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A TECHNIQUE OF TREATING NEGATIVE WEIGHTS IN WENO SCHEMES*

JING SHI', CHANGQING HU}, AND CHI-WANG SHUS

Abstract. High order accurate weighted essentially non-oscillatory (WENO) schemes have recently been
developed for fimte difference and finite volume methods both 1n structured and in unstructured meshes
A key 1dea in WENO scheme 1s a linear combination of lower order fluxes or reconstructions to obtain a
higher order approximation The combination coefficients, also called linear weights, are determined by
local geometry of the mesh and order of accuracy and may become negative WENO procedures cannot
be applied directly to obtain a stable scheme 1if negative linear weights are present Previous strategy for
handhng this difficulty 1s by either regrouping of stencils or reducing the order of accuracy to get rid of the
negative linear weights In this paper we present a simple and effective technmique for handling negative hnear
weights without a need to get rid of them Test cases are shown to illustrate the stabihity and accuracy of

this approach

Key words. weighted essentially non-oscillatory, negative weights, stability, mgh order accuracy, shock

calculation

Subject classification. Apphed and Numerical Mathematics

1. Introduction. High order accurate weighted essentially non-oscillatory (WENQ) schemes have re-

cently been developed to solve a hyperbolic conservation law
u +V flu)=0 (11)

The first WENO scheme was constructed 1n [18] for a third order finite volume version 1n one space dimension
In [10], third and fifth order fimite difference WENO schemes 1n mult: space dimensions are constructed, with
a general framework for the design of the smoothness indicators and nonhnear weights Later, second, third
and fourth order finite volume WENO schemes for 2D general triangulation have been developed 1n [4] and
[8] Very high order finite difference WENQ schemes (for orders between 7 and 13) have been developed 1
[1] Central WENO schemes have been developed 1n [12], [13] and [14]

WENO schemes are designed based on the successful ENO schemes n [7, 23, 24] Both ENO and
WENO use the 1dea of adaptive stencils i the reconstruction procedure based on the local smoothness
of the numerical solution to automatically achieve high order accuracy and non-oscillatory property near
discontinuities  ENQO uses just one (optimal in some sense) out of many candidate stencils when domng the
reconstruction, while WENO uses a convex combination of all the candidate stencils, each bemng assigned
a nonhnear weight which depends on the local smoothness of the numerical solution based on that stencil
WENO improves upon ENO 1n robustness, better smoothness of fluxes, better steady state convergence,
better provable convergence properties, and more efficiency For a detailed review of ENO and WENO
schemes, we refer to the lecture notes [21, 22]
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WENO schemes have already been widely used 1n apphications Some of the examples include dynamical
response of a stellar atmosphere to pressure perturbations [3], shock vortex interactions and other gas
dynamics problems [5], [6], incompressible flow problems [26], Hamilton-Jacob1 equations [9], magneto-
hydrodynamics [11], underwater blast-wave focusing [15], the composite schemes and shallow water equations
[16], [17], real gas computations [19], wave propagation using Fey’s method of transport [20], etc

A key 1dea in WENO schemes 1s a inear combination of lower order fluxes or reconstructions to obtain
a higher order approximation The combination coeflicients, also called linear weights, are determined by
local geometry of the mesh and order of accuracy and may become negative WENO procedures cannot
be applied directly to obtain a stable scheme 1if negative linear weights are present Previous strategy for
handling this difficulty 1s by either regrouping of stencils (e g 1n [8]) or reducing the order of accuracy (e g
m [12]) to get rid of the negative linear weights In this paper we present a sumple and effective techmque
for handling negative Iinear weights without a need to get rid of them Test cases will be shown to illustrate
the stability and accuracy of this approach

We first summarize the general WENO reconstruction procedure, consisting of the following steps We
assume we have a given cell A (which could be an interval in 1D, a rectangle 1n a 2D tensor product mesh,
or a triangle in a 2D unstructured mesh) and a fixed point ¢ withm or on one edge of the cell

