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Abstract F_
g

Nonstationary time-frequency analysis is used for identifica- j
tion and classification of aeroelastic and aeroservoelastic dy- i, k, l
namics. Time-frequency multiscale wavelet processing gen- rn, n
erates discrete energy density distributions. The distribu- P,q
tions are processed using the singular value decomposition

r, 8, t
(SVD). Discrete density functions derived from the SVD gen- R
erate moments that detect the principal features in the data.
The SVD standard basis vectors are applied and then corn- SRA
pared with a transformed-SVD, or TSVD, which reduces the SVD

number of features into more compact energy density concen- TSVD

trations. Finally, from the feature extraction, wavelet-based W a

modal parameter estimation is applied.

The primary objective is the automation of time-frequency

analysis with modal system identifcation. The contribution

is a more general approach in which distinct analysis tools are

merged into a unified procedure for linear and nonlinear data

analysis. This method is first applied to aeroelastic pitch-

plunge wing section models. Instability is detected in the

linear system, and nonlinear dynamics are observed from the

time-frequency map and parameter estimates of the nonlinear

system. Aeroelastic and aeroservoelastie flight data from the

DAST (drone for aerodynamic and structural testing) and

F18 aircraft are also investigated and comparisons made be-

tween the SVD and TSVD results. Input-output data is used

to show that this process is an efficient and reliable tool for

automated on-line analysis.

Nomenclature

a wavelet scale

DAST drone for aerodynamic and
structural testing

DWT discrete wavelet transform
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time-frequency feature descriptor
wavelet basis function

imaginary unit
integer indices
number of time and frequency points
moment orders

integer indices
rank of time-frequency map
Systems Research Aircraft
singular value decomposition
transformed-SVD
continuous wavelet transform

wavelet translation time

radian frequency
wavelet peak frequency
complex conjugate transpose
result of moment calculation

Introduction

Many aerospace disciplines face the task of analyzing

nonstationary signals in which the frequency content
changes with time. Most physical phenomena from
acoustics, aerodynamics, thermodynamics, structural
dynamics, propulsion, and controls are naturally time-
varying events with frequency variations, transients, and
complex harmonic interactions. Requirements for adap-
tive nonlinear procedures are now becoming more essen-
tial components of modern data analysis of aerospace
systems in concordance with numerous other engineer-
ing and scientific applications.

A fundamental objective in data analysis of physical sys-
tems is to obtain accurate representation of the dynamics
for a particular analysis. Optimal and relevant represen-
tations are desired for efficiency and consistency between
the data decomposition and the physical system [4, 28, 31].
Methods for achieving this goal are often based on en-
tropy or other statistical measures for best-basis decom-
positions and optimal performance [22,42}.



Parsimonious representation of data has many such im-

plications in denoising, compression, information re-

trieval, detection, identification, classification, and pat-

tern recognition [sl. This paper emphasizes applications

in dynamics analysis of aeroelastic and aeroservoelastic

systems from test data. Dominant and important fea-

tures in the data are extracted to provide automated

information retrieval for system identification. The data

analysis becomes an integral part of the system identifi-

cation procedure for tracking modal stability estimates

in a nonstationary setting.

Time-frequency analysis provides a powerful tool for the
analysis of nonstationaxy signals [18]. Applications have

been demonstrated in music signal analysis [34], machin-

ery diagnosis [2_1, damage detection [40], seismic moni-
toring {19], medical signal analysis [41], and acoustic and

speech processing [a2]. Transfer functions and modal

parameter estimates derived from time-frequency rep-

resentations have been applied to estimate state-space
aeroservoelastic models [2, 3, xo].

Time-frequency structure is revealed by quantifying the

distribution of signal energy as a joint function of time

and frequency. Localization of the energy density de-

scribes energy density concentrations at specific loca-

tions in the time-frequency plane. Dominant and im-
portant concentrations need to be accurately discrimi-

nated to provide descriptors relating to the location in
time, time duration, frequency location, and local band-

width of principal energy density {11, 17, 43]. Minimizing

the number of these descriptors while preserving salient

information from the energy distribution for modal esti-

mation is desired for efficient dynamics analysis.

Many approaches have been proposed to extract a sig-

nal from noise in the time-frequency representation (33].

One approach performs a masking operation on the

time-frequency map, then separates out desirable fea-

tures [2, lo]. Often the regions of the signal are well-

concentrated relative to the widely-distributed noise so

this method works well in general. However, it requires

user intervention unless regions are well-defined apriori.

For this reason, an automated filtering procedure is pro-

posed using the singular value decomposition (SVD) of

the time-frequency data [29, 4a].

The singular value decomposition is ubiquitous in the sig-
nal processing, identification, and control fields as a tool

for rank-revealing algorithms, model reduction, subspace
detection, and information retrieval [1,201. The SVD is

applied in this paper to derive density functions for gen-

erating moments {14] from the joint energy density time-

frequency distribution. Moments relate to the principal

signatures of the nonstationary signals [6, 27]. In the con-

text of subspace estimation and information retrieval it
is a data reduction for model identification.

The SVD representation tends to be sparse relative to

an entire time-frequency map. The orthonormality of

the SVD singular vectors for density extraction allows

independent decomposition of time and frequency con-

tent in the data, thereby avoiding joint moment consid-
erations. A new transformation of the SVD basis vec-

tors, called the transformed-SVD (TSVD) [15], is also

used to produce more concentrated descriptions of en-

ergy density for multicomponent signals containing sim-

ilar components distributed in the time-frequency plane.

