
NASA/TM-2001-210863

Equivalent-Continuum Modeling of
Nano-Structured Materials

Gregory M. Odegard and Thomas S. Gates

Langley Research Center, Hampton, Virginia

Lee M. Nicholson

ICASE

Langley Research Cen ter, Hampton, Virginia

Kristopher E. Wise

Langley Research Center, Hampton, Virginia

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

May 2001



Available from:

NASA Center tor AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS t

5285 Port Royal Road

Springfield, VA 22161-217 !

(703) 605-600O



Equivalent-Continuum Modeling of Nano-Structured Materials

Gregory M. Odegard*. Thomas S. Gates, Lee M. Nicholson _, and Kristopher E. Wise*

NASA Langley Research ('enter. Hampton. Virginia

Abstract

A method has been developed for modeling structure-property relationships of nano-structured

materials. This method serves as a link between computational chemistry and solid mechanics

by substituting discrete molecular structures with an equivalent-continuum model. It has been

shown that this substitution may be accomplished by equating the vibrational potential energy of

a nano-structured material with the strain energy of representative truss and continuum models.

As an important example with direct application to the development and characterization of

single-walled carbon nanotubes, the model has been applied to determine the effective

continuum geometry of a graphene sheet. A representative volume element of the equivalent-

continuum model has been developed with an effective thickness. This effective thickness has

been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

KEY WORDS: nanotechnology, nanotubes, continuum mechanics, molecular mechanics, finite

elements

Nomenclature

Graphite orientation

a_ - Unit-cell base axes

D - Graphite orientation indicator

nl_ - Orientation integers

Force field

U / - Non-bonded electrostatic potential energy

U

E m

E_,Jw

E
E _

E _

K, °

- Vibrational potential energy of graphene sheet

- Potential energy of nano-structured material

- Non-bonded van der Waals potential energy

- Bond-angle variation potential energy

- Bond stretching potential energy

- Bond torsion potential energy

- Bond inversion potential energy

- Constant associated with C-C bond stretching in graphite

K ° - Constant associated with C-C-C bond-angle variation in graphite

0, - Deformed bond-angle of C-C-C bonds in graphite
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P,

- Equilibrium bond-angle of C-C-C bonds in graphite

- Deformed bond length of CoC bonds in graphite

- Equilibrium bond length of C-C bonds in graphite

Truss and continuum models

¢/

A/

A nt

b

r, j

R/

t

yg

},,hi

r p

F m

A c

A t

V _

- Elastic rod type of outer portion of truss representative volume element

- Cross-sectional area of rod i of truss member typej

- Cross sectional area of carbon nanotube

- Elastic rod type of inner portion of truss representative volume element

- Deformed distance between joints of rod i of truss member type./"

- Undeformed distance between joints of rod i of truss member typej

- Wall thickness of continuum nanotube

- Young's modulus of graphene sheet

- Young's modulus of rod i of truss member type/.

- Young's modulus of carbon nanotube

- Mid-plane radius of continuum nanotube wall

- Inner radius of continuum nanotube wall

- Outer radius of continuum nanotoube wall

- Mechanical strain energy of the continuum model

- Mechanical strain energy of the truss model

- Poison's ratio of graphene sheet

Boundary conditions

Bj..Bto - Displacement field constants

d(,,)
k

h

ll_. ¢_)

uk

14'

Xk

Jc_

A

Ekl

Gkl

- Vector of periocity of representative volume element face ot

- RVE and macroscopic coordinate system offset vector

- Height of macroscopic graphene plate

- Displacement vector of representative volume element face

- Global displacement vector

- Width of macroscopic graphene plate

- Cartesian coordinate system of the representative volume element

- Global coordinate system

- Representative volume element lace number

- Prescribed displacement applied to macroscopic plate

- Strain tensor

- Stress tensor
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1. Introduction

Nano-structured materials have excited considerable interest in the materials research community

in the last few years partly due to their potentially remarkable mechanical properties [1]. In

particular, materials such as carbon nanotubes, nanotube and nanoparticle-reinforced polymers

and metals, and nano-layered materials have shown considerable promise. For example, carbon

nanotubes could potentially have a Young's modulus as high as 1 TPa and a tensile strength

approaching 100 GPa. The design and fabrication of these materials are pertbrmed on the

nanometer scale with the ultimate goal to obtain highly desirable macroscopic properties.