1 We identify several stencils S;, 3 = 1, ,q, such that A belongs to each stencil We denote by

q
T = U S, the larger stencil which contamns all the cells from the ¢ stencils
J=1
2 We have a (relatively) lower order reconstruction or mterpolation function (usually a polynomial),

denoted by p, (), associated with each of the stencils S;, for y =1, ,¢ We also have a (relatively)
higher order reconstruction or interpolation function (agan usually a polynomal), denoted by Q(z),

associated with the larger stencil 7

3 We find the combination coeflicients, also called linear weights, denoted by 71, , 4, such that
q
Q=) = Z'YJPJ(-TG) (12)
=1

for all possible given data in the stencils These linear weights depend on the mesh geometry, the
pont ¢, and the specific reconstruction or interpolation requirements, but not on the given solution
data 1n the stencils

4 We compute the smoothness indicator, denoted by §,, for each stencil S,, which measures how
smooth the function p,(z) 1s 1n the target cell A The smaller this smoothness indicator 3,, the
smoother the function p,(x) 1s 1n the target cell In all of the current WENO schemes we are using

the following smoothness indicator

5= % [ 18l oo @)y 13)

1<]a| <k

for 3 =1, ,q, where k1s the degree of the polynomial p,{z) and |A| 1s the area of the cell A n 2D
Thus factor 1s different for 1D or 3D the purpose of 1t 1s to bring the smoothness indicator invariant
under spatial scaling

5 We compute the nonlinear weights based on the smoothness indicators

W) ~ )
= =0 14
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where 7y, are the linear weights determined in step 3 above, and ¢ 1s a small number to avoid the
denominator to become 0 We are using £ = 107% 1n all the computations 1n this paper The final

WENO approximation or reconstruction 1s then given by
q
R(z) =} wp, () (15)
J=1

We remark that all the coefficients 1n the above steps which depend on the mesh but not on the data of
the numerical solution, should be computed and stored at the beginming of the code after the generation of
the mesh but before the time evolution starts

We now use a siumple example to illustrate the steps outhned above We assume we are given a umform
mesh I, = (x,_1/2,%,41/2) and cell averages of a function u(zr) in these cells, denoted by @, We would
like to find a fifth order WENO reconstruction to the point value u(z,41/2), based on a stencil of five cells
{Li=2,1—1, I, L1, Iy 2 }, with the target cell containing the pont z,4/, chosenas A =1,

In step 1 above we could have the following three stencils
S1={l,-2, 1,1, 1.}, S ={l,-1,1,, 11}, Ss = {1, L1+1, Li+2},
which make up a larger stencil
T=A{lL-2,L_1,1,, 1,41, 1,42}

In step 2 above we would have three polynomials p,(z) of degree at most two, with their cell averages
agreemg with that of the function u n the three cells in each stencil S, The lngher order function Q(z) 1s a
polynonual of degree at most four, with 1ts cell averages agreemg with that of the function u 1n the five cells
n the larger stencil 7 The three lower order approximations to u(x,1/2), associated with p,(z), in terms

of the given cell averages of u, are given by

( =L g b
D1(Zoq1y2) = 3 [ G 1—1 6 Uy,
1_ S5 _ 1_
p2($l+1/2) = —61!:—1 + guz + §U1+1, (16)
1_ 5_ 1_
p3(Tig1y2) = 3t + gl — g2

Each of them 15 a third order approximation to u(x,41/2) The higher order approximation to u(Tyq1/2),

associated with Q(z), 1s given by

1 13 47 9 1

Q(Tq1/2) = 302~ %ﬂz——l + &ﬂz + %T‘H—l - %ﬁzw, (17)

which 1s a fifth order approximation to u(z,+1/2)

In step 3 above we would have
=75
It can be readily verified, using (1 6) and (1 7), that
Q(z41/2) =71 P1(Tig1/2) + 72 P2A(Tig1/2) + 713 P3(Togry2)

for all possible given data @;, g =1 —2,2 — 1,2,0+ 1,24+ 2
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In step 4 above we could easily work out from (1 3) the three smoothness indicators given by