For separation of components requiring very fine time or

frequency resolution, the TSVD may be advantageous.

Multiresolution wavelet signal processing has shown

promise for studying time-frequency characteristics of

signals by decomposing data into cells with properties
of scale and frequency concentrated in time. These cells

form a type of tiling and consist of Gaussian-windowed

sinusoid basis functions (atoms), also known as Morlet

wavelets, creating an atomic multiscale decomposition
in a filter bank structure [44]. Competing requirements

of time and frequency resolution, subject to the uncer-

tainty principle [2s}, is accomplished with a combination

of dyadic multiscale decomposition, compact orthogonal-
ity, and harmonic wavelet properties [23, 24].

This paper augments time-frequency multiscale wavelet

processing with SVD filtering and wavelet-based modal

parameter estimation. The contribution is a more gen-

eral approach in which distinct analysis tools are merged

into a unified procedure:

* multiresolution analysis with wavelet decomposi-

tion at multiple scales

, SVD techniques for information retrieval

• feature extraction from moments of densities

• modal parameter estimation from the complex
Morlet basis functions

This automated nonlinear filtering procedure is first

applied to linear and nonlinear two degree-of-freedom

pitch-plunge wing section testbed models. Nonlinear dy-

namics are detected from the time-frequency map of the

nonlinear system. Aeroelastic dynamics from the experi-

mental flutter flight test drone, DAST (drone for aerody-

namic and structural testing), is used to show how the in-

put time-frequency signature can be used for automating
the input-output data analysis. Data from a flutter en-

counter shows the capability for detecting an approach-

ing instability from actual flight test data. Aeroservoe-

lastic flight data from the F18 Systems Research Air-

craft (SRA) is also investigated and comparisons made
between the SVD and TSVD results.



Wavelet-SVD Method

This section describes the method to construct time-

frequency signal representations from a Morlet wavelet

decomposition, then to use this energy distribution map

to extract principal features from the SVD. Density func-

tions derived from the SVD singular vectors generate

spectral and temporal moments relating to features of

the original nonstationary time series process. These

moments are used for subsequent wavelet-based modal

parameter estimation and system identification.

Time-Frequency Wavelet Decomposition

Much progress has been made in the development of
time-frequency distributions [5]. For a time-frequency

distribution Q to be interpreted as a joint time-frequency

energy density, it must be nonnegative and satisfy the

correct time and frequency marginals for all time and

frequency

Q(t,f)dt = IX(f)l 2 Q(t,f)df = [x(t)l 2

where X(f) = f___x(t)exp(-j2rcft)dt is the Fourier

transform of the signal x(t). Marginals Ix(t)[ 2 and

[X(f)[ 2 are the energy densities of time and frequency

which are commonly called the instantaneous power and

the energy density spectrum, respectively. Algorithms

for constructing proper positive distributions satisfying

these properties have recently been developed [16, 37].

The joint energy density specifies concentrations of en-

ergy in time and frequency.

Feature extraction from joint distributions proceeds from

the joint time-frequency moments of signal x (t) (assumed
to have unit energy) given by

< tPfq > = f_-¢_ f:_o_ tPfqQ(t, f)dtdf

p,q = 1,2,3,... (1)

which defines the temporal and spectral moments

< tp > = tPlx(t)12dt
oo

/?< fq > = fqIx(f)12df. (2)
oo

In the present application, the time-frequency distribu-

tion, Q(t, f), is constructed from a multiscale wavelet
transform [3]. Therefore, the distribution is not the strict

form of a joint energy density since the requirement on

marginals is not enforced. The wavelet transform tends
to spread the energy over time and frequency, yet the

wavelet decomposition is essential for identification of

modal dynamics as will be shown. This energy density

approximation is therefore relevant for this problem.

Multiscale transforms are used to exploit multiresolution

analysis, or redundant representations of a signal on mul-

tiple frequency bands. Nonorthonormal Morlet wavelets

are approximated with harmonic-like discretizations on

wavelet scales corresponding to subharmonics represent-

ing overlapping frequency bands per octave (where each

octave is a doubling of resolution, or a scale twice as

small). These wavelets form a nonorthogonal redundant
basis for the signal space [as]. Adjustment to satisfy the

competing requirements of time and frequency resolution

is accomplished with a combination of compact orthog-

onal and harmonic wavelet properties [23, 241.

A discrete wavelet transform (DWT) is derived from

the wavelet basis to get a multiresolution analysis of

the sampled continuous Morlet transform. Fast algo-

rithms axe realized with a dyadic multiscale decomposi-

tion. Therefore, the DWT is implemented as a dyadic

filter bank covering a pre-defined range of frequencies

with corresponding number of frequency bands per oc-

tave (voices/octave) [44], Voices can be viewed as frac-

tional dilations of a single wavelet at a particular scale.

Approximate orthogonality is imposed in the multires-

olution representation of the Morlet filters. Multiscale

Morlet DWTs provide efficient and flexible means for

analysis of nonstationary data with adjustable frequency
resolution versus time localization.

