Pilot-Induced Oscillation Research: Status at the End of the Century

Compiled by Mary F. Shafer and Paul Steinmetz
NASA Dryden Flight Research Center
Edwards, California

April 2001
The NASA STI Program Office...in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results...even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Pilot-Induced Oscillation Research: Status at the End of the Century

Compiled by Mary F. Shafer and Paul Steinmetz
NASA Dryden Flight Research Center
Edwards, California

National Aeronautics and Space Administration
Dryden Flight Research Center
Edwards, California 93523-0273

April 2001
NOTICE

Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171
(703) 487-4650
Foreword

“Pilot-Induced Oscillation Research: The Status at the End of the Century,” a workshop held at NASA Dryden Flight Research Center on 6–8 April 1999, may well be the last large international workshop of the twentieth century on pilot-induced oscillation (PIO). With nearly a hundred attendees from ten countries and thirty presentations (plus two that were not presented but are included in the proceedings) the workshop did indeed represent the status of PIO at the end of the century.

These presentations address the most current information available, addressing regulatory issues, flight test, safety, modeling, prediction, simulation, mitigation or prevention, and areas that require further research. All presentations were approved for publication as unclassified documents with no limits on their distribution.

This proceedings include the viewgraphs (some with authors’ notes) used for the thirty presentations that were actually given as well as two presentations that were not given because of time limitations. Four technical papers on this subject that offer this information in a more complete form are also included. In addition, copies of the related announcements and the program are incorporated, to better place the workshop in the context in which it was presented.

Mary F. Shafer
CONTENTS

FOREWORD .. iii

VOLUME 1 – SESSIONS I – III

SESSION I – 6 APRIL 1999 .. 1

1. Modeling the Human Pilot in Single-Axis Linear and Nonlinear Tracking Tasks
Yasser Zeyada and Ronald A. Hess, University of California, Davis 3

2. Bandwidth Criteria for Category I and II PIOs
David G. Mitchell, Hoh Aeronautics, Inc; and David H. Klyde, Systems Technology, Inc. . 17

3. Criteria for Category I PIOs of Transports Based on Equivalent Systems and Bandwidth
Kenneth F. Rossitto and Edmund J. Field, Boeing Phantom Works 29

4. Designing to Prevent PIO
John C. Gibson, Consultant, British Aerospace .. 41

SESSION II – 6 APRIL 1999 ... 53

5. Replicating HAVE PIO on the NASA Ames VMS
Jeffery Schroeder, NASA Ames Research Center .. 55

6. Replicating HAVE PIO on Air Force Simulators
Ba T. Nguyen, Air Force Research Laboratory ... 65

7. Prediction of Longitudinal Pilot-Induced Oscillations Using a Low Order
Equivalent System Approach
John Hodgkinson and Paul T. Glessner, Boeing; and David G. Mitchell, Hoh Aeronautics, Inc. . 67

8. Recommendations to Improve Future PIO Simulations
Brian K. Stadler, Air Force Research Laboratory .. 81

SESSION III – 7 APRIL 1999 ... 93

9. FAA’s History with APC
Guy C. Thiel, FAA .. 95

10. PIO and the CAA
Graham Weightman, JAA (UK CAA) ... 107

11. PIO Flight Test Experience at Boeing (Puget Sound) – and the Need for More Research
Brian P. Lee, Boeing Commercial Airplane Group ... 109

12. The Effects on Flying Qualities and PIO of Non-Lineairities in Control Systems
Edmund Field, Boeing Phantom Works ... 157

13. Mitigating the APC Threat – a work in progress
Ralph A’Harrah, NASA Headquarters ... 171
VOLUME 2 – SESSIONS IV – V

SESSION IV – 7 APRIL 1999 ... 179

Pierre Poncelet, Aerospatiale Aeronautique; and Fernando Alonso, Airbus Industrie. 181

15. The Prediction and Suppression of PIO Susceptibility of Large Transport Aircraft
Rogier van der Weerd, Delft University of Technology. 189

16. Flight Testing For PIO
Ralph H. Smith, High Plains Engineering 217

17. Use of In-Flight Simulators for PIO Susceptibility Testing and for Flight Test Training
Michael Parrag, Veridian Engineering 227

Thomas R. Twisdale and Michael K. Nelson, USAF Test Pilot School 259

SESSION V – 8 APRIL 1999 ... 269

19. Onboard PIO Detection and Prevention
David B. Leggett, Air Force Research Laboratory 271

20. Real Time PIO Detection and Compensation
Chadwick J. Cox, Carl Lewis, Robert Pap, and Brian Hall, Accurate Automation Corporation 279

21. PIO Detection with a Real-time Oscillation Verifier (ROVER)
David G. Mitchell, Hoh Aeronautics, Inc. 299

22. Pilot Opinion Ratings and PIO
Michael K. Nelson and Thomas R. Twisdale, USAF Test Pilot School 305

23. The Need for PIO Demonstration Maneuvers
Vineet Sahasrabudhe and David H. Klyde, Systems Technology, Inc.; and David G. Mitchell, Hoh Aeronautics, Inc. 307

VOLUME 3 – SESSION VI AND APPENDICES

SESSION VI – 8 APRIL 1999 ... 317

24. Boeing T-45 Ground Handling Characteristics
James G. Reinsberg, Boeing St. Louis 319

25. Extraction of Pilot-Vehicle Characteristics from Flight Data in the Presence of Rate Limiting
David H. Klyde, Systems Technology, Inc.; and David G. Mitchell, Hoh Aeronautics, Inc. 329

26. Comparison of PIO Severity from Flight and Simulation
Thomas J. Cord, Air Force Research Laboratory 343

27. A Summary of the Ground Simulation Comparison Study (GSCS) for Transport Aircraft
Terry von Klein, Boeing Phantom Works 359

28. Real Experiences in the Frequency Domain
Randall E. Bailey and Andrew Markofski, Veridian Engineering 365

29. Pilot Modeling for Resolving Opinion Rating Discrepancies
David B. Doman, Air Force Research Laboratory 391
30. Closing Remarks
Mary F. Shafer, NASA Dryden Flight Research Center 397

APPENDIX 1: ANNOUNCEMENTS, INFORMATION, AND PROGRAM 399
1. Announcement and call for papers ... 401
2. Information for presenters and attendees (sent by e-mail) 403
3. Program .. 409

APPENDIX 2: PRESENTATIONS PRINTED BUT NOT GIVEN AT THE WORKSHOP 411
1. Recent Results of APC Testing with ATTAS
Holger Duda and Gunnar Duus, Deutches Zentrum für Luft- und Raumfahrt e.V. 413
2. Criteria to Simulation to Flight Test—and Vice Versa
David G. Mitchell, Hoh Aeronautics, Inc. .. 439

APPENDIX 3: PAPERS SUPPORTING WORKSHOP PRESENTATIONS 453
1. Designing to Prevent Safety-Related PIO
J.C. Gibson, British Aerospace Warton (retired), Consultant 455
2. Pilot-Induced Oscillation Prediction with Three Levels of Simulation Motion Displacement
Jeffery A. Schroeder, William W.Y. Chung, and Duc T. Tran, NASA Ames Research Center; and Soren Laforce and Norman J. Bengford, SYRE Logicon ... 475
3. A Method for the Flight Test Evaluation of PIO Susceptibility
Thomas R. Twisdale and Michael K. Nelson, USAF Test Pilot School 487
4. Pilot Opinion Ratings and PIO
Session IV
FLIGHT TESTING FOR APC: CURRENT PRACTICE AT AIRBUS

APC TENDENCIES HIGHLIGHTING: MANEUVERS DESCRIPTION

- SYSTEMATIC MANEUVERS
- NON SYSTEMATIC MANEUVERS

NEW TOOLS TO INCREASE MANEUVERS ACCURACY
UNEXPERIENCED PILOTS

STRESSFUL ENVIRONMENT: - final approach - formation flight - workload

CAPTURE AND FINE TRACKING TASKS: - altitude - heading - speed - roll - yaw

FLIGHT TESTING FOR APC: CURRENT PRACTICE AT AIRBUS

APC = PILOT HIGH GAIN

© AEROSPATIALE

RUNWAY FLY OVER:

The pilot must maintain a constant altitude and airspeed, and the aircraft aligned on the runway centerline.

© AEROSPATIALE

April 1999
SIDE STEP:
In order to align with the runway, the pilot makes an aggressive side-step.

LOW ALTITUDE AGGRESSIVE MANEUVERS:

500 feet to 300 feet
FORMATION FLIGHT:

Can be performed in many configurations, and not only in approach.

