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Chapter 1.

Project Summary

1. Research Objectives

The ultimate goal of the project is to theoretically investigate the effect of noneguilibrium phase
transitions on vapor and vapor-gas bubble dynamics in acoustic fields to determine the feasibility
of the measurement of the accommodation coefficient using bubble dynamics in acoustic fields. The
technical objectives include:

1. Using a spherical model of a bubble in an isotropic acoustic field including thermal and

diffusion effects in the liquid and in the vapor, surface tension, liquid viscosity and com-
pressibility, evaluate the effect of nonequilibrium phase transitions on vapor and vapor-gas

bubble dynamics.

9. Evaluate the influence of the accommodation coefficient on the bubble translational motion
in a standing acoustic waves and on rectified heat transfer.

3. Conduct a parametric study to evaluate the range of parameters which can be used in design
of an ezperimental setup for determination of the accommodation coefficient.

2.  Summary of Research

The research effort has successfully achieved most the objectives set in the proposal:

e We developed a comprehensive model of a spherical bubble in an acoustic field including the
effects of nonequilibrium phase transitions, heat and mass transfer in the liquid and gaseous
phases, surface tension, liquid viscosity, and compressibility.

e We developed and implemented asymptotic and numerical methods for solution of the prob-
lem and incorporated them into codes convenient for parametric studies.

e We conducted parametric studies of vapor and vapor-gas bubble dynamics in acoustic fields

and determined conditions in which the effect of nonequilibrium phase transitions on bubble
dynamics is appreciable and can be used for measurements of the accommodation coefficient.



e We uncovered several physical effects which can be used for determination of the accommo-
dation coefficient using bubble dynamics. These include, for example, low frequency bubble
mean position/radius oscillations in standing acoustic waves, the possibility of stabilization
of the mean bubble radius in acoustic fields, the existence of multiple threshold and stable
equilibrium states of the mean vapor bubble radius in acoustic fields and their dependence
on the accommodation coefficient, parameters of the acoustic field, and ambient conditions.

e It is commonly thought that nonequilibrium phase transition affects bubble dynamics only
in high-frequency fields (at least tens of kilohertz for water; some authors considered even
the megahertz range). We, however, found that the range of bubble dynamics sensitivity
depends on the bubble size, initial conditions, content of the inert component, and other
parameters, which can be selected in experiments to provide measurements over a broad
range of acoustic frequencies, and ambient conditions. We found that nonequilibrium phase
transitions may affect the dynamics of vapor and vapor-gas bubbles in a broad range of
acoustic frequencies and bubble sizes (for water at atmospheric pressure, 1-100 kHz and
10-10000 pm, respectively).

e We found a strong effect of initial conditions on rectified heat transfer for an initial stage
that can span millions of cycles of bubble oscillations.

e We found that gravity can substantially affect the bubble dynamics in acoustic fields.
Regimes of bubble dynamics in standing waves substantially depend on the magnitude of
gravity. Reduced gravity in general is beneficial for measurements of the accomodation
coefficient.

3. Problems and Future R&D Objectives

The following research issues still need to be addressed prior to designing an instrument for
measurement of the accommodation coefficient.

1. Validation of the developed codes by comparison with available experimental data.

2. Modification of the developed codes to include convective heat transfer due to bubble trans-
lational motion in a standing wave.

3. In the space of parameters, determination of the regions of spherical shape stability /applicability
of the spherical bubble theory.

4. Evaluation of the effect of bubble nonsphericity on the measurements of the accommodation
coefficient.

5. Determination of the optimal parameters/regimes for measurement of the accommodation
coefficient.



4. Potential Applications

The research seeks to develop a practical diagnostic technique for measurement of the accommo-
dation coefficient of various substances in various conditions. The technique is based on measure-
ments of bubble size and position in acoustic fields and subsequent processing of the results of
measurements. Dependencies of the accommodation coefficient on temperature, surface contam-
ination, and other parameters can be established using the proposed technique and utilized for
diagnostic purposes and characterization of liquid/vapor interfaces. Measurement of the accom-
modation coefficient is important for proper modeling of many natural and technological processes
including boiling of liquid metals, film boiling, vacuum vaporization, explosions, aerosol mechanics,

meteorology, and others.







Chapter 11.