One of the fundamental issues that needs to be addressed in modeling macroscopic mechanical

behavior of nano-structured materials based on molecular structure is the large difference in time

and length scales. On the opposite ends of the time and length scale spectrum are computational

chemistry and solid mechanics, each of which consists of highly developed and reliable

modeling methods. Computational chemistry models predict molecular properties based on

known quantum interactions, and computational solid mechanics models predict the macroscopic
mechanical behavior of materials idealized as continuous media based on known bulk material

properties. However, a corresponding model does not exist in the intermediate time and length

scale range. If a hierarchical approach is used to model the macroscopic behavior of nano-

structured materials, then a methodology must be developed to link the molecular structure and

macroscopic properties. Even though there is a long history of modeling bulk properties of

materials based on molecular properties, a simple link between the firmly established disciplines

of computational chemistry and solid mechanics has not been established.

In this paper, a methodology for linking computational chemistry and solid mechanics models

has been developed. This tool allows molecular properties of nano-structured materials obtained

through molecular mechanics models to be directly used in determining the corresponding bulk

properties of the material at the macroscopic scale. The advantages of the proposed method are

its simplicity and direct connection with computational chemistry and solid mechanics.

This approach consists of two major steps. First, the chemical structure and vibrational potential

energy function of the nano-structured material, which is determined from computational

chemistry, is used to obtain an equivalent mechanical pin-jointed truss model. Second, the truss

representation of the nano-structured material is substituted with an equivalent-continuum

model. The mechanical behavior of the continuum model closely approximates that of the nano-

structured material.

As an important example, with direct application to the development and characterization of

single-walled carbon nanotubes (SWNT), the proposed method has been used to determine the

effective geometry of a graphene sheet. A representative volume element (RVE) of the graphene

layer has been modeled as a continuous plate with an effective thickness that has been

determined from the nano-structured properties of graphite by using the proposed method.



2. Background and basic concepts

A discussion of some of the necessary background and concepts associated with characterization

and modeling of carbon nanotubes is required for the development of the proposed method.

2.1 Carbon nanotubes

Carbon nanotubes have become a primary focus in nanotechnology research due to their

exceptionally high stiffness and strength. One of the fundamental issues scientists are

confronting is the characterization of the mechanical behavior and properties of individual

carbon nanotubes. Many experimental [2-6] and theoretical [7-11] studies have been performed

on single- and multi-walled carbon nanotubes. In particular, deformation modes and overall tube

stiffnesses have been closely examined.

In order experimentally characterize the mechanical behavior of nanotubes, a thorough

understanding of the physical properties, such as effective cross-sectional area and moment of

inertia, and materials properties, such as Young's modulus and Poisson's ratio, is necessary.

These quantities are traditionally associated with the macroscopic scale, where the characteristic
dimensions of a continuum solid are well defined. The determination of these properties has

been attempted in many of the studies cited above without proper regard to an acceptable

definition of the nanotube geometry. Accurate values of macroscopic physical and mechanical

properties are crucial in establishing a meaningful link between nanotube properties and the

properties of larger structures, such as nanotube-reinforced polymer composites. Therefore,

caution should be used when applying continuum-type properties to nano-structured materials.

In many studies, it has been assumed that the nanotube "wall thickness" is merely the interatomic

spacing of two or more graphene sheets [3, 6-11], which is about 0.34 nm in single-crystal

graphite. While this simple idealization appears to have intuitive merit, it does not necessarily

reflect the _:/fective thickness that is representative of continuum properties. In order to avoid

this problem, Hernandez et al. [8] proposed the use of a specific Young's modulus, i.e., Young's

modulus per unit thickness. Even though this approach is convenient for studies concerned with
the relative stiffnesses of nanotubes, it is of little use when modeling a nanotube as a continuum

structure. Another proposed solution to this dilemma is to assume that the nanotube is a solid

cylinder [12-14]. This method is certainly convenient, however, significant inconsistencies arise

when comparing moduli data of single wall nanotubes (SWNT) and multi-walled nanotubes

(MWNT) when both are assumed to be a solid cylinder.

