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1.0 INTRODUCTION

This document is a guide to the Level-3, or mapped, data products derived from measurements made by the series of

, Total Ozone Mapping Spectrometers (TOMS), and processed by the National Aeronautics and Space Administration

(NASA). It discusses the derivation of the parameters provided in Level-3 format, uncertainties in the data, the

gridding algorithm used to map individual TOMS fields of view (FOV), and the organization of the data products.

The TOMS Level-3 data are archived at the Goddard Space Flight Center (GSFC) Distributed Active Archive Center

(DAAC), and are also made available in near real-time, using a preliminary calibration, through the TOMS Web site

given in Appendix B.

The TOMS experiment provides measurements of Earth's total column ozone by measuring the backscattered Earth

radiance at a set of discrete 1-nm wavelength bands. Both absorbed and non-absorbed regions of the backscattered

ultraviolet (buv) are sampled, and the concept of differential absorption is used to derive total column ozone from

these measurements. The instruments use a single monochromator and scanning mirror to sample the buv radiation at

3-degree intervals along a line perpendicular to the orbital plane. Then the mirror quickly returns to the first position,

not making measurements on the retrace, and then another scan begins. TOMS uses periodic measurements of the

Sun to provide normalization of the buv radiances to solar output, and to remove some instrument dependence. As

shown in Table 1.1, the TOMS scanning mechanism provides (except for Earth Probe) equatorial inter-orbit overlap

(EIOO) so that the entire sunlit portion of the globe is sampled daily. The Sun's synchronous near-polar orbits (except

for Meteor-3) provide these measurements at the same approximate local time, which is the local equator crossing

time (LECT), over most of the globe throughout the course of the experiment.

Table 1.1. TOMS Data Set Characteristics.

Useful Data Nominal Scan Nominal Nominal

Spacecraft Begin End Altitude Steps EIOO LECT

Nimbus-7 10/31/78 5/6/93 955 km 35 100 km 11:50 AM

Meteor-3 8/22/91 12/28/94 1200 km 35 1000 km Periodic

EP (500 km) 7/25/96 12/3/97 500 km 35 - 1100 km 11:15 AM

ADEOS 9/11/96 6/29/97 795 km 37 I00 km 10:40 AM

EP (740 km) 12/13/97 Present 740 km 35 -500 km 11:15AM

Retrieval of total ozone is based on a comparison between the measured radiances and radiances derived by radiative

transfer calculations for different ozone amounts and the conditions of the measurement. It is implemented by using
radiative transfer calculations to generate a table of backscattered radiance as a function of total ozone, viewing

geometry, surface pressure, surface reflectivity, and latitude. Given the computed radiances for particular observing

conditions, the total ozone value can be derived by interpolation in radiance as a function of ozone. In order to

interpret the measured radiances, the reflective properties of the surface must first be characterized. A useful

byproduct of this characterization is an effective surface reflectivity. The derived ozone is adjusted to account for

inconsistency between the measured atmosphere and radiative transfer calculations based on the assumption of pure

Rayleigh scattering. A useful byproduct of this calculation is the Aerosol Index (AI), which is sensitive to non-

Rayleigh scattering associated with tropospheric aerosols. Finally, given the ozone and reflectivity measurements of

TOMS, estimates of the erythemal exposure may be calculated using radiative transfer tables developed for that

purpose.

The ozone and reflectivity derived from TOMS have been available as a Level-3 product for some time. Now the

aerosol index and erythemal exposure are being made available as well. These parameters are described in more detail

below in Section 2. Error budgets for the parameters are discussed in Section 3. The algorithm for mapping the

orbital sequence of individual TOMS measurements onto a fixed grid is described in Section 4, and the available data
formats are described in Section 5.



2.0 OVERVIEW

The Version 7 TOMS total column ozone and Lambertian effective surface reflectivity algorithms are described in

detail in The EP/TOMS Data Products User's Guide (McPeters et al., 1998). We provide a brief description here of

the reflectivity and ozone algorithms as well as the aerosol index and erythemal ultraviolet algorithms, which have

been developed as an extension of the first two. The reflectivity and ozone algorithms essentially consist of a
comparison between TOMS measured radiances and theoretical radiances calculated using radiative transfer.

The calculation of normalized radiances at two standard pressure levels follows the formulation of Dave (1964). A

spherical correction for the incident beam has been incorporated, and Version 7 accounts for molecular anisotropy

(Ahmad and Bhartia, 1995). Consider an atmosphere bounded below by a Lambertian reflecting surface of reflectivity
R. The backscattered radiance emerging from the top of the atmosphere as seen by a TOMS instrument, I, is the sum

of purely atmospheric backscatter Ia, and reflection of the incident radiation from the reflecting surface I s.

I(_., O, 0O, f_, PO' R) = Ia(_., O, 00, _, f2, P0) + Is(X , O, 0 O, _, _, PO' R) (1)

where

_. = wavelength ....

0 = satellite zenith angle, as seen from the ground,

00 = solar zenith angle,
= azimuth angle,
= column ozone amount,

P0 = pressure at the reflecting surface, and

R = effective reflectivity at the reflecting surface.

The surface reflection term can be expressed as follows:

and

Is( _.,0, 00, f_, P0' R) =
RT()_,O, 00, _, PO)

1 - RSbO_,_, PO)
(2)

where

T(_.,0, 00, _, P0 ) = Id(_,,0, 00, f2, P0 ) f()_,0, _, P0 ) (3)

Sb = fraction of radiation reflected from surface that atmosphere reflects back to surface,

I d = total amount of direct and diffuse radiation reaching surface at P0,
f = fraction of radiation reflected toward satellite in direction 0 that reaches satellite,

and the other symbols have the same meaning as before. The denominator of Equation 2 accounts for multiple

reflections between the ground and the atmosphere.

The intensity of radiation as it passes through a region where it is absorbed and scattered can be described in general

terms as having a dependence I ,_ exp(-x). For a simplified case, where all processes can be treated as absorption, the

optical depth x depends on the number of absorbers n in a column and the absorption efficiency _ of the absorbers;
that is, I o_ exp(-net). The column number should scale approximately as -log I. The ozone algorithm therefore uses

ratio of un-normalized radiance (I) to irradiance (F) in the form of the N-value, defined as

(')N= -10o lOgl0 _ (4)



TheN-value provides a unit for backscattered radiance that has a scaling comparable to the column ozone; the factor

of 100 may have been originally introduced to produce a convenient numerical range. (This same definition is used in

the derivation of ozone from the ground-based Dobson and Brewer networks.)

The algorithm's basic approach is to use a radiative transfer model to calculate the N-values that should be measured

for different ozone amounts, given the location of the measurement, viewing conditions, and surface properties, and

then to find the column ozone that yields the measured N-values. In practical application, rather than calculating N-

values separately for each scene, detailed calculations are performed for a discrete set of total column ozone amounts,

vertical distributions of ozone, solar and satellite zenith angles, and two choices of pressure at the reflecting surface.

The calculated N-value for a given scene at each wavelength needed is then obtained by interpolation in the grid of
theoretical N-values.

2.1 Surface Reflection

To calculate the radiances for deriving ozone from a given measurement requires that the height and reflectivity of the

reflecting surface beneath the atmosphere be known. The TOMS algorithm assumes that refected radiation can come

from two levels, ground and cloud. This conceptually simple model has been found to improve the total ozone

retrieval in the presence of partially clouded scenes. It becomes somewhat complex, however, when the presence of

snow is likely, because the TOMS cannot distinguish between a cloud and snow. The terrain height, the cloud height,

and the presence of snow or ice in the Field-of-View (FOV) are determined in static databases. The terrain height is

fixed and well known. The cloud height and snow/ice are monthly climatological maps based on information from the

International Satellite Cloud Climatology Project (ISCCP) and by the Air Force Global Weather Center, respectively.