Introduction

Nonequilibrium liquid/vapor phase transformations occur in a wide variety of natural and tech-
nological processes. In addition to the problem of interest here, these include evaporation and
condensation of high velocity jets [8], film condensation [9], growth of small droplets in clouds
[10, 11], sound propagation in vapor-droplet systems [12, 13], nonlinear dynamics of vapor bub-
bles and condensed droplets in acoustic fields [14, 2], and laser vaporization [15].

Studies of processes with non-equilibrium phase transitions are of great practical importance,
because in many advanced technologies it is necessary to predict and control material behavior
under extreme conditions. However, the use of most theories and models is limited by the lack of
reliable data on material properties, especially coefficients describing nonequilibrium vapor/liquid
transformations. Such data can be obtained only from experiments. The experimental facilities
used for these measurements are usually complex, expensive, and do not provide repeatable re-
sults. For example, data reported on the accommodation coefficient for water obtained by various
experimenters during this century vary from 6-10~2 to 1, and experimental data for mercury are
in the range from 5-107% to 1.

The reason for such a wide range of results is that the accommodation coefficient is very
sensitive to the conditions of the experiment. In order to address this shortcoming,:the dependence
of the accommodation coefficient on temperature, on the concentration of other-species, and on
other parameters near the interface should be determined. If a reliable and accurate accomodation
coefficient measurement technique is available, such dependencies can be found experimentally and
tabulated. This will provide a firm basis for modeling of nonequilibrium phase transitions.

In recent microgravity experiments conducted by the European Space Agency using the Ger-
man drop tower and the Bubble, Drop, and Particle Unit ESA multi-user facility for fluid physics
experiments operating onboard IML2 (1994) and LMS (1996), an attempt to determine of the ac-

 commodation coefficient of refrigerants R11 and R113 was made by Picker and Straub [16] using

observation of vapor bubble dynamics. Typical times of bubble radius variations in these exper-
iments were of order 1 s. These times are several orders of magnitude larger than the interface
temperature relaxation times and the evaporation/condensation in these experiments occurred in
almost equilibrium conditions (no dependence on the accommodation coefficient). This explains
the great dispersion of the values obtained for the accommodation coefficient (from 0.9-1072 to 0.7

for R11 and from 8-1072 to 1 for R113 [16]).



It is known that during each cycle of bubble oscillation there are two phase transition stages:
evaporation and condensation. For very small amplitude oscillations the amounts of evaporated
and condensed liquid are approximately the same, and the vapor bubble oscillates about an equi-
librium value. However, at larger amplitudes the nonlinearity of the bubble dynamics causes a
difference between the amounts of evaporated and condensed liquid. This difference is small during
one period of oscillation, but leads to slow-timescale dynamics of the average bubble size. This
is called “rectified heat transfer”. The same effect for gas bubbles growing due to mass diffusion
is known in literature as “rectified diffusion”. For vapor/gas bubbles it can be called “rectified
heat and mass transfer”. In some regimes the average bubble size can reach an equilibrium value,
and the bubble can experience stable oscillations. In this state the amounts of evaporated and
condensed liquid over the period are equal even when taking into account all nonlinear effects. The
equilibrium mean radius can be defined as the mean radius separating ranges of bubble growth
and shrinkage. The mean equilibrium radius can be stable (in this case bubbles of sizes slightly
larger than the equilibrium radius shrink and bubbles slightly smaller than the equilibrium radius
grow) or unstable (opposite situation). In a standing acoustic wave the bubble also experience a
clow drift under the action of the primary Bjerknes force, which is also a nonlinear effect. The
present study shows that the effects of bubble drift and rectified heat transfer are strongly coupled.

Accounting for these nonlinear effects in a measurement technique has additional advantages.
First, these effects depend strongly on the value of the accommodation coefficient. Second, the
characteristic times of the growth of the bubble average radius and of the bubble drift in weak
acoustic fields are much larger than the bubble period of oscillation. Also the corresponding
spatial scales (of the order of the bubble radius and the acoustic wavelength) are much larger than
the amplitude of the bubble radius oscillations. This makes these measurement much easier to
accomplish. '

Successful completion of this effort will enable the refined theory and codes to be used for
development of a simple system for measuring the accommodation coefficient. Such a system
could be used not only in fundamental studies of kinetics of phase transitions, but also could have
good practical applications, for example for detection of extremely small amounts of contaminants
present in pure substances, because of the high sensitivity of the accommodation coefficient to
the contaminants. To establish such procedures the dependence of the accommodation coefficient
on various contaminants and ambient conditions should be determined first, which also requires a
good measurement technique for this coefficient. There could be substantial benefits from using the
accommodation coefficient measurement technique for controlling production of pure substances
such as semi-conductors, high purity chemicals and isotopes. This technique can be modified for
the case of arbitrary aggregate states of matter, and allows consideration of gas-solid, liquid-liquid
and liquid-solid non-equilibrium phase transitions (e.g. the crystal growth from melts in acoustic
fields under the effect of rectified heat transfer as was considered in [17]).