A continuum modeling approach, which relies on an effective wall thickness, was proposed by

Yakobson et al. [15]. They developed an elastic continuous shell model to represent a carbon
nanotube. In their model, a wall thickness (0.066 nm) was calculated based on an assumed value

of Young_s modulus of the nanotube (5.5 TPa). This approach is extremely useful in

deformation analysis of nanotubes (e.g., buckling), however, it is not convenient when

attempting to calculate the modulus of the nanotube based on empirical or theoretical data where

the thickness is not known a priori. Govindjee and Sackman [14] utilized the Bernoulli-Euler

beam theory to show" that for a MWNT in bending, a large number of atomic layers are necessary

in order to be able to assume that the cross-section of the nanotube is a continuum. This type of



approachassumesthatthe nanotubeis asolid cylinderinsteadof usinga morerealisticmodelof
singleor multiple hollow cylinderswith inter-wall interactions. Ru [16] usedan elastic shell
continuum model to investigate buckling of double-walled nanotubessubjected to axial
compression.It wasshownthat thevanderWaalsforcesbetweenthelayersdid not increasethe
critical axial strainsthat correspondto buckling. Specific thicknessesfor the inner and outer
walls were not discussedin detail. Ru [17] proposedthat the effective bendingstiffnessof
SWNT shouldbe regardedas an independentmaterialparameternot relatedto the bending
stiffness associatedwith the Bernoulli-Euler beam bending theory. This simplification was
suggestedin order to explain inconsistenciesassociatedwith the useof the classicalbending
formulafor SWNTusingawall thicknessof 0.34nm.

It hasbeenpostulatedby CornwellandWille [12] andRobertsonet al. [18] that the strain energy

induced by bending a flat graphene sheet into a circular nanotube causes an increase in the

apparent stiffness of the tube as a function of the nanotube radius. Conversely, Halicioglu [19]

has shown that significant radial and circumferential stresses are present in the nanotube that are

also dependent on the tube radius. Therefore, it follows that in order to properly' model the

mechanical behavior of a SWNT using continuum mechanics, the effective geometry must be

known. If the nanotube is modeled as a continuous hollow cylinder with an effective wall

thickness, then a simple first step is to model the flat graphene sheet in order to determine the

effective wall thickness. In the current study, the effective thickness will be calculated as an

example of the proposed approach.

2.2 Notation for graphite orientation

In order to clarify some of the notation used in this paper, a brief description of the commonly

used notation for graphite is necessary. A graphene sheet is composed of bonded carbon atoms

arranged in a repeating array of regular hexagons (Figure 1). The simplest way of specifying the

orientation of a graphite structure is in terms of a vector D that joins two equivalent points

(atoms) of the graphene sheet. The vector may be expressed as:

D = nl_al_ (1)

where the index [3 = 1_2:a13 are the unit-cell base vectors of the graphene sheet (Figure 1): n[_ is a

set of integers where n_->n2: and the summation convention is used for repeated indices. It is

common to express equation (1) in terms of the integers as the ordered pair (nj.n2).

2.3 Representative volume element

To reduce the time and number of computations associated with modeling the graphene sheet, a

representative volume element (RVE) for graphene was used in this study' (Figure 2). The

selected RVE allows each degree of freedom of the carbon atom associated with bond stretching

and bond-angle variation in the hexagonal ring to be completely modeled by truss and continuum

finite element model nodal-displacement degrees of freedom. Also, this RVE allows the

displacements on the boundary of the proposed chemical, truss, and continuum models to

correspond exactly. Furthermore, macroscopic loading conditions applied to a continuous



grapheneplate can be easily reducedto periodic boundaryconditionsthat are appliedto the
RVE.

3. Modeling procedure

The proposed method of modeling nano-structured materials with an equivalent-continuum is

outlined below. The approach uses the energy terms that are used in molecular mechanics

modeling for the development of a continuum solid. Therefore, a brief description of molecular

mechanics is given first lbllowed by an outline of the equivalent-truss and equivalent-continuum

model development.