10 m

= 5 feet

© AEROSPATIALE

April 1999
COMPOSITE FLIGHT DIRECTOR ALLOWS ACCURATE MANEUVERS:
- both FD bars show a and δ distance to targets
- enable any complex target (ramp, multi-sinusoid, pseudo random...)
- provide a wide range of analytical maneuvers
- cannot auto adapt (like a flight test engineer would do to trap the pilot)

FLEXIBLE TOOLS:
- display delay can be adjusted
- FD bars can provide composite displays (use of many feedbacks n_x, n_y, q,...)

APC MARGIN SETTING

LESS PILOT GAIN NEEDED FOR APC TESTING
The Prediction and Suppression of PIO Susceptibility of Large Transport Aircraft
- An Evaluation of Proposed Methods -

Rogier van der Weerd
Delft University of Technology / Aerospace Engineering
Department of Control and Simulation
6 April 1999

Prepared and presented by

Rogier van der Weerd, M.Sc.
r.vanderweerd@ir.tudelft.nl
Research Associate
tel. +31 (0)15 278 9108
Flight Control and Simulation fax. +31 (0)15 278 6480

This presentation is based on the results of a study more thoroughly reported in:

Weerd, van der R.; ‘PIO Suppression Methods and Their Effects on Large Transport Aircraft Handling Qualities’; Thesis (M.Sc.), Delft University of Technology, Delft (The Netherlands), January 1999

The study was carried out under a cooperative agreement between Delft University of Technology in the Netherlands and The Boeing Company at Long Beach. A student placement was made possible at the Stability, Control and Flying Qualities group of Boeing Phantom Works.

The project was carried out under supervision of:

The Boeing Company
John Hodgkinson
Dr. Edmund J. Field
Walter von Klein Jr.

Delft University of Technology
Prof.dr.ir. J.A. (Bob) Mulder
ir. Samir Bennani
The study into PIO had two main objectives:

1. Investigate available methods for PIO prediction, including those recently proposed
2. Investigate possible remedies to PIO

Some of the group's expertise and experience with PIO could be used to evaluate and validate different criteria and methods using an example large transport aircraft with different configurations that have handling qualities that are considered well understood / investigated.
prediction of PIO

Limitations of Linear Methods (Category I)
Most observed PIOs involved rate saturation of control surface actuator(s)
• Rate Saturation Result of PIO (poor Cat I properties)
• Or, Rate Saturation Actual Cause of PIO?

Cat II Evaluation requires the inclusion of nonlinear behavior
This can be done in
• Time Domain
 – Time Domain Neal-Smith – Hess Method for Nonlinear Dynamics
• Frequency Domain Using Describing Function Technique
 – DLR's Open Loop Onset Point (OLOP)
Prediction of PIO
Category I Example - Bandwidth

Two Important Parameters
- Bandwidth Frequency, \(\omega_{\text{BW}} \)
 ("Speed" of System)
- Phase Roll-Off, \(\tau_p \)
 ("Predictability")

The Bandwidth criterion has been shown to be a well performing criterion on a wide variety of cases.

Extending Bandwidth to systems with nonlinear elements is possible (in fact, the method of performing a frequency sweep in order to estimate the system frequency response includes all kinds of nonlinear elements of the real system). Rate limiting elements in the command path of the EFCS can be identified easily for a given input amplitude. However, if the rate limiting element is part of a feedback loop, the identification of the describing function may fail, as typical nonlinear system behavior gets into play, e.g. the introduction of multiple equilibria (limit cycles, jump resonance).

REF
Mitchell et al 1994
Mitchell et al 1998
Nonlinear Systems (i)

Limit Cycles - sustained nonlinear oscillations, fixed amplitude, fixed frequency

Conditions for a Limit Cycle are sought

Use neutral stability condition (Popov):

\[C(j\omega) \cdot N(j\omega, \tilde{u}) \cdot P(j\omega) = -1 \]

\[\Rightarrow C(j\omega) \cdot P(j\omega) = \frac{-1}{N(j\omega, \tilde{u})} \]

\(N(j\omega, \tilde{u}) \) is the sinusoidal describing function representation
Nonlinear Systems (ii)

Jump Resonance

No unique relation anymore between frequency and gain/phase of closed-loop response.

Phase Jump in Pilot-Vehicle System

Misadaptation by Pilot

PIO
Rate limiting causes **Jump Resonance**

OLOP determines "the consequence".

OLOP is

$$ L(j\omega) = \frac{Y}{U} (j\omega_{base}) $$

At the onset frequency

REF

Duda 1997

Duda et al 1997
Case Study Configurations Of The Example Aircraft

- Receiver Aerial Refueling Task
 - Clean Configuration
 - High Speed, \(M = 0.613 \)
 - High Altitude, \(h = 20,000 \) ft
- Pitch Rate Command System Configurations:
 - Old Software Version F \(\rightarrow \) PIO PRONE
 - Updated Software Version H \(\rightarrow \) PIO FREE
 Added Phase Lags \(\tau = [0.1, 0.25] \)
- Simplifications
 - Single Axis
 - No Model Uncertainties
 - No Structural Dynamics

The Example Aircraft
High Performance Fly-By-Wire Military Cargo Airplane.
High-wing, four engines, T-tail configuration. Length 175 ft, height 55 ft, wingspan 170 ft, MTOW 600,000 lbs
‘High gain’ mission tasks include: Landing/Takeoff Short Austere Airfields and Aerial Receiver Refueling. PIOs were encountered during developmental flight testing for both tasks [1],[2]

Configurations
Apart from configurations representing old and updated Electronic Flight Control System (EFCS) software versions, additional configurations were evaluated that represent the updated EFCS software with intentionally deteriorated characteristics.
The latter is accomplished by adding phase lags in the flight control system by increasing the time constant of a first order filter residing in the command path of the control laws.

REF
Iloputaife et al 1996
Iloputaife 1997
Pilot initiated emergency breakaway from tanker

Typical category II PIO:
- “High pilot gain”
- “Pilot is 180° out of phase” with pitch attitude
- Software rate limiting of elevator command signal

Main differences between old and new software
1. Structural filtering optimization → increase system bandwidth
2. Stick shaping change → reduce control sensitivity
3. Change rate limits → fully use actuator capability

Bandwidth Criterion Validation Using Example Aircraft

Criterion mapping is not considered to be successful discrimination since flight path bandwidth is sufficient for both configurations.
OLOP Criterion
Application to Example Aircraft

1. Assume pure gain pilot that exerts sinusoidal stick signal with certain amplitude $|r|$.
2. Determine the onset frequencies of all rate limiting elements using

$$\omega_m = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \omega_n$$

This equation can be solved graphically.

3. At the critical rate limiter, cut loop, plot loop transfer function on Nichols Chart.
4. OLOP is point on locus for $\omega = \omega_{\text{onset}}$. Its position can be related to Category II PIO susceptibility.
Onset Frequencies

Inner-Loop $\omega_{onset}=2.05$ rad/s

Outer-Loop $\omega_{onset}=3.53$ rad/s
OLOP Criterion
Validation Using Example Aircraft

Nichols Diagram

- Category II PIO Susceptible
- No Category II PIO

Legend:
- ▲ PIO
- ▼ No PIO
- ▽ PIO
- ▼ No PIO
- ● PIO
- □ No PIO
- □ PIO
- □ No PIO

Data Sources:
- Space Shuttle® Flight Test
- F-16® Flight Test
- Example Aircraft Flight Test

* Source: Data, H '97
Results Comprehensive Criteria Validation

Results Category I Criteria

<table>
<thead>
<tr>
<th>LOES CAP</th>
<th>T_a</th>
<th>Bandwidth</th>
<th>Gibson</th>
<th>Smith-Geddes</th>
<th>Hess</th>
<th>Neal-Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC EFCS(F)</td>
<td>+/-</td>
<td>+/-</td>
<td>L1/no</td>
<td>-/no</td>
<td>-/no</td>
<td>L1/no</td>
</tr>
<tr>
<td>FC EFCS(H)</td>
<td>L1/-</td>
<td>L2/-</td>
<td>L1/no</td>
<td>-/no</td>
<td>-/no</td>
<td>L1/no</td>
</tr>
</tbody>
</table>

Note: EFCS version F showed PIO tendencies.

Legend:

- **EFCS version H** is the updated, PIO-free configuration.

