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A method for computing discrete-time state-space models of linearized unsteady

aerodynamic behavior directly from aeroela_tic CFD codes is presented. The method
involves the treatment of CFD-based pulse responses as Markov parameters for use in

a system identification/realization algorithm. Results are presented for the AGARD
445.6 Aeroelastic Wing with four aeroelastic modes at a Mach number of 0.96 us-
ing the EZNSS Euler/Navier-Stokes flow solver with aeroelastic capability. The Sys-
tem/Observer/Controller Identification Toolbox (SOCIT) algorithm, based on the Ho-
Kalman realization algorithm, is used to generate 15th- and 32nd-order discrete-time
state-space models of the unsteady aerodynamic response of the wing over the entire

frequency range of interest.

Introduction

HE inclusion of CFD-based analyses into disci-
plines such as aeroelasticity, aeroservoelasticity,

and optimization is currently not performed on a rou-
tine basis due to the high computational costs of the
CFD portion of the analyses. One solution to this
problem is the development of CFD-based reduced-

order models (ROMs). These ROMs capture the
essence of the dynamical system under investigation

while reducing the complexity of the computational
model.

At present, the development of CFD-based ROMs
is an area of active research at several industry, gov-
ernment, and academic institutions. 1 Development of
ROMs based on the Volterra theory is one of sev-
eral ROM methods currently under development. 2-5
Reduced-order models based on the Volterra theory
have been applied successfully to Euler and Navier-
Stokes models of nonlinear unsteady aerodynamic and
aeroelastic systems. Volterra-based ROMs are based
on the creation of unsteady aerodynamic impulse or

step responses that are then used in a convolution
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scheme to provide the linearized and nonlinear re-
sponses of the system to arbitrary inputs. In this
setting, the impulse or step responses t,.re the func-
tional ROMs.

A traditional approach for obtaining linearized gen-
eralized aerodynamic forces (GAFs) from an aeroelas-
tic CFD model is to perform a time-domain perturba-
tion of all the modes (one mode at a time) resulting in
a GAF influence coefficient matrix. This time-domain
influence coefficient matrix is then transformed into

the frequency domain 6 using standard Fourier trans-
form techniques. The resultant frequency-domain
GAFs can then be used in standard frequency-

domain aeroelastic analyses. In addition, if time-
domain aeroservoelastic (ASE) analyses are desired,
the frequency-domain GAFs are transforl,led back into
the time domain using rational function approxima-
tion (RFA) techniques. These techniques include,
for example, the well-known Rogers approximation 7
and the Minimum State technique, s The RFA tech-

niques transform frequency-domain GAFs into state-
space (time domain) models amenable for use with
modern control theory and optimization. This over-
all process transforms time-domain information (CFD
results) into the frequency-domain only to have the
frequency-domain information transformed back into
the time domain. Gupta et al 0 and Cowan et al 1°'11

applied a set of inputs to an unsteady CFD code and
used the information to create an ARMA (autoregres-

sive moving average) model that was transformed into
state-space form. Although this technique is applied
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entirely within the time domain, the shape of the in-

puts applied to the CFD code requires tailoring in

order to excite a specific frequency range, resulting in

an iterative process. A more direct method is desired

for this type of analysis.

In structural dynamics, the realization of discrete-

time state-space systems that describe the modal

dynamics of a structure has been enabled by the

development of algorithms such as the Eigensystem

Realization Algorithm (ERA) 12 and the Observer

Kalman Identification (OKID) 13 Algorithm. These

algorithms perform state-space realizations by us-

ing the Markov parameters (discrete-time pulse re-

sponses) of the systems of interest. These algo-

rithms have been combined into one package known as

the System/Observer/Controller Identification Tool-

box (SOCIT) J'4 developed at NASA Langley Research

Center. The present research is the first application

of these techniques to the development of state-space

models of linearized unsteady aerodynamic systems

based on the modal pulse responses of a nonlinear

(CFD) aeroelastic system.
The method presented in this paper provides a new

approach that bypasses the need for generating CFD-
based, frequency-domain GAFs by directly trans-