3.1 Molecular mechanics

An important component in molecular mechanics calculations of the nano-structure of a material

is the description of the forces between individual atoms. This description is characterized by a

force field. In the most general form, the total potential energy of the force field for a nano-

structured material is described by the sum of many individual energy contributions:

E" = E ° + E ° + E ++ E _ + E ''lJ+'+ E "j (2)

where E °, E °, E _, and _ are the energies associated with bond stretching, angle variation,

torsion, and inversion, respectively. The non-bonded interaction energies consist of van der

Waals, E +'Jw, and electrostatic, U ], terms. Various functional forms may be used for these energy

terms depending on the particular material and loading conditions considered [20]. Obtaining

accurate parameters for a force field amounts to fitting a set of experimental or calculated data to

the assumed functional form, specifically, the force constants and equilibrium structure. In

situations where experimental data are either unavailable or very difficult to measure, quantum

mechanical calculations can be a critical source of information for defining the force field.

3.2 Truss model

Due to the nature of the molecular force field, a pin-jointed truss model may be used to represent

the energies given by equation (2) where each truss member represents the forces between two
atoms. Therefore, a truss model allows the mechanical behavior of the nano-structured system to

be accurately modeled in terms of displacements of the atoms. This mechanical representation

of the lattice behavior then serves as an intermediate step between linking the vibrational

potential with an equivalent-continuum model. In the truss model, each truss element

corresponds to a chemical bond or a significant non-bonded interaction. The stretching potential

of each bond corresponds with the stretching of the corresponding truss element. Traditionally,

atoms in a lattice have been viewed as masses that are held in place with atomic forces that

resemble elastic springs [21]. Therefore, bending of truss elements is not needed to simulate the

chemical bonds, and it is assumed that each truss joint is pinne& not fixed.



Themechanicalstrainenergy,At, of thetrussmodel isexpressedin theform:

At= T' _t,), (r j
_, 2R/ _ ' - R/

{3}

where A/and )_' are the cross-sectional area and Young's modulus of rod i of truss member type

j. respectively. The term p;' - R/is the stretching of rod i of truss member typej, where R/ and

r,j are the undeformed and deformed lengths of the truss elements, respectively. For equation

(3), as well as all equations up through section 4.2, the summation convention for repeated

indices is not used.

In order to represent the chemical behavior with the truss model, equation (3) must be equated

with equation (2) in a physically meaningful manner. Each of the two equations are sums of

energies for particular degrees of freedom. The main difficulty in the substitution is speci_'ing

equation (3), which has stretching terms only. for equation (2), which also has bond-angle

variance and torsion terms. No generalization can be made for overcoming this difficulty for

every nano-structured system. A feasible solution must be determined for a specific nano-

structured material depending on the geometry, loading conditions, and degree of accuracy

sought in the model.

3.3 Equivalent-continuum model

For many years, researchers have developed methods of modeling large-area truss structures

with equivalent-continuum models [22-27]. These studies indicate that various methods and

assumptions have been employed in which equivalent-continuum models have been developed

that adequately represent truss structures. In this study, the truss and continuum models are

assumed to be equivalent under the following conditions:

1. Truss lattices with pinned joints can be modeled accurately with an equivalent-continuum

model that is based on classical continuum mechanics. For this case, micropolar [28]

continuum assumptions are not necessary.

2. The models have the same degrees of freedom.

3. The displacements along the edges of the RVE are identical for the two models subjected

to the same static loading conditions.

4. The same amount of thermoelastic strain energy is stored in the two models when

deformed by identical static loading conditions.

If these criteria are satisfied, then a particular continuum model, such as a beam, plate, shell, or

three-dimensional solid, may be directly substituted for a discrete truss lattice. The parameters

of the solid, such as the elastic properties and geometry, are determined based on the above

criteria. In some cases the strain energy of the continuum, A _. can be easily formulated

analytically and compared directly with equation (3) to obtain the equivalent-continuum



properties. In other cases,especiallywith complex geometriesand deformations,numerical
toolsneedto beusedto determinethecontinuumparameters.

Once an equivalent-continuummodel hasbeendetermined,the mechanicalbehaviorof larger
structuresmadeof the nano-structuredmaterialmaybe predictedusingthestandardmethodsof
continuummechanics.

4. Example: effective geometry of a graphene sheet

In this section, a graphene sheet is modeled as a continuous plate with a finite thickness that

represents the effective thickness for the determination of continuum-type mechanical and

physical properties. By using the methodology described above, the molecular mechanics model

is substituted with a truss model and subsequently an equivalent-plate model. The continuum

model may then be used in further solid mechanics-based analyses of SWNT.

