Solid Rocket Booster Integrated Assemblies Support Final Report

Prepared for:
National Aeronautics and Space Administration
George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Under:
Contract No. H-32836D

Task Order No. 6

20 April 2001

bd Systems, Inc.
600 Boulevard South, Suite 304
Huntsville, AL 35802
(256) 882-2650
(256) 882-2683 FAX

Gray Settle
bd Systems
600 Boulevard South
Suite 304
Huntsville, Alabama 35802
Dear Gray,
Attached is the final report that the Integrated Electronics Assembly Supportability Team (ISAT) presented to the Solid Rocket Booster Project Office on April 16. It is the culmination of two months of effort by representatives from all of the Engineering Directorate Departments, the Safety and Mission Assurance Office, the SRB Project, and SRB Operations, with support from United Space Alliance, L3 Communications and Honeywell. This report will serve as my final report on the task I have been performing as co-chairman of the ISAT team.

The problem reporting system was first documented and agreed to by USA, L3, and MSFC S\&MA to assure that all problems would be included in the study. Then over 11,000 reports were gathered, categorized, and filtered. This data was used to assess the SRB IEAs for safety issues, reliability issues and supportability issues. The conclusions were that there were no safety issues at this time, both the flight reliability and the ground reliability of the 20 year old boxes are very high and the screens used between missions are effective, and that there are some supportability issues with the Aft IEAs in flying until at least 2020.

Based upon these conclusions the team made recommendations, which were broken down into things we believed were mandatory to meet supportability and things we believed were prudent actions to mitigate identified risks. The report was very well received by the Project Office. They were most complementary on the approach that had been taken, and said they did not believe any other such in-depth study had ever been performed on any Space Shuttle hardware.

4/20/01

- Introduction
- Strategy
- Database Consolidation
- Findings
- Conclusions
- Recommendations
- Adequacy of Qualification Test and Screens
- Wearout of Other SRB Avionics Boxes
4/16/2001

4/20/01

- Assess the impact of aging and usage on SRB Forward and Aft
Integrated Electronic Assemblies (IEA's)
- Determine the relative position of the IEA's on their expected
reliability curves
- Provide recommendations, with supporting rationale, for any upgrades
necessary to maintain reliability and logistics supportability through
the year 2020
- If upgrades are recommended the team will define a roadmap for the
design and implementation of the upgrade
- Assess the other reusable boxes on the SRB to determine if the
screening tests between flights are adequate
- Assess the other reusable boxes on the SRB to determine if they are
wearing out

4/20/01

-Consolidate databases
-Review and interpret data
-Report findings
-Provide recommendations

790
4,074

Filtered to:
Inspection Rejects

Definitions Maintenance action - nonconformance which is detected during inspection
Failure - nonconformance which is detected during testing
Hard water impact - when an IEA shows external damage that indicates a harder
than normal impact and initiates a complete teardown inspection
Obsolete part - a component which is no longer being produced.
Aging - effects due solely to time. Affects both stored and operating
equipment/components/parts, e.g., resistor drift
Wear-out - effects due to operation; number of cycles, duty cycle, time in
operation, and percent of operating capacity
GIDEP Alert - report of an actual or potential problem with parts, components,
materials, or manufacturing processes which may have multiple applications in
Government or industry.
Wear and tear - degradation to hardware resulting from age, use, maintenance
and mishandling.
$4 / 2001$
Findings
Programmatic Decisions Which Affected the Database
1981-1983 Corrosion of housing and external connectors led to connector greasing procedure
and tunnel cable jacket redesign.
1987 Post-Challenger, instituted Modification Block - Harnesses R\&R, Dale Resistor
changeout implemented
1988-1989 MDM incorporation of power cross-strapping retrofit - Completion of Modification Block

- Refurbishment authority given to USBI Change to Internal Inspection Criteria. New criteria calls for more detailed inspection PIC alerts
Instituted connector sealing fix
Bayonet connector anomaly and rash of "bird caging" anomalies. Thermal and vibration
verification tests reinstituted in 1997 to screen for water impact (originally discontinued in
1993).
$4 / 20 / 01$
Findings
Programmatic Decisions Which Aff
Programmatic Decisions Which Affected the Database