The continuous wavelet transform of signal x(t) over the

time-scale (% a) plane is represented as

1 / t-r--g-%(r,a) = _ x(t)g* ( )at

where scale parameter a is proportional to the duration

and inversely proportional to the peak frequency wo of

the complex Morlet wavelet

1 f2 .

g(t) = e

The spectrum of a dilated and translated Morlet wavelet

G_,r(w) = e-(a_-_°)2eJ_r

reaches a maximum value at a = _-_. The continuous
oJ

Morlet basis functions are discretized for a DWT filter

bank decomposition. Signal power is preserved by en-

forcing the following identity with the DWT (Cw is an

admissibility constant)

Ix(t)12dt = dr [_(r,a),2daW- I
a

from which the instantaneous power is expressed in terms

of the wavelet time variable, r, as

This time-scale decomposition of data is often called a

scalogram, or the energy density ]Wg (r, a)] 2 of the signal

over the (r, a) plane [2s]



As anexampleof a bankof discretizedfinite impulse
responseMorletfilters,figure1showsanarrayofwavelet
filtersforanumberofvoicesperoctave.Thesefiltersare
adjustedontheplot to lineupthepeakmagnitudesat
thesamelocationsin time. Centerfrequencyincreases
withvoicenumber,andthefiltersarenormalizedtohave
thesamemagnitudein thefrequencydomainat their
respectivepeakfrequencies.

FIR Discrete Wavelet Filters
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Figure 1: Wavelet filters for a number of voices per octave.

Morlet wavelets are being used to create the power distri-

bution and to estimate the modal parameters. Therefore,

an implicit filtering process is being performed indepen-

dent of the explicit procedure of feature extraction and

noise removal using the SVD and TSVD. The wavelet ba-

sis representation of the signal is a projection subspace

from which modal parameters are derived.

SVD Filtering

Numerous wavelet thresholding techniques exist based

on statistical measures of significance for denoising.

These include entropy measures from information and

communication theory. They are generally based on reg-

ularity, smoothness, or a low-pass character of the un-

derlying signal relative to noise, and the compromise is

between goodness-of-fit and smoothness. Because this

approach is somewhat subjective by nature, a more de-

terministic approach is preferable. In aeroelasticity and
aeroservoelasticity, the statistical criteria are generally

not applicable since the dynamics can be of significant

bandwidth and include high-frequency transients.

Assume the time-frequency distribution is a positive dis-

tribution in the form of a scalogram, spectrogram, or

any other representation such as the Wigner-Ville dis-

tribution. In the present application the basis func-

tions are the discretized complex Morlet wavelets, so

the scalogram magnitude is appropriate. Discretized

wavelets form the multiresolution analysis which can be

exploited at diffferent scales for information extraction

by the SVD.

The SVD spectrum encodes the features of time-

bandwidth product, frequency-time dependence, and

number and location of signal components. It is invari-

ant to shifts of the signal in time or frequency [29, 43].
While this SVD method is described for the entire time-

frequency distribution, it could also be used to analyze

the different scales independently or jointly.

Consider the distribution Q as an m-by-n discrete matrix

A such that A(k,1) = Q(tk,fl), where k = 1,2,...,m

and I = 1,2,... ,n for m time points and n discrete fre-

quencies. This matrix can always be decomposed with

the SVD into a set of basis matrices Ai with correspond-

ing singular values, or weights, ai

R

A = _ aiAi; Ai = uiv_. (3)
i=1

R is the rank, the set of constant weights ai are ordered

such that al _> a: _ ... _> an > 0, and each Ai (or ai)

corresponds to singular vectors ui and vi as shown. Time

and frequency aspects of the A, are independent since

u_ and vi are orthonormal. The maximum value of the

rank R can on!y be as large as the minimum of the row-

column (m-n) dimension of A. The objective is to get a

reduced set of energy concentrations defined by the Ai

to generate time-frequency features based on the relative

magnitudes of the associated ai. Note that the rank R

can never exceed the number of discrete frequencies n,

i.e., R < n, since there will always be more time points

than discrete frequencies.

The matrix A is used with the weights to extract high-

lights from the wavelet map by characterizing the Ai

with the joint distribution of equation 1. For each ai, a

corresponding region in the distribution is desired (Ai)

which is weighted in value by the magnitude of ai re-
lating to its respective information content. From the

original joint moments of equation 1, the SVD separates

the distribution into R primary moments. This decom-

position correlates directly with independent time and

spectral moments expressed in equation 2 through inde-

pendent singular vectors ui and vi in equation 3, so joint
moments need not be considered [141.

A unit-energy positive distribution A matrix does not

guarantee that each A_ will be element-by-element pos-

itive, which is necessary for a proper density function.

Matrices ,4_ are constructed from the Ai by squaring

each matrix element to create proper densities for mo-
ment calculations. Each Ai is formed from the element-

by-element square of the associated singular vectors ui

and vi, and the corresponding squared vectors are de-

noted by fii and vi. The new basis matrices are

_,_ =_ > 0.

Density functions fii and vi compose proper density func-
tions Ai by being positive and orthonormal, and by be-



ingindependent,theyarealsothetimeandfrequency
marginalsof therespective/i.i. Moments of the den-

sity functions constructed from the singular time and

frequency vectors are used to formulate features. Tem-

poral and spectral moments corresponding to equation 2
are calculated as

171 n

>,= < >,= F_,(f,)%(l).< tp

k=l 1=1

First moments 09 = q = 1) estimate time-correlated in-

stantaneous frequency, and the second moments (p =

q = 2) determine the time duration and instantaneous
bandwidth for each feature in the distribution. A feature

descriptor Fi is therefore defined by

= -_-_l,<t>i,<f>i, <t2>i-_, <f2>i-j_ .

