoothness indicators (1.3), has not changed, the extra cost of this positive/negative weight splitting is very 

smalL 

However this simple and inexpensive change makes a big difference to the computations_ In Fig. 2.1 we 

show the result of the two previous unsatisfactory cases, the fifth order WENO reconstruction to U(:r:i) in 

Fig. 1.2 left, and the approximation to the Burgers equation in Fig. 1.3 right, now llsing WENO schemes 

with this splitting treatment. We can see dearly that the results are now as good as one would get from 

WENO schemes having only positive linear weights. 

It is easy to prove that the splitting maintains the accuracy of the approximation in smooth regions_ 

We will demonstrate this fact in the following sections. We will also demonstrate the effectiveness of this 

simple splitting technique through a few selected numerical examples in the next sections. The main WENO 

schemes we will consider are fifth order finite volume WENO schemes on Cartesian meshes, and the third 

and fourth order finit.e volume \VENO schemes on triangular meshes. In both cases negative linear weights 

appear regularly. 

The calculations are performed on SUN Ultra workstations and also on the IBM SP parallel eomputer 

at TCASCV of Brown University_ The parallel efficiency of the method is excellent (more than 90%)_ 

3. 2D finite volume WENO schemes on Cartesian meshes. 

3.1. The schemes. 'We describe two different ways to construct fifth order finite volume WENO 

schemes on Cartesian meshes_ Comparing with finite diffc-m~nce WENO methods [10], finite volume mc"th-

7 



ods have the advantage of an applIcabilIty of usmg arbitrary non-umform meshes, at the pnce of mcreased 

computatIOnal cost [2] 

We define the cell 

(3 1) 

for z = 1, , Tn, J = 1, , n, \Vhere I,,} needs not be umform or smooth yarymg 

The three-pomt Gaussian quadrature rule IS used at each cell edge when evaluatmg the numerical flux 

m order to mamtam fifth order accuracy Let (xC, yC) denote one of the Gaussian quadrature pomts at the 

cell boundary of I,,) given by r == {x = X,_!,y)_! :S y:S YJ+~} There are two ways to perform a WENO 

reconstructIOn at the pomt (xc, yC) 

Genuzne 2D The first \VENO reconstructIOn IS genu me 2D fillite volume We can see that there are 

totally nme stencils S8,1 (s,t = -1,0,1) Each stencil S8,1 contams 3 x 3 cells centered around I'+8,)+t 

On each stencil we can construct a Q2 polynomial (tensor product of second order polynomials III x and y) 

satlsfYlllg the cell average conditIOn (I e ItS cell average III each cell IIlslde the stenCIl equal,> to the given 
1 

yalue) Let T = U S8,t, wIndl contams 5 x 5 cells centered around I,,) On T we can construct a Q4 
8,1=-1 

polynomial satIsfymg the cell average conditIOn The \VENO reconstructIOn IS then performed accordmg to 

the steps outlllled III sectIOns 1 and 2 

\Ve \',ould lIke to make the followmg remarks 

1 By uSlllg a Lagrange mterpolatlOn basIs, we can eaSily find the ullique hnear "eights 

2 Even for a umform mesh, a negative hnear weight appears for the middle Gaussian pomt (xC, yC) = 
(x,_ 1.., y)) Such appearance of negative lmear weights has also been observed III the central \VENO 

2 

schemes [12], see the example III sectIOns 1 and 2 before 

3 By Taylor expanSIOns, we can prove that the smoothness IIldlcators Yield a umform fifth order 

accuracy III smooth regIOns See [10] for the method of proof 

Dzmenswn by Dzmenswn The second \VENO reconstructIOn explOits the tensor product nature of the 

mterpolatlOn we use This 'VENO procedure IS performed on a dimensIOn by dimensIOn fasluon The \VENO 

schemes applIed m [5], [6] belong to tlus class ConSider the pomt (xC,yC) as above First \\e perform a 

one dimensIOnal \VENO reconstructIOn m the y directIOn, m order to get the one dimensIOnal cell averages 

(m the x directIOn) w(., yC) Then we perform another one dimensIOnal 'VENO reconstructIOn to w III the 

x directIOn, to obtam the final reconstructed POlllt value at (xC, yC) 