4/20/01

-The IEA'S were designed in the 1970 's
-The IEA'S were originally designed for
-The IEA'S were originally designed for a life of 10 years and qualified for 20 flights -50 IEAs in inventory ($26 \mathrm{Aft}, 24$ Forward)
-17 IEAs (8 Aft, 9 Forward) are 23 years old (Components 25+)
-The average IEA is 18 years old
-The current fleet leader has 15 flights
-The average IEA has had 9 flights
-In over 100 flights 10 IEA'S have been lost (5 FWD \& 5 AFT)
•Premature Water Impact Switch activation STS $4-2$ Fwds,
-Premature Water Impact Switch activation STS $4-2$ Fwds, 2 Afts
-Challenger STS 51 L - 2 Fwds, 2 Afts
-Water Impact STS 85 - IEA S/N 49
-Slap-down STS 93 - IEA S/N 52
-No hardware has been lost due to a failure of IEA electronics during flight
4/20/01

Normalized Failures and Maintenance Actions for All IEAs

4/20/01

Forward and aft distributor harnesses are likely to have numerous defective
crimps. An L3 study indicates there are potentially over 5000 defective
crimps in the IEA harnesses.
Nearly one third of all harness maintenance actions and failures are
attributed to mishandling.
Aft IEA harnesses sustain more failures and maintenance than forward
harnesses, largely due to the increased inspections that occur to an aft IEA.
Although failure trends appear constant, research of the maintenance actions indicates that numerous inspection reports were generated which would likely have been identified as test failures, given the chance to fail.

[^0]4/20/01

Adjusted Harness Failures and Maintenance Actions (Normalized)

Adjusted MDM Failures and Maintenance Actions (Normalized)

\longrightarrow Norm Fail
\longrightarrow Adj Maint
\longrightarrow maintenance trend
\longrightarrow failure trend

-One failure, detected during testing, was been associated with
the Silver/Tantalum capacitors.
PICs

4/20/01

Even after the database was adjusted to remove cards affected by alerts and hard water impacts, the CCAs clearly exhibit a rapidly increasing maintenance action trend.

4/20/01

Safety Assessment	
- Safety findings from ISAT review:	
- Flight Safety screens are adequate	
- Only 2 IEA flight "failures" identified in SRB life - STS-51C on-pad launch abort	
» Box-level tests not updated to support new design and did not detect design error	
- STS-93 TVC Pressure measurement erratic » Bent connector socket pin caused 'open' circuit	
» Both failures occurred as a result of process escapes.	
)> No hardware flight safety failures in history of IEA	
NO FLIGHT SAFETY CONCERNS	
01	SURFACED DURING ISAT REVIE

IEA reliability has been reviewed in two
contexts:

- Reliability trend analysis of failures occurring
during ground processing
- Demonstrated reliability using flight history
In both contexts, it is necessary to determine
if the failure rate is constant or is increasing
as a function of time
4/20/01

- IEA Reliability Trend Analysis
• Qualitative analysis - use trend analysis of historical failure
data
-

IEA Reliability Assessment
IEA Reliability Trend Analysis, cont'd.

- In the absence of time to failure data, trend analysis can
be used to project reliability trends
- Generate graph of total failures at IEA level normalized to
flights per year
- Generate graph of total failures at SRU level normalized to
flights per year
n

- IEA Reliability Trend Analysis Summary
- Based on trend analysis of IEA failure data, there is no
evidence of an upward trend at either the IEA or SRU
level that indicates the presence of wearout
mechanism(s)
- As a result, constant failure rate can be assumed when
estimating flight reliability
- There is no guarantee that wearout will not occur in the
next 20 years, only that it is not yet occurring

\bullet

4/20/01

$$
\begin{aligned}
& \text { •Obsolescence/Spare Parts } \\
& \text { •Attrition of IEAs } \\
& \text {-Turn-around time } \\
& \text { •End of Qualification Life }
\end{aligned}
$$

- Spare parts have been identified by the manufacturer
for all hardware
-Parts are either in stock, readily available or alternates
have been found except for possibly 3 resistors and 1
relay which are being reviewed by L-3.