forming the CFD-based, time-domain modal pulse
responses into discrete-time unsteady aerodynamic

state-space models. These state-space models can then

be used for computing the aeroelastic/aerodynamic

response of the vehicle due to arbitrary motions for

ASE analyses, including time-domain flutter analyses,

simulations, and control-law design. The goal of this

paper is to demonstrate the applicability of the SOCIT

algorithm to the development of state-space models of

unsteady aerodynamic systems using CFD-based pulse

responses.
This paper begins with a brief outline of the overall

process, followed by a description of the ERA algo-

rithm (contained within the SOCIT) and a description
of the CFD-based pulse response technique. Details re-

garding the computational model of the AGARD 445.6

Aeroelastic Wing are presented including some results

from previous research to provide the reader with an

adequate background for the present study. Results

are presented for state-space models generated directly

from CFD-based pulse responses, including an assess-
ment of the accuracy of the technique.

Description of Methods

Process Outline

An outline of the process that tranforms CFD-based

pulse responses into state-space models is as follows:

1. Implementation of pulse (or step) response tech-
nique into aeroelastic CFD code;

2. Computation of pulse (or step) responses for each
mode of an aeroelastic system using the aeroelastic

CFD code;
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3. Pulse (or step) responses generated in Step 2 are

the Markov parameters used by the SOCIT algorithm;

if step responses are used, then the derivative of the

step responses (which are pulse responses) need to be

computed prior to implementation in the SOCIT al-

gorithm;

4. Evaluation/validation of the state-space models

generated using SOCIT; this involves a comparison of
the frequency content of the original CFD-based pulse

responses (Step 2) with the frequency content of the

state-space models;

Steps 1 and 2 are described in greater detail in the
references that address Volterra-based Reduced-Order

Models (ROMs) such as Refs. 1-5. The basic premise
of Volterra-based ROMs is the extraction of linear

and nonlinear kernel functions that capture the input-

output functional relationship between, for example,

unsteady motion of a wing (input) and the resultant

loads created by that motion (output). For Volterra-

based ROMs, these kernel functions are linearized and

nonlinear impulse response functions. When applied

to a discrete-time system such as a CFD code, these

impulse response functions are referred to as pulse

response functions or, simply, pulse responses. Addi-
tional details can be found in the stated references. For

completeness, however, the relevant aspects of Step 2

are discussed in the following section.

CFD-Based Discrete Unit Pulse Response

Technique

Considering an aeroelastic system as the coupling of

an unsteady aerodynamic system (CFD code, in this

case) and a structural system (Figure 1), the present
study focuses strictly on the unsteady aerodynamic

model. A standard technique for computing linearized

generalized aerodynamic forces (GAFs) for an aeroe-

lastic system with n modes using a CFD code is the

application of a Greens function (influence function)

approach. Using the CFD code, each mode is individ-
ually excited to obtain the response of all the modes to

this excitation. This process is applied to all n modes,

resulting in an n by n "matrix" of responses. The term

"matrix" is in quotes to indicate that the responses

obtained using this method are usually time-domain
functions rather than the constants that usually pop-

ulate a standard matrix.

This technique is a linearization by virtue of the fact

that, in a computational aeroelastic analysis, the in-

put to the nonlinear flow solver is the total physical

deformation of the wing consisting of the summed to-

tal of all the modes of interest. By applying a separate

excitation to each mode through the nonlinear flow

solver, the total nonlinear aeroelastic response is being

approximated by a linear superposition of its individ-

ual responses. For a linear flow solver, this approach

would be exact. In this case, because the flow solver is

nonlinear, this approach is a linearized approximation.
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Fig. 1 Schematic of identification of generalized
aerodynamic forces (GAFs).

Consistent with this assumption, this approximation

is valid only for small input amplitudes. This is not

necessarily a drawback as, quite often, the linearized

dynamic aeroelastic response about a nonlinear steady

(or static aeroelastic) condition is a reasonable repre-

sentation of the system under investigation.