Each feature descriptor Fi for each Ai is a 5-element vec-

tor which includes the normalized singular value weight
b_, time location ti, instantaneous frequency ]i, time

duration ii, and instantaneous bandwidth ]i, of the fea-

ture. Features are hi-scaled rectangle regions in the time-

frequency map. They are used as windows on the original

scalograrn to extract regions for further analysis.

The number of desired features should preferably be as

small as possible while preserving relevant dynamics.

The separation property of the SVD helps maintain im-

portant information with a minimal number of features.

Generalizing the same process to higher-order moments

gives instantaneous skew and kurtosis (6J which may re-

veal data anomalies, asymmetries, and nonlinearity.
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Simulated Four Sine-Burst Signal
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Figure 2: Four sine-bursts of equal amplitude.

A simple example of a simulated analysis with SVD filter-

ing uses the signal in figure 2. There are four sine-bursts

at 15, 10, 5, and 25Hz, respectively. A wavelet decompo-

sition and SVD filtering procedure is performed on this

signal to produce the plots in figure 3. The top plot rep-

resents an energy density distribution contour (plotted

in two dimensions) of the original wavelet coefficients.

The middle plot represents the sum of all rectangular

features Fi determined from the SVD filter. The bot-

tom plot accentuates the middle plot using a log-scale

(dB) for the out-of-plane contour dimension. A log-scale
region will cover at least as much as the linear scale con-

tour of the middle plot, and all contours are normalized

to their maximum magnitude. The middle and bottom

plots are identical except for the contour scale.

Time-Frequency EnergyDensity Distributions
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Figure 3: Contour plots from original wavelet decom-
position (top), SVD-filtered (middle), and SVD-filtered
(bottom, log-scale) scalograms of four sine-burst signal.

Note the more compact representation from SVD filter-

ing (middle plot) compared to the original decomposi-

tion. For an automated analysis, we choose the order
of the distribution to be the full rank R. Of the to-

tal 300,000 elements in the distribution, the rank in this

case reduces the number of features to R = 300, resulting
in a dramatic data reduction for model identification.

Transformed-SVD

A potential problem with the standard SVD filter stems

from the information contained in the individual Ai

terms of the decomposition. The principal information

is ordered according to values of ai, but often there are

multiple time-frequency regions with similar energy den-

sity magnitudes which will contribute equally to each

Ai. Moments calculated from the singular time and fre-

quency vectors contain simultaneous contributions from

distributed regions since the vectors span the entire
scalogram. Information is not concentrated because the

SVD cannot separate energy density concentration in the
individual Ai so the features consist of linear combina-

tions of many singular vectors.



Featureextractionwouldbenefitfrommorelocalizedsig-
nalcontentineachAi for two reasons. First, for a fixed

number of features, fewer terms in the SVD would en-

hance specific localized content. Second, for a fixed num-

ber of terms, higher fidelity features would be produced.

Therefore, what is desired is a rotation of the singular
basis to minimize the number of basis vectors to inter-

pret each density concentration. Ideally, each Ai term

should relate to a single localized concentration.

This problem can be posed as follows: find an orthonor-

mal transformation for the u_ and vi vectors such that

the means are maximized in the new basis. The attempt

is to concentrate the densities into smallest regions in the

plane. For unknown transformation C, and orthonormal-

ity condition CC* = C*C = I, the means are expressed
in terms of the cik coefficients. Orthonormality implies

rn 2
that _r=l Yi (r) = 1, so the means of the transformed

vectors Yi =- _-,k Ci,kUk are the first moments < yr >

given by

< yr >,= rY, (r)
m R

= Er=l r Es-----I cs,i_s(r) E_R.=I ct,/_t (r)

= c;Mci

In this quadratic form, the unique solution for maximiz-

ing the means of the Yi vectors is achieved when the ci are

the eigenvectors of the M matrix. Similarly, an orthonor-

mal matrix D is found independently for the vectors vi by

maximizing the means of vectors xi = _k di,kvk. Com-

pared to the standard SVD, the transformed-SVD is as
follows [151

A = USV*; U = YC*; V = XD*

and the proper substitutions made to get the TSVD

g = (YC*)S(XD*)* = Y(C*SD)X* = YZX*.

Now that instead of just a sequence of singular values a_
from the S matrix of the SVD, there exists a full singular

matrix Z = C*SD of terms to weight the new singular
vectors X and Y in the TSVD. These terms have the

same function as the terms in S, but instead of corre-

spondence to linear combinations of concentrations in

ui and vi, the Z-elements, zik, correlate to transformed

singular vectors y, and xk. Obviously there are signif-
icantly more (m-by-n) of the zik than the ai (R < n).