4/20/01

EMDM - Honeywell - No obsolete parts.

- Several parts must be replaced within each
unit because of improper screening (GIDEP
Alert).
- 27 units produced.

Attrition
Key Assumptions
- Flight attrition -
- hard water impact (1 Fwd and 1 Aft IEA lost in 102 flights to date)
- Loss of vehicle (half of historical rate of 1 in 102 flights)
- Failure rate - constant IEA failure rate based on observed failure
history (supported by trend analysis)
- Mishandling - increasing rate of mishandling PRs over time
based on historical data (supported by trend analysis)
- Maintenance actions - increasing rate of maintenance actions
over time based on historical data (supported by trend analysis)
- Flight rate - 6 flights per year through 2020
4/20/01

IEA Attrition Analysis:
- Model the IEA inventory available for flight as
a function of time
- Account for inventory attrition due to in-flight
loss, failures during processing, mishandling,
maintenance, etc.

Supportability Assessment
 Attrition
 IEA Inventory Attrition

The IEA test sets at L-3 are antiquated and are frequently out of
service for repair.
Approximately 3 out of every 4 electrical test failures detected at L-3
are determined to be test set failures.
Testing of IEAs at L-3 is the "bottle neck" in the recertification
process.
\square
Supportability Assessment
IEA Process Rate

 flow by a single problem report.
Basis for calculations:
Estimate the average time added to a forward and aft IEA process

[^1]
An additional 2367 problem reports were written against IEA hardware as a result of alerts, hard water impact and suspect conditions. These are random occurrences which are not expected to increase, therefore the Processing Time trend curve will be offset to reflect these discrepancies (2367 discrepancies / 20 years) to account for future random occurrences.
Supportability Assessment

VGI pmy e ssayoud ol prbay sfed
4/20/01

Forward IEA Supportability

——available Inventory \quad Minimum Needed (Fwd)

 4/20/01

Days Required to Process an Aft IEA

FWD IEA Mission Life Remaining

4/20/01
Supportability Assessment
Estimation of End of 20 Mission Qualification Life

Conclusions

4/20/01

Supplement L-3 IEA test sets with two
SAITS units. - This is a mandatory action to support the program
through 2020

- The IEA test sets at L3 will not continue to operate for
another 20 years
another 20 years
 - Access to test sets is a bottleneck in the IEA process
flow
The SAITS
as possible
4/20/01 Recommendations
Perform Delta-Qualification tests on IEA.
- This is a mandatory action to meet supportability until
2020
- IEAs and SRUs will run out of Qualification life and
Acceptance Vibration life before 2020
- Use the existing IEAs qualification units (S/N 009 and
S/N 010) for the delta qualification
IEA QUALIFICATION LIFE REMAINING

Filght Toat	ieas ${ }^{\text {d }}$	ттем		${ }_{\text {Remaining Fight }}$
$\stackrel{8}{8}$	${ }_{011}^{011}$	$\xrightarrow{\text { mss }}$	${ }^{14.7}$	"
${ }_{8}$	011 011	${ }_{\text {ssi }}^{\text {ssic }}$	3.0 6.9	11
7	011	apu	${ }_{31.5}$	13
$?$	${ }^{11}$	APb	${ }^{23.7}$	${ }^{13}$
,	011 011	$\underset{\text { shic }}{\text { spe }}$	3.0 46.1 4.	19
1	${ }^{11}$	pic	46.1	${ }^{19}$
1	${ }_{0}^{011}$	$\underset{\text { Pric }}{\text { Pric }}$	${ }_{46.1}^{46.1}$	19
,	${ }_{011}^{011}$	$\underset{\text { Pric }}{\text { Pri }}$	${ }_{\text {cher }}^{46.1}$	$\stackrel{19}{7}$
,	${ }^{111}$	scc	${ }^{3.0}$	7
,	${ }_{011}^{011}$	${ }_{\text {crp }}^{\text {crp }}$	3.0 3.0 3	7
\%	${ }_{0}^{011}$	cpp cvi	3.0 22.6 2.2	14
\%	011 011	${ }_{\text {M M M }}$	3.0 27.2	14 1
?	011	${ }_{\text {sct }}^{\text {ssi }}$	37.2 3.0	14
			${ }^{3.0}$	7