The impact of the use of ISCCP on the TOMS derived ozone is discussed in Hsu et al., 1997.

Reflectivity is determined from the measurements at the longest TOMS wavelength. Because the scene is modeled in

two parts, the first step is to determine separate calculated radiances for reflection off the ground and reflection from

cloud, based on the tables of pre-calculated radiances. For reflection from the ground, the terrain height pressure is

used, and the reflectivity is assumed to be 0.08. For cloud radiances, a pressure corresponding to the cloud height

from the ISCCP-based climatology is used, and the reflectivity is assumed to be 0.80. The ground and cloud

radiances, Ig and Ic, are then compared with the measured radiance, Im. If Ig < |m < Ic, and if snow/ice is assumed not
to be present, an effective cloud fractionfis derived using

f _

I m - lg

I -I
c g

(5)

If snow/ice is assumed to be present, then the value of f is divided by 2, based on the crude assumption that there is a

50-50 chance that the high reflectivity arises from cloud. The decrease in f means that there is a smaller contribution

from cloud and a higher contribution from ground with a high reflectivity due to snow and ice. Then Equation 5 is

solved for a revised value of Iground, and an alternate ground reflectivity is re-calculated using Equation 2.

Note that the ozone algorithm does not use a single surface reflectivity to characterize the whole scene. However, an
effective reflectivity is derived from the cloud fraction and provided as a separate Level-3 data product. This is done

in all cases using the following expression:

R =Rg(1-f)+ Rcf (6)

where Rg is 0.08 when snow/ice cover is assumed absent and has the recalculated value when it is assumed present.
This reflectivity is included in the TOMS data products but plays no role in the retrieval.

If the measured radiance is less than the calculated ground radiance, then the rddiation is considered to be entirely

from surface terrain with a reflectivity less than 0.08. Equations 1 and 2 can be combined to yield
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g

I m - I a (7)

T +Sb(I m - la)

The ground reflectivity can be derived using an I a obtained assuming ground conditions. Similarly, if the measured

radiance is greater than the cloud radiance, when snow/ice are absent, the reflected radiance is assumed to be entirely

from cloud with reflectivity greater than 0.80, and an Ia derived using the cloud conditions is used in Equation 7 to

derive the effective reflectivity. If snow/ice are present, the cloud and ground are assumed to contribute equally to Im
at the reflectivity channel. Equation 7 can then be used to calculate new values of both ground and cloud reflectivities

from these radiances. Radiances at shorter wavelengths are calculated using these reflectivities and a value of 0.5 for
f

2.2 Total Column Ozone

The ozone derivation is a two-step process. In the first step, an initial estimate is derived using the djffer_nc_ between

N-values at a pair of wavelengths; one wavelength is significantly absorbed by ozone, and the other is insensitive to

ozone. Use of this difference provides a retrieval insensitive to wavelength-independent errors, such as a zero-point

offset in the calibration of the instrument. In deriving the initial estimate, the same pair is always used (318 nm and
33! rim).

In the second step, N-values are calculated using the initial ozone estimate along with the measurement geometry and

the surface model described in the previous section. In general, these calculated values do not equal the measured N-

values. The measurement residue is defined as Nmeas - Ncalc. Using the residues at a properly chosen triplet of

wavelengths, it is possible to simultaneously solve for a correction to the original ozone estimate and for an additional
contribution to the radiances that is linear with wavelength (McPeters et aI., 1998). In this calculation, the TOMS

total ozone is determined as well as an estimate of the atmosphere's departure from the model assumption of Rayleigh

scattering. The triplet consists of two pair wavelengths, one strongly absorbed and one weakly absorbed by ozone,

plus a reflecfivity channel, which is insensitive to ozone. The separation of the reflectivity wavelength from the pair

wavelengths is far larger than the separation between the pairs; thus, the measurement at the reflectivity channel
provides a long baseline for deriving any residual wavelength dependence. The pair wavelengths used are those most

sensitive to ozone at the optical path length of a given measurement. As the optical path, s, given by

s = (secO 0 + secO)f_ (8)

increases, longer more weakly absorbed channels are used. Tables 2.1 and 2.2 show the nominal wavelengths of the
triplets used for the early and recent TOMS, respectively.

Table 2.1. Nominal Pair/Triplet Wavelengths for Nimbus-7 and Meteor-3 TOMS.

Pair/Triplet Ozone Sensitive Ozone Insensitive Reflectivity
Designation Wavelength (nm) Wavelength (nm) Wavelength (nm)

Range of Application
(optical path s)

A 312.5 331.0 380.0 1 > s

B 317.5 331.0 380.0 3 > s > 1

C 331.0 340.0 380.0 s > 3

Table 2.2. Nominal Pair/Triplet Wavelengths for ADEOS and Earth Probe TOMS.

Pair/Triplet Ozone Sensitive Ozone Insensitive Reflectivity Range of Application
Designation Wavelength (nm) Wavelength (nm) Wavelength (rim) (optical path s)

A 312.5 331.0 360.0 1 > s

B 317.5 331.0 360.0 3 > s > 1

C 322.0 331.0 360.0 s > 3
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2.3 Aerosol Index

As mentioned above, the Version 7 TOMS algorithm simultaneously determines total column ozone and the

atmosphere's departure from the model assumption of Rayleigh scattering. This departure is parameterized by the 331
nm residue, which is called the Aerosol Index (AI). It is evidence of apparent wavelength dependence in the effective

surface reflectivity between 331 nm and the reflectivity channel.

For EP/TOMS for example, the AI is defined as

AI = _100(1og(I33'_ _1og(I33----!) ) (9)
_, k,I360]meas \I360/calc/

where Imeas is the TOMS-measured backscattered radiance, and Icalc is the radiance calculated from a radiative

transfer model of the atmosphere with Rayleigh scattering and ozone absorption, at wavelengths of 331 and 360

nanometers. The AI is essentially a measure of the change in spectral contrast between the 331 and 360 nanometer

wavelengths introduced by tropospheric aerosols, which are not accounted for in the radiative transfer model. A

positive AI generally indicates the presence of ultraviolet (UV)-absorbing aerosols such as desert dust, smoke from

biomass burning, and volcanic ash. A negative AI is usually associated with non-absorbing aerosols, although an AI

< 0 may result when absorbing aerosols exist near the Earth's surface (below about 1.5 kin) where Mie scattering may

dominate (Hsu et al. 1999). Clouds produce no AI signature. AI with an absolute value > 4 are excluded (error code

2) from the level 3 total ozone, reflectivity and erythemal exposure products due to increased errors in the retrieval.

The Nimbus-7 and Meteor-3 TOMS aerosol indices were obtained using radiances at 340 and 380 nanometers. For

comparison with the newer ADEOS and EP TOMS data at 331 and 360 nm, the older AI need to be multiplied by a

wavelength adjustment constant equivalent to (331-360)/(340-380) = 0.725 (Hsu et aI. 1999).

2.4 Erythemal Exposure

The Erythemal Exposure data product is an estimate of the daily integrated ultraviolet irradiance, calculated using a

model for the susceptibility of caucasian skin to sunburn (erythema). This can be interpreted as an index of the

potential for biological damage due to solar irradiation, given the column ozone amount and cloud conditions on each

day. The Erythemal Exposure is defined by the integral

l-_ _400nms(_,)W (L)d _, _II C (_,, 0O,Zcl)F (_,, 0o, _)dt (10)
Exp .= des2J280nm

where

des = Earth-Sun distance, in A.U,
S = Solar irradiance incident on the top of the atmosphere at 1A.U.