13 _ _ _vo 1, _ _\2
Bl = E (Ul_g - 21[,1_1 -+ Ul)‘) + Z (U1_2 - 4Ul_1 + 3“1)9 )

13 _ N _ 2
B2 = 1 (#,—1 — 2a, + Uz+1)2 + 1 (-1 — “l+1)0 ’

13  _ _ _ 2 1 _ _ — 2
B3 = 2 (@, — 2U,41 + Uay2)” + 1 (38, — 4ty41 + Uoy2)

We notice in particular that the linear weights v1, 72,3 1n step 3 above are all positive In such cases, the
WENO reconstruction procedure outlined above and the scheme based on 1t work very well In Fig 11 we
plot the approximation to u(z) for a discontinuous function u(z) = 2z for z < 0 and u(z) = —20 otherwise,
by the fifth order WENO reconstruction on the left and by the fifth order traditional reconstruction (1 7)
on the right, with a mesh z, = (: — 0 4965)Az with Az = 002 We can clearly see that WENO avoids the
over and undershoots near the discontinuity

We now look at another simple example where some of the linear weights in step 3 above would become
negative We have exactly the same setting as above except now we seek the reconstruction not at the cell
boundary but at the cell center z, This 1s needed by the central schemes with staggered grids [12] Thus,
step 1 would stay the same as above, step 2 would produce

D1 (z,) = — =1 +iﬂ +23'
pilz,) = 24 1—2 12 =1 24uza
1 _ 13 _ 1_
pZ(zz) = _'221”2—1 + ﬁuz - ﬂuz—%ly (1 8)

23 _ 1 _ 1 _
pa(z,) = ﬁuz + 1—2-U1+1 - ﬁuwz

Each of them 1s a third order reconstruction to u(z,) The higher order reconstruction to u(z,), associated
with Q(z), 15 given by
29 _ 1067 _ 29 3

3 _ _ _
Qz,) = 610 U1+ Uy — U + aﬁuwm

BT, 960 480 (19)
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which 1s a fifth order reconstruction to u{z,) Step 3 would produce the following weights
9 49 9
%:_8_0’ 72:@’ ’73=—@
Notice that two of them are negative The smoothness indicators m step 4 will remain the same This
time, the WENQ approxmmation, shown at the left of Fig 1 2, 15 less satisfactory (in fact, even worse than
a traditional fifth order reconstruction show on the right), because of the negative linear weights
We remark that negative linear weights do not appear 1n fimte difference WENO schemes 1n any spatial
dimensions for conservation laws for any order of accuracy [10], [1], and they do not appear mn one dimenstonal
as well as some multi-dimensional finite volume WENQO schemes for conservation laws Unfortunately, they
do appear 1n some other cases, such as the central WENO schemes using staggered meshes we have seen
above, high order finite volume schemes for two dimensions described n [8] and 1n this paper, and fimte
difference WENO approximations for second derivatives
While on approximation alone the appearance of negative inear weights might be annoying but perhaps
not fatal (Fig 1 2), in solving a PDE the result might be more serious As an example, in Fig 1 3 we show
the results of using a fourth order fimite volume WENO scheme [8] on a non-umiform triangular mesh shown

at the left, which has negative linear weights, for solving the two dimensional Burgers equation

e (£) +(2) o 0w

n the domam [~2,2] x [—2,2] with an mitial condition ug(z,y) = 03 + 0 7sin (3(z +y)) and perodic
boundary conditions We can see that serious oscillation appears in the numerical solution once the shock
has developed The oscillation eventually leads to instability and blowing up of the numerical solution for
this example

The main purpose of this paper 1s to develop a simple and effective technique for handling negative linear
weights without a need to get rid of them Test cases will be shown to 1llustrate the stability and accuracy

of this approach
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16, 1.3. 2D Burgers’ equation. Left: non-uniform trianguler mesh used in the computalion. Right: fourth order WENO
resull al t = 0.473, cfl=0.2, without any special treatment for the negative linear weights.