4.1 Molecular mechanics model

The force constants used in this example were taken from the MM3 force field of Allinger and

coworkers [29-31 ]. Due to the nature of the material and loading conditions in the present study.

only the bond stretching and bond-angle variation parameters were used. Torsion, inversion, and
non-bonded interactions were assumed to be negligible for the case of a graphene lattice

subjected to small deformations. For this example, the vibrational potential energy of a graphene

sheet with carbon-to-carbon bonds is expressed as a sum of simple harmonic functions:

)-" )-'E_=ZK,P(o,-P, +Z K,° (0, -0,
! 1

(4)

where the terms P, and®, refer to the undeformed interatomic distance of bond i and the

undeformed bond-angle i, respectively. The quantities Pi and 0i are the distance and bond-angle

after stretching and angle variance, respectively (see Figure 3). K, ° and K,° are the force

constants associated with the stretching and angle variance, respectively, of the chemical bonds.

Using the parameters for the MM3 force field [29-31 ], the force constants used in this example

are:

kcal nJ
K, _ = 46900 - 3.26-10 -7

mole. nm 2 bond. nm 2

kcal r_I
K ° =63 -4.38.10 -t°

t

mole. rad'- angle, rad 2

(5)

and the equilibrium bond length, P,, is 0.140 nm.



4.2 Truss model

Since it is difficult to express the mechanical strain energy, A t. of the truss model in terms of the

variable truss joint angles that are specified in molecular mechanics (0i-®,), the RVE has been

instead modeled with extra rods between nearly adjacent joints to represent the interaction

between the corresponding carbon atoms (Figure 3). In order to represent the chemical model.

which has bond stretching and variable angles as degrees of freedom, with a truss model that has

stretching degrees of freedom only. two types of elastic rods. a and h, are incorporated into the
truss RVE.

The mechanical strain energy. A t, of the discrete truss system in Figure 3 is expressed in the form

of equation (3):

A"}'" _ 4/' "/, I_

2R," _' 2Rf'
(6)

where the superscripts correspond to rod types a and b, respectively. Comparing equations (4)

and (6), it is clear that the bond stretching term in the equation (4) can be related to the first term

of equation (6) for the rods of type a:

X - (7)
2R;'

where it is assumed that 9, = r" and P, = R,". However, the second terms in equations (4) and

(6) cannot be related directly. In order to equate the constants, the chemical bond-angle variation

must be expressed in terms of the elastic stretching of the truss elements of type b. For

simplicity, it may be assumed that the prescribed loading conditions consist of small, elastic

deformations only. This assumption is not an over-simplification for the graphene sheet since the

deformations for highly stiff linear-elastic materials subjected to many practical loading

conditions are quite small.

In order to express the Young's modulus of the rods of type b in terms of the bond-angle

constant, a simple analysis of the deformation was performed (Figure 4). For small deformations

of the hexagonal RVE, changes in the bond-angles are small. Therefore, in the second terms of

equations (4) and (6), it can be assumed that p;" = R_' and that small angle approximations are

valid. With these assumptions it can be shown that:

01- O - - Rf' (8)
2R,"

Substitution of equation (8) into equations (4) and (6) results in the following approximation:



(9)

Therefore, the Young's moduli of the two rod types are:

.... 2K'°R;' y"- 3K°' (10)
J h h

A_' 2R, A,

The strain energy of the truss model may be expressed as:

)2 %_3K° h )2A' = Z, K° ( ';''- R:' + 4(Rf') 2 (': - Rb'
(11)

Thus, the strain energy of the truss model is expressed terms of the vibrational potential energy

constants.

4.3 Equivalent-plate model

Working with the assumptions discussed herein, the next step in linking the molecular and

continuum models is to replace the equivalent-truss model with an equivalent-continuous plate

with a finite thickness (Figure 3). This replacement is accomplished by determining and

equating the strain energies of the truss and continuum models for a specific set of applied loads.
For the case of the RVE shown in Figure 2, a direct solution of strain energy of the equivalent

plate in terms of displacements is quite difficult to obtain in closed form. A simple and accurate

way of calculating the strain energy of the truss and continuum RVE representations is to model

them numerically by using the finite element method [32]. For a given set of loading conditions,

the strain energies of the two models may then be quickly calculated and compared. Once this is

accomplished, then the finite thickness of the equivalent plate is determined, and therefore, the

effective thickness of a graphene sheet is known.