1. Historical review of measurements of the accommoda-
tion coefficient

The kinetic model of evaporation and condensation was first proposed by Hertz [18] and Knudsen
[19]. If the difference between the saturation temperature T}, and the temperature of the interface
T, is not too large, the rate of evaporation £ can be written in the form of the Hertz-Knudsen-
Langmuir equation. The accommodation coefficient 3 is also known as the evaporation or the
condensation coefficient. Some authors discriminate between the condensation and accommoda-
tion coefficient, while other authors use the same value for both terms. [ is a dimensionless
thermophysical parameter ranging from 0 to 1 which is a property of the liquid-gas interface (such
as the surface tension coefficient).

The history of accommodation coefficient measurements shows many problems, as can be
seen in the publications cited in this section and the fundamental monograph of Volmer [1]. All
these works and the experimental data show a wide range of possible values of B and show the
importance of considering the physicochemical hydrodynamics near surfaces where nonequilibrium
condensation occurs. The following examples illustrate this point.

The first experiments of Hertz with mercury [18] gave the value § = 0.11. Knudsen [19] also
experimented with mercury, and his first experiments gave the value B = 0.0005. He explained
this low value of the accommodation coefficient by surface contamination. After improving the
conditions of the same experiment he obtained S = 0.11. Finally, experimenting with falling
mercury drops with continuously renewing surfaces he found g = 1.

Numerous experiments of Langmuir and coworkers performed between 1913 and 1934, showed
that the accommodation coefficient for high temperature boiling metals such as wolfram, molyb-
denum, platinum, nickel, iron, copper, and silver is close to 1. Further analysis of these and other
data showed that the value of 3 for all of the mentioned metals is between 0.25 and 0.33, except
for platinum, for which § =1 could be true.

The accommodation coefficient for water was measured in the studies of Alty and coworkers
[20]. To determine the interface temperature they used a technique based on the measurement
of the surface tension and found 8 = 0.036. In [9] the water accommodation coefficient was
estimated from measurements of filmwise condensation of steam at low pressure on a vertical flat
plate and 3 was found between 0.45 and 1. On the other hand, recent measurements of the water
accommodation coefficient using a cooled wall expansion chamber [11] showed values of B that
decreased from 1 for 1 um droplets to 0.006 for 15 pm droplets. This, perhaps, could be due
to some diffusion of trace contaminants or inert components to the surface. Nevertheless, the
experimenters that took precautions to ensure system and sample purity were not able to identify
trace contaminants. The authors of [21] also found a difference in the water accommodation
coefficient between a fresh surface (measured 3 is 0.2) and a “stagnant” surface (measured S is
0.038).

In Fig. II-1 we present some reported data on accommodation coefficient measurements. We
plotted the ratio of the maximum reported to the minimum reported value of the accommodation
coefficient for five different substances. It is seen that these ratios can be of order 102 or even 10°.
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Figure II-1: The ratio of the maximum to the minimum measured values of the accommodation
coefficient for five different substances.

2. Review of publications related to vapor bubble dynam-
ics

The acoustics of vapor bubbles and acoustic vapor cavitation were intensively studied theoretically
and experimentally in the 1960’s and 1970’s. Many of these studies were related to the design of
cryogenic bubble chambers for registration of the tracks of charged particles [22] and measurements
of the tensile strength of liquids [26]. More recent applications include acoustic enhancement of
boiling in microgravity [27, 28] and the use of bubble dynamics for determination of liquid-vapor
interface properties [4].

Wang [29], Khabeev [30], and Fanelli et al [31] performed linear analyses of forced vapor and
vapor-gas bubble oscillations and showed a strong difference in acoustic properties of vapor bubbles
and bubbles of non-condensable gas. In addition to the primary resonance, vapor bubbles exhibit
a second resonance in acoustic fields corresponding to smaller sizes for a given frequency, which is
known as the condensation-evaporation resonance. This resonance was first reported by Finch and
Neppiras [32). Hsieh [33], Marston [34], and Hao and Prosperetti [35) provided physical insight
into the second resonance.