2. A splitting technique. We now introduce a splitting technique to treat the negative weights. It
is very simple, involves little additional cost, yet is quite effective. The WENQ procedure outlined in the
previous section is only modified in step 5 in the following way:

5 If min(vyi,...,7vy) > 0 proceed as before. Otherwise, we split the linear weights into two parts:

positive and negative. Define
~ 1 O .
’Yj« = _2'(,71’*‘(-)1’\/11)7 Vi :A/j — Vi, = 17--'5(1 (21)

where we take 6 = 3 all the numerical tests. We then scale them by
Ju 4 Juss .
ot =355 A=A 0T, i=1,.0 (2.2)

We now have two split polynomials

Q%) = > A=) (2.3)
; =
which satisfy
Q%) = o*Qt @) - 07 Q™ (), (2.4)

We can then define the nonlinear weights (1.4) for the positive and negative groups fy;L separately,
denoted by w;-t, based on the same smoothness indicator §;. We will then define the WENO
approximation R*(x%) separately by (1.5), using wii, and form the final WENO approximation by

R(x%) = ot RY(2%) — 0~ R~ (2).

We remark that the key idea of this decomposition is to make sure that every stencil has a significant

representation in both the positive and the negative weight groups. Within each group, the WENO idea of



Fia. 2.1. WENO approzimations with the splitting trecatment for negative linear weights. Left: approzimation to u(z;).
Right: Burgers equation, solution at t = 5/n>, ¢fl=0.2.

redistributing the weights subject to a fixed sum according to the smoothness of the approximation is still
followed as before.

For the simple example of fifth order WENO reconstruction to u(z;), the split linear weights correspond-
ing to (2.1) are, before the scaling,
9 __ 9 .49 49 9 __ 9
80’ T 2 T 2T g 80”8 T a0
We notice that, as the most expensive part of the WENO procedure, narmely the computation of the

W= ¥ =
smoothness indicators (1.3), has not changed, the extra cost of this positive/negative weight splitting is very
small.

However this simple and inexpensive change makes a big difference to the computations. In Fig. 2.1 we
show the result of the two previous unsatisfactory cases, the fifth order WENO reconstruction to w(z;) in
Fig. 1.2 left, and the approximation to the Burgers equation in Fig. 1.3 right, now using WENO schemes
with this splitting treatment. We can see clearly that the results are now as good as one would get from
WENO schemes having only positive linear weights.

It is easy to prove that the splitting maintains the accuracy of the approximation in smooth regions.
We will demonstrate this fact in the following sections. We will also demonstrate the effectiveness of this
simple splitting technique through a few selected numerical examples in the next sections. The main WENO
schemes we will consider are fifth order finite volume WENQ schemes on Cartesian meshes, and the third
and fourth order finite volume WENO schemes on triangular meshes. In both cases negative linear weights
appear regularly.

The calculations are performed on SUN Ultra workstations and also on the IBM SP parallel computer

at TCASCYV of Brown University. The parallel efficiency of the method is excellent (more than 90%).
3. 2D finite volume WENO schemes on Cartesian meshes.

3.1. The schemes. We describe two different ways to construct fifth order finite volume WENO

schemes on Cartesian meshes. Comparing with finite difference WENO methods [10], finite volume meth-



ods have the advantage of an applicability of using arbitrary non-uniform meshes, at the price of mcreased
computational cost [2]
We define the cell

Il,] = [zz—%’z1+%] x [,’U]_%,,’UJ+%] (31)

fore=1, ,m,3=1, ,n, Where I, needs not be uniform or smooth varyng

The three-point Gaussian quadrature rule 1s used at each cell edge when evaluating the numerical flux
n order to mamtain fifth order accuracy Let (z¥,4%) denote one of the Gaussian quadrature pomnts at the
cell boundary of I, , given by I' = {z = T, 1,y,_1<y< yH%} There are two ways to perform a WENO

reconstruction at the pomnt (z,y%)