Results Category II Criteria

<table>
<thead>
<tr>
<th>Nonlinear</th>
<th>OLOP</th>
<th>Time domain</th>
<th>Hess</th>
<th>Neal-Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC EFCS(F)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>FC EFCS(H)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **L1**, **L2**, **L3**
- **Predicted CHR**
- **Predicted PIO**
- **Susceptibility**
- **Criterion doesn’t include prediction**
Remedy to PIO

"Conventional" Methods

- Change Hardware
 - Actuators
 - Feel System Characteristics
- Change Control Laws
 - Control Allocation / Architecture
 - Control Sensitivity
 - Reduce Phase Lags / Filtering

"Alternative" Methods

- PIO Suppression Filter
 - Attenuate Pilot Command At Predefined Pilot Operating Conditions
- Software Rate Limiters With Phase Compensation
 - Reduce Phase Loss Under Rate Saturation

* These methods were applied during the development of the example aircraft to fix the problems

On most cases of PIO experienced in the past, the problems were discovered in a relatively late phase of development, or even, during routine operation. A solution that allows the established control law structure to remain the same while eliminating PIO susceptibility surely is preferable.

Goal: Look for methods that solve the PIO problem without having to redesign control laws.
PIO Suppression Filter
Initial Design

AMPLITUDE ESTIMATION

CONTROL ACTIVITY ESTIMATION

REF
Powers 1981
PIO Suppression Filter
Functionality

Stick shaping function usually is a 3rd order polynomial:

\[Y = u \left(k_1 + k_2 |u| + k_3 \cdot u^2 \right) \]

Suppression is obtained through:

\[Y = u \left(k_1 + k_2 |u| \cdot K + k_3 \cdot u^2 \right) \]

In which \(K \) is The suppression gain

"Stick desensitizing"
PIO Suppression Filter
Response to Example Case

PSD of Stick Deflection Signal

Excluding PIO Frame

Including PIO Frame

Sampling Rate
\(f_s = 10 \text{ Hz} \)
No. of Samples
\(N = 2,300 \)
Frequency Resolution
\(\Delta \omega = 0.14 \text{ rad/s} \)

Conclusion:
During 'normal' task execution, pilot inputs contain energy in the frequency region of the actual PIO (which is about 2.3 rad/s)

REF
Iloputaife 1997
Phase Compensated Rate Limiting Schemes
(Rundqwist - Saab Military Aircraft)

Concept:
- Under rate saturation, excess in demand is fed back
- Rate limiter command signal is attenuated
- Result: Output will change direction when input does

REF.
Hanke 1995
Rundqwist et al 1997
Phase Compensated Rate Limiting Schemes
Effect on Closed-Loop System Using OLOP

Stability Margin Analysis

Conventional rate limiting:
Phase Jump, undesirable

Alternative rate limiting
Avoids Phase Jump

Retain stability with same rate limit imposed on system
Conclusions

- Category II PIO criteria were successfully validated against a limited selection of example aircraft configurations.

- When designed properly, a PIO suppression filter can identify a developing PIO and take avoidance action.

- Phase compensated rate limiters can alleviate the severe penalty associated with rate saturation in a closed-loop system.
Further Work

- Perform similar analysis for other PIO data
- Compare results of this study with recent experimental flight test data
- Address effect of structural dynamics on handling qualities and PIO
- Incorporate modern tools for stability analysis (mu, LMIs)
 Goal: towards category III PIO prediction
References

Hoputaife, O.I.: 'Minimizing Pilot-Induced-Oscillation Susceptibility during C-17 development'; AIAA-97-3497.

Backup Slide
Results TDNS Criterion

Discrimination between good and bad configurations lies in Acquisition Time D for which system grows unstable.

Software Version H allows a smaller acquisition time
Criterion definition doesn't yet provide clear boundaries for D

REF
Backup Slide
Results Hess Nonlinear (i)

Resulting Hess mapping for
- Linear system
- Active rate limiters

(Note: Mapping for Software version F (old) is not plotted; it results in an unstable system, caused by excessive rate limiting)
Phase Compensated Rate Limiting Schemes
Effect on Closed-Loop System Using Hess

Application of Hess method
Linear Hess mapping yielded solid PIO-free prediction

Inclusion of conventional rate limiter drove pilot-vehicle system unstable

System with phase compensated rate limiters is stable, but not predicted solid PIO-free (boundary has not been thoroughly validated)
Flight Testing for PIO

Ralph H. Smith
High Plains Engineering
PO Box N
Mojave CA 93502
661-824-1023
www.piofree.com
rsmith@piofree.com

Introduction

• Theory reduced to practice
• Developed intermittently over 32 years
• Highly nonlinear process
• Theory applied to numerous aircraft cases at EAFB since 1975
 – Several PIO predictions prior to flight test
 – Two non-PIO predictions
• Incorporated into TPS curriculum since 95B
Priorities

- Solve the airworthiness problem
 - Eliminate safety-of-flight issues related to PIO
 - PIO sensitivity training
 - Proficiency training
- Let the subsystems people deal with Cooper-Harper ratings and psycho-babble
 - Performance definitions are negotiated items
 - Workload is indefinable

A Question:

- No self-respecting engineer would design a servomechanism using criteria that are routinely accepted for piloted control of airplanes.
- Why should a FCS be designed to less stringent criteria than a floppy disk drive servo?
The Process

- Predict/Test/Verify
 - Characterize the Expectation
 - Exercise Experimental Technique
 - Understand the Results

Predict

- Theory or Criteria
 - Smith-Geddes (implemented in the RSMITH software)
- Simulation
 - Simulate what?
 - HQDT
Aside: Definition

- PIO is pilot-in-the-loop oscillation
- PIO generally refers to pilot-in-the-loop instability

Aside: Characterizing PIO

- PIO due to excessive phase lag in the airplane
- PIO due to excessive command gain (stick sensitivity)
Aside: Phase-Gain Interaction

- The RSMITH software was written to account for the interactions
 - Predicts CHR for worst-case tracking
 - Predicts max stick sensitivity to avoid PIO

Aside: Stick Sensitivity

- The dominant HQ parameter
 - Overrides phase-based criteria (including Smith-Geddes)
- Typical airplane:
 - Stick sensitivity for no-PIO = insufficient authority to maneuver
 - PIO susceptible
 - Non-FBW transports are possible exceptions
Testing for PIO

- No Phase 3 (Cooper-Harper) testing
- HQDT -- the only maneuver that works
 - A sufficient criterion for PIO
 - Go/No Go engineering criterion
 - Closed loop task
 - Divergence = PIO susceptibility
 - Convergence = Not PIO susceptible
 - Task is not a factor
 - No Cooper-Harper ratings, no performance standard

Aside: HQDT

- Unnatural act
- The old guys hate it
- The new guys have trouble with it
- Has a theoretical basis: sufficient condition for PIO
- T-38 experience: proof that susceptibility does not equal unsuitability
Understanding the Results

- Priority: Verify that you tested what you thought you tested
- Identification of aero parameters
- Model the FCS + airframe
- Freq response analysis of flight data to confirm model validity
- Write a tech report based on fact, not expectation

Case History

- Approach & landing task
- Control laws designed to satisfy Smith-Geddes criteria using RSMITH program
- Predicted Level 1
- Flight test: Level 2/3
- Initial reaction: failure of criteria
- Fact: Invalid aero model and VSA mech; criteria worked
Approach & Landing: PIOR = 4 (R1280_14)

Predicted Handling Qualities
Case History: HQDT

- HUD tracking task, simulated air-to-air
- PIOR = 5
- Phase 3 tracking: CHR = 8/7/6/5/7
- Phase 3 tracking: PIOR = 5/5/3/3/3

Divergent PIO in HQDT Maneuver (F444_08)
Use of In-Flight Simulators for PIO Susceptibility Testing and for Flight Test Training

By
Michael Parrag
Veridian Engineering (Calspan)
PIO Workshop
Dryden FRC, Edwards, CA
April 1999

The common denominator for both developmental testing and flight test training

Realistic task in a realistic environment with uncompromised visual and motion cues
Before talking about the in-flight simulator "tool" in the PIO context let me say a few words about PIO phenomenon from a piloting viewpoint - having endured many as an evaluation pilot on research programs and having witnessed hundreds as a not so casual observer or safety pilot in a number of our in-flight simulators.

I would like to briefly review several aspects of the PIO phenomenon:
- The variety of pilot input → aircraft response features that cause unpredictability, a root causal factor in PIO's
- The pilot's way to characterize a PIO in terms of how it affects this piloting task
- The circumstances that may trigger PIO events.
- Using the understanding of the above factors to structure flight test methodology oriented at uncovering PIO susceptibility
- Finally, this will lead to how the in-flight simulator is a safe and cost effective tool to accomplish flight test objectives.
Response Unpredictability

Primary causal factor for PIO

Response Unpredictability

Predominantly a situation where initial response to pilot input miscues pilot as to where response will end up or
pilot simply does not get expected response for a given input

Potential Sources of Unpredictability

- Very initial response
 - time delay too high
 - onset rate too low
- Mismatch between time to first perceptible response and response buildup
- Steady state sensitivity
Potential Sources of Unpredictability (Cont.)