There are three types of modal excitation inputs

that are typically used when implementing this tech-

nique. The first is a brute-force approach based on the

input of sine waves of individual frequencies. The in-

dividual modal responses to these inputs for n modes

and r frequencies requires n times r separate code eval-

uations. In addition, the time length required for

each one of these evaluations can be quite large (i.e.,
computationally expensive) in order to get an ade-

quate number of cycles for accurate post-processing,

especially for the lower frequencies. This approach is

clearly the least efficient.

A second, more elegant approach, involves the use

of an exponential (Gaussian-shaped) pulse. 6 The ex-

ponential pulse can be shaped to excite a particular

range of frequencies with a broad exponential pulse

exciting primarily low frequency modes and a sharper

exponential pulse exciting primarily higher frequency

modes. Because an exponential pulse excites a pre-

selected frequency range, only one code evaluation is

required per mode. This is a significant computational

savings compared to the brute force approach, but

shape optimization of the exponential pulse is required

when targeting a particular frequency range. In addi-
tion, for low frequencies, the exponential pulse needs

to be wide, resulting in long computational times.

A third, recently-developed, approach consists of re-

placing the exponential pulse input with a unit pulse

(discrete-time equivalent of unit impulse) or step input
consistent with the Volterra-based ROM method. 2-5

Since the unit pulse/step input excites the entire fre-

quency range of a system, no shape optimization is

needed. In addition, due to tile short time length

of these responses, each code evaluation is signifi-

cantly shorter in computational length (and cost) than

the code evaluations for the exponential pulse input.

Raveh et al 5 applied this technique successfully to the

AGARD 445.6 Aeroelastic Wing using an aeroelastic

CFD code. The shapes of the first four structural

modes for this wing are presented in Figure 2.

D

Fig. 2 AGARD 445.6 wing first four elastic mode
shapes mapped into the CFD surface grids

Consistent with the linearization process described

above and in order to reduce the possibility of nu-

merical problems with aeroelastically-deforming grids,

small amplitudes are used with this technique.

For the CFD computations, the flow field around

the wing was evaluated on a C-H type grid, with 193,

points in the chordwise direction along the wing and

its wake, 65 grid points in the spanwise direction, and

41 grid points along the normal direction. The flow

was analyzed using the EZNSS (Elastic Zonal Navier-

Stokes Solver) Euler/Navier-Stokes code. is This code

provides a choice between two implicit algorithms,
the Beam and Warming algorithm 15 or the partially

flux-vector splitting algorithm of Steger et al. is Grid

generation and inter-grid connectivity are handled us-
ing the Chimera approach) r The code was enhanced

with an elastic capability to compute trimmed maneu-
vers of elastic aircraft.ls

The process of mode-by-mode excitation using var-
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ious types of inputs, discussed previously, was per-

formed for this wing using four elastic modes at several

Mach numbers. The mode-by-mode excitation tech-

nique provides the unsteady aerodynamic response in
all four modes due to an excitation of one of the modes.

In this fashion, the matrix of four-by-four response

functions is developed, resulting in a total of sixteen

response functions.

Two sets of excitation inputs were used by Raveh

et al: 5 the discrete-time unit pulse input and the

discrete-time unit step input. Only one of these inputs

is needed for computing the necessary responses, but

Raveh et al 5 applied both a pulse and a step input for

comparisons regarding numerical sensitivity of each in-

put. The rapid convergence of the responses (to either

a pulse or a step) resulted in computationally-efficient
code evaluations. In addition, the mode-by-mode ex-

citation process required a total of only four code

evaluations (one per mode for pulse, one per mode for

step). These sixteen pulse (or step) responses define
the linearized Volterra-based ROMs for this configu-

ration at this Mach number.

Several CFD solutions due to various sinusoidal ex-

citations of a given mode were generated, as in the

brute force approach described above, for the purpose

of comparison with the Volterra-based ROM approach.