The singular weights in Z are ordered and the new TSVD

decomposition for the first R of the ik-components takes

the form (where now B _ A, compare to equation 3)

R

B = E zikB,; Bi = yix*k. (4)
i=1

Returning to the signal from figure 2, a transformed-

SVD analysis is performed and plotted in figure 4 for
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Figure 4: Contour plots from original wavelet decom-
position (top), TSVD-filtered (middle), and TSVD-filtered
(bottom, log-scale) scalograms of four sine-burst signal.

comparison with the SVD result in figure 3. The plots

in figure 4 correspond to those in figure 3, so the top

plot is identical. The middle TSVD contour plot in fig-
ure 4 shows an enhanced version of the plot in figure 3

by extension of the time-range estimate of three of the
sine-bursts. Note the longer feature window based on

the computed Fi compared to the original distribution
contour. The burst at 5Hz (7 sec) is not distinguishable

in the TSVD middle plot, but in the remarkably similar

bottom log-scale plot it reappears. This burst at 5Hz

has the least total energy content.

Observe that in the bottom two plots, the TSVD has re-

markably more detail with the same number (R = 300)

of singular vectors. Information extraction is devoted to

the regions of the sine-bursts, and not spread over unnec-
essary areas of the time-frequency plane as in the case of

the SVD in the bottom plot of figure 3. The more com-

pact representation from the TSVD will improve further

analysis by concentrating on the important regions of
interest for modal identification.

It was already shown in a previous study [1_] how the

TSVD separates and improves the quality of the time-
frequency features with a small set of descriptors for clas-

sification purposes. The present application for flight

data analysis emphasizes the filtering aspects of the

TSVD versus the SVD. The purpose is not to find a min-

imum number of descriptors, but to get the highest qual-

ity filtered output for a fixed number of features deter-

mined by the rank, R, of the discretized time-frequency

map. This will allow an automated procedure for pre-

processing with a time-frequency filter to augment modal

parameter estimation and system identification.



SVDapproachesareattractivefroma systemsanalysis
perspective.Prevalencein modelreduction,subspace
identification,andoptimalfilteringpointto its signif-
icanceasa tool for informationretrieval.Someof its
powerliesin thegeometryof the singular vectors as a
distance measure between subspaces [7}. Also, for on-line

implementations, popular SVD recursive procedures al-

low for adaptive signal processing by using fast updating-

downdating schemes [l, 9]. The idea is to perform the

wavelet decompositions, update the time-varying distri-

butions, and apply on-line procedures for the analysis.

Parametric Modal Estimation

Modal parameters can be estimated with wavelets by

analysis of the system impulse response [3, 36] (see ap-

pendix). The DWT of a signal using the complex Morlet

wavelet is a complex-valued matrix whose modulus and

phase are related to impulse response parameters. Linear

phase variation of the DWT estimates the instantaneous

frequency. Wavelet modulus decay is used similarly to

derive decay rate for corresponding modal damping es-

timates assuming the instantaneous frequencies corre-

spond to modal dynamics. In the current application,

this procedure is applied at every time point assuming

at each instant that the response is a sum of multiple

degree-of-freedom impulse responses.
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Figure 5: Instantaneous frequency estimates (left) and
detected dominant spectrum (right) using the SVD.

Instantaneous frequency estimation of the four sine-burst

signal of figure 2 is illustrated in figures 5 and 6 using
the SVD and TSVD, respectively. The plots show fre-

quency estimates over the corresponding detected period

of time from the DWT. Right plots titled Dominant Fre-

quencies in each figure are subsets of the those titled Nat-

ural Frequency. Left plots designate raw estimates from

the respective filtered regions, and right plots refer to the

spectrum detected by using a threshold parameter on the
wavelet coefficients. This threshold is 0.5 of the normal-

ized absolute magnitude of the scalogram. Threshold

estimates are referred to in this report as dominant.

In the SVD analysis of figure 5, numerous frequencies are

detected from the extracted regions of figure 3, but of

those only two dominant frequencies at 15Hz (3 sec) and

25Hz (9 sec) in the right plot are estimated based on this

threshold. The congested left plot indicates that many

detected frequencies are redundant or spurious estimates

from large relatively insignificant regions of the time-

frequency map (bottom plot of figure 3). Conversely,

in figure 6 for the TSVD, the left and right plots are
identical and all the frequencies are detected as being
dominant. This demonstrates that the TSVD is detect-

ing only that part of the spectrum that is significant in
the data without any threshold criteria.
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Figure 6: Instantaneous frequency estimates (left) and
detected dominant spectrum (right) using the TSVD.

Aeroelastic Testbed Model

Previous studies have investigated applying wavelets

for analysis of structural and aeroelastic nonlinear sys-
tems [25, 30, 45]. SVDs have been used to extract the min-

imum embedding dimension from noisy nonlinear sys-
tems [39]. In this section the wavelet-SVD approaches

are applied to investigate linear and nonlinear reponses

for a simple aeroelastic system. An aeroelastic testbed

has been developed at Texas A&M University for flut-

ter research using a prototypical aeroelastic wing sec-
tion [12]. This quasisteady pitch-plunge system is de-

scribed by two-degree-of-freedom aeroelastic equations

of motion. A control surface configuration was used for
closed-loop control [21].

Nonlinearity is introduced to the system dynamics

through the stiffness associated with pitch. This stiff-
ness is described by a nonlinear polynomial function of

the pitch angle. Such structural nonlinearities occur in

physical aeroelastic systems and have been investigated

to determine their effect on inducing limit cycle oscilla-

tions. The two parameters that determine the response

of the wing and the onset of limit cycle oscillations, are

the elastic axis location and the freestream velocity. The
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Figure 7: Chirp control command input (top) and pitch

response (bottom) from linearaeroelastictestbed model.

stiffness functions associated with the pitch degree of

freedom are chosen here to represent a linear spring and

a nonlinear hardening spring.
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Figure 8: Modal parameter estimates from testbed

linearsimulation using SVD (top) and TSVD (bottom).