- Poor correlation between pilot sensed responses

 e.g. pitch rotation vs 'g' buildup (in up and away flight)

 or

 pitch attitude and flight path angle (in P.A.)

- Dominant cue creating unintended loop closures (synchronous behavior)

 e.g. effects of n_x, and n_y

Potential Sources of Unpredictability (Cont.)

- Nonlinear effects

 large and sharp (sudden) changes in characteristics such as
 in command gain scheduling

 or

 in response characteristics

 Mechanical Non-Linearities

 - rate limiting in surface actuators or in software along command path

- Control misuse with exotic FCS modes

 or

 when intuitive pilot behavior can get you in trouble

- Excursion into non-linear aerodynamics

 - hi alt/hi Mach - pilot vehicle motions venture into Mach buffet or stall buffet
Potential Sources of Unpredictability (Cont.)

- A major design culprit
 ↓
- Overaugmentation

- excessive FCS gains in name of "robustness" or "agility"

Potential Sources of Unpredictability (Cont.)

- Some outcomes:
 - overly abrupt dynamics in pitch/roll
 - causes staircase input/response in gross acquisition and causes hi freq/low amplitude PIO in fine tracking (bobbles)
 - requires use of more sensor filtering → time delay
 - drives rigid body dynamics closer to aeroelastic modes structuring
 - filtering → time delay
 - hi fb + hi command gains → rate saturation more likely
 - often worse in turbulence
 - unnecessary wear/fatigue on actuators, surfaces and associated structures

Flight Research Group
Veridian Engineering

VERIDIAN
Veridian Engineering
Potential Sources of Unpredictability (Cont.)

- Another major design culprit — FCS complexity
 - designer cannot anticipate all possible interaction between FCS and pilot
 - cannot guarantee "PIO free"

Types of PIO

Pilot's Interpretation based on how PIO interacts with task
Types of PIO
(Pilot’s Interpretation)

- PIO's have two distinguishing features namely, frequency and amplitude, that determine how the pilot can deal with PIO in context of a task

Examples

- Hi freq, low amplitude such as in roll with very short τ_R

 roll ratcheting

 - excessive p causes significant n_d, which cause rapid reversals by pilot - settles into “dominant cue/synchronous behavior”
 - viewed by pilot as very annoying but task remains controllable; pilot can easily judge average of PIO's

Types of PIO
(Pilot’s Interpretation) (Cont.)

- Low freq., larger amplitude \rightarrow often seen with rate limiting

 pilot is unable to judge average of oscillations

 generally not controllable if task constraints do not permit pilot to back out

- Medium frequency \rightarrow gray area; degree of problem caused in task depends on:

 - amplitude of PIO
 - how much he is "driven" by a dominant cue
 - whether pilot can manipulate "average" to continue task
 - personal piloting technique - can pilot tone down his inputs?
Circumstances which may “trigger” PIOs

- Found accidentally in an aggressive or high precision task scenario when undesirable aspects of the Pilot-Vehicle System and/or environment come in coincidence or change unexpectedly. Major objective during development should be to minimize risk of this.

- Uncovered during flight test by a determined and disciplined process of exploration and discovery utilizing high gain tasks under demanding environmental conditions. Process intended specifically to prevent “accidental” discovery of PIO where consequences are generally more serious.

- In both cases, pilot demands rapid response and precise performance.
Circumstances which may "trigger" PIO's

In the course of a high gain task scenario, when one or more undesirable elements influencing the Pilot-Vehicle System closed loop performance surface unexpectedly

- In general, when sudden or anomalous changes occur in pilot behavior, effective vehicle dynamics or in feedback to the pilot

- Atmospheric upsets such as:
 - turbulence
 - cross wind
 - wake turbulence
 - wind shear

Circumstances which may "trigger" PIO's (Cont.)

- FCS mode change during a high gain task
 esp. with significant change in [A/C + FCS] dynamics, trim change or FCS dead time

- Mode change with gear/flaps or air/ground switch or unexpected FCS mode due to erroneous input from aircraft sensors
 e.g. FCS gains for wrong flap deflection

- Mixed manual and auto FCS modes when intuitive behavior mixes with auto control law to give unpredictable response
 e.g. auto compensation for engine out - - - creating control problem when pilot does get in loop
Circumstances which may “trigger” PIO’s (Cont.)

- In course of low gain monitoring tasks (pilot out of loop), sudden change:
 - Surprise (shock) - startle effect

 "hours of boredom punctuated by seconds of sheer panic" sudden entry into control loop due to upset or change in pilot’s perception → often results in much bigger correction than needed

 e.g. akin to sudden awareness after dozing off at the wheel of a car

 - unexpected actuation of some a/c configuration device such as auto speed brakes, L.E. slats

 - system failure → e.g. runaway trim, sensor or display failure

Circumstances which may “trigger” PIO’s (Cont.)

- Upset after “hidden onset” e.g. autopilot becomes saturated by turbulence upset, hinge moments due to ice → then “lets go”;

 pilot is faced with out of trim upset

 - above scenario but under conditions where handling qualities are marginal + close to aircraft limits

 lack of “situational awareness” leading to inappropriate interaction between pilot and automatic systems

 “pilot and copilot fighting each other” - - - on the controls
Circumstances which may "trigger" PIO's (Cont.)

In Summary

trigger event + unpredictable response

PIO is outcome of the latter only or both

The Determined "PIO Search" Flight Test Process

- Objective is to minimize risk of PIO occurrence in operational use

- Need to find the "black holes" in flight test - military testing - civil certification
To ensure coverage of vast set of circumstances in which PIO's can occur

Need to test in combination:

- All potential [aircraft + FCS] modes/configurations
 - low probability of occurrence is not excuse not to test

- Relatively extreme environment conditions - progressively but sufficiently early
- Aggressive yet high precision tasks
- Clever introduction of "trigger events" described previously - to reproduce surprise and stress to force "unusual control inputs"

This is difficult to implement!

Elements of rigorous/determined PIO search process

- High gain tasks
 - need to work high frequency portion of PVS to experience phase lags associated with many initial response problems
 \[t = 0^* \Rightarrow \text{high freq} \]
- Unfavorable atmospheric conditions
- Secondary task loading
- Piloting technique
- Urgency of control action
 - maybe combined with triggers?
- State of pilot's situational awareness
Must pay careful attention to these process elements because dealing with flying quality CLIFF

handling
quality
goodness

pilot closed loop gain

GOING OVER IS SENSITIVE TO PROCESS ELEMENTS

TASK

PA

Approach

VS

Flare and Touchdown

Lake Bed vs Runway!

vs Carrier

UP AND AWAY

Formation

vs

A/A Tracking

vs

A/A Refueling

Need Tight (Demanding) Task for Proper Discrimination!
Closed-Loop Standards of Performance

- Well Defined Predetermined Standards for Desired Performance
 Adequate Performance
 e.g. in terms of mil errors for tracking or touchdown box on runway
- Ensure that pilots are proficient in mechanics of task

Environmental Factors

- Turbulence including gust upsets
- Cross-winds
- Day-Night; VFR - IFR
 i.e. Visual Cues
- Secondary Task Load
Pilot Closed-Loop Gain

- **Aggressiveness** in Task
 - Operationally Realistic
 - Pilot Chooses I can back out!

- "**Pucker Factor"** - - - Forced On Pilot by Environment/task constraints
 - PIO's ARE NOT Optional

Representative Piloting Technique

- Aircraft needs to be PIO safe for entire piloting population

- Piloting population is not uniform
 - There are low gain predictive types
 - There are high gain "ham fisted" types

- Both types need to be covered in PIO search, but especially latter

- Should also include:
 - Pilot unfamiliar with particular aircraft being tested, unbiased first opinions can be very telling
 - Test pilots who have experienced PIOs in past and who can effectively communicate their evaluations
Urgency of Control Action

- Need to brief pilots:
 - to initiate aggressive gross acquisition
 - about compelling and immediacy to recovery from upset
 - "time to acquire" is the critical element

State of Pilot's Situational Awareness

Situational Awareness (S.A.) → Pilot being fully cognizant of current aircraft state (configuration, FCS mode, autopilot mode etc.), of appropriate control strategy, or of his environment (weather, other aircraft)

Lack thereof or sudden change in S.A. may generate trigger or otherwise cause an "inappropriate" control input

- may be related to workload, understanding of FCS modes, piloting technique etc.
- consideration of the above possibilities needs to somehow be worked into the test plan
- e.g. doing "blind" tests when safely feasible
Tools of Pilot-in-the-loop Tests

With Current New Technology - FBW Aircraft

- Reliance on predictive analytic metrics
 Inadequate for handling qualities
- Pilot-in-the-loop evaluations essential
Pilot-in-the-Loop Evaluations

- Only means of integrating all dynamic elements in closed loop

 Pilot
 Controllers/Feel System
 A/C + FCS
 Displays
 Weapon Systems

 In context of mission-oriented tasks

- Only credible means of assessing handling quality goodness and minimizing risks of hidden "cliffs"

Tools of Pilot-in-the-Loop Evaluations

- Ground-Based Simulators
- In-Flight Simulators
- Prototypes
- Operational Vehicles
Tools of Pilot-in-the-Loop Evaluations

Ground Based Simulators

- Considerations:
 - Readily available at design site
 - Serves key role in developmental evolution of dynamic elements

- Limitations:
 - Fidelity of synthetic visual and motion cues worst in conditions where many current FCS problems erupt
 - Task environment → control strategy (can be quite different from flight)
 - Lack of real flight stress

Tools of Pilot-in-the-Loop Evaluations (Cont.)