We "ould lIke to make the followmg remarks 

1 For a scalar equatIOn, the underlymg lInear reconstructIOns of the above t"o versIOns are eqUivalent 

For nonlInear \VENO reconstructIOns they are not eqUivalent Both of them are fifth order accurate 

but the actual errors on the same mesh may be different, see Table 3 1 below 

2 For systems of conservatIOn laws such as the Euler equatIOns of gas dynamics, both versIOns of the 

'VENO reconstructIOn should be performed III local characteristic fields 

3 The dimensIOn by dimensIOn versIOn of the \VENO reconstructIOn IS less expensive and reqUires 

smaller memory than the genullle two dimensIOnal versIOn The CPU time savmg IS about a factor 

of 4 for the Euler equatIOns m our ImplementatIOn The computed results are mostly Similar from 

both versIOns 

In the followlllg, we "Ill give numencal examples computed by the above WENO schemes Sphttlllg 

techmque has been used III all the computatIOns when negatl\e lmear weIghts appear \Ve will show the 
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TABLE 3 1 

2D vortex evolutIOn 

II II dlm-bv-dlm II genu me FV . 
N .6.x Loo error order LOO error order 

20 G 71E-l 438E-2 52GE-2 

40 377E-l 310E-3 459 5 GGE-3 38G 

80 2 OlE-l 120E-4 515 39GE-4 422 

lGO 1 OOE-l 439E-G 47G 79GE-G 5 G2 

320 500E-2 188E-7 453 290E-7 477 

results for both smooth and dlscontmuous problems 

3.2. 2D vortex evolution. Flrst, '\e check the accuracy of the \VENO schemes constructed above 

The two dllnenslOnal vortex evolutlOn problem [21], [8]lS used as a test problem 

\Ve solve the Euler equatlOns for compresslble flow m 2D 

Ut + J(U)x + g(U)y = 0, (32) 

where 

U = (p,pu,pv,Ef, 

J(U) = (pu,pu 2 +p,puv,u(E+p))T, 

g(U) = (pv,puv,pv2 + p,v(E + p))T 

Here p IS the denslty, (u, v) IS the veloclty, E IS the total energy, p IS the pressure, related to the total energy 

by E = ~ + ~p(u2 + v 2
) wlth / = 1 4 

The setup of the problem IS the mean flow IS p = 1, p = 1, (u,v) = (1,1) and the computatlOnal 

domam IS [0,10] x [0,10] We add, to the mean flow, an Isentroplc vortex (perturbatlOns m (u, v) and the 

temperature T = P., no perturbatlOn m the entropy 5 = *) p p 

E 2 
(ou,ov) = _e05(1-r )(-y,x), 

27r 
'T = _ h - I)E2 l_r2 
u 8 2 e , 

/7r -

where (Y, y) = (x - 5, Y - 5), r2 = £2 + fP, and the vortex strength E = 5 

05 = 0 

\Ve use non-umform meshes wInch are obtamed by an mdependent random sInftmg of each pomt from a 

umform mesh m each dlrectlOn Wlthm 30% of the mesh Slzes The solutlOn IS computed up to t = 2 Table 3 1 

shows the L oo errors of p \Ve can see that both the genume t\\O dlmenslOnal fimte volume \VENO scheme 

and the dlmenslOn by dlmenSlOn fimte volume \VENO scheme can aclneve the deslred order of accuracy 

wInle the genume two dlmenslOnal scheme glves smaller errors for the same mesh 

3.3. Oblique shock tubes. The purpose for thls test IS to see the capablhty of the rectangular \VENO 

schemes m resolvmg waves that are obhque to the computatlOnal meshes For detmls of the problem, we refer 

to [10] The 2D Sod's shock tube problem IS solved where the Imttal Jump makes an angle 0 agamst the x 

axlS We take our computatlOnal domam to be [0, G] x [0,1] and the Imttal Jump startmg at (x, y) = (2 25,0) 
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FIG 3 1 Dbllque Sod's problem Density p Top contour, genume two dlmenswnal WEND, middle contour, dzmenswn 