Figure 3 presents the GAFs for all four modes due to

a 5 Hz frequency excitation of the first mode, compar-

ing the direct CFD solutions with the results obtained

via convolution of the modal step responses with a 5

Hz sinusoid. As can be seen, the comparison is excel-

lent for most of the responses with a slight discrepancy

for the responses of the fourth mode. The full CFD

solution, consisting of 8000 iterations required approx-

imately 24 hours on an SGI Origin 2000 computer with

4 CPUs. By comparison, the Volterra-based ROM

response required about a minute of computing time

using digital convolution. Even including the cost of

computing the modal step (or pulse) responses, the

computational cost savings are significant. More im-

portantly, the same step (or pulse) functions can now

be used to predict the response of the unsteady aero-

dynamic system to any arbitrary input of arbitrary

length. As additional examples, Figure 4 presents the
resultant GAFs due to 40 and 80 Hz sinusoidal exci-

tations of the first mode, comparing the direct CFD
solutions with the results obtained via convolution of

the modal step responses with the corresponding 40

and 80 Hz sinusoids. Comparisons are excellent, ver-

ifying the capability of the step responses to predict
the response to arbitrary inputs. Similar results were

obtained using the pulse responses as well.

In order to compare with published frequency-

domain GAFs for this configuration, Raveh et al s gen-

erated the frequency-domain GAFs for the AGARD

445.6 wing by performing convolutions of the corre-

sponding modal pulse/step responses with various ire-

Mode 1 Mode2
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Fig. 3 Comparison of modal responses to a 5 Hz
sinusoidal input for direct (CFD) and convolved

(Volterra-based ROM) methods.
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Fig. 4 Comparison of modal responses to a 40 Hz
and an 80 Hz sinusoidal input for direct (CFD) and

convolved (Volterra-based ROM) methods.

quencies of interest. Another approach, _ discussed

in Ref. 3, is to perform a Fourier transform of the

pulse responses directly, resulting in the desired full

frequency spectrum without the need for multiple con-
volutions. In the interest of brevity, those results

will not be repeated here as they are discussed in

detail in Ref. 5. However, the pulse responses com-

puted for that study will be reviewed and discussed

since these are the principal components used by

the System�Observer�Controller Identification Tool-

box (SOCIT) algorithms.

System/Observer/Controller Identification
Toolbox (SOCIT)

The primary algorithm within the SOCIT group

of algorithms used for the present system realization
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is known as the Eigensystem Realization Algorithm

(ERA). A brief summary of the basis of this algorithm
follows.

A finite dimensional, discrete-time, linear, time-

invariant dynamical system has the state-variable

equations

1000

0

"i -I000

e3
Mode 2

(a)

0.02 0.04 0.06

lOOO

5oo

o

-so0

-lOOO

-15oo

e2

3

(b)

0.02 0.04 0.06

x(k + 1) = Ax(k) + Bu(k)

y(k) =Cx(k)+Du(k)

(1)

(2)

where x is an n-dimensional state vector, u an m-

dimensional control input, and y a p-dimensional out-

put or measurement vector with k being the discrete

time index. The transition matrix, A, characterizes

the dynamics of the system. The goal of system real-

ization is to generate constant matrices (A, B, C) such

that the output responses of a given system due to a

particular set of inputs is reproduced by the discrete-

time state-space system described above.

For the system of Eqs. (1) and (2), the time-domain

values of the systems pulse response (discrete-time

equivalent of impulse response) are also known as the

Markov parameters and are defined as

Y(k) = CAk-IB (3)

with B an n by m matrix and C a p by n ma-

trix. System realization techniques provide the con-

stant matrices A, B, and C using Y(k). The ERA

algorithm, 12-14 similar to the Ho-Kalman procedure,

begins by defining the generalized Hankel matrix con-

sisting of the pulse responses (Markov parameters) for

all input/output combinations. The algorithm then

uses the singular value decomposition (SVD) to com-

pute the A, B, and C matrices. Although Eq. (2) does

not contain it, often, the direct feedthrough matrix, D,

is required whenever the initial values of the Markov

parameters are nonzero.