- History indicates that for demanding high-gain tasks, ground based simulation has often been misleading - failed to expose dangerous problems
In-Flight Simulators (IFS)
- Visual and motion cue environment correct/real, not synthetic
- Real flight stress
- Real piloting tasks

Limitations
- If IFS Not 6 DOF → some cues may not be fully representative
- A number of scenarios outside capabilities of currently operational IFS's.
 e.g. in high α etc.
- Only as good as model
- However, for a given "model" → gives most credible handling quality answers
- Generally much more credible effects of turbulence than in ground sim
Objectives of IFS

- Verify/check ground sim results in real flight environment
- "Calibrate" ground simulator
 - Test pilots become tuned how to better use it for credible results given its particular cueing limitations.
- Historically has brought small dedicated problem-solving oriented flight test team together
 - Fostered communication
 Pilots ←→ Engineers ←→ Managers

Tools of Pilot-in-the-Loop Evaluations (Cont.)

Prototype Vehicle
- Very Costly Tool economically and from schedule viewpoint
- High risk environment in which to test potentially questionable or unknown characteristics
- High Cost and Risk Tool in which to test modifications/fixes

Operational Vehicle
- Once a vehicle is operational problem, fixing is a major fiasco
Test Pilot Evaluation Tools

- Flight Test Tasks/Techniques
- Communication Tools

Flight Test Tasks

"Real" Tasks
- Using no special displays
- Single element or combination of elements from an operational scenario
 - pitch or roll attitude captures
 - 45° bank level (const. altitude) turns with aggressive reversal
 - Close formation flight
 - Air to Air Tracking
 - Probe and Drogue refueling task
 - Offset landing approaches
 - aggressive alternate tracking of runway edge @ 100 ft AGL (or altitude safely appropriate for particular aircraft size)
Flight Test Tasks (Cont.)

Synthetic Tasks
- Tracking task presented on a convenient pilot display such as:
 - HUD (Head Up Display)
 - MFD (Multi Function Display)
 - Attitude Director Bars
- or presented on a removable LCD display with tasks preprogrammed on a P.C. computer (demonstrated in Learjet)

Tasks must include single axis and combined axes elements with sufficient frequency and amplitude content on the tracking bar to test for PIO susceptibility with both single axis and coupled inputs
- Need to brief pilot to aggressively work to keep errors zero
- high gain = aggressive closed loop behavior works on high frequency portion of pilot - vehicle transfer characteristics
- High freq = quick or sharp initial response

Flight Test Tasks (Cont.)

Synthetic Tasks (Cont.)
- this is region where problematic (cliffy) phase lags, phase rates and rate saturation effects occur
- Tasks should be programmed to occasionally require inputs from pilot that may seem operationally unrealistic e.g. rapid, full throw inputs

- Primary objective of tasks is to expose PIO/dangerous overcontrol potential
 - minimize risks of occurrence once aircraft is "certified"

- Hence, need to force test input sequences that stress the pilot-vehicle system to extremes even if unrealistic from an ops standpoint e.g. "klunk" inputs used by Saab
- Flight test needs to establish margins around the operational envelope
Flight Test Tasks (Cont.)

Synthetic Tasks (Cont.)

- Tracking bar programmable in both pitch and roll which the pilot chases with body axis fixed symbol such as a waterline pitch marker
 - This implementation has been successfully utilized on military aircraft by projecting this task on a HUD
 - Demonstrated in Learjet projected on a head down LCD display
 - In either head up or head down implementation, can record tracking error in both pitch and roll and correlate with pilot input activity
Flight Test Tasks (Cont.)

Synthetic Tasks (Cont.)

- Two types of tasks
 1. Discrete Tracking Task (DTT)
 - combination of steps, ramps in both pitch and roll but "coordinated"
 - can separately control amplitude of pitch and roll separately to match task to nature of aircraft being tested
 - objective is to elicit both gross acquisition and fine tracking activity
 2. Sum of Sines
 - combination of sine waves of different frequencies
 - 1st or 2nd order frequency roll off (filter)
 - pitch and roll amplitudes separately controllable again to match task to aircraft being tested
 - objective is to elicit aggressive fine tracking activity
Flight Test Tasks (Cont.)

Other Considerations

- "Triggers" of PIO should be inherent in developed tasks whenever feasible.
- Need to consider task environment issues:
 - effects of turbulence
 - conditions of visual cues
- FTT's must be tested against known problem configurations and consistently expose potential or latent "black holes"
- FTT’s must generally indicate "good" aircraft to indeed be good.
Special Issues Pertaining to Civil Certification

- A major hurdle is to get past barrier from pilots or managers on test techniques that "transports are not flown this way" or that certain pilot inputs are unrealistic.
 - there needs to be recognition that flight test/certification test should establish adequate "margins"
 - ensure no "cliffs" on the edge of envelope
 - account for unusual inputs from "startle" factor

Test Pilot Communication Tools

- Need proper tools to ensure orderly process for test pilots to solidify and effectively communicate their evaluation or assessment to engineers, managers, and other pilots
 - Comment Cards
 - checklist for comments
 - comments are meat of evaluation data
 - Cooper-Harper Rating Scale
 - consideration of "average pilot"
 - cutoff for "exceptional attention, skill or strength" in civil certification?
Test Pilot Communication Tools (Cont.)

- PIO Rating Scale
 - current scale
 - suggested modification
 - too much arguing about PIO rating scale when most important pilot evaluation issue is task/FTT's that expose problems - rest is merely organizing how pilot reports what he has seen.
Unique Instrumentation Requirements for PIO Related Flight Tests

During Flight Test
- Data sampling rates 30 hz or higher for rigid body PVS dynamics
 i.e. fast variables
- Lower data rates for slow variables such as altitude airspeed
- should get derivative of aircraft rotational rates and perhaps even 2nd derivative - - - "jerk" motions
- instrument for n_p, n_{yp}
- should instrument for actuator rates and control margins
Unique Instrumentation Requirements for PIO

- In Operational Use
 - Flight Data Recorder
 - Sufficient data channels to record critical variable
 - Sampling rates for critical parameters need to be at least 15-20 hz

Management Issues
Pertaining to PIO Problem
Management Issues

- Industry awareness of PIO is poor
- Lack of understanding of phenomenon and implications to design process, flight test process
- Flight test teams need specialized training to improve ability to test FBW in general and for PIO in particular
 - exposure of test pilots and FTE's to a variety of PIO's in in-flight simulator aircraft is excellent conditioner for test teams
 - "A good scare is worth more than good advise"
 - makes them "true believers" in PIO search process

Management Issues (Cont.)

- Managers need to support a structured approach to test process from early in design to service entry
 - use all the tools at their disposal, integrated recognizing each tool strengths and limitations
- Managers need to treat flight test as a process of discovery rather than as mundane validation of predictions
- What information from flight test needs to be communicated to the operational pilot
 - overcome the "marketing hurdle"
Flight Test Training

- Exposure of test pilots and flight test engineers to real PIO's in the variety of tasks presented earlier becomes an invaluable career experience to:
 - Appreciate the significance of the phenomenon
 - Appreciate the criticality of various tasks and of task environment towards the propensity to PIO
 - Ensure that these flight test crews will appropriately adjudicate any test planning process with regards to PIO in which they will participate in the course of their career

Flight Test Training (Cont.)

...to reiterate

"A good scare is worth more than good advice"
A Method for the Flight Test Evaluation of PIO Susceptibility

Thomas R. Twisdale & Michael K. Nelson
412thTW/TSFT/USAF Test Pilot School
Handling qualities testing is the most important of all flying qualities testing.

Handling qualities are the dynamics, or characteristics, of the pilot plus the airplane.