The effect of rectified heat transfer on vapor bubbles was investigated theoretically by several
researchers [3, 5, 35, 36, 37, 39]. Marston and Greene [40] observed stable oscillations of bubbles
for several seconds in liquid helium-I. Our recent study sponsored by NASA shows that there can
exist multiple threshold and stable equilibrium mean radii of vapor bubbles in isotropic acoustic



waves [5]. Hao and Prosperetti [35] and our study [5] have determined that the development of a
“slow” thermal boundary layer in the liquid at large time is a significant mechanism of rectified

- heat transfer. This means that convective heat transfer can be important for bubbles moving in the

liquid. Theories and computational schemes for modeling such processes are available [41, 42, 43].
There are very few publications available on experimental studies of rectified heat transfer. For
example, Akulichev et al [17] mention some experiments in cryogenic liquids without providing
quantitative information. A very recent publication of Ohsaka and Trinh [44] reports results on
water vapor bubble growth rate measurements, which perhaps is the first publication of such
data. This paper shows that experiments with vapor bubbles in acoustic fields are challenging.
Particularly, experiments for “vapor” bubbles were performed at atmospheric pressure and at a
temperature of 80°C. Such bubbles consisted approximately of 40% water and 60% air (by weight).
Our computations show that such bubbles differ from both pure air and pure vapor bubbles, and
a theory of rectified heat and mass transfer to vapor-gas bubbles should be applied in this case.

The above mentioned theoretical studies deal with spherical bubbles. However, due to the
parametric resonances between volume and shape modes, a stable spherical bubble shape can be
realized only at small amplitudes [45, 46, 47]. Other effects, such as acoustic streaming, translatory
bubble motion, and gravity, can also influence the results [48]. To describe shapes of levitating
bubbles and drops in standing acoustic waves variational and other methods were applied (e.g.
[49, 50]).

Forces acting on the bubble in acoustic fields were studied by several researchers. The major
force acting on a bubble in an oscillating pressure field is the primary Bjerknes force [61], which
is the time average over a period of the product of the bubble volume and the acoustic pressure
gradient. This force is proportional to the energy of the acoustic field. In normal gravity conditions,
depending on bubble size, frequency, and amplitude of sound, it can exceed the gravity force [52]
and the bubble can levitate [53] or be positioned in the center of a spherical flask such as in
sonoluminescence experiments [54]. Other important forces include the added mass force and
viscous drag force.

Note that the value and sign of the primary Bjerknes force depend on the response of the
bubble volume to the acoustic excitation. Since there exist a substantial difference in resonance
properties of gas, vapor, and vapor/gas bubbles, the primary Bjerknes force is different for these
three cases. At higher frequencies it depends on the kinetics of phase transition due to its influence
oni the bubble resonance [6]. Thus the model predicting acoustic forces on the bubble and the
resulting bubble motion and shape deformations should include an accurate consideration of bubble
forced oscillation including heat and mass transfer inside and outside the bubble, kinetics of phase
transitions, liquid inertia, compressibility, viscosity, and surface tension.






Chapter III.

Statement of the Problem

We will consider the dynamics. in acoustic fields of a bubble filled with the vapor of the host
liquid or a mixture of the vapor and an inert gas. We consider that the boiling point of the
inert gas corresponds to substantially lower temperature than the liquid temperature at the same
pressure. A mixture of water vapor and air is an example of a such system. We also consider two
configurations of the acoustic field: a) an isotropic field; b) a standing wave.

1. Model of Vapor-Gas Bubble in Isotropic Acoustic Field

Consider a spherically-symmetric model of a vapor-gas bubble in an isotropic pressure field, with
the wavelength much larger than the bubble size, wa < C, where w is the circular frequency, a is
the bubble radius, and C is the speed of sound in the liquid. For a viscous liquid and inviscid gas
the mass, momentum, and energy conservation equations at the interface can be written in the

form (38, 58, 59]:

pr(a~wie) = pga(d—we)=E, §=6+¢&, (III-1)
IIT = —p,+& Wy — w) + 2%, (111-2)
1 1 . 200
Hsza — Qia ar §€w12a = —PgWge — an Sy §fw§a + fvlv -+ fil,; + 0+ T (III—-?))