W = Biological action spectrum for erythemal damage (see below)

tsr; tss = Time of sunrise, time of sunset
C = Cloud attenuation factor

Zc! = Cloud optical thickness

0o = Solar zenith angle (function of time, t)
F = Spectral irradiance at the surface under clear skies, normalized to unit solar

spectral irradiance at the top of the atmosphere
f_ = Total column ozone

The Earth-Sun distance and sunrise and sunset times, as well as the dependence of the solar zenith angle on time

during a given day depend on the latitude and the time of year, and are calculated from standard formulae [USNO,
1992; Smart, 1977]. The extraterrestrial solar irradiance incident at the top of the atmosphere when the Earth is at a

distance of 1 Astronomical Unit (A.U.) from the Sun was measured over the wavelength interval of interest by the

ATLAS-3/SUSIM instrument [Woods et al., 1996].
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The weighting function, W(X), used to approximate the wavelength-dependent sensitivity of caucasian skin to

erythema-causing radiation is the model proposed by McKinlay and Diffey [McKinlay and Diffey, 1987], and

adopted as a standard by the Commission Internationale de I' Eclairage (CIE).

W(X) = 1, if _< 298

W(_.) = 10 -0"094(k-298) , if 298<_<328 (11)

W(_) = 10 -0'015(;k- 139), if 328 < L

The function F is the normalized global (direct plus diffuse) irradiance incident on a horizontal surface at the terrain

altitude of a given location, given the total column ozone measured by TOMS, the waveiength, and solar zenith angle.

The value of F is computed using the table of solutions of the radiative transfer equation, which are used in the TOMS

ozone retrievals. The actual incident global spectral irradiance under cloud-free skies is the product of S and F,

adjusted for variation in Sun-Earth distance.

The cloud factor C is obtained in two steps. First, the 380 nm (Nimbus-7) or 360 nm (Adeos, EarthProbe) radiances,

solar and viewing angiesl terrain height, and climatological surface albedos [Herman and Celarier, 1997] are used to

derive a model cloud optical thickness (Xcl) using tables of solutions of the radiative transfer equation at these

wavelengths. In the second step, the attenuation of the global irradiance due to a model uniform cloud of that optical

thickness is computed. In both these steps, the cloud is modeled as a homogeneous Mie-scattering layer, located
between 500 mbar and 350 mbar. The scattering phase function is the C-1 model of Deirrnendjian [Deirmendjian,

1969].

Because most locations on the Earth are viewed by the TOMS instrument only once per day, the model cloud optical

thickness is presumed to be valid throughout the day. This can lead to large discrepancies between TOMS-estimated

exposures and ground-based measurements. In regions where there is substantial diurnal variability in cloud cover,
averaging over periods of at least a week is recommended when comparing the TOMS-based estimates and ground-

based measurements of erythemal exposure.

The algorithm uses the same database as the TOMS ozone retrieval algorithm to determine the probability of presence

of snow/ice in the instrument's field of view. In the presence of snow/ice,ibe algorithm assumes a surface albed0 Of

40 percent. While this albedo is typical of snow cover over midlatitude and subpolar regions, it may give rise to an

overestimate of the erythemal exposure in urban or rugged areas, where the actual albedo is generally less than 40

percent. In conditions of freshly fallen snow, or snow on a flat terrain, the actual albedo is generally greater than 40

percent, and the algorithm will tend to underestimate the erythemal exposures. The algorithm assumes that any excess

upward radiance, above what would be due to the 40 percent reflective surface, is due to clouds, and the appropriate
correction is made.

In high-altitude regions having high surface reflectivity, the algorithm tends to overestimate the UV exposure. In the

high Andes region of Peru, and in the Himalayas TOMS-based exposures may be overestimated by up to 20 percent.

The algorithm does not take account of the effects of absorbing aerosols, e.g., under smoke plumes from biomass
burning, and in the great deserts during seasons when the desert dust is lofted by winds. Under these conditions, the

UV attenuation can exceed 80 percent.

In the above expression for the exposure, the quantity S/d2se has units of [nW m "2 nm-l]. The functions F and C are

dimensionless. It is common in the literature to also regard W as being dimensionless, and hence the exposure as

having units of [J m'2]. However, the biological response to radiation should be expressed in units that relate the

biological damage to the incident energy, thus giving the exposure units of [B.D./m-2], where B.D.= Biological

Damage, expressed in biologically meaningful units. The normalization of the McKinlay and Diffey (CIE) action

spectrum for erythema is chosen to be such that the function is equal to unity at 298 nm. Because the normalization of

W is arbitrary, the units of exposure should also be considered to be arbitrary,

6



Calculated exposure values will be found generally in the range [0 to 104], though values upward of about 8,000 can

occur at very high altitudes in the tropics and subtropics. The median exposure value at the subsolar latitude usually

falls in the range [6,000 to 8,000].

The file descriptions of the Level-3 Products are given in Section 5, Data Formats. It should be noted that in the native
Level-3 format (the character format available at the TOMS web site given in Appendix B), the erythemal exposure is

stored in a different form from the other Level-3 parameters. This is done to preserve the native Level-3 format

convention that the data be represented by 3 ASCII characters. So, each value code consists of three digits: a 1 digit

exponent (E), and a 2 digit mantissa (M). A decimal point is implied between the two digits of the mantissa. Together,
E and M encode a value of M X 10E. For example, the value code 342 represents the value 4.2 X 103. (Note that a

value code of 999 is a fill-value to indicate TOMS data were unavailable.) The Level-3 Hierarchical Data Format

(HDF) files archived at the GSFC DAAC are produced from the native Level-3, and at this stage of our processing,

the storage format is converted to normal 2-byte integer (e.g., 4200) and the fill value is changed to -999 to avoid

ambiguity.

2.5 Ultraviolet Surface lrradiance

We plan to provide three additional surface UV parameters in the near future. These will be the estimated normal UV

irradiance at the surface for 305 and 324 nm wavelengths and the instantaneous erythemal irradiance at the time of

the TOMS overpass (LECT). The erythemal UV parameter described in the previous section provides an estimate of

exposure to harmful UV radiation at the surface integrated over wavelength and over the day (Equation 10). The local

estimates we plan to provide of UV irradiance at specific wavelengths, F(_,), may be more useful for comparisons
with other measurements of UV irradiance at the Earth's surface.

F(_,) = 1 S(_,)C(_, 0 0, Zcloud)Fclear(_,, 0 O, _2)

Des 2

where the variables are defined in the same way as in Equation 10. The instantaneous erytheural irradiance will be a

weighted average of F(_,) computed using the weights in Equation 11.

We plan to provide these parameters in a format similar to that described in Section 5, both native ASCII and HDE

7



3.0 UNCERTAINTY

The uncertainty in Version 7 TOMS total column ozone is similar for all of the TOMS instruments (Table 3.1). The

error budget for each is detailed in the TOMS Data User's Guides [McPeters et al., 1996, Herman et al., 1996,
McPeters et al., 1998, and Krueger et al., 1998]. The uncertainty in the absolute scale, or mean bias relative to truth,

is largely driven by uncertainty in the laboratory measurements of ozone absorption cross-section. The uncertainty in

the precision of the measurements is driven by two effects. One is the small, but highly variable amount of

tropospheric ozone to which TOMS is only partially sensitive. The second results from uncertainty in the actual cloud

height and the associated problem of estimating the amount of ozone obscured by the cloud [Klenk et al., 1982]. This

first effect is of particular concern for researchers estimating tropospheric ozone based on the difference between the

TOMS total ozone and some estimate of stratospheric column ozone. Because the TOMS meas_ure s less_ than half of

an), v(afiati0ns ]n the iowes(5 _5n- of the atmosphere,such meth0ds-fend to be insensitive aSw_ii_AJso,g_ci_tUS¢_the

tropospheric residual is the difference of two larger numbers, it is sensitive to other small errors in the TOMS

measurement or in the estimate of the stratospheric column. Post-flight analysis of earth radiance measurements was

used in the calibration of Nimbus-7 TOMS to achieve a long-term accuracy of 1 percent per decade [Wellemeyer, et

al., 1996]. An improved in-flight calibration technique was developed and deployed on subsequent TOMS, and each

of them is accurate to better than 1 percent over each instrument lifetime. The relative bias between the four TOMS

datasets is discussed below. :

Table 3.1. Uncertainty in TOMS Derived Ozone.