Handling qualities testing is based on three principles:

- Model validation test method
- Build-up approach
- Completeness
Model validation test method

1. Predict the airplane response, based on a model.

2. Test the prediction.

3. Validate or correct the model, based on the test results.

Build-up approach

Testing progresses from the lowest to the highest level of risk.

Completeness

Evaluate the \textit{FULL} spectrum of handling qualities.
Three phases of handling qualities testing

Phase 1: Low bandwidth testing

Phase 2: High bandwidth testing

Phase 3: Operational testing
Phase 1: Low bandwidth testing

Purpose:
evaluate low bandwidth hq (smooth, low frequency, non-aggressive control)
familiarization
warm-up
"get acquainted"

Test Maneuvers
open-loop (NOT handling qualities)
semi-closed-loop
low bandwidth maneuvering
low bandwidth tracking

Test data
pilot comments
time histories
Phase 2: High bandwidth testing

Purpose
evaluate high bandwidth hq (abrupt, high frequency, aggressive, small and large amplitude control)
"stress testing"
"safety gate"

Test maneuvers
HQDT (principally)
simulated carrier approaches

Test data: pilot comments and ratings (PIO and analog scale)
Phase 3: Operational evaluation

Purpose: evaluate whether handling qualities are adequate to perform the design mission

Test maneuvers: depends on airplane and mission

Task performance standards: traceable to mission

Test data
 pilot comments and ratings (Cooper-Harper, PIO, analog scale)
 measured task performance
Phase 2: High bandwidth testing

Purpose
evaluate high bandwidth hq (abrupt, high
frequency, aggressive, small and large
amplitude control)
"stress testing"
"safety gate"

Test maneuvers
HQDT (principally)
simulated carrier approaches

Test data: pilot comments and ratings (PIO
and analog scale)
HQDT

special piloting technique:

track a precision aim point as aggressively and as assiduously as possible, always striving to correct even the smallest of tracking errors
Objections to HQDT

pilots don’t fly that way

OK for fighters, but not for large airplanes

causes degraded task performance

HQDT makes any airplane look bad

done for engineers, not pilots
Session V
BACKGROUND

- THE BEST WAY TO AVOID PIO PROBLEMS IS TO DESIGN THE FLIGHT CONTROL SYSTEM SO THAT THE AIRCRAFT DOES NOT HAVE ANY PIO TENDENCIES

- But...
 - Aerodynamic prediction methods (CFD, wind tunnel) are not perfect
 - Design criteria and analysis methods are not perfect, particularly with regard to the effects of significant nonlinearities
 - Flight control changes to fix PIO problems detected late in the development cycle can be "expensive" to fix
THEORETICAL BENEFITS

- Quick, cheap fix
- Valuable safety net in flight test, even if not intended for operational use
- Detection algorithms can provide valuable data during development and flight test

KNOWN DRAWBACKS

- May only mitigate PIO tendency, not solve it
- Always impacts general handling qualities
VARIOUS APPROACHES

• Suppression filters
• Rate limiting algorithms
• PIO detectors
• PIO preventers
 - Passive
 - Active
• Force cueing

SUPPRESSION FILTERS

• Low-pass filter in the forward path to prevent pilot inputs from exciting PIO tendency
• Attenuates command and adds phase lag to the aircraft response, degrading general handling qualities, especially for high bandwidth tasks
SPACE SHUTTLE
ADAPTIVE PIO SUPPRESSOR

Output from sine wave input,
$\Lambda = 10$ deg, $\omega = 2.5$ rad/sec

Frequency-dependent attenuation

Pitch rate response to 15-deg δ_p step input

RATE LIMITING ALGORITHMS

- Eliminates or reduces the phase lag due to rate limiting
- Introduces a bias between commanded output and actual output, attenuates command and reduces control power
- Removing bias causes "uncommanded motions"
- Only good for PIO tendencies caused by rate limiting
Basic Concept

Bias generated by asymmetric input

"Uncommanded" Response Generated by Bias Removal

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Task</th>
<th>RLC</th>
<th>CHR</th>
<th>PIR</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BAT</td>
<td>Off</td>
<td>8</td>
<td>4</td>
<td>nonlinear, lumpy, seems like a delay but not time delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>5</td>
<td>3</td>
<td>undesirable motions</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>Off</td>
<td>10</td>
<td>5</td>
<td>abrupt maneuvers get divergent behavior, large but slow amplitude divergence, no evidence during approach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>4</td>
<td>2.3</td>
<td>some lack of precision, 5 deg overshoot, sense that I'm in control, no tendency to get into divergence, precision not quite what I'd like, small wallowing, tendency to overcontrol, task compromised slightly</td>
</tr>
<tr>
<td>B</td>
<td>PA</td>
<td>Off</td>
<td>10</td>
<td>5</td>
<td>PIO prone, abrupt inputs do cause oscillations which may be divergent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>4, 5</td>
<td>2.2</td>
<td>no difficulties with PIO, small tendency to be imprecise, little more tendency to wallow when you try to be precise, trying to be more precise brought out tendency to overcontrol</td>
</tr>
<tr>
<td>C</td>
<td>PA</td>
<td>Off</td>
<td>10</td>
<td>6</td>
<td>no way to stay in the loop on that, holy s---t, PIO max on the scale, stick all the way over and aircraft still going the other way</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>-</td>
<td>-</td>
<td>still goes slow, could definitely feel rate limiting but it was not PIO prone like the last one, big difference</td>
</tr>
</tbody>
</table>
PASSIVE PIO PREVENTION

- Warning activated by detection of PIO, rate limiting, or other related phenomena
- Warning can be:
 - Light
 - Audio warning
 - Warning on HUD
 - Force feedback through stick
- Pilot must recognize and adapt

ACTIVE PIO SUPPRESSION

- Changes to control system activated by detection of PIO, rate limiting, or other related phenomena
 - Reduce forward path gain
 - Pass pilot input through low-pass filter
 - Force feedback through control stick
- May have more adverse effects than the PIO
PIO DETECTION AND ACTIVE SUPPRESSION

CONCLUSIONS

- These techniques can work
- Although not the first choice, they may present a program with an alternative to "complete redesign" or "tell pilot not to do that"
- Detection algorithms provide handy data analysis capability
- There are serious drawbacks, design of these algorithms should not be taken lightly
Real Time PIO Detection and Compensation

Chadwick Cox, Carl Lewis, Robert Pap, Brian Hall
Accurate Automation Corporation
7001 Shallowford Road
Chattanooga, TN 37421
ccox@accurate-automation.com
423-894-4646

Thanks

- Charles Suchomel - AFRL, COTR
- Brian Stadler - AFRL
- David Legget - AFRL
- Thomas Cord - AFRL
- Ba Nguyen - AFRL
Neural Network Compensation Strategy for Preventing Pilot-Induced Oscillations
Air Force Phase II SBIR F33615-96-C-3608
COTR: Chuck Suchomel AFRL/VACD

Objective: Develop a Smart Neural Network-Based Controller to Prevent Pilot-Induced Oscillations.

1. Recognize Pilot-Induced Oscillations In Data From Events Where PIO Have Played a Major Part
2. Designed a Neural Network To Recognize the PIO and Help The Pilot to Fly Out of the Problem
3. Designed an Advanced Hardware Controller to Validate the Concept
4. Patent Pending

Results to Date

Patent will be issued soon

Detector/Compensator tested in closed loop with simulated configurations on AFRL 6-DOF piloted simulator

Detector tested with F-16 PIO data, HARV PIO data, and simulated NT-33 data (MS-1)

Detector/Compensator tested in open and closed loop with simulated F-16
Results to Date

Designed hardware
VME
DSP
NNP® interface
VME to 1553 interface
A/D, D/A, digital interfaces

Presentation Topics

• PIO Detection and Compensation

• Simulation Testing

• PIO Hardware
Concept

• While a PIO occurs, a detector flags the PIO.

• If no PIO is occurring, the detector outputs a zero.

• When the detector flags a PIO, a compensator is engaged.

PIO Detector Goals

• Real time operation
• Accurate
• Robust
 – configurations
 – pilots
 – noise
• Simple
PIO Compensator Goals

- Activated when PIO occur
- Never active when PIO not occurring
- Stops PIO
- Acceptable to Pilots

PIO Detection

- PIO detection is simple and clean
 - simple algorithm
 - runs in real time
 - only straightforward preprocessing is required
 - works in longitudinal and lateral axes
 - works for many configurations
 - accurate
PIO Compensation

- How to compensate for PIO is still unresolved.
 - We have tested simple authority reduction and a PIO filter
 - Pilot’s do not like to have their authority reduced
 - Sometimes different situations call for different types of compensation
 - More testing is necessary.