Here p,w, and q are the density, radial velocity, and heat flux, p and II"" are the pressure and
radial component of the stress tensor, and £, 0, and [ are the rate of phase transition from liquid
to gas, surface tension, and heat of phase transformation. Subscripts [ and g refer to liquid and
gas, respectively, and subscript a denotes parameters on the interface. We assume that the gas
consists of two components, vapor and inert gas, which parameters are marked with subscripts v

and .
The dynamic equation describing forced radial oscillation of a bubble of variable mass bubble
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in slightly compressible liquid can be found in [60, 5]:

(1 & %‘) atig + 2 (1 - E> dawte — %w?a (111-4)
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Here g, is the liquid viscosity and pe (t) is the forcing pressure. _
In the general model we accept that the gaseous phase is a perfect gas mixture described by
the following thermodynamic relations:

i = RT,Inp;, p,=RT,Inp, py=pi— f, (I11-5)

pi = piRT,, p,= puBRyTy, Py = Dv + Pi, (111-6)

C; = &: cv::&; pg=p'u+pia c1+cv=17 (III_ )
Pq Pg

R, = R/Mi; R, = R/Mv, Rg = ¢iR; + Ry (III 8)

Here p is the chemical potential, 7" the temperature, ¢ the mass concentration, K the gas constant,
and M the molecular weight.

The resulting mass fluxes of the components from the liquid to gaseous phase, &, at the constant
interface temperature T, can be described by [1]:

g el ople s o BT o (B - A0, ()

— X ex )
VarRT, ¥ RT, <enRT. © RIL.
(I—9) L(T (g—1) T
{‘U o fsl—vg) Bt 1()3—41) X ﬂv exp /'l'v( a.) T v exp Ho ( 0-),

2R, 1, RT, V2rR,T, RT,
where [ are the proportion coefficients and the superscripts near j and [ denote the direction of
the mass flux. At thermodynamic equilibrium, j, = j, = 0, py = puvs (Ta) , and p; = cicH. Thus
,8,-(1—’9) = ﬁfg_'l) B; and B9 = BP™" = B,. Using the above expressions for the fluxes and

chemical potentials we have

e
o R,T [cH (To) —pi), & = \/—2-71_——— [Dus (L) — Dial -

The last relation is the well-known Hertz-Knudsen-Langmuir equation describing non-equilibrium
evaporation of a one-component liquid [1]. The coefficient §, is the vapor accommodation (con-
densation) coefficient and can be treated as the fraction of vapor molecules hitting the interface
which condense. By analogy f; can be called ‘inert gas accommodation coefficient’ and can be-
measured from experiments on nonequilibrium dissolving.

From a linear analysis described in Chapter 4 and in Chapter 7 we found that Henry’s law,

Din =610l | (I11-10)

&= (I11-9)

is applicable for description of bubble dynamics over a broad range of frequencies, while for the
vapor component the nonequilibrium evaporation/condensation is important.




For spatially uniform pressure the diffusion flux of the inert component, j,, and the heat flux,
gy, can be expressed according to [56]:

: de; | kr 0T, o, .
= —p,D % =X =L 4k -
h=nDy (FHE ) 6 NG GT, (1)

1 Bp, Bu k‘TR
ke = k ( -"> - T (——-") + | = ; I11-12
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where D and A are the mass diffusivity and thermal conductivity, kr is the thermal-diffusion
ratio, and Cj, is the gas specific heat at constant pressure and concentration. Expression (III-12)
is obtained using the above model of the gaseous phase (III-5)-(III-8), where p, is considered as
a function of p,, Ty, and ¢;. Note that in limiting case of one-component gas, ¢;c, — 0, we have,
kr — 0, while k. remains to be a finite quantity. The quantities k. or kr can be found from
corresponding tables or can be evaluated using the formulas following from the above definitions

and found in Ref.[61]:
aMi R 105 Mi e Mv o
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where « is the thermal-diffusion constant, and kr has been evaluated for several intermolecular
force-models. For rigid elastic spheres k, = 1 and we took this value for our computations.
Details for computation of the thermal-diffusion ratio based on the first, second, and third order
gas-kinetic theories can be found in Ref.[62].