Genwine 2D The first WENO reconstruction 1s genuine 2D finite volume We can see that there are
totally nme stencils S;; (s,t = —1,0,1) Each stencil S,; contains 3 x 3 cells centered around I,y 4+
On each stencil we can construct a @ polynomial (tensor product of second order polynomials in z and y)

satisfying the cell average condition (1e 1ts cell average in each cell mnside the stencl equals to the given

1

value) Let T = |J s, which contains 5 x 5 cells centered around I,, On T we can construct a Q4
s,t=—1

polynomal satisfying the cell average condition The WENO reconstruction 1s then performed according to

the steps outlined in sections 1 and 2
We would like to make the following remarks
1 By using a Lagrange interpolation basis, we can easily find the unique linear weights
2 Even for a umiform mesh, a negative linear weight appears for the middle Gaussian pomt (2%,y%) =
(r,—1,y,) Such appearance of negative linear weights has also been observed in the central WENO
schemes [12], see the example 1n sections 1 and 2 before
3 By Taylor expansions, we can prove that the smoothness indicators yield a uniform fifth order

accuracy 1 smooth regions See [10] for the method of proof

Dimension by Dimension The second WENO reconstruction exploits the tensor product nature of the
interpolation we use This WENO procedure 1s performed on a dimension by dimension fashion The WENQO
schemes applied 1n [5], [6] belong to this class Consider the pomnt (z¢,y%) as above First we perform a
one dimensional WENO reconstruction in the y direction, m order to get the one dimensional cell averages
(in the z direction) w(e,y“) Then we perform another one dimensional WENO reconstruction to w 1n the
x direction, to obtain the final reconstructed point value at (z©,y%)

We would like to make the following remarks

1 For a scalar equation, the underlying linear reconstructions of the above two versions are equivalent
For nonlinear WENO reconstructions they are not equivalent Both of them are fifth order accurate
but the actual errors on the same mesh may be different, see Table 3 1 below

2 For systems of conservation laws such as the Euler equations of gas dynamics, both versions of the
WENO reconstruction should be performed 1n local characteristic fields

3 The dimension by dimension version of the WENO reconstruction 1s less expensive and requires
smaller memory than the genuine two dimensional version The CPU time saving 1s about a factor
of 4 for the Euler equations 1in our implementation The computed results are mostly similar from

both versions

In the following, we will give numerical examples computed by the above WENO schemes Sphtting

technique has been used n all the computations when negative linear weights appear We will show the



TABLE 3 1
2D vortez evolution

lr “ genumne FV “ dim-by-dim ”
N Az L error | order || L™ error | order
20 | 6 71E-1 4 38E-2 5 26E-2

40 | 377E-1 || 310E-3 | 459 566E-3 | 386
80 | 201E-1 || 120E4 | 515 396E-4 | 422
160 | 1 00E-1 || 439E-G6 | 476 7T96E-6 | 562
320 | 500E-2 || 188E-7 | 453 290E-7 | 477

results for both smooth and discontinuous problems

3.2. 2D vortex evolution. First, we check the accuracy of the WENQ schemes constructed above
The two dimensional vortex evolution problem [21], [8] 15 used as a test problem

We solve the Euler equations for compressible flow in 2D
U+ f(U)e +9(U)y = 0, 32)
where

U = (p, pu, pv, E)T,
f(U) = (pu, pu® + p, puv, u(E + p)) T,

9(U) = (pv, puv, pv° + p,v(E + p))T

Here p 1s the density, (u, v) 1s the velocity, E 1s the total energy, p 1s the pressure, related to the total energy
by E = - + i1p(u® +v?) withy =14

The setup of the problem 1s the mean flow 1s p = 1, p = 1, (u,v) = (1,1) and the computational
domain 1s [0,10] x [0,10] We add, to the mean flow, an 1sentropic vortex (perturbations in (u,v) and the

temperature T = §7 no perturbation n the entropy S = ;%)