In order to satisfy the first condition of the criteria specified in section 3.3, it was assumed that

the equivalent plate may be modeled using plate-like finite elements. To satisfy the second

condition, it was assumed that the nodes of the two models are located at the same points, with

the same degrees of freedom. A simple configuration that satisfies this requirement is shown in

Figure 3, where the finite element nodes are located at each truss joint on the RVE edges (the

intersections of the type h rods are not joined) and at the comers of the 4-noded equivalent-plate

elements. These nodes are allowed to translate in the x_ and x2 directions only (The origin of the

coordinates is indicated in Figure 3 and located at the centroid of the RVE). Therefore, the

degrees of freedom of the two models are identical. For condition 3, the displacement gradients
of the truss elements and the edges of the continuum elements were assumed to be linear.

Finally, to satisfy condition 4, the two finite element models were subjected to identical loading

conditions with the total strain energies calculated based on the nodal displacements. This step

was performed iteratively while optimizing the plate thickness, which was the only available

adjustable parameter. The corresponding plate thickness is the assumed effective thickness of

the graphene sheet.
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While themechanicalpropertiesof thetrusselementshavebeendeterminedasdescribedabove,
thoseof the graphenesheetwere taken from the literature. Reliablevalues of the in-plane
mechanicalpropertiesof graphitehave been known for quite some time since they can be
measuredmacroscopically,i.e.,without anyassumptionsregardingthe graphenesheetthickness.
Forthis example,typical valuesof themechanicalpropertieswereused[33-35]:

Y_' = 1030 GPa (12)

v _ = 0.170

where Yg and v g are Young's modulus and Poisson's ratio of graphite, respectively.

4.4 Boundary conditions

In order to determine an effective plate thickness, the truss and continuum models were

subjected to three sets of identical loading conditions for each strain energy calculation. For

each set of loading conditions, a corresponding effective thickness was determined. The loading

conditions correspond to the three fundamental in-plane deformations of a plate, that is. uniform

axial tension along xl and x2 and pure shear loading. It was assumed that these loading

conditions were applied to a macroscopic graphene sheet, i.e. a graphite sheet that has

dimensions on the macroscopic scale so that there are a very large number of RVEs contained

within the entire sheet. In order to numerically calculate the strain energy of the RVE under

these loading conditions, the corresponding periodic boundary conditions tbr the these

fundamental loadings were determined and applied to the macroscopic graphene sheet.

Using the method developed by Whitcomb et al. [36] and Chapman and Whitcomb [37] for

woven composites, the boundary conditions for the graphene RVE (Figure 2) was determined in

terms of the overall macroscopic displacement field. The periodic displacement conditions for

the graphene RVE are given by:

v,,,,+4,)=,,'"' (13)

where u_k"_ is the displacement of a specific RVE lace; d_ _i is the vector of periodicity: h_ is the

macroscopic, volume-averaged displacement: x¢ is the RVE coordinate system located at the

centroid of the RVE (Figure 3); the superscript e_ is the RVE face under consideration; and the

subscripts k,l,m = 1,2, where repeated indices imply summation over the range of the index. The

vector of periodicity is any vector that connects two equivalent points in a periodic array. The

vectors of periodicity of particular interest here are those that connect points in adjacent RVEs.

Figure 5 shows the vectors of periodicity for each set of faces of the RVE. It should be noted

that d_,_1 is parallel to a2 and d_, is parallel to a_ (see Figures 1 and 5). The vectors of periodicity

for each face are defined with respect to the xk coordinate system by:

11



d_ 1) =

d_2_
k =

"R,"x/-3 3R"

2 2

R/,f32 ,3R_']2 (14)•

/." ¢ •

Substitution of equation (14) and the geometry, of the RVE into equation (1 3) gives the following

constraints that represent the periodic boundary conditions for each group of opposing faces in

the graphene RVE:

,,'?'[-43x,

lt/,

\

. X_ _-. ll_l I a .a¢-

2 - 2 2 [_x,) 2 [bx2)

_ _ _

2

(15)

Three different sets of displacement boundary conditions were applied to the RVE in this study.

Each set is discussed below.

4.4.1 Case I: uniaxial dLwlacements along (nl, O)

A macroscopic graphene sheet is subjected to uniaxial loading conditions as shown in Figure 6.