Now we can represent the mass and energy conservation equations in the form:

0 1.é ' Sc: e 5 :
80,12 o) = 0, (B 1) L)

8t ' r2or ot
or a7, 3 10
PgCpq (Eg i U’y#) —Bo(t) = o (7”2‘19) ' (IT1-14)

" In these equations we assume that the total gas pressure is spatially uniform, which is justifiable
when the velocity of the bubble wall is much smaller than the speed of sound in the gas. Note
that at the same time the partial pressures of the components depend on the radial coordinate
due to dependence of the inert gas concentration on this coordinate.

Assuming that the mass concentration of the dissolved inert gas in the liquid is small, ¢, < 1,
we can neglect the effect of thermal diffusion in the liquid. The effect of barodiffusion is also
negligible, since the liquid is almost incompressible. Therefore, we can represent the mass and
energy conservation equations in the liquid in the form:

8¢,  a’wy, Oc 190 _ ] dc
o (—at' i —&j) = (P s (III-15)
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where (] is the liquid specific heat.
Assuming that the temperature jump at the interface is negligibly small (which is true for not
too high rates of evaporation or condensation), the following boundary conditions can be imposed:

wg lr:a. o wga ) Tg l

= T =T (111-17)
Cilr:g, = G, cl|T=a = Cia, C|r=°o =iCoo: (111-18)

The diffusion mass fluxes at the interface can be represented as
jga = Ciaé = €i: jla =3 cla£ - gi-

To specify pys (T') the Clausius-Clapeyron equation can be used:

dpys ' L, ( 1 1 >‘1
=it oo ; I11-19
ar T pvs(T) Pl ( )

where p, is the vapor density on the saturation line. In the present study for simplicity we neglect
the dependence of o, H, Ay, \;, Dy, and D, on the temperature.

Note that if the heat and mass fluxes are known, then these equations together with the
Rayleigh-Plesset equation (III-4) form a closed system. These can be found by solving corre-
sponding problems of heat and mass convective diffusion with boundary conditions ¢;, and ¢, for
concentrations and T, for temperatures inside and outside the bubble.

We also need to specify the function pe, (t), which for an acoustic field of amplitude P4 and
circular frequency w can be written in the form

Poo (t) = Pooo + Re{Pse™"*}. (I11-20)

2. Model of Vapor Bubble in Isotropic Acoustic Field

The case of pure vapor bubbles is a limiting case of the vapor-gas bubbles at small concentrations
of the inert gas. However, it is important to consider this case in parallel with the case of vapor-gas
bubbles, due to substantial model simplifications that can be obtained for one-component bubbles.
This limiting case can be used for verification of the general results for two-component systems.
Simplifications for pure vapor bubbles compared to vapor-gas bubbles include:

e Simplification of kinetics of phase transitions;

e Simplification of bubble thermodynamics. Availability of a simplified energy integral for
vapor;

e Absence of mass diffusion;

e Simplification of boundary conditions.
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Equations describing the vapor bubble dynamics can be represented in the form:

P (d_wla) = Pue (d—wva) :é‘;
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~ Since for one-component bubble content the pressure of the vapor is spatially uniform (for a
two component system the inert gas and the vapor pressure are not uniform due to gradients of
concentration) the equations for vapor inside the bubble have the following integrals 59, 57, 63]:

g (o= Lido Oy THaE (IT1-29)
YDy O 3VMPu

apv =} 37upvwva 97 3(’)’1} = l)q'ua =) (111-30)
where 7, is the ratio of the vapor specific heats. These integrals simplify solution of the problem
since they explicitly express the vapor velocity through the temperature gradient and vapor pres-
sure, and connect variation of the pressure in the vapor with integral parameters characterizing
the bubble (bubble radius, radial bubble wall velocity, and the heat flux through the surface).
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3. Model of Small Bubble in Standing Acoustic Wave

Consider the pressure and velocity fields, p., (2,t) and Us (z,t), of a plane standing acoustic wave
in a liquid:

Doo (T,8) = Doop + Pacoswisinkz,
U2 t) = ) sinwt cos kz e
e piC ’ C’
where k is the wavenumber. We limit our analysis to bubble radii small compared to the wave-
length, ka < 1. The acoustic field in the liquid described by Eq.(I1I-31) is obtained using linearized
equations for the liquid motion. This approximation assumes that

3U°o‘ }BUOO\
<Gl—c=ilb

— I11-31
Oz ot ( )

o

or P4 < piC?, which holds for a wide variety of situations.
The bubble position, zs(t), can be found by solving the following equations for bubble motion:

av, 4
mb? = —§7ra3 (vpoo]z:zb i plg) — g +
d 03 Uoo = g
_2_7rpt ( lx—zb) i d(a'lh) AP
+47K, e (U — Us)
dzy 2T Eiﬂ = 4ma’¢.