Algorithm Development

- We used MS-1 simulation data, HARV data, and F-16 simulation data to develop the detector.

- An iterative process was used to train the detector.

- The compensator was developed with simulated HAVE PIO configurations.
Simulation Testing

• Tested detector with MS-1 PIO data

• Tested detector/compensator with simulated HAVE PIO configurations and simple pilot model

• Tested detector, advisory, and compensator in LAMARS simulator

Detection of MS-1 Simulated PIO
Piloted Simulation Testing

- Performed in AFRL LAMARS high-fidelity motion base simulator
- Tested a PIO detector and two compensators
- Gathered data to improve detection and compensation methods

Piloted Simulation Testing Rational

- Only human in the loop testing can tell you how a compensator or advisory will effect the performance of a pilot.
- Pilot models are not adequate.
 - They are good only for initial testing.
 - Not all problems can be uncovered with pilot models.
Major Questions

• Does the detector perform adequately?
 – Must not trigger when it shouldn’t

• Does the compensator perform adequately?
 – Must not cause a bigger problem when it is on.
 – Preferably must allow the pilot to perform his task.

Detection Issues

• Does the detector perform adequately?
 – Does it stay off when there is no PIO?
 – Does it come on when there is a PIO?
 – Does it work across a wide range of configurations?
 – Does it work across a wide range of pilots?
 – Is it robust to noise?
Compensation Issues

• Does the compensator perform adequately?
 – Does it stop PIO?
 – Can the task still be performed?
 – Do pilots mind having their authority reduced?
 – Does filter induced delay cause other problems?

• Do different PIO call for different compensation?
 – Use gain compensation with explosive PIO?
 – Use filter compensation with mild to medium PIO?
 – Use other methods?
Compensator Types

• Gain Compensator
 – Ramp in
 – Ramp out
 – Minimum authority

• Filter Compensator
 – Ramp in
 – Ramp out
 – Minimum authority

Simulation Testing Methodology

• Succinct matrix
 – HAVE PIO and landing task
 – HAVE LIMTS like configurations with tracking task
• Short look instead of long look
• Random presentation
• Repeats allowed
 – this allowed us to use short look without confidence levels
Simulation Testing Matrix
Advisory/Compensation Options

• Four Cases
 – PIO detection but no advisory, no compensation
 – Detection and advisory, no compensation
 – Detection and no advisory, compensation
 – Detection and advisory, compensation

Simulation Testing Methodology - Pilots

• one Navy test pilot, one civilian acrobatic pilot, and five Air Force test pilots
• prebriefed pilots
• did not lead the pilots
• tried not to let pilots compare configurations
• performance feedback provided at end of run
Simulation Testing Methodology - Pilots

- made pilots go through the scales when giving ratings
- rating/Questionnaire cards with pilot in cockpit
- debriefed the pilots
- frequent breaks

Simulation Testing - Pilot Subjective Data

- Pilot briefings
 - configurations, tasks, motion, ratings, adequate and desired
- Pilot comment card
 - PIO scale (Mike Parrag - Veridian) and Cooper-Harper scale
 - Questions
- Pilot's asked to give frank assessment of algorithms
Simulation Testing - Configurations

- **HAVE PIO - Category I**
 - Baseline Longitudinal 2-1, 3-1, 5-1
 - Primary Longitudinal 2-5, 5-9, 5-10
 - Secondary Longitudinal 2-8, 3-12, 3-13

- **HAVE LIMITS - Category II**
 - 2P, 2DU, 2D, 2DV
 - Rate limit adapted to pilot to force PIO

Simulation Testing - Pilots' Tasks

- **Offset landing**
 - pilot must land aircraft within target zone starting from an offset approach
 - HAVE PIO configurations

- **Discrete tracking**
 - pilot tracks steps and ramps
 - HAVE LIMITS
Simulation Testing - Time Series Data

- All detector and compensator inputs, internal variables, and outputs
- Aircraft state variables
- Pilot outputs
- Task and performance data
- Pilot PIO indicators (trigger pulls at about where a PIO occurs)

Simulation Testing Results

- Detector works very well in pitch and roll
- Gain compensator stops PIO but pilots don't like it
- Filter compensator had problems
- Much analysis still to be done
Report number 20 is missing slides 31 to 34; they were unavailable at the time of publication.

Simulation Testing Result - Divergent PIO

Simulation Testing Result - NO PIO
Simulation Testing Result -
NO PIO
Simulation Testing Results - Pilot Comments

- Advisory well correlated to pilot assessment of PIO
- Some pilots found advisory helpful
- Some pilots said advisory didn’t give them additional information
- Some pilots commented on timeliness of detection

- Pilots said gain compensation stopped PIO, but interfered with task
- Delay induced by filter compensator caused problems
- Pilots felt that motion helped them with tasks, especially landing
Simulation Testing Results - Observations

- Pilots improved their performance over time
- One “golden arm” pilot could fly almost anything
- Pilots sometime adapted to gain reduction

PIO Compensation Hardware

- board hosts PIO detection and compensation algorithms
- DSP
- includes interface to multiple AAC NNPs.
- VME bus with 1553 interface
- A/D, D/A, and digital interfaces
Conclusions

- Developed a *real-time* PIO detector
- Developed a *real-time* PIO compensator
- Tested detector and compensator in a high fidelity piloted simulators
- Continuing simulation testing
- Developing hardware

Next Steps

- Analyze data
- More simulation testing
 - larger matrix, operational pilots, new advisories, force feedback
- Flight Testing
- Develop PIO Classifier
- Develop a good compensation method
Pilot Induced Oscillation Research Workshop
NASA Dryden Flight Research Center
8 April 1999

Prevention of PIOs in Flight

- Fundamental goal is to prevent PIOs by design
 - On-board detector could be a valuable flight test tool
 - Application for failures, unusual loadings and flight conditions
- Monitor airplane responses and pilot inputs to look for:
 - Oscillations of proper frequency range
 - Airplane out of phase with pilot
 - Amplitudes of input and output large
- Concept developed under current contract
 - Has not actually been applied real-time
 - Applying for patent
 - Looking for follow-on funding for further development
Real-Time Detection of PIOs

- Time histories of dozens of PIOs have been examined in detail
- Underlying conclusions:
 - There is no clearly identifiable "pre-PIO" condition
 - Many of the precursors to PIO occur in normal operation
 - It will not be possible to detect and stop a PIO before it starts
 - The best we will be able to do is detect one in the first half-cycle (or so)

Real-time Oscillation VERifier (ROVER)

- Assumptions:
 - Pilot operates more or less sinusoidally
 - Pilot adopts synchronous behavior in PIO
 - Airplane is 180° out of phase with pilot in a PIO
- Apply a moderate amount of filtering
 - Bandpass to emphasize range of expected PIO frequencies
 - Both input and output filtered to minimize impact
- Test for:
 - Oscillation frequency within range for PIO
 - 90° phase lag between control input and pitch rate
 - Proper amplitude of input and output
Output for YF-22A Mishap
Output for YF-22A Mishap

PIO Flags

<table>
<thead>
<tr>
<th>PIO Flags</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10_c_Tc2</td>
<td>30 35 40 45</td>
</tr>
</tbody>
</table>

Application as a Flight Test Tool:
Time-domain verifier for frequency sweeps

Unsmoothed I/O

Peak values

302
Application as a Flight Test Tool: Time-domain verifier for frequency sweeps

Identified Frequency and Phase

- Frequency (rad/sec)
 - 8
 - 6
 - 4
 - 2
- Phase (deg)
 - 180
 - 150
 - 100
 - 50

Time (sec)

0 10 20 30 40 50 60 70 80

Continuing Development

- Extend to roll
- Extend to normal acceleration
- Select best filters for bandpass, removing noisy data
- Requires tailoring
 - Different flight conditions (higher thresholds up-and-away)
 - Different cockpit effectors (force vs. displacement)
 - Adapt to failures (reduce thresholds if sensors lost)
- Active intervention vs. alerting
 - Should depend upon complexity of flight control system, degree of instability, mission roles
 - Form of active intervention will depend upon flight condition
Pilot Opinion Ratings and PIO

Thomas R. Twisdale & Michael K. Nelson
412thTW/TSFT/USAF Test Pilot School

See Paper no. 4 in Appendix 3
THE NEED FOR PIO
DEMONSTRATION MANEUVERS

Vineet Sahasrabudhe
David H. Klyde
Systems Technology, Inc.

David G. Mitchell
Hoh Aeronautics, Inc.