An axial displacement A is prescribed on the upper edge while the lower edge is constrained.

The displacement is relatively small and the h×w plate is perfectly elastic. If it is assumed that

the global displacements h_and h 2 vary linearly over the global coordinates _t and :_2. then these

displacements may be written as:

(16)

where B1, B2, B3. and B4 are constants which depend on the geometry and applied global

displacements. The boundary conditions for this case are:

12



u2 xl, = A

_, (o. :;-:) : o

(17)

Since small elastic displacements are assumed, the strains and constitutive equations are [38]:

bz_, Oh_

et 0.{.I _ =----:-_¢.

ell = 77 ....

(18)

where ct_ and _22 are normal strains, and _51_, and _22 are normal stresses in the plate.

Substitution of equations (17) and (18) into equation (16) and solving for the constants BI. B2,

B3. and B4 results in the following displacement functions:

V:"A ^

- Xl;,
A_ A

4 (_) : ;, _-_ 2

(19)

The global and RVE coordinates are related by:

.__= x_.+ ,/i (20)

where./_, is a vector indicating the relative position of the two coordinate systems with respect to

each other. Using equations (15), (19), and (20), the RVE boundary, displacements are
determined to be:

13



(21)

4.4.2 Case H. uniaxial displacements along (0. n#

The same macroscopic graphene sheet studied in Case I is now subjected to a different set of

displacements, as shown in Figure 7. The boundary conditions for this case are:

=o

(22)

If the same assumptions are made for this case as for Case I, then equations (16), (18), and (22)

may be used to determine the following global displacements:

A^ A
4 (-ik)= - x, +-

14,' 2

V?zm ^

14;

(23)

Using equations (15), (20). and (23), the RVE boundary displacements are determined to be:

14



,,I"-,fix, e;,,fi
2

u;"(-45x_

u I-'' ,_-3_x,+--

lA21

1113)

lll31

3Rj'
,X_ +--

2

t_1

2

n_',fi
2

- 2

R;'_2 .x:] =.;"

R,"_ ] ,..,. X 2 = lt_
2

3R_'
,X_ +--

2

"R"D ,

'X2 +T

,'_ c,

._ R I
---,x, +--

2

_ a q._:.;" (-.fix ./XR, ) e,'.ga
2w

) v'_ 3R"'A
_t _ __/3x 2 _ - 21r

= u_ ,f3R/'. x_

_-.,_s,(4Xx:

e;'2_ "'_-]+e;'w,/5/,

2W

R/' _ ]2 -

vJR, A

2W

(24)

4. 4.3 Case IlL (pure-shear disphlcements)

The macroscopic graphene sheet is now subjected to pure shear, as indicated in Figure 8. The

constraints imposed fbr in-plane shear loading assume that the shearing faces normal to the

direction of the applied shear are displaced by identical amounts. The displacement is relatively'

small and the hxw plate is perfectly elastic. If it is assumed that the global displacements l), and

t?__vary linearly over d-, and 5c_, then these displacements may, be written as:

,_,(._)= R,.;,+B& +B;

h_ (-_k) = Bs_i', + B,fi2 + B,o
(25)

The boundary conditions are:

["' )_, -7,.__, =0

. W ]u_(2")?-' = a

^ h

Substitution of equation (26) into equation (25) results in:

(26)
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A_ A
4 (_) =- x, +-

w 2

(27)

Using equations (15), (20), and (27), the RVE boundary displacements may be determined:

ul 'I -x]-Sx,

,,'_"(-`fx_
/

,,'?' _x, +--

"R" I
R," `f ,x_ + _t_ =

2 " 2

R;'43 3R"/.X3

2 " 2

R" _ "R" _

' 2 ,x, _ +_z-' I

u13, R;' `f ] ,3,--, X-, = 111

2

2 [ 2 - -

I-_ R U • _

e;'4_ ]_X_

R;'̀ f ]Xv

2 -

2w

]4 _

(28)

To simplify the application of equations (21), (24), and (28) to finite element boundary

conditions, without loss of generality, the following assumption can be made:

(x... (x...) (29)

4.5 Finite element modeling

The truss and continuum representations of the RVE were modeled using ANSYS :":'5.4 [39]. In

the truss model, each pin-jointed extensible rod was modeled using a finite truss element