by dlmenswn WEND, bottom cut at the bottom of the computatwnal domam, the solzd lme IS the exact solutwn, the trzangles 

are the genume two dlmenswnal WEND results, and the czrcles are the dlmenswn by dlmenswn WEND results 

and makmg a () = % angle wIth the x aXIS The solutIOn IS computed up to t = 1 2 on a 9G x 1G umform 

mesh In FIg 31 we plot the denSIty contours computed by the above two WENO schemes and the denSIty 

cut at the bottom of the computatIOnal domam We can see that both schemes perform equally well m 

resolvmg the waves The genu me two dImensIOnal scheme gIves a shghtly better resolutIOn m the contact 

dlscontmUIty and the rarefactIOn wave 

3.4. A Mach 3 wind tunnel with a step. ThIS model problem IS ongmally from [25] The setup 

of the problem IS The wmd tunnel IS 1 length umt wIde and 3 length umts long The step IS 0 2 length 
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FIG 3 2 Forward step problem, flx = fly = to, -to, I!O' 3~O from top to bottom 30 contours from 0 12 to 641, dzmcTlslOTi 

by dzmenslOn WEND 

umts lugh and IS located 06 length umts from the left-hand end of the tunnel The problem IS InItIalIzed 

by a rIght-gOIng Mach 3 flow ReflectIve boundary condItIons are apphed along the wall of the tunnel and 

Inflow /outflow boundary condItIOns are applIed at the entrance/exIt The corner of the step IS a sIngular 

POInt and we treat It the same ,,,ay as In [25], wInch IS based on the assumptIOn of a nearly steady flow m 

the regIOn near the corner \Ve show the denSIty contours at tIme t = 4 In FIg 3 2 Only the results from 

the dImensIOn by dImenSIOn \VENO scheme are shown Umform meshes of 6.x = 6.y = 4
1
0' lo' I~O' 3~O are 

used 

3.5. Double Mach reflection. ThIS problem IS also OrIgInally from [25] The computatIOnal domaIn 

for thIS problem IS chosen to be [0,4) x [0, 1) The reflectIng wall lIes at the bottom, startIng from x = i 
ImtIally a rIght-mOVIng Mach 10 shock IS pOSItIOned at x = t, y = 0 and makes a 600 angle WIth the x aXIS 
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FIG 3 3 Double Mach reflectIOn, box = boy = 2!O (top and lower left) and 4~O (middle and lower Tight) Genume two 

dimensIOnal WEND Blow-up regIOns at the bottom for details 

For the bottom boundary, the exact post-shock conditIOn IS Imposed for the part from x = 0 to x = t and 

a reflective boundary conditIOn IS used for the rest At the top boundary, the flow values are set to descnbe 

the exact motion of a :t\Iach 10 shock \Ve compute the solutIOn up to t = 0 2 Fig 3 3 and Fig 3 4 show 

the equally spaced 30 denSity contours from 1 5 to 22 7 computed by the genu me two dimensIOnal and the 

dimenSIOn by dimenSIOn WENO schemes \Ve use ullIform meshes \Hth ~x = ~y = 2!O' 4!O We can see 

that the results from both schemes are comparable 

4. 2D finite volume WENO schemes on triangular meshes. Both third and fourth order £illite 

volume WENO schemes on tnangular meshes have been constructed m [8] The optIOnallmear weights m 

such schemes are not umque These are then chosen to aVOid negative weights whenever pOSSible, and If that 

fails, a groupmg (of stencIls) techmque IS used m [8], which works fairly well m the third order case With 

qUite general tnangulatIOn but can Yield posItive weights for the fourth order case only With faIrly umform 

tnangulatIOn In thiS sectIOn, we do not seek posItive hnear wClghts as m [8], but rather use the sphttmg 

techmque to treat the negative hnear weights when they appear For scalar equatIOn, the scheme IS stable 
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FIG 3 4 Double Mach ref/ectlon, Llx = Lly = 2!O (top and lower left) and 4~O (middle and lower rzght) DimensIOn by 

dimensIOn WEND Blow-up regions at the bottom for details 

m all runs For systems of conservatIOn laws, there are still occasIOnal cases of overshoot and mstablhty, the 

reason seems to be related to characteristic decompositIOns and IS still bemg mvestlgated 