The ERA algorithm has been used successfully for

the identification of several experimental structural

dynamic systems. Although the algorithm also has

been used to extract damping and frequency infor-

mation from CFD-generated aeroelastic transients (no

published references), this research represents the first

time that the ERA algorithm is applied to the devel-

opment of unsteady aerodynamic state-space models

using aerodynamic pulse responses (Markov parame-

ters). The ability to generate state-space models of

systems using pulse responses was a primary moti-

vation for the development of aerodynamic pulse re-

sponse functions. 3 Additional details regarding the

ERA algorithm and its numerous applications are dis-

cussed in the references provided.

t000 I
u.. I /,.,.,Mode 3

•[_ _t /_uod_4
_, I /,_._--- _°2

oo,o
(c)

1000

5OO

0

-500

-1000

-1500

_M_e_2 e4

e3

ode I

(d)

0.06 0.02 0.04 0.06
Nondime nsional Time Nondimensional Time

Fig. 5 Pulse responses due to inputs in a) Mode
1, b) Mode2 e) Mode 3, d) Mode 4.

Results

CFD-Based Pulse Responses

The results presented in this study are for a Mach

number of 0.96. The GAF pulse responses due to pulse

inputs in modes 1, 2, 3, and 4, respectively, are pre-

sented in Figure 5. As can be seen, the responses
are well-behaved and exhibit a rapid converge to zero.

It is precisely this rapid convergence to zero that re-

sults in an efficient computation of these functions.

The "discrete" (non-smooth) nature of the responses
is consistent with results obtained by Silva. 3

Inspection of Figure 5 indicates that each one of the

modes has the strongest response to its own excitation,

a physically consistent result. In addition, those modes
that are minimally correlated (i.e., the small response

of mode 3 to mode 1 and the small response of mode 1

to mode 3) can be readily identified as well. Although

not applied in the present study, this feature of time-
domain modal responses may prove useful in modal

truncation and/or modal residualization studies. The
metric used, in the present study, to determine the

quality of an identified state-space system is the accu-

racy to which the state-space system reproduces the

CFD-based pulse responses presented in Figure 5.

32rid-Order State-Space System

The SOCIT algorithms are used to generate

discrete-time unsteady aerodynamic state-space ma-

trices (A, B, C, and D) using the set of modal pulse

responses presented in Figure 5. The first system to

be realized using this data is a 32nd order model. A

discrete-time (z-transform) pole-zero plot of the eigen-

values of this system is presented in Figure 6. For

a discrete-time system, if all the poles of the system

are contained within the complex unit circle, then the

system is stable. This is analogous to a continuous-

time system being stable if all of its poles are on the

left-hand side (roots with negative real parts) of the
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Fig. 6 Pole-zero map for 32nd order aerodynamic
state-space system.

complex plane. As can be seen in Figure 6, the un-

steady aerodynamic system realized is stable, as it

should be, with a dominant cluster of low-frequency,

low-damped roots.

Pulse responses for the 32nd-order state-space

model were generated and compared with those of Fig-

ure 5. The comparison of these responses is presented

as Figure 7, where it can be seen that the approxi-

mations of the sixteen GAFs are identical (to within

plotting accuracy) to the GAFs in Figure 5. However,

in order to thoroughly quantify the growth of error

as the order of the model is reduced, comparisons of

the percent error, for corresponding responses is pre-

sented for a subset of the results. Figure 8 presents

the percent error for the CFD and state-space modal

pulses for the first four modes due to an input in the

first mode. The percent error is quite small, as can

be seen. But for the third mode (due to an input in

the first mode), the percent error is noticeably larger.

Although these are very acceptable values of percent

error, the increased error for the third mode indicates

an increased difficulty of the SOCIT algorithm to accu-

rately capture responses that are small compared with

the rest of the responses. This is related to the level

of correlation between modes and can be interpreted

as a measure of observability/controllability from one
mode to another. This concept needs to be considered

in the future development of these state-space models.

Figure 9 is the magnitude and phase of the fre-

quency response for the CFD and state-space pulses

for the four modes due to an input in the first mode.

As expected, the comparisons for the magnitude are

very good for the first, second, and fourth modes with

a slight discrepancy for the second and fourth mode

results at very low frequencies. The error in the third
mode manifests itself as an error within the 1 to 4 Hz

frequency range. The phase results show good com-

parison for the first, second, and fourth modes with
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Fig. 8 Percent error between CFD and state-space
pulse responses, 32nd order.

noticeable error for the third mode.