(LINK1) with two degrees of freedom at each node (displacements parallel to xl and x2). Rod

types a and b were assumed to have the same cross-sectional area and different Young's moduli.
The entire RVE was modeled with the cross-sectional areas of the type a rods divided by a factor

of 2, since these rods are sharing their total area with adjacent RVEs. The equivalent-plate RVE

was modeled by using two plane-stress 4-noded quadrilateral elements (PLANE42) with linear

displacement fields on the edges (Figure 3). The boundary conditions described above were

applied to each node for a macroscopic graphene sheet height, width, and displacement of l xl 0 '_

nm, lxl06 nm, and 100 nm (corresponding to global uniaxial and shear strains of 0.01%),

respectively. For both models, the total strain energy of each element was calculated for the

given boundary conditions, then summed to obtain the strain energy of the entire RVE model. A

systematic variation of thickness was used to calculate the strain energy of the equivalent plate,
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andaniterativeprocesswasusedto find thecritical thickness(accurateto 0.01nm) thatresulted
in theequivalenceof thestrainenergiesof thetrussandequivalent-platemodels.

5. Discussion

Using the method described herein, effective thicknesses were determined for the three loading

cases. For loading cases I and II, the resulting effective thickness was calculated to be 0.28 nm.

For load case III, the effective thickness was 0.24 nm. These values are close to. but smaller

than, the widely accepted value of the graphitic interatomic spacing, 0.34 nm, and much larger

than the value suggested by Yakobson et al. [15], 0.066 nm. Even though there is a difference in

the effective plate thickness based on different loading conditions, the difference is very, small

compared to the range of values currently used.

It may be assumed that the Young's modulus of a carbon nanotube can be calculated using:

Y"' _: (A'") ' (30)

where ,4"' is the cross-sectional area of the hollow continuum cylinder with a constant mid-plane

radius, r'. The inner radius, r", and outer radius, r', of the tube are:

l/ I

2

,,, , 1
r =r+--

2

(31)

where t is the wall thickness. The cross-sectional area of the hollow continuum cylinder is:

Atll ,") P= ,rttr (32)

The calculated cross-sectional areas are shown in Table 1. The percentage difference in the

calculated Young's modulus based on the effective thickness obtained for the three load cases

with respect to the interatomic spacing is also shown in Table 1. The results suggest that

measured and calculated values of physical and mechanical properties of carbon nanotubes that

are dependent on the dimensions of the continuum tube may differ significantly based on the

assumed geometry.

The proposed method for continuum modeling may be applied to other nano-structured materials

such as nanotube-reinforced polymer composites and will yield satisfactory, results if the right

assumptions are made. If the material is subjected to large deformations such that non-linear

deformation and failure are key issues, then the particular approximations made in this study

may not be appropriate.
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6. Conclusions

A method has been presented for modeling structure-property relationships of nano-structured

materials. This method serves to link computational chemistry, which is used to predict

molecular properties, and solid mechanics, which describes macroscopic mechanical behavior

based on macroscopic material properties. This link is established by replacing discrete

molecular structures with equivalent-continuum models. It has been shown that this replacement

may be accomplished by equating the vibrational potential energy of nano-structured materials

with the mechanical strain energy of representative truss and continuum models.

As an important example with direct applications to the development and characterization of

carbon nanotubes, the model has been applied to determine the effective geometry of a graphene

sheet. A representative volume element (RVE) of the chemical structure of graphene has been

substituted with RVEs of equivalent-truss and equivalent-continuum models. As a result, an

effective thickness of the continuum model has been determined. This effective thickness has

been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.
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load cases I and II

load case III

average of 1, Ik and III

interatomic spacing

continuum continuum % difference of

wall thickness cross-sectional area Young's modulus

[nm] [nm 2] [%]

0.28 1.76r' 21

0.24 1.51r' 42

0.27 1.70r' 26

0.34 2.14r' -

Table 1 - Percent difference in calculated Young's modulus for different wall thicknesses with

respect to the Young's modulus calculated with the interatomic spacing.
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Figure 1 - Unit vector notation for a graphene sheet
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Figure 2 - Representative volume element of a graphene sheet
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Figure 4 - Schematic of the geometry of deformation of the representative volume element
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