4.1. Accuracy check for a smooth problem. We solve the 2D Burgers equatIOn (110) wIth the 

same mltlal and boundary conditIOns as before usmg the fourth order finIte volume WENO scheme [8) The 

solutIOn IS computed up to t = ~ when no shock has appeared The meshes used are 1) unIform meshes 

with eqUilateral tnangulatlOn and 2) random tnangulatIOn For the UnIform meshes we do not seek posItive 

weights as was done m [8), rather we use the sphttmg technIque to treat the negative lmear weights when 

they appear Table 4 1 mdlcates that close to fourth order accuracy can be achieved 

4.2. Discontinuous problem 1: Scalar equation in 2D. Havmg shown the stable results \\lth the 

sphttmg treatment of negative hnear weIghts for a fourth order finIte volume 'VENO scheme for the Burgers 

equatIOn m sectIOn 2, we now test the fourth order \VENO scheme on the Buckley-Leverett problem whose 

13 



TABLE 4 1 

2D Burgers equation accuracy check 

III umform mesh III nonumform mesh III 
~x LOO error order ~x LOO error order 

257E-1 622E-4 267E-1 211E-3 

1 29E-1 46IE-5 375 1 26E-1 235E-4 292 

643E-2 218E-6 440 632E-2 290E-5 303 

32IE-2 138E-7 398 334E-2 26IE-6 378 

16IE-2 693E-9 432 166E-2 271E-7 324 

808E-3 670E-10 340 744E-3 157E-8 355 

FIG 4 1 2D Buckley-Leverett equation the mesh 

flux IS non-convex 

u2 

f(u) = u2 +025(1-u)2' g(u) = 0 

WIth the ImtIal data u = 1 when - J ::; x ::; 0 and u = 0 elsewhere The solutlOn IS computed up to 

t = 0 4 The exact solutlOn IS a shock-rarefactlOn-contact dlscontmmty mIxture The mesh we use here l~ a 

non-umform tnangulatlOn, shown 1Il FIg 4 1 FIg 4 2 shows that the waves have been resolved very well 

4.3. Discontinuous problem 2: System of equations in 2D. We consIder the 2D Euler equatlOns 

m the domalll [-1,1] x [0,02] The Sod and Lax shock tube mltIal data IS set m the x dlrectlOn and penodlc 

boundary condltlOn IS apphed 1Il the y dlrectlOn \Ve use the fourth order fimte volume scheme Oil tnangular 

meshes to solve the above problem The mesh we use here IS umform But we do not seek posItive weIghts as 

was done m [8], rather we use the sphttmg techmque m sectlOn 2 to treat the negative Imear \\ eIghts when 

they appear In fact we set dehberately certam hnear weIghts to be negatIve to test the sphttmg tcchmque 

FIg 4 3 shows the numencal results of the Sod and Lax problems 

It seems that there are still oSClllatlOns and lIlstablhty for some non-umform tnangular meshes for the 

fourth order \VENO schemes apphed to Euler equatlOns As the method works well for the same meshes 

wIth a scalar equatlOn, the problem mIght be from the charactenstlc decomposltlOns ThIS IS stIlI under 

mvestlgatlOn 

5. Concluding remarks. We have devIsed and tested a SImple sphttmg techmque to treat the negatIve 

hnear weIghts 1Il WENO schemes ThIS techmque mvolves very httle addltlOnal CPU time and gIves good 

results m most numencal tests The only case where It stIlI YIelds osclllatlOns and mstablhty IS when a fourth 

order fimte volume \VENO method IS used on some non-umform tnangular meshes for Euler equatlOns, the 

reason of whIch, presumably related to charactenstIc decomposltlOns, IS stIll under mvestlgatlOIl 
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FIG 42 2D Buckley-Leverett equatIOn at t=o 4, with splzttmg Left the solution surface, Right the cut at y = 0 1 (solid 

lme exact solutIOn, symbols numerical solutIOn) 
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FIG 43 Density plot, Left Sad problem, Right Lax problem, with spllttmg Roughly 100 pomts m the x direction 
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