A classical flutter instability is encountered for the lin-

earized dynamics near a speed of 12 m/s at about

2Hz [25]. Figure 7 represents a control input chirp of

0-5Hz (top) and the unstable pitch response at 12 m/s

(bottom). Both SVD and TSVD results are presented in

figure 8. These plots represent the estimates and corre-

sponding wavelet coefficient magnitudes from which the

estimates were derived. Magnitudes of the coefficients

determine a relative level of significance, or measure of

observability. The upper plot from the SVD shows the

instability detected near 2Hz. The array of zero damping

values at frequencies below the unstable mode indicate

an output tracking of the input (disguised by the magni-

tude in figure 7) until an instability is detected at 1.5Hz

near the pitch mode natural frequency. TSVD estimates

of the same instability are more accurate near 2Hz I:sJ

with much fewer spurious estimates.

Nonlinear Aeroe|astic Testbed Response
0.5 .....

i ....

0.4 .... : .... i.. :, .i .:........ i i........

o.3 .... i.... i..... ! i..... !.... i- i

0 .... : .... : - •

-0.1 . • :

-0.,2

-0.3 ; ; i ; ; ; ; ; ;

0 1 2 3 4 5 6 7 8 9 10

Time, sec

Figure 9: Pitch response from nonlinear aeroelastic

testbed model chirp command input.
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Figure 10: Contour plots from original wavelet decom-

position (top) and SVD-filtered (bottom, log-scale)

scalograms of nonlinear aeroelastic testbed simulation.

A nonlinear response from the same chirp input also at

12 m/s with a nonlinear hardening spring in the pitch

degree of freedom is shown in figure 9. The correspond-

ing wavelet scalogram and SVD-filtered contour plot are



shown in figure 10. Note the scattering of the output
spectrum from a well-defined chirp input, thus indicating

the nonlinearity [25]. There is clear indication of higher

harmonics from the primary 2.5Hz mode at higher fre-

quencies near 7.5Hz and 12.5Hz (the third and fifth har-
monics). This result is also evident from the correspond-

ing frequency and damping estimates in figure 11. From

the multitude of SVD raw estimates, this plot shows only

the dominant coefficients using the threshold discussed

previously. At any time during the response, at least two
of three of the resonances are evident.
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Figure 11: Modal parameter estimates from nonlinear

aeroelastic testbed simulation using SVD filtering.
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Figure 12: Contour plot of TSVD-filtered scalograms
(log-scale) of nonlinear testbed simulation response.

More precise tracking of the modes from the TSVD is

evident from the filtered contour plot of figure 12. This

plot corresponds to the previous contours from figure 10.

High definition frequency estimation compared to the

SVD is clearly seen, and results in the raw estimates

plotted in figure 13 being identical to the TSVD domi-

nant estimates (not shown).

Wavelet Coefficients

_ 6.

_ 3.
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Figure 13: Modal parameter estimates from nonlinear
aeroelastic testbed simulation usiag TSVD filtering.
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DAST Flutter Data Analysis

For an automated data analysis procedure to be effec-

tive with a known input signal, it is advantageous to use

the time-varying input spectrum for tracking output re-

sponses. Linear dynamics may then be discerned from

unmodeled dynamics and nonlinearity outside of the in-

put frequency range. For this purpose, using actual air-

craft data, wingtip accelerometer data is analyzed from

the NASA DAST [13} (drone for aerodynamic and struc-

tural testing, figure 14). Part of the DAST program in

1980 was to pursue investigations on a drone equipped

with a flutter suppression system to enable flight beyond
the open-loop stability boundary. Wingtip accelerome-

ter response data was acquired with 10-40Hz logarithmic

chirps and 20Hz sinusoidal doublets into the aileron con-
trol surface•

Figure 14: NASA DAST vehicle in flight.

From the time-frequency path of the input signal, a mask

is created by SVD or TSVD filtering to be applied to

the accelerometer response. An aileron chirp input (top)

and wingtip accelerometer response (bottom) are shown

in figure 15 at Mach 0.8 about a minute before the drone

encountered an aeroservoelastic instability [131.



DAST AileronChirpandWingtipResponse

4 6 8 10 12 14

2 4 6 8 10 12 14
Time, sec

Figure 15: Aileron chirp (top) and wingtip accelerometer
response (bottom) from DAST at Mach 0.8, 15,000 feet.

Figure 16 shows contour plots of the aileron chirp input.

The SVD-filtered envelope (bottom plot) bounds the in-

put more than adequately. Also, shown in figure 17,

the estimated modal frequency and damping show the

primary wing bending mode near 20Hz, but also other

minor harmonics of much smaller magnitude near 40Hz

and 60Hz. Note that in the SVD-filtered contour plot of

figure 16, the spread up to 60Hz occurs when the primary

20Hz mode is excited by the chirp input (6-7 sec).
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Figure 16: Contourplotsfrom original waveletdecom-
position(top)and SVD-filtered(bottom,log-scale)

scalogramsofDAST aileronchirpinput,

In contrast, the TSVD-filtered contour of figure 18 dis-
criminates discrete frequency bins directly along the

time-varying chirp input. Dynamics outside of the time-
frequency path of the input will not be observed. Esti-

mates will only be derived locally along the input time-
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Figure 17: Modal parameter estimates from DAST

wingtip acclerometer from chirp using SVD filtering.

frequency window. This property of the TSVD may be

used to separate linear output response from unmodeled

dynamics and nonlinearity.