Pilot-Induced Oscillation Research:
The Status at the End of the Century
NASA Dryden Flight Research Center
6-8 April 1999

OVERVIEW

- Identify relevance of demonstration maneuvers for PIO
- Review USAF Handling Qualities Demonstration Maneuvers program
- Exposing PIO
 - Probe-and-drogue refueling example
 - HUD tracking example
- The need for PIO specific maneuvers
- Additional candidate PIO demonstration maneuvers

6-8 April 1999
PIO Research Status Workshop
RELEVANCE TO PIO

- Objective of the USAF program was to develop a catalog of repeatable maneuvers to evaluate closed-loop handling qualities
- Some of the maneuvers included in the final catalog also exposed PIO and/or PIO tendencies
- The continued occurrence of PIO in operational aircraft (military and commercial) indicates a strong need to develop a similar catalog for PIO

6-8 April 1999 PIO Research Status Workshop

DEMONSTRATION MANEUVERS
PROGRAM BACKGROUND

- Phase II SBIR for the USAF Flight Dynamics Directorate
 - Air Force Technical Contact: Thomas J. Cord
- Phase I results published as STI TR-1298-1 and as Appendix C of WL-TR-94-3
- Proposed Maneuver Catalog published as STI ITR-1310-1
 - Distributed to USAF FIGC mailing list for review
- STEMS Flight Test Evaluation with the NASA F/A-18 HARV published as STI ITR-1310-2 and as WL-TR-97-3002
- Phase II Results published as WL-TR-97-3099 & WL-TR-97-3100
 - Volume I: Maneuver Development Process (-3099)
 - Volume II: Maneuver Catalog (-3100)

6-8 April 1999 PIO Research Status Workshop

308
MISSION-ORIENTED REQUIREMENTS

• Requirements are based on Mission Task Elements (MTEs) that relate to actual operations
• References to aircraft size are removed
• Allow for multiple response-types
• Provide predicted handling qualities
• Demonstration maneuvers are designed to complement the mission-oriented approach

6-8 April 1999 PIO Research Status Workshop

HANDLING QUALITIES DEMONSTRATION MANEUVERS

• Evaluate all aircraft types (military and civil) and mission tasks
• Provide consistent maneuver definitions including desired/adequate performance requirements
• Evaluate total system: flight controls, pilot-vehicle interface, advanced displays and vision aids, etc.
• Provide ultimate check of handling qualities through piloted evaluation

6-8 April 1999 PIO Research Status Workshop
MANEUVER CATEGORIES

- Non-Precision, Non-Aggressive
 - Takeoff, Landing, Waveoff/Go-Around
 - Heading and Altitude Changes
- Non-Precision, Aggressive
 - Air-to-Air Gross Acquisition
- Precision, Non-Aggressive
 - Precision Offset Landing
 - Attitude Capture and Hold
- Precision, Aggressive
 - Air-to-Air Fine Tracking

6-8 April 1999 PIO Research Status Workshop

MANEUVER EVALUATIONS

- Flight Test Evaluations
 - NASA Dryden F/A-18 HARV: STEMS
 - USAF TPS HAVE GAS II: Probe-and-Drogue Refueling
 - USAF TPS HAVE LIMITS: HUD Tracking
 - General aviation aircraft: numerous maneuvers
- Flight Test Reviews
 - Large aircraft flying qualities (TIFS): Precision Offset Landing
 - USAF TPS HAVE CAP: Precision Offset Landing
 - USAF TPS HAVE TRACK: Simulated Aerial Refueling
- Pilot-in-the-Loop Simulation
 - NASA Dryden SR-71 Simulator: Supersonic Maneuver Set
 - McDonnell Douglas: PIO maneuver development

6-8 April 1999 PIO Research Status Workshop
MANEUVER CATALOG

- Final catalog contains 36 maneuvers
 - Flight test evaluations: 18 Maneuvers
 - Simulator evaluations: 16 Maneuvers
 - 5 maneuvers need refinement
- Catalog spans the range of piloted control
- Flight conditions range from post-stall to supersonic, and from takeoff to landing
- Catalog is a living document
 - Revisions and additions are expected as new research is conducted

EXPOSING PIO

- Demonstration Maneuvers that have produced flight test PIOs
 - Aerial refueling, particularly probe-and-drogue
 - HUD tracking
 - Precision offset landing
- Demonstration Maneuvers that have exposed PIO tendencies
 - Air-to-air and air-to-ground fine tracking
 - Attitude captures
 - Gross acquisitions (often expose Category II tendencies)
RECENT EVOLUTION OF PROBE-AND-DROGUE REFUELING

- USN F-14 Dual Hydraulic Failure Study (1991)
 - Revealed potential explosive nature of probe-and-drogue refueling task for severely rate limited configurations
 - Formation flying (prior to hook-up) did not expose poor handling qualities
 - Tracking drill devised to "shake out" configurations prior to hook-up
- USAF TPS HAVE GAS (1993)
 - Evaluation of different response-types using probe-and-drogue hook-up task
 - Handling qualities performance requirements (based on number of attempts to achieve three successful hook-ups) were not sufficiently discriminating
 - HAVE GAS task with additional requirement to avoid contact with basket webbing for desired performance
- USAF TPS HAVE GAS II (1997)

6-8 April 1999 PIO Research Status Workshop

HAVE GAS II PROGRAM SUMMARY

- USAF TPS Class 96B Test Management Project conducted in spring 1997
- Objective: Identify the task that best reveals aircraft closed-loop probe-and-drogue refueling handling qualities
- Seven flight test sorties: NASA F/A-18 (4 Sorties) and USAF variable stability NT-33A, operated by Calspan, (3 sorties)
- Candidate evaluation tasks: Hook-Up, Tracking, and Aiming Tasks
- Both qualitative and quantitative results clearly indicated that the tracking task best exposed closed-loop handling qualities
- To capture potential problems close-in to the basket, the hook-up task should be performed in concert with the tracking task

6-8 April 1999 PIO Research Status Workshop
DROGUE TRACKING CONFIGURATION

Side View

View From Cockpit

DROGUE TRACKING TASK FOR PIO

HAVE GAS II
Video Example

6-8 April 1999
PIO Research Status Workshop
PROBE-AND-DROGUE TASK FOR PIO: CONCLUSIONS

- Probe-and-drogue refueling has exposed all three PIO Categories in flight test
- HAVE GAS II program defined repeatable evaluation tasks based on drogue tracking and hook-ups
- Turbulence can have a significant impact on task performance and should therefore be accounted for in the evaluation process
- A method should be employed to verify drogue tracking distance (chase plane, differential GPS, etc.)

HUD TRACKING TASKS FOR PIO

- Recent Experience
 - USAF TPS HAVE LIMITS
 - McDonnell Douglas ground simulation comparison study
 - STI development of pilot evaluation tool (PASS) using sum-of-sines tracking tasks
 - HAI PIO simulations on LAMARS using discrete ("step-and-ramp," "Calspan" or "SAAB") tracking tasks
- Sum-of-Sines effective for identifying pilot dynamics and PIO tendencies, especially Category I
- Discrete Tracking effective for identifying PIO tendencies, especially Category II
HUD TRACKING TASKS FOR PIO

HAVE LIMITS
Video Example

HUD TRACKING TASKS FOR PIO:
CONCLUSIONS

- There may be initial pilot reluctance to sum-of-sines task
- Discrete tracking is most effective as a two-axis task
 - Reduces pilot "learning"
 - Exposes both pitch and roll problems
- Verbal readouts not effective
 - Introduces undesired variability with commands
 - Must be single-axis only
 - Potential for pilot confusion over command values
 - No way to monitor tracking performance
 - Must be steps only, since "rampe" cannot be introduced verbally

6-8 April 1999
PIO Research Status Workshop
DEMONSTRATION MANEUVERS
FOR PIO

• Need for dedicated PIO Demonstration Maneuvers
 - PIO is not an operational event
 - PIO testing should be distinct from handling qualities
 - Some testing will be inconsistent with operational testing (e.g., HUD tracking or close formation with a transport)

• Additional candidate PIO Demonstration Maneuvers
 - SAAB Klonk method
 - HQDT
 - Rapid attitude captures
 - Others?

6-8 April 1999 PIO Research Status Workshop
The workshop "Pilot-Induced Oscillation Research: The Status at the End of the Century," was held at NASA Dryden Flight Research Center on 6–8 April 1999. The presentations at this conference addressed the most current information available, addressing regulatory issues, flight test, safety, modeling, simulation, mitigation or prevention, and areas that require further research. All presentations were approved for publication as unclassified documents with no limits on their distribution. This proceedings includes the viewgraphs (some with author's notes) used for thirty presentations that were actually given and two presentations that were not given because of time limitations. Four technical papers on this subject are also included.

Flight control, Flight safety, Pilot-induced oscillation, Simulation of flight test