Uncertainty in: Nominal Solar Zenith Angle > 80

Absolute Value 3% 4%

Precision 2% 5%

Long-term Mean 1% 1%

The effective Lambertian equivalent surface reflectivity and the AI are not physical quantities. Because of this, no

algorithmic error sources have been included in Table 3.2. Nominal instrument calibration errors of 1.5 percent at the

reflectivity channel and 0.75 percent at the aerosol channel relative to the reflectivity channel have been assumed. As

in the case of the ozone uncertainties above, the uncertainties in reflectivity and AI are fairly similar for all the TOMS
instruments.

Table 3.2. Uncertainty in TOMS Reflectivity and Aerosol Index.

Uncertainty in: Reflectivity at Low Reflectivity at High Aerosol Index
Reflectivity Reflectivity (N-value)

Absolute Value 0.01 0.02 0.30

Precision 0.002 0.003 0.15

Long-term Mean 0.005 0.01 0.1

Estimates of the uncertainty in TOMS erythemal exposure have been developed through comparison with ground

based Brewer Instruments [Herman et al., 1999]. Under clear sky conditions, discrepancies between TOMS and

erythemal exposures measured by ground-based instruments are relatively small. They result mainly from a

combination of uncertainties in the solar spectral irradiance measured by ATLAS-3/SUSIM [Cebula, et al., 1996] and

the ozone and reflectivity measured by TOMS. Systematic error occurs however, if aerosols or to a lesser extent,

urban haze are present. These effects are unaccounted for in the current algorithm. Even larger systematic errors

occur when snow or ice is present in a scene where it is unexpected from the climatology. Care should be taken not to

use this data set to characterize regions where this is likely to occur (e.g., where there is considerable interannual

variability in snow-cover on the ground).
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Table 3.3. Uncertainty in TOMS Erythemal Exposure.

Uncertainty in: Under Clear Conditions Absorbing Aerosols in FOV

Systematic Error 0.0 +10%

Random Error 4.5% 5.0%

Long-term Mean 1% 1%

3.1 Trend Considerations

The uncertainties in the long term means presented above in Tables 3.1-3.3 pertain to the individual data sets of

individual TOMS instruments. Upon combining data from the various TOMS, additional uncertainties associated
with the relative instrument calibrations come into play. Figure 3.1, which is reproduced from the Meteor-3 TOMS

Data User's Guide [Herman et al., 1996], shows the difference of zonal means of ozone for Meteor-3 minus Nimbus-

7 computed using the Level-3 products from the two instruments. The Meteor-3 TOMS calibration was actually
adjusted to be consistent with Nimbus-7, but the trends were not. Because of the overlap in time between these two

data sets, the relative bias and trend can be established quite well [McPeters et al., 1996].

After Nimbus-7 and Meteor-3, however, the next TOMS did not begin taking data until late July, 1996. Therefore, the

uncertainty in ozone trend studies that span this gap must include a component resulting from the relative calibration

uncertainty of two TOMS. Recent studies indicate that this component is 2%-3% in ozone [Jaross et al., 2000].

The spectral discrimination technique used in the long-term calibration of the Nimbus-7 TOMS also provides an

estimate of the absolute calibration at the reflectivity wavelength [Wellemeyer et al., 1999]. This estimate relies upon

an assumption about the true relationship of the ultraviolet backscatter at a pair of reflectivity channels, but the

importance of this assumption is reduced when comparing the absolute calibration of one buv instrument with

another. Application of the spectral discrimination technique to Nimbus-7 and Earth Probe TOMS indicates that the
Nimbus-7 TOMS reflectivity channel is biased high relative to Earth Probe by about 0.005 at low reflectivity and

about 0.015 at high reflectivity. Comparisons of reflectivities of similar surfaces from the two TOMS indicate that the

offset may be larger by a factor of two.

The AI from Nimbus-7 and Earth Probe TOMS both have downward drifts of about 0.3 N-value over the length of the

respective data records. These drifts are within the calibration uncertainties, as is the offset of approximately 0.1 N-
value.

3.2 Errors Due to Tropospheric Aerosols and Glint

The ozone correction described in Section 2.2 is based on the assumption that departures in measured radiance from

the Rayleigh scattering atmosphere assumed in the model will be linear with wavelength in N-value (or percent
radiance). This assumption works well for non-absorbing channels, but at shorter wavelengths where ozone

absorption occurs and Rayleigh scattering increases, the backscatter becomes less dependent on the scattering

characteristics of the troposphere. A better assumption, called the Dave assumption, is that the effective surface

reflectivity is linear with wavelength [Dave, 1978], because the backscatter sensitivity to surface reflectivity falls off

at shorter wavelengths for similar reasons. The cases in which this assumption becomes important are the cases where

significant non-Rayleigh dependence is identified by the 331 nm residue, or AI. Clearly, the presence of tropospheric

aerosol is such a case, but a less obvious case results from sun glint.

Sun glint is associated with non-Lambertian surface reflectivity rather than non-Rayleigh scattering, but the effect on

the buv is similar. If TOMS scans through the image of the sun reflected off the ocean surface, the 331 nm residue is

elevated and the TOMS underestimates ozone. This effect is illustrated in Figure 3.2, which shows a sample EP/

TOMS scan affected by sun glint and corrected ozone obtained using the Dave assumption. This assumption may be

formulated using information from the Level-2 product by assuming that the residues of the triplet ozone retrieval are

9
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Figure 3.1. Meteor-3 - Nimbus-7 Level-3 Zonal Mean Ozone Differences. Shaded areas indicate
periods when Meteor-3 Level-3 data are not reported due to extreme viewing geometry.
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Figure 3.2. Impact of Sun Glint on TOMS Derived Ozone. Elevated values of AI (331 nm

residue) are associated with under-estimation of ozone in sun glint geometry.

due to an error in ozone associated with such a linear dependence in reflectivity. Expressions for the residues at two

channels (e.g. 313 nm and 331 nm) can be written as

r331 = A_')s331 + AR331sr331 (12)

and

(313 - 360)st (13)
r313 = A_-_s313+AR331(-_ _ 313

These two equations can be solved for the "true" ozone amount that is consistent with the R(lambda) assumption.