The SVD filter generally encompasses a much larger

region than the input alone, with the higher contours

more adjacent to the dominant energy spectrum. While

not as precise a filter as the TSVD, it detects a time-

frequency envelope that thoroughly bounds the input.

A TSVD filter concentrates more singular vector contri-

butions (moments) into smaller areas than the SVD fil-

ter. The TSVD may actually miss some input dynamics

from its moments for a reasonable order approximation

comparable to the SVD. A higher order approximation is

possible with the TSVD as mentioned in the comments

above equation 4, but this paper only addresses equal-

order approximations between the SVD and TSVD.
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Figure 18: Contour plot of TSVD-filtered scalogram
(log-scale) of DAST aileron chirp input•

Wavelet reconstructions are created from the coefficients

of the time-frequency map that are retained by filtering,

masking, or thresholding. In a direct filtering or masking

application, the quality of the wavelet reconstruction of

a time response depends on the time-frequency window

used on the response. Good results are obtained when

10
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Figure 19: Reconstructed SVD-filtered (top) and TSVD
filtered (bottom) DAST wingtip accelerometer responses
from DAST at Mach 0.8, 15,000 feet (see figure 15).

all the significant dynamics are retained. For instance,

with no filtering or masking, the reconstructed response

is simply a projection onto the wavelet basis functions.

This signal generally resembles the original signal be-

cause of the good reconstruction properties from the re-

dundancy in the multiscale wavelet transform.

DAST Wingtip Accelerometer Response
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Figure 20: Wingtip accelerometer response from DAST
aileron-pulsed input at Mach 0.825, 15,000 feet.

For the wingtip accelerometer response of figure 15, com-

parisons are made between the SVD (top) and TSVD-

filtered (bottom) reconstructions in figure 19. The SVD

filter covers more of the time-frequency plane, and this

shows up in the reconstructed response as compared to

the TSVD. Both reconstructions are modulated modal

responses, but the TSVD consists of narrower bandpass
filters in its modulation.
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Figure 21: Contour plots from original wavelet decom-
position (top) and TSVD-filtered (bottom, log-scale)
scalograms of DAST wingtip accelerometer response.
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Figure 22: Reconstructed TSVD-filtered DAST wingtip
accelerometer response at Mach 0.825, 15,000 feet.

To demonstrate the estimation procedure for an actual

aircraft instability, figure 20 represents the wingtip ac-

celerometer response at Mach 0.825 immediately before
the closed-loop instability. During the last three sine

pulses, the TSVD filter results are shown in the the con-

tour plots of figure 21. The SVD filter has difficulty

making a precise determination of the pulse energy den-

sity map (not shown). Tracking the pulse responses is
complete and accurate with the TSVD filter.

Figure 22 represents a reconstructed TSVD-filtered ver-

sion of the signal in figure 20. From the coefficients of

the filter shown in figure 21, the reconstructed time re-

sponse resembles an impulse response of the mode near

20Hz. Estimated modal frequency and damping from the

11
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modeandreductionin modaldampingwithtime.
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Figure 23: TSVD estimated modal frequencies (left) and
damping ratios (right) from DAST wingtip accelerometer.

F18 Aeroservoelastic Data Analysis

Digital excitation signals were implemented on an the
NASA F18 Systems Research Aircraft (SRA) for a base-

line model update and validation effort to support the
F18 Active Aeroelastic Wing [35] program. Multisine sig-

nals were added to aileron, stabilator, and rudder actu-

ator commands. In this example, the differential aileron
command is used for excitation at Mach 0.9, 10,000 feet.

Wingtip and lateral fuselage accelerometer responses are
used to demonstrate the SVD and TSVD filtering process

with a discontinuous input in the time-_frequency plane.

Multisine waveforms have a chirp-like quality, but with a

burst of high-frequency chirp at the end of the signal [2].

F16-SRA Wingtip Accelerometer Response

0 5 10 16 20 26 30
Time, sec

Figure 24: F18-SRA wingtip accelerometer response
from a multisine aileron input.

A wingtip accelerometer response to a multisine aileron

input is shown in figure 24. Figure 25 (top plot) shows
the nature of a multisine in the wingtip response for a 35-

to-5Hz sweep. Note the 13-15Hz pulse at the end of the

main sweep (21 sec), characteristic of the multisine. The

_- 4O

30
C

_=20
0"

10
I.L

Time-Frequency EnergyDensityDistributions

A I I I !

5 10 15 20 25 30

4O

30
C

==20
O"

10
LL

i

0 5

_LL-_ , .A> I ,

10 15 20 25

Time. sec

30

Figure 25: Contour plots from original wavelet decom-
position (top) and SVD-filtered (bottom, log-scale)
scalograms of F18-SRA wingtip accelerometer response.
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Figure 26: Contour plot of TSVD-filtered scaiogram of
F18-SRA multisine wingtip accelerometer response.

SVD filter (bottom plot) attempts to bound the entire

time-frequency response, as in the other cases, whereas
the TSVD-filtered output in figure 26 distinguishes fine

frequency divisions over short time intervals. The 13Hz
and 7Hz lines near 20 sec are very distinct and precisely

tuned to the specific frequencies.