2
(du,dv) = 567?60 5(l_rz)(—y,f), 0T = —(78;—7:2)661"‘2, 05 =0
where (Z,7) = (z — 5,y — 5), 7> = T> + 72, and the vortex strength ¢ = 5
We use non-umiform meshes which are obtained by an independent random shifting of each point from a
umform mesh 1 each direction within 30% of the mesh sizes The solution 1s computed uptot =2 Table3 1
shows the L™ errors of p We can see that both the genuine two dimensional fimite volume WENQO scheme
and the dimension by dimension fimte volume WENOQO scheme can aclieve the desired order of accuracy

while the genuine two dimensional scheme gives smaller errors for the same mesh

3.3. Oblique shock tubes. The purpose for this test 1s to see the capability of the rectangular WENO
schemes 1n resolving waves that are oblique to the computational meshes For details of the problem, we refer
to [10] The 2D Sod’s shock tube problem 1s solved where the immitial jump makes an angle 6 against the z
axis We take our computational domain to be [0, 6] x [0,1] and the mmitial jump starting at (z,y) = (2 25,0)
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Fic 31 Oblique Sod’s problem Density p Top contour, genuine two dimensional WENO, muddle contour, dimension
by dimension WENO, bottom cut at the bottom of the computational domain, the solid line 1s the exact solution, the triangles
are the genuine two dimensional WENO results, and the circles are the dimension by dimension WENO results

and making a 6§ = 7 angle with the z axis The solution 1s computed up to ¢ = 12 on a 96 x 16 uniform

mesh In Fig 3 1 we plot the density contours computed by the above two WENO schemes and the density
cut at the bottom of the computational domamn We can see that both schemes perform equally well 1n
resolving the waves The genuine two dimensional scheme gives a shghtly better resolution 1n the contact

discontinuity and the rarefaction wave

3.4. A Mach 3 wind tunnel with a step. This model problem 1s ornigmally from {25] The setup
of the problem 1s The wind tunnel 1s 1 length umit wide and 3 length unmits long The step 1s 0 2 length

10
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Fi1c 32 Forward step problem, Az = Ay = %0, 5%, 17156’ ﬁ from top to bottom 30 contours from 0 12 to 6 41, dimension
by dimension WENOQO

units high and 1s located 0 6 length umts from the left-hand end of the tunnel The problem 1s 1mtiahized
by a right-going Mach 3 flow Reflective boundary conditions are applied along the wall of the tunnel and
mflow/outflow boundary conditions are applied at the entrance/exit The corner of the step 1s a singular
pomnt and we tieat 1t the same way as 1 [25], wlich 1s based on the assumption of a ncarly steady flow 1n
the region near the corner We show the density contours at time ¢ = 4 1n Fig 32 Only the results from
the dimension by dimension WENO scheme are shown Umform meshes of Az = Ay = L, L &= =1 are

used

3.5. Double Mach reflection. This problem 1s also originally from [25] The computational domamn

for this problem 1s chosen to be [0,4] x [0,1] The reflecting wall hes at the bottom, starting from z = }

Inmtially a nght-moving Mach 10 shock 1s positioned at z = %, y = 0 and makes a 60° angle wath the z axis
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Fic 33 Double Mach reflection, Az = Ay = ﬁﬁ (top and lower left) and @ (maddle and lower right) Genwine two

dimensional WENO Blow-up regions at the bottom for details

For the bottom boundary, the exact post-shock condition 1s imposed for the part from z =0 to z = 1 and
a reflective boundary condition 1s used for the rest At the top boundary, the flow values are set to describe
the exact motion of a Mach 10 shock We compute the solution up to t = 02 Fig 33 and Fig 3 4 show
the equally spaced 30 density contours from 15 to 22 7 computed by the genumne two dimensional and the