(A_,313r331sr313 - A_331 r313sr331)
I) = _0 + (14)

(A_, s sr A_, 3 s sr313 331 313- 31 313 331 )

Where--

r_, - Residue reported on current level-2 for channel _,

f_0 - Total ozone reported on current level-2

s_, - Sensitivity of channel _, radiance to changes in ozone

R_, - Lambertian equivalent surface reflectivity (or reflectivity) for channel _,

srx - Sensitivity of channel _, radiance to changes in reflectivity

AR_- Difference of R_, from reflectivity reported on level-2

A_,_,- Difference of channel k wavelength from 360 nm

11



Thisexpressionprovidesagoodcorrectionforcasesofsun-glintpresentintheV7TOMSozonedataasshowninthe
figure.ThisexampleisneartheequatoratequinoxandtheEarthProbehasalocalequatorcrossingtimeof about
10:30,sowhenEP/TOMSscanstotheeast,it observestheimageofthesunreflectedintheocean,centerednearscan
position21.The331nmresidueshowsafairlybroadregion(scanpositions14- 27)tobeaffectedbytheglint.The
correctionequationpresentedaboveappliestoA-tripletretrievalsfromEP/TOMS.Asimilarcorrectioncanbewritten
forEP/TOMSB-tripletretrievalsbysubstituting318nmeverywherefor 313nm,andforN7/TOMSA-tripletby
substituting380nmeverywherefor360nm,andsoon.

TheresiduesresultingfromasingleretrievalaffectedbyglintareshowninFigure3.3forthecaseof theVersion7
retrievalandfortheDaveassumption.Thetriplet assumption used in the Version 7 algorithm is shown by the solid
line, which connects the V7 residues for the triplet wavelengths used in the retrieval (313 nm, 331 rim, and 360 nm).

Because the sensitivity of the upwelling radiance to surface reflectivity (_N/_R) is a function of wavelength, the Dave
assumption is non-linear in units of n-value (or percent radiance), as illustrated by the dashed line in the figure.

Because of the elevation of the aerosol index, the measurements made in the sun glint geometry over oceans have

been excluded from the Level-3 aerosol index product. However, the Level-3 ozone product does not have any
correction or exclusion for moderate glint or low levels of aerosol contamination.

Careful simulations of the effects of tropospheric aerosol contamination on TOMS retrievals have been carried out

[Torres et al., 1999], and reported in the EP/TOMS Data User's Guide [McPeters et aL, 1998]. These results indicate

that the relationship between the aerosol index and percent error in the V7 TOMS derived ozone is linear with a slope
of about -1.1 percent ozone/n-value for N7 and M3 TOMS and about 1.2 percent ozone/n-value for EP and ADEOS

TOMS. A Level-3 ozone correction based on these results is provided in Appendix C. Our analysis indicates that the

Dave correction provides a very similar result. A slight under-correction is probably due to additional absorption due
to the aerosols. The aerosol correction due to Tortes et al. is recommended.
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Triplet Assumption

_< Corrected Residues
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Figure 3.3. Impact of Alternate Assumptions about Un-modeled Effects
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Both the glint and aerosol errors are of significant magnitude, but are restricted to a limited spatial and temporal
domain and have little or no effect on global studies of long-term trend for example. However, in regional or short

term studies a correction may be required. The linear relationship between ozone error and aerosol index implies that
the Level-3 aerosol index map could be used to correct the Level-3 ozone map. This would be true except that the

populations are different in the two products. In the ozone product, retrievals with aerosol index greater than 4 are

excluded from the averaging process as poor quality retrievals. (This limits ozone errors at about -4 percent.) In the

aerosol product, they are included to provide all available aerosol information. Still, Level-3 aerosol index values that

are not close to the screening threshold can be safely used to correct ozone, and higher values can identify areas
where Level-3 ozone values should be ignored if they have not already been excluded by the Level-3 algorithm. A

correction procedure is provided in Appendix C.

The glint correction provided above in Equation 14 can only be applied to the Level-2 product, and the Level-3 data

contain no information about viewing geometry. However, the Level-3 map of aerosol index from which the glint

affected regions have been excluded can be used to identify glint affected regions in the ozone map. Such regions can

be omitted or filled by interpolation. We plan to provide corrected Level-3 ozone maps in the future. In the meantime,

we hope these Level-3 based corrections for tropospheric aerosol and glint contamination of the Level-3 ozone

product (Appendix C) prove useful in ongoing studies that require improved accuracy.
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4.0 GRIDDINGALGORITHM

The level-3 gridding algorithm is used to combine the orbital TOMS measurements into a daily map product with a

fixed global grid. The reported grid is 1 degree in latitude by 1.25 degrees longitude over the entire globe. Only high
quality level-2 data are included in the ceil averages, except as discussed above in Section 3.2. Data that have been

flagged for extreme residues are included in the averages of aerosol index, so that extreme aerosol events will be
represented.

At higher latitudes where orbital overlap occurs, only the average from the orbit that provides the best view of a given

cell is reported. In practice, cell averages are computed separately for each TOMS orbit_and the one with the shortest

average path index is selected. The path index is calculated as sec(00) + 2sec(0), where 00 and 0 are the solar zenith

and spacecraft zenith angles respectively, defined as the Instantaneous Field-of-View (IFOV). This index is designed

to place more importance on the spacecraft zenith angle than on solar zenith angle relative to the proper calculation of
geometric path (sec(00) + sec(0)).

The cell averages are computed as weighted averages of TOMS parameters derived for IFOVs that overlay the given

cell. For this purpose, a simple rectangular model is used for the actual TOMS IFOV. Figures 4.I and 4.2 show the
actual TOMS FOVs as determined rising a rfiy trace model Of the instrument ]'or an equatorial case and'a high latitude

case, respectively. Figures 4.3 and 4.4 show the actual FOVs as well as the modeled FOVs that are used in the average

for the sample grid cells highlighted in Figures 4.1 and 4.2, respectively. EP/TOMS data from the high orbit period

are shown. The fractional area of overlap of the rectangular IFOV with a given ceil is used to weight its contribution

to the given grid cell average. A single TOMS IFOV can contribute weight to more than one cell average within a

single 1 degree latitude band. Any IFOV with its center outside the latitude band is ignored as a simplification to the

calculation. At high latitudes, the averaging cells are extended in longitude. Between 50 and 70 degrees latitude, the

cells are 2.5 degrees in longitude, as in the high latitude case shown in Figures 4.2 and 4.4. Above 70 degrees latitude,

the cells are 5.0 degrees in longitude. Once an average is computed for these cells, the same average value is reported
in each of the 1.25 degree longitude cells that are contained within the averaging cell.

At extremely high latitudes, the model remains the same. Figure 4.5 is similar to Figures 4.3 and 4.4 except that it
illustrates the modeling of a sample cell at 84.5 degrees latitude. In this case, the Earth Probe spacecraft has reached

its highest latitude and is scanning toward the North Pole. The magnification of the longitudinal dimension apparent

in this graphic becomes even more extreme closer to the pole. When the center of the FOV is at about 89.85 degrees

or higher, the modeled FOV covers 360 degrees of longitude, representing an area of about 7500 km 2, which is
comparable to the actual polar FOV size of EPFFOMS of 7000 km 2.

The TOMS level-3 product is non-synoptic. Because the TOMS fly On polar orbiting satellites, all measurements are

made at a local time roughly equal to the LECT. The Western Pacific is measured near the beginning of the

Greenwich Mean Time (GMT) day, and the Eastern Pacific is measured near the end of the GMT day. There is a 24-

hour discontinuity in the data at 180th meridian. Individual TOMS IFOVs are sorted into different days across the

180th meridian to ensure that this is the only place where such a time discontinuity occurs. In order to accomplish this

while providing a complete global map, some data from the previous GMT day are used at the beginning of our

Level-3 day and some data from the next GMT day are used at the end. The nominal LECT for each TOMS
instrument is presented in Table 1.1. The LECT for each daily global file is provided in the output data format as
described below in Section 5.
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5.0 DATA FORMATS

The TOMS Level-3 data products are available at the GSFC Distributed Active Archive (DAAC) in Hierarchical Data

Format (HDF), which is described below in Section 5.1. The Level-3 data products are also made available at the
TOMS Web Site in an ASCII "Native Format," which is described in Section 5.2.