A TSVD-filtered reconstruction of the original wingtip

response is in figure 27, which corresponds to the contour

plot of figure 26. Both the SVD (bottom contour plot,

figure 25) and TSVD contour and time history plots show
dominance from the 12-13Hz mode just around 15 sec.

Since the control system is active, this mode corresponds
to the stabilator mode which is excited by the aileron

multisine in closed loop.

12
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Figure 27: Reconstructed TSVD-filtered F18-SRA wingtip
accelerometer response from multisine aileron input.
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Figure 28: Contour plots from original wavelet decom-
position (top) and TSVD-filtered (bottom, log-scale),
scaiograms of F18-SRA fuselage lateral accelerometer.

In a final example, figure 28 shows a persistent oscilla-

tion of the wing bending mode at 8-9Hz (first fuselage

and wing bending modes) from the fuselage lateral ac-

celerometer for the same multisine aileron input. The

top plot is the original energy density, and the bottom is

the log-scaled TSVD-filtered distribution. The SVD dis-

tribution is similar to that in figure 25, so is not shown.

The TSVD defines the persistent mode very well while

also detecting the dominant part of the chirp near 16Hz

(10-15 sec). The final part of the energy density dis-

tribution after 20 sec at 20Hz, however, is not detected

since it is relatively less significant than the 8-9Hz modes.

Time-dependent modal frequency and damping ratios es-

timated with the TSVD filter are displayed in figure 29 to

show the relatively low damping of the steady oscillation

at 8-9Hz compared to modes at 19, 17, and 15Hz (10-15

sec) corresponding to fuselage second bending, wing sec-

ond bending, and wing first torsion modes, respectively.
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Figure 29: TSVD estimated modal frequencies (left) and
damping ratios (right) from F18-SRA fuselage accelerometer.

Conclusions

Nonstationary dynamics data analysis is discussed from

the perspective of time-frequency and multiscale resolu-

tion analyses. Wavelet decomposition of dynamics data

using a discrete harmonic basis constructed from the

Morlet wavelet establishes a time-frequency representa-

tion for modal parameter estimation and system identifi-

cation procedures. Automated procedures to discern and

extract regions of the time-frequency energy density dis-

tribution that are significant for dynamics analysis are

presented. The methods are derived from the singular

value decomposition (SVD) of a time-frequency distri-
bution.

Examples of simulated sinusoids, a testbed aeroelastic

system, aeroelastic flight data from a flutter experi-

ment, and aeroservoelastic data from an F18 are used to

demonstrate and compare the two SVD filtering meth-

ods. One method using a standard SVD demonstrates

the ability to discriminate the most significant and other

less dominant dynamics. Its performance may depend

on a time-frequency window determined by the input.

Regions outside of the input time-frequency path relate

to information about noise, unmodeled dynamics, and

nonlinearity.

Another method called the transformed-SVD, or TSVD,

optimally rotates the singular vectors to create a more

precise filter for finer tracking, but may ignore the less

significant dynamics for the same order filter as the stan-

dard SVD. Both methods complement each other and

show promise for automatic feature extraction supple-

mented with noise removal, residual analysis, and uncer-

tainty estimation. These filtering methods contribute to

nonstationary dynamics data analysis at multiple scales

in the time-frequency framework.
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Appendix

Given a general harmonic signal

x(t) = k(t) cos(¢(t)t)

the WT of x(t) is

W(a, r) = v_k(t)e-(_*(t)-_°)_e_¢(t>.

For fixed dilation parameter ai (equivalently fixed fre-

quency w), the modulus and phase of the WT of x(t)

are

IW(a.r)l = v_k(t)e -(_'¢(t)-_°)=

L[W(a,,_-)] = ¢(t> (5)

Instantaneous frequency of a signal in this case can be

expressed as [3_]

1 d

¢(t) = r)]) (6)

This shows that a general time-varying envelope k(t) or

phase ¢(t) of the signal can be determined from the mod-
ulus and phase of the WT for each fixed wavelet fre-

quency.

More specifically, from the impulse response of a single

degree-of-freedom viscous damper

x(t) = Ae -¢"_'t cos(walt + ¢o)

we have from equation 5,

IW( _,,_/I = Ae-¢ _"t
k(t) = ,/aT _(_,,m__o)_

¢(t)t = /[W(ai, r)] = war + ¢o

For a constant wavelet frequency line corresponding to ai

over time 7- in the (a, r) plane, estimation of the WT lin-

ear phase variation (or mean value of the instantaneous

frequency over time, from eq. 6) gives ¢(t) _ wd, and the
envelope decay rate is _wn. Natural frequency wn and

modal damping ratio _ are therefore derived. The WT

becomes a complex representation of the original real

signal from which the signal eigenvalues are computed

without any approximation of their range.

Multiple degree-of-freedom systems are analyzed sim-

ilarly by noting that the dilated Morlet wavelet is a

bandpass filter. With sufficient resolution of dilation ai,

damped modal frequencies Wd_ = _-_ can be discrimi-
ai

nated. To recap, the decay rate of the envelope of each

mode is calculated from the log-slope of the wavelet mod-

ulus decay, and damped modal frequency is estimated

as the linear phase variation of the WT as a function
of time. Adequate frequency resolution can be enforced

with the multiscaled compact harmonic Morlet wavelets.
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