Although a 32nd-order state-space model of the un-

steady aerodynamic system is somewhat larger than

might typically be desired, it is nonetheless a signifi-

cant reduction of order when considering the alterna-

tive: the full, three-dimensional Euler CFD computa-

tional model and solution process. In addition, there
is no need to perform any shape optimization of the

pulses as these are computed only once per mode. The

SOCIT algorithm computes state-space models very

quickly (within seconds) on a workstation with no it-
erative process involved unless the user is interested in

evaluating various model orders.

15th-Order State-Space System

Using the SOCIT algorithm and selecting the more
dominant components of the 32nd-order state-space

system, a 15th-order state-space system was gener-

ated. The z-plane pole-zero map for this system is
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space pulse responses 15th order.

presented in Figure 10 with stability of the approx-

imated unsteady aerodynamic system preserved, as

expected. More importantly, inspection of z-plane

pole-zero maps are helpful in identifying the dominant
roots of a system as the order of an approximate sys-

tem is varied. Figure 11 presents comparisons for

the CFD and state-space pulse responses for the 15th-
order model.

The comparisons are very good but error analysis for

the first four modes due to an input in the first mode

indicates an increase in the error, in particular for the

third modal response as shown in Figure 12. It is

interesting to note that if the correlation between two
modes is low, then the response of one of the modes

with respect to the other has a relatively smaller am-

plitude in comparison with the other modal responses.
This smaller amplitude response, in turn, results in an

increase in the error between the CFD pulse response

and the state-space model.

Finally, Figure 13 presents the comparison of mag-
nitude and phase for the frequency responses for the

CFD pulse responses and the 15th-order state-space

model. Compared with the 32nd-order model, an in-
crease in the error for both magnitude and phase, in

particular for the third mode, in the low frequency

range is evident with good comparison for the re-
mainder of the frequency range. However, there does

appear to be an improvement in the approximation

of the magnitude for the third mode over a range of

low frequencies. However, the phase approximation for
the third mode has a noticeable increase in the error.

Additional research, currently underway, is needed to

fully understand the impact of these modeling errors

on aeroelastic and aeroservoelastic analyses.

Concluding Remarks

This study presented the direct, time-domain re-
alization of linearized, unsteady aerodynamic state-
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Fig. 13 Comparison of modal frequency responses
due to input in mode 1, 15th order state-space
model.

space models using CFD-generated pulse responses.

By performing this realization entirely in the time do-
main, the traditional and inefficient approach of trans-

forming time-domain GAFs into the frequency domain

only to convert these back into the time domain via ra-
tional function approximations was avoided.

The results presented were for the AGARD 445.6

Aeroelastic Wing using pulse responses that were com-

puted for this wing using the EZNSS Euler/Navier-
Stokes flow solver with aeroelastic capability. The

pulses were computed for a transonic Mach number
of 0.96 and a mode-by-mode excitation process re-
sulted in a linearized set of GAF influence functions.

The System/Observer/Controller Identification Tool-

box (SOCIT) was then used to generate four-input,
four-output discrete-time state-space models of vari-

ous orders that accurately capture the dynamics of

the CFD-generated unsteady aerodynamic responses.

A 32nd-order state-space model was shown to capture

the frequency content of the pulse responses with neg-

ligible errors. Further model-order reduction resulted
in a 15th-order state-space model with slight increases

in the error for low frequencies but with excellent cor-

relation for the higher frequency range.

The results provided some insights into the appli-

cability and efficiency of the technique. It was no-

ticed that if a given mode does not strongly excite

another mode, then that portion of the identification

process results in larger errors. This appears to be re-

lated to an observable/controllable aspect of the modal

system but additional research is needed to fully un-
derstand this effect. Future research will address the

inclusion of these state-space models into an aeroelas-

tic/aeroservoelastic analysis to better understand the

impact of these mathematical approximations. Com-

parisons of these systems with the more traditional

rational function approximations will be performed as

well. Finally, the results presented provide a first step

towards the development of bilinear state-space ma-
trices that will incorporate tile effects of the nonlinear

(higher-order) kernels.
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