5.1 Level-3 Hierarchical Data Format Product

The standard archival Level-3 products contain global arrays of total ozone, effective surface reflectivity, aerosol

index, and erythemal exposure stored as daily HDF files. A Level-3 file is generated from each complete daily set of

Level-2 files as described in Section 4_ Currently, the ozone and effective surface reflectivity are combined in one

HDF file, and the aerosol index and erythemal exposure aresombin_din another. In subsequent releases of the data,

we may combine all four parameters in a single daily HDF file.

Each Level-3 HDF file is comprised of the following elements:

I. a File Label

2. a File Description
3. Metadata (stored as a second file description)

4. 2 Data Scientific Data Sets (SDS)

5. 2 Coordinate SDSs
6. The File Label is "TOMS ss DAILY_GRIDDED_DATA_mm_dd_yy" where 'ss' is the satellite (NIMBUS-

7, METEOR-3, ADEOS, or TOMS-EP), 'mm' is month of year (1-12), 'dd' is day of month, and 'yy' is 2-digit

year. Leading zeroes are used in these substitutions.

The Level-3 file names have the following form--

algYYDDD.hdf

where YY is a 2-digit year and DDD is day of year. The first two characters of the file name indicate the spacecraft

(e.g., N7, M3, AI, or EP).

The File Description provides background on the TOMS instrument, processing algorithms and data products, in free

format. The following metadata, for example, are included in the ozone and reftectivity HDF file--

1. Data set name ("data_set=TOMS")

2. Data product name ("data_product=Level 3 daily gridded data")

3. Granule size ("granule_size=XXXXXXX" where 'XXXXXXX' is in bytes)

4. Begin date and time ("begin_date=YYYY-MM-DD HH:MM:SS" where 'YYYY' is year, 'MM' is month of

year (1-12), 'DD' is day of month, 'HH' is hour of day, 'MM' is minute of hour, and 'SS' is second of minute

in kIT)
5. End date and time ("end_date=YYYY-MM-DD HH:MM:SS" where 'YYYY' is year, 'MM' is month of year

(1-12), 'DD' is day of month, 'HH' is hour of day, 'MM' is minute of hour, and 'SS' is second of minute in UT)

6. Geographical flag ("geog_flag=G" indicating global data)
7. Northem latitude ("north_lat=+90.00")

8. Southern latitude ("south_lat=-90.00")

9. East longitude ("east_lon=+180.00")

10. West longitude ("west_Ion=- 180.00")

11. Day/night flag ("day_night_flag=D" indicating daytime data)
12. Granule version ("granule_version=01" indicating first archive version)

13. Producer granule 1D ("producer_granule_id=algYYDDD.hdf" where 'YY' is 2-digit year and 'DDD' is day

of year both with leading zeroes as necessary)
14. Fill value for ozone ("miss val ozone=0")

15. Fill value for reflectivity ("miss val ref=999")
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16.Localtimeof ascendingnodeequatorcrossing("lect=YYYY-MM-DDHH:MM:SSwhere'YYYY'isyear,
'MM'ismonthofyear(1-12),'DD'isdayofmonth,'HH'ishourofday,'MM'isminuteofhour,and'SS'is
secondofminute)

ThedatastoredintheSDSsareonafixedI-degreelatitudeby1.25-degreelongitudegrid.All thegriddedvaluesare
storedas2-byteintegers.Thetotalcolumnozoneisinunitsofmatm-cm,reflectivityisinpercent,aerosolindexisin
n-valueunits,anderythemalexposureisinrelativeunitsofbiologicaldamageasdiscussedinSection2.4.

ThetwoCoordinateSDSsstoredintheLevel-3productarelistedinTable5.1.

Table 5.1. TOMS Level-3 HDF Coordinate SDSs.

Name Type Scaletype Scalemin Scalemax

Latitude 4 byte real regular -89.5 89.5

Longitude 4 byte real regular - 179.375 179.375

5.2 Native Level-3 Data Product

The Native LeveI-3 products are also available on the same fixed l-degree latitude by 1.25-degree longitude grid at

the TOMS URL fttz//toms.gsfc.nasa.gov/pub under the sub-directories nimbus7, meteor3, adeos, and eptoms. The

averaging technique for producing this grid from the Level-2 product is described above in Section 4.

Table 5.2 provides a detailed description of the first line of a daily ozone grid file. Figure 5.1 shows an example of the

header and the first two latitude zones in a native Level-3 daily ozone file from the EP/TOMS. The gridded ozone val-

ues are stored as 3-digit integers in units of matm-cm. Each of the 180 latitude zones requires 10 lines. They are

ordered from south to north with the first zone centered at -89.5 degrees. Within each latitude zone, values are given

for each of 288 longitude zones from 180° W through 0° (Greenwich) to 180 ° E. The first longitude zone is centered

at -179.375 degrees. As shown in Figure 5.1, annotation is present after all values are given for a latitude zone. Zeroes

denote missing ozone data; that is data that could not be collected due to lack of sunlight or other problems. A fill

value of 999 is used to denote missing data for reflectivity, aerosol index, and erythemal exposure.

The erythemal exposure is stored in a different form from the other parameters in the native Level-3 file. Each value

code consists of three digits: a 1-digit exponent (E), and a 2-digit mantissa (M). A decimal point is implied between

the two digits of the mantissa. Together, E and M encode a value of M X 10E. For example, the value code 342 repre-
sents the value 4.2 X 103.
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Table 5.2. Format of Header Line of the Native Level-3 Daily Ozone Grid.

Character Contents

1

2-5

6

7-9

10

11-13

14

15-16

17

18

19-22

23-26

27-33

34-37

38-40

41

42-46

47-50

51-60

61

62-70

71

72-73

74

75-76

77

78-79

80

81<

American Standard Code for Information Interchange (ASCII) blank (HEX 20)

"Day:" (quotes indicate fixed content)

ASCII blank

day of year

ASCII blank .....

month ("Jan," "Feb," "Mar"...)

ASCII blank

day of month
fv .

ASCII blank

year

A_CII blanks

"EP/TOMS"
;

ASCII blanks

"STD"

ASCII blank

"OZONE"

ASCII blanks

"GEN:yy.ddd"

ASCII blank

"Asc LECT:"

ASCII blank

hour (local) of ascending node equator crossing

ASCII ":"

minute (local) of ascending node equator crossing

ASCII blank

"AM" or "PM" indicating morning or afternoon/evening ascending node equator crossing