dt dt

Here U, and m; are the bubble velocity and mass, ¢ is the rate of evaporation, g is the gravity
acceleration, and K, is the viscous drag coefficient, which depends on the Reynolds number of
the relative bubble motion. According to the Levich formula at high Reynolds numbers K, = 3.
For small Reynolds numbers it can be set to K, =1 or K, = 1.5 for a liquid with and without
surfactants. Equations (III-32) are projections of three dimensional equations of motion on the
direction of bubble motion. To apply one-dimensional equations we assume that the vector of
gravity acceleration is co-linear with the direction of the acoustic wave vector and the direction of
the bubble motion.

We also modify the dynamic equation of bubble motion as

Wiq . . 1 a 2

Tl ] edeft al = 111-32

(1 5 ) awy, + 26w, - (1 + C) wi, ( )
1 &  ad e 1 2

e <1 tat 55) [Hla + Poo (@5(t), 2) + dpwia/a = 701 (U = U)" |

to include variation of the liquid pressure at the bubble location and the bubble relative motion.
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4. Vapor-Gas Bubble Equilibrium in the Absence of an
Acoustic Field

Vapor, gas, and vapor-gas bubbles can grow or shrink in liquids without any acoustic field. This
happens due to phase transformations such as condensation or dissolution of a thermodynamically
nonequilibrium bubble. A bubble in the bulk of the host liquid also cannot be in equilibrium under
action of the gravity force. The buoyancy force will cause bubble motion in the absence of an
acoustic field. If the thermodynamical and gravity driving forces are sufficiently high then the

external acoustic field may not affect the bubble dynamics and this case can be studied separately -

without complication of the problem by acoustic action. In the present study we consider the case
when the effects of an acoustic field are comparable to or larger than the effects driving the bubble
dynamics in the absence of the acoustic field. We limit our study to small amplitude acoustic

fields,

=4, =eX 1. (I11-33)
Poo0
Therefore in this case the effects of bubble thermodynamic and gravitational instability in the
liquid are small, and we assume first that the bubble is in a state close to thermodynamic equi-
librium.
For vapor bubbles this means that the mean liquid pressure is close to the saturation pressure
at the liquid temperature far from the bubble:

A
oo = PslTos) + Bp, A= p—ﬂ <1, (IT1-34)
o0
where Ap is the liquid supercompression. For superheated liquids we have Ap < 0 and for
subcooled liquids we have Ap > 0. We allow Ap to be non-zero, but it should be reasonably small
(we provide mathematical definition in the sections dedicated to the method of solution). Even if

Ap = 0, the vapor bubble is unstable due to capillary effects. Indeed the pressure inside a bubble
of radius a. in thermodynamic equilibrium is

2
y = Ds(Too) + A+ 713 (I11-35)

The temperature of an equilbrium bubble should be the same as the temperature of the liquid,
T... and at the same time it should be the saturation temperature at the given vapor pressure

(I11-35). This means that the equilibrium bubble radius is

20 (I11-36)

Qe = ———

Ap’
and equilibrium bubbles can exist only in superheated liquids. Note that this is an unstable
equilibrium. In this and other cases a vapor bubble will grow or shrink in the absence of the

acoustic field. We require that
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to have comparable effects of the acoustic pressure variations.
The pressure inside an equilibrium vapor-gas bubble is

g = =< 1, (I11-37)

20
Po =Py +Pi = Pocd +—, Pecd = Dallo)+ A, (I11-38)

where the difference between the mean liquid pressure and the saturation pressure may be not
small. In an equilibrium state the vapor-gas bubble has the same temperature as the liquid,
T, = Tw.. If effects of inert gas dissolution are neglected, then the inert gas concentration in the
bubble can be arbitrary, c;o. In the equilibrium state we have p, = ps(T). Using equations of state
(II1-5)-(11I-8) we can determine the equilibrium pressures of the inert gas and the gas mixture:

cioR; cyoRy + Cio R
e = (o) s e = ———s(Te), =1 - cip. 111-39
Bie < P (VISR T (To), w0 0 ( )

Then we can determine from (III-38) the equilibrium radius:

2 S 20kt . (111-40)
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If we take into account solubility of the inert gas then its concentration inside an equilibrium
bubble is not arbitrary, but is determined by the equilibrium relation between the inert gas pressure
and the dissolved gas concentration in the liquid, ¢, (in our model, by Henry’s law):

Qe =

Rzps(Too) 4= Rupie, &~ “aEs < 2 DPie — Ap (11141)

In any case a bubble of radius a # a. will grow or collapse in the absence of an acoustic field. The
driving thermodynamic force is proportional to the difference between the actual and equilibrium
gas pressures, and conditions (I1I-34) and (III-37) for vapor-gas bubbles become:

Die = Cogddy. * Cie=

A='pge"'poool <<1’ 6=—1—
Pooo Pc0
where relations (III-39) or (III-41) can be used to determine pge.

A parameter responsible for bubble instability due to the buoyancy force can be found by the
following reasoning. In a standing wave the hydrostatic pressure drop, Apy, along the wavelength
should be much smaller than the ambient pressure. Otherwise a small amplitude acoustic pressure
cannot balance the hydrostatic pressure drop, and bubble motion will be not influenced by the
acoustic field. This condition can be written in the form:

20
Pge — Poc0 + —a'l e (111-42)
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5. Length Scales and Dimensionless Equations

The following characteristic length scales can be introduced for the problem considered:

d il
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where k1 = M/(piCl) and Kge = Age/(pg+Cpgs) are thermal diffusivities of the liquid and the
tars denote characteristic values of parameters used for scaling. Lty and Ly are the
characteristic lengths of temperature penetration into the gas and liquid, Ly is the characteristic
primary resonance length, L, is the characteristic thickness of the viscous boundary layer in the
liquid, L, is the characteristic capillary length, L¢ is the inverse wavenumber, and Lg and Ly
are the characteristic lengths connected with the non-equilibrium phase transitions and viscous

dissipation in the liquid.
The following dimensionless parameters also can be introduced:

A

E1Q

(I11-44)

gas, and s

Ky Kgx Pax g*
Le = ) Le = 3 = . )\ =i—
: D, s s ¢ pL A
R * co* H Ri R *T *
k,,y — Cg t kp:p : kH=—1 IQ;R=—1%—2&7 k;s_—: gl 9,
Pg* Pgx Pgx g* v
lU ;3 cztRL
ky = 1—p, k= 1—p, ki=——,
RguTgu ey ik RguTgu JHP ° Ry
7 s E: dpys e, 232: d*Pus
¥ Pgs AT |7_q,. * P 4T |1,
R =R, G336
ag = Rg‘ N acp = 'ch;'—pi.

ten above in combination with the dimensionless parameters pro-

Note that the length scales writ
teristic lengths

duce new length scales having physical meaning. For example, charac

Dy 12 Lz, D, i Lty
- = = == = 111-45
Leg < w > Leéy Lo (w ) ILe’ ( )

represent the characteristic thicknesses of the mass diffusion boundary layers in the gas and in the
ny characteristic length scale listed in (I1I-44) produces

liquid. The ratio of the bubble radius to a
8 independent dimensionless parameters. Taking into account that all but two of o (III-13), €,
dent we can see that

(I11-33), 6, (11I-42), and g-,(I11-43) and parameters (I11-45) are also indepen
the dynamics of a vapor-gas bubble is controlled by 26 basic dimensionless parameters

pure vapor bubble this number reduces to 15.

(!). For a
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Chapter IV.

Multiscale Technique For Bubbles in
Isotropic Fields

To obtain the equation for rectified heat transfer we use a multiscale asymptotic technique for

weakly non-linear oscillations of drops and bubbles [14, 2]. However, the method must be modified,
since the effect of surface tension neglected in [14, 2] changes the rank of the system matrix for
zero-mode of oscillation, and a straight-forward application of the technique is impossible. To
demonstrate the method of solution we will start with a simplified system for pure vapor bubbles.
Then we show how to include effects of bubble drift in standing waves and two-component effects.

1. Transformation of Variables

First, we reduce the number of variables by eliminating py, Wy, fva, Wea, 20d II;7 from the system.
The governing equations can be represented in the following form:

pia— prwe —& =0, (IV'I)
G _owe) (3, 2% wh wef ),
<a+ pc = C > i (2%’ i p 2C  2Cp - Dl |
1 1 3 ad 1 R1,Ta> 2] 20
T