4/20/01

Hardware	Process
- Rebuild harnesses*	- L-3 Test Sets**
- Build additional IEAs	- Increased Personnel
3. Move Aft IEA forward	
${ }_{4 / 2001}^{*} \quad{ }^{*}$ Betieved to	h value added

Recommendations

Repair 4
Repair 4 EMDMs
Populate the new housings with new harnesses and EMDMs
Implement connector sealing process to aft IEAs
As IEAs are returned to L-3, transfer cards and signal conditioner
harness to new housing
4/20/01
$\frac{\text { Recommendations }}{\text { New Harness Impacts to Forward IEA Process Time }}$

Days Required to Process a Fwd IEA

Recommendations
New Harness Impacts to Forward IEA Process Time
Forward IEA Supportability with New Harness

Recommendations

Build one APU Controller Module and
machine one Aft housing

- One APU Controller Module and a housing
would put an additional Aft IEA into use.
- ISAT believes that this is a high value action that
will add assets at relatively low cost.
4/20/01

71

4/20/01

Purchase the piece parts to repair the

IEAs are already qualified to fly 20 missions with
EMDMs
EMDMs
of

- This falls into the same category as the capability to
build spare CCAs
Recommendations

Recommendations

Summary of Recommendations

Implement the new sealing process on all Aft IEAs
4/20/01
Summary of Recommendations,

$$
\text { (continued) }
$$

- Create a common problem report database and perform continuing
reliability and supportability trend analyses predictions for the IEAs.
This is a mandatory action to recognize an upward trend in the failures
(wear out or end of life) early enough to respond to it
- Perform periodic retraining of technicians to heighten awareness of
risks and prevention of handling damage
- Perform failure analysis on failed EEE parts to determine root cause
for all reported failures
Adequacy of Original Qualification
Program and Screens

Are the Screens In Place Adequate?
- During refurbishment all IEAs are cleaned and inspected;
functionally tested; thermally tested; and vibration tested.
- All Aft IEAs are opened and inspected after every flight
- All Fwd IEAs are opened and inspected after every third flight
- Testing verifies that all redundancy is functioning
- There have been two problems that escaped the screens in 408
IEA flights
- One of these was from a design change improperly implemented,
and the other from operator error
Screens Are Adequate

SCREENING TESTS
FOR ELECTRICAL LRU'S AND NETWORKS/CIRCUITS/CABLES Thermal Cycling

Automatic Checkout

Critical LRU's receive the follow
Vibration
All H

$$
\begin{aligned}
& \text { All Flight Critical Circuits/Networks are redundant (1R) } \\
& \text { All Electrical LRU's receive the following prior to each flight: } \\
& \text { Cleaning and visual inspection }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Critical LRU's receive the following additional tests prior to each flight } \\
& \text { Thermal Cycling }
\end{aligned}
$$

Shuttle Interface Test (SIT)
Cables (wires) and connectors receive the following tests prior to each flight Insulation Resistance
Dielectric Withstanding Voltage
Continuity Check
Connector/Pin Inspection
4/20/01

SCREENING TESTS
FOR ELECTRICAL LRU'S AND NETWORKS/CIRCUITS/CABLES NOTE:It is impossible to assure there are no latent defects. Testing is done to assure all
critical functions are performing and that redundant circuits are functioning. Testing
verifies that hardware has no overt defects; but latent defects are possible in:

EEE Parts

Solder Joints
Mechanical Fasteners
Connectors
Based on limited review, the ISAT has not identified any obvious deficiencies in the screening of the other SRB avionics boxes.
4/20/01

4/20/01

[^0]: Maintenance actions are increasing rapidly.

[^1]: problem report.
 in