ASCII blank

If > (line feed character; i.e., HEX 0A)
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Day:269Sep25,1997 EP/TOMSSTDOZONEGEN:97.269AscLECT:11:19AM
Longitudes:288binscentredon179.375Wto179.375E (1.25degreesteps)
Latitudes:180binscenteredon89.5Sto 89.5N (1.00degreesteps)
2__2__2__2__2_72_72_72_72_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52__2__2__
2___99_99_99_99_97_97_97_97_95_95_95_95_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94
_94_94_94_94_94_94_87_87_87_87_89_89_89_89_92_92_92_92_92_92_92_92_92_92_92_92_92_92_92_92_88
_88_88_88_88_88_88_88_88_88_88_88_88_88_88_88_89_89_89_89_89_89_89_89_89_89_89_89_95_95_95_95
_95_95_95_95_95_95_95_95_95_95_95_95_97_97_97_972__2__2__2___98_98_98_98_99_99_99_992__2__2__
2__2__2__2__2__2__2__2__2__2_22_22_22_22_22_22_22_2_92_92_92_92_92_92_92_92_92_92_92_92_92_92
_92_92_92_92_92_92192_92_92_922_82_82_82_82_82_82_82_82_82_82_82_82_82_82_82_82_82_82_82_8_97
_97_97_97_97_97_97_972__2__2__2__2__2__2__2__2_22_22_22_22_32_32_32_32__2__2__2__2__2__2__2__
2__2__2__2__2__2__2__2__2__2__2__2__2__2__2__2___97_97_97_97_99_99_99_99_98_98_98_98_96_96_96
196196196196196192192192192lm= -89.5
2_72_72_72_72_72_72_72_72_92_92_92_92_32_32_32_32_22_22_22_22_22_22_22_22_22_22_22_2_99_99_99
_99_98_98_98_98_9__9__9__9__9__9__91_9__9__9__9__9__9__9__9__9__9__9__9__9__89_89_89_89_89_89
_89_89_89_89_89_89_86_86_86_86_86_86_86_86_87_87_87_87_87_87_87_87_87_87_87_87_87_87_87_87_87
_87_87_87_88_88_88_88_9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9__9_
_92_92_92_92_92_92_92_92_92_92_92_92_93_93_93_93_93_93_93_932__2__2__2__2__2__2__2__2__2__2__
2__2__2__2__2__2__2__2__2__2_22_22_22_22__2__2__2__2__2__2__2__2__2__2__2__2__2__2__2__2__2__
2__2__2_32_32_32_32_72_72_72_72_72_72172_722_22_22_22_2_62_62_62_62_92_92_92_92_92_92_92_92__
2__2__2__2__2__2__2__2_92_92_92_922_22_22_22_22_22_22_22_2_82_82_82_82_82_82_82_82_72_72_72_7
2_62_62_62_62_42_42_42_42_82_82_82_82_62_62_62_62_62_62_62_62_62_62_62_62_32_32_32_3_98_98_98
198196196196196196196196196lat= -88.5

Figure 5.1. Sample Native Level-3 Daily Ozone File Excerpt.

21



REFERENCES

Ahmad, Z. and P. K. Bhartia, 1995,"Effect of Molecular Anisotropy on the Backscattered UV Radiance," Appl. Opt.,

34, 8309-14, 1995.

Cebula, R.P., G.O. Thullier, M.E. VanHoosier, E. Hiisenrath, M. Herse, G.E. Bruecker, and P.C. Simon, 1996,

"Observations of Solar Irradiance in the 200-350 nm Interval During the ATLAS-1 Mission: A Comparison

Among Three Sets of Measurements SSBUV, SOLSPEC, and SUSIM," Geophys. Res. Lett., 23, 2289-2293.

Dave, J. V., 1964, "Meaning of Successive Iteration of the Auxiliary Equation of Radiative Transfer," Astrophys. J.,

140, 1292-1303.

Dave, J. V., 1978, "Effect of Aerosols on the Estimation of TotaI Ozone in an Atmospheric Column From the Mea-

surement of its Ultraviolet Radiance," J Atmos. Sci., 35, 899-911.

Deirmendjian, D (1969), "Electromagnetic scattering of spherical polydispersions," Elsevier, NY.

Herman, J.R., P.K. Bhartia, A.J. Krueger, R.D. McPeters, C.G. Wellemeyer, C.J. Seftor, G. Jaross, B.M. Schlesinger,

O. Torres, G. Lab_owl w. Byerly, S.L-. Tayior, T_ SWisslerl R-.P. cebuJa_ and X. Gu, October 19961 'iMete0rL3-Tolfal

Ozone Mapping Spectrometer (TOMS) Data Products User's Guide," NASA Reference Publication 1393.

Herman, J.R., and E. A. Celarier, 1997,"Earth Surface Reflectivity Climatology at 340 nm and 380 nm from TOMS

Data," J. Geophys. Re_,- I02, 28,003-28,011.

Herman, J.R., N. Krotkov, E. Celarier, D. Lark 9. and G. Labow, 1999,"The Distribution of UV Radiation at the

Earth's Surface from TOMS Measured UV-backscattered Radiances," Jr. Geophys. Res., 104, 12,059-12,076.

Hsu, N. Christina, R. D. McPeters, C. J. Seftor, and A. M. Thompson, 1997, "The Effect of An Improved Cloud Cli-

matology on the TOMS Total Ozone Retrieval,"./. Geophys. Res., 102, 4247-4255.

Hsu, N.C., J.R. Herman, O. Torres, B.N. Holben, D. Tanre, T.F. Eck, A. Smimov, B. Chatenet, and F. Lavenu, Com-

parisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications, J.
Geophys. Res., 104, 6269-6279, 1999.

Jaross, G., S. L. Taylor, C. G. Wellemeyer, R. P. Cebula, L-K. Huang, R. S. Stolarski, and R. D. McPeters, 2000, "An

Assessment of Long-term Ozone Trend Uncertainties using Total Ozone Mapping Spectrometers," Int. J. Rein.

Sen., Submitted 1999.

Klenk, K.F., P.K. Bhartia, A.J. Fleig, V.G. Kaveeshwar, R.D. McPeters, and P.M. Smith, 1982, "Total Ozone Determi-

nation From the Backscattered Ultraviolet (BUV) Experiment," J. Appl. Meteorol., 21, 1672-1684.

Krotkov, N.A., P.K. Bhartia, J.R. Herman, V. Fioletov, and J. Kerr, 1998, "Satellite Estimation of Spectral Surface UV

Irradiance in the Presence of Tropospheric Aerosols 1: Cloud-Free Case," Z Geophys. Res., I03, 8779-8793.

Krueger, A., P.K. Bhartia, R.D. McPeters, J. Herman, C. Wellemeyer, G. Jaross, C. Seftor, O. Torres, G. Labow,

W. Byerly, L. Moy, S. Taylor, T. Swissler, R. Cebula, 1998, "ADEOS Total Ozone Mapping Spectrometer

(TOMS) Data Product's User's Guide," NASA Technical Publication 98-206857, National Aeronautics and

Space Administration, Washington, DC.

McKinlay, A.F. and B.L. Diffey, (1987) A reference spectrum for ultraviolet induced erythema in human skin, in
Human Exposure to Ultraviolet Radiation: Risks and Regulations, edited by W.R. Passchler and B.F.M. Bosna-

jokovic, Elsevier, Amsterdam.

McPeters, R.D., P.K. Bhartia, A.J. Krueger, J.R. Herman, B.M. Schlesinger, C.G. Wellemeyer, C.J. Seftor, G. Jaross,

S.L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R.P. Cebula, 1996, "Nimbus-7 Total Ozone Map-

ping Spectrometer (TOMS) Data Products User's Guide," NASA Reference Publication 1384, National Aeronau-

tics and Space Administration, Washington, DC.

|

7.

=

z

I

E

22



McPeters,R.D.,S.M.Hollandsworth,L.E.Flynn,J.R.Herman,andC.J.Seftor,1996,"Long-TermOzoneTrends
DerivedFromthe16-YearCombinedNimbus7/Meteor3TOMSVersion7Record,"Geophys. Res. Lett., 23,

3699-3702.

McPeters, R. D., P.K. Bhartia, A.J. Krueger, J.R. Herman, C.G. Wellemeyer, C.J. Seftor, G. Jaross, O. Torres, L.

Moy, G. Labow, W. Byerly, S.L. Taylor, T. Swissler, and R.P. Cebula, 1998, "Earth Probe Total Ozone Mapping

Spectrometer (TOMS) Data Product's User's Guide," NASA Technical Publication 98-206895, National Aero-

nautics and Space Administration, Washington, DC.

Smart, W.M., Textbook on Spherical Astronomy (6/e, 1977), Cambridge University Press, Cambridge.