1 1

dimension by dimension WENQO schemes We use uniform meshes with Ar = Ay = 55

. 7,
515> Teg Ve can see

that the results from both schemes are comparable

4, 2D finite volume WENO schemes on triangular meshes. Both third and fourth order finite
volume WENO schemes on triangular meshes have been constructed in [8] The optional linear weights 1n
such schemes are not unique These are then chosen to avoid negative weights whenever possible, and 1if that
fails, a grouping (of stencils) techmque 1s used 1n [8], which works fairly well m the third order case with
quite general triangulation but can yield positive weights for the fourth order case only with fairly uniform
triangulation In this section, we do not seek positive linear weights as 1n [8], but rather use the splitting

technique to treat the negative linear weights when they appear For scalar equation, the scheme 1s stable

12



X

Fic 34 Double Mach reflection, Ax = Ay = fﬁ (top and lower left) and ZEI&_O (middle and lower right) Dimension by
dimension WENO Blow-up reqions at the bottom for details

in all runs For systems of conservation laws, there are still occasional cases of overshoot and instability, the

reason seems to be related to characteristic decompositions and 1s still being investigated

4.1. Accuracy check for a smooth problem. We solve the 2D Burgers equation (1 10) with the
same mitial and boundary conditions as before using the fourth order fimte volume WENO scheme [8] The
solution 1s computed up to t = (7’?5 when no shock has appeared The meshes used are 1) umform meshes
with equilateral triangulation and 2) random triangulation For the uniform meshes we do not seek positive
weights as was done 1n [8], rather we use the splitting techmque to treat the negative linear weights when
they appear Table 4 1 indicates that close to fourth order accuracy can be achieved

4.2. Discontinuous praoblem 1: Scalar equation in 2D. Having shown the stable results with the
splitting treatment of negative linear weights for a fourth order fimte volume WENQO scheme for the Burgers
equation 1n section 2, we now test the fourth order WENO scheme on the Buckley-Leverett problem whose

13



TABLE 4 1
2D Burgers equation accuracy check

”I uniform mesh I” nonuniform mesh |H
Az L error | order Az L error | order
2 57E-1 6 22E-4 2 67E-1 211E-3

129E-1 || 461E-5 | 375 126E-1 || 235E-4 | 292
643E-2 || 218E-6 | 440 || 632E-2 || 290E-5 | 303
321E-2 || 138E-7 | 398 || 334E-2 || 261E-6 | 378
161E-2 || 693E-9 | 432 166E-2 || 271E-7 | 324
8 08E-3 || 6 70E-10 | 340 744E-3 || 157E-8 | 355
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F1c 41 2D Buckley-Leverett equation the mesh

flux 1s non-convex

u?

f(u): 2 2 (l_u)za g(’U.)-——O

u® 4025

with the mitial data u = 1 when —% <z £ 0 and u = 0 elsewhere The solution 1s computed up to

t =04 The exact solution 1s a shock-rarefaction-contact discontinuity mixture The mesh we use here 1s a

non-uniform triangulation, shown i Fig 4 1 Fig 4 2 shows that the waves have been resolved very well

4.3. Discontinuous problem 2: System of equations in 2D. We consider the 2D Euler equations
mn the domain [—1,1] x [0,0 2] The Sod and Lax shock tube imtial data 1s set n the = direction and periodic
boundary condition 1s appled 1n the y direction We use the fourth order finite volume scheme on triangular
meshes to solve the above problem The mesh we use here 1s umform But we do not seek positive weights as
was done m (8], rather we use the sphtting technique 1n section 2 to treat the negative linear weights when
they appear In fact we set deliberately certain hnear weights to be negative to test the splitting technique
Fig 4 3 shows the numerical results of the Sod and Lax problems

It seems that there are still oscillations and instability for some non-uniform triangular meshes for the
fourth order WENO schemes applied to Euler equations As the method works well for the same meshes
with a scalar equation, the problem might be from the characteristic decompositions This 1s still under

mvestigation

5. Concluding remarks. We have devised and tested a simple sphitting techmque to treat the negative
linear weights in WENO schemes This technique mvolves very little additional CPU time and gives good
results in most numerical tests The only case where 1t still yields oscillations and mstability 1s when a fourth
order finite volume WENO method 1s used on some non-uniform triangular meshes for Euler equations, the

reason of which, presumably related to characteristic decompositions, 1s still under investigation
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