Tortes, O., P.K. Bhartia, J.R. Herman, Z. Ahmad, and J. Gleason, 1998, "Derivation of Aerosol Properties from Satel-

lite measurements of Backscattered Ultraviolet Radiation. Theoretical Basis," J. Geophys. Res., 103, 17,099-

17,110.

Torres, O, EK. Bhartia, 1999, "Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from Backscattered

Ultraviolet Measurements," J. Geophys. Res., 104 D 17, 21,569-21,577.

USNO (United States Naval Observatory) (1992), Explanatory supplement to the Astronomical Almanac, edited by

P.K. Seidelmann, University Science Books, Mill Valley, CA.

Wellemeyer, C. G., S. L. Taylor, G. Jaross, M. T. DeLand, C. J. Setior, G. Labow, T. J. Swissler, and R. E Cebula,

1996, "Final Report on Nimbus-7 TOMS Version 7 Calibration," NASA Contractor Report 4717, National Aero-

nautics and Space Administration, Washington, DC.

Woods, T.N., 1996, Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 mea-

surements, J. Geophys. Res., 101, 9541-9569.

23





AD
ADEOS
A1
AI
ASCII
A.U.
BUV
CD-ROM
CIE
DAAC
D.U.
EIOO

FOV

ftp

GMT

GSFC

HDF

IFOV

ISCCP

LECT

M3

N7

NASA

NCSA

netCDF

NOAA

OPT

SDS

SOLSTICE

SUSIM

TOMS

UARS

URL

UV

V7

LIST OF ACRONYMS, INITIALS, AND ABBREVIATIONS

Abbreviation for ADEOS

Advanced Earth Observing Satellite

Abbreviation for ADEOS- 1

Aerosol Index

American Standard Code for Information Interchange

Astronomical Unit

Backscatter Ultraviolet

Compact Disk-Read Only Memory

Commission Internationale de 1'Eclairage

Distributed Active Archive Center

Dobson Units (= milliatmosphere-centimeters)

Equatorial Inter-Orbit Overlap

Field-of-View

file transfer protocol

Greenwich Mean Time

Goddard Space Flight Center

Hierarchical Data Format

Instantaneous Field-of-View

International Satellite Cloud Climatology Project

Local Equator Crossing Time

Meteor-3 spacecraft

Nimbus-7 spacecraft

National Aeronautics and Space Administration

National Center for Supercomputing Applications

Network Common Data Format

National Oceanic and Atmospheric Administration

Ozone Processing Team

Scientific Data Set

Solar Stellar Irradiance Comparison Experiment

Solar Ultraviolet Spectral Irradiance Monitor

Total Ozone Mapping Spectrometer

Upper Atmospheric Research Satellite

Uniform Resource Locator

Ultraviolet

Version 7
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APPENDIX A. SOFTWARE TO READ HDF OZONE DATA

This appendix describes software that can be used to read the TOMS HDF Level-3 data files. The software is written

in C and requires the HDF version 3.3 or 4 (or higher) libraries to compile. The read software is available at the GSFC

DAAC (see Appendix B). The HDF libraries can be downloaded via anonymous ftp at ftp.ncsa.uiuc.edu in directory /

HDE Copies of the most recent HDF version libraries can be downloaded from the DAAC anonymous ftp server at

daac.gsfc.nasa.gov in directory/pub/hdf.

The program read_tomsl3.c can be used to read the TOMS Level-3 HDF flies. Issuing the command read_tomsl3 will

display a list of the HDF files in the current directory. Next, the program will display the following information--

• File label,

• Text: "File description stored in the file" (optional), and
• Metadata.

The next keystroke will display a numbered list of all the SDSs providing the name and dimensions of the SDS corre-

sponding to each number: 1 is ozone, 4 is reflectivity. (Numbers 2 and 3 are coordinate data sets and will not be dis-

played by this software). The user can display either SDS by entering its number or can exit the program by entering

q. The user will be prompted to output the file to the screen, an ASCII file, or to a binary file. The output will be dis-

played in physical values. For screen and ASCII dumps, latitude and longitude values will be included with the data
values.
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APPENDIX B. DATA AVAILABILITY

Data Archive

The derivative data products defined in this User's Guide are archived at and available from the NASA Goddard Space

Flight Center Distributed Active Archive Center (NASAJGSFC/DAAC). All data and services offered by the Goddard
DAAC are free.

The DAAC may be accessed on World Wide Web at http://daac.gsfc.nasa.gov/. Options for locating and accessing
data are listed on the DAAC home page. Information about TOMS and other ozone data archived at the Goddard

DAAC can be found at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/ATM_CHEM/ac_main.html. In addition to

data, the DAAC Web pages contain information about HDF, the format in which it provides the Level-2 and Level-3

TOMS products, available from http://daac.gsfc.nasa.gov/REFERENCE_DOCS/HDF/gdaac-hdf.html.

The DAAC maintains a help desk, which provides assistance with its on-line ordering services. The Help Desk can be

reached by--

Electronic Mail:

Telephone:
FAX:

daacuso@daac.gsfc.nasa.gov

+1-301-614-5224 or 1-877-794-3147

+1-301-614-5268

The postal address of the DAAC is:

NASA/Goddard Space Flight Center

Distributed Active Archive Center

Code 902

Greenbelt, MD 20771

Near Real-Time Data

The TOMS Level-3 data (native format, Section 5.2) and images as well as electronic versions of the data products

user's guides are available on the World Wide Web TOMS Home Page at http://toms.gsfc.nasa.gov/index.htmi.
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APPENDIX C. OZONE CORRECTION PROCEDURES

Use of the Aerosol Index for Ozone Correction

As described in Section 3.2, errors can occur in the Version 7 TOMS ozone when the aerosol index is elevated. These

errors, associated with the presence of absorbing aerosols in the troposphere [Torres et al., 1999] and with the reflec-

tion of the solar image on water surfaces, are not an issue in trend determination or in studies where large amounts of

data are averaged. But they may be important in the analysis of local phenomena. If a correction is needed, the value

of the aerosol index for a given map cell on a given day can be used to correct the corresponding Level-3 ozone value

for the effects of absorbing aerosols in the troposphere. Further, the Level-3 aerosol product is screened for the effects

of sun glint. So, the screening that has been applied to the aerosol product may be used to screen the ozone product as
well.

Level-3 Ozone Correction Procedure for Aerosol Contamination

For each non-fill value of Level-3 aerosol index (AI) between the latitudes of 50 North and 50 South, the correspond-

ing Level-3 ozone value (fl) may be corrected using the following expression:

(a,)_coR = f_x I +-_ac

where Fac = 90 for N7 and M3 TOMS and

Fac = 83 for EP and ADEOS TOMS

If the aerosol index is larger than 3.5, the Level-3 ozone value should be discarded.

Level-3 Ozone Screening Procedure for Sun Glint Contamination

A sun glint screen has been applied to the Level-3 aerosol product, because the AI is elevated in the presence of sun

glint. So, a fill value has been reported for contaminated ceils. These occur over water near the nadir sample of the

TOMS scan when the viewing geometry is such that the solar image might be visible. If the scene is cloud covered,

no sun glint contamination can occur. However, the screening algorithm makes no attempt to identify cloud, and

introduces fill values for AI even in the presence of cloud.

As described in Section 3.2, sun glint also affects derived ozone. The derived ozone may be underestimated by 2 per-

cent or as much as 4 percent in extreme cases of sun glint. If better accuracy is required, the possibly contaminated

ozone values may be screened from the Level-3 data using the following procedure:

For each filled Level-3 aerosol value between the latitudes of 35 North and 35 South, any corresponding non-fill
Level-3 ozone value should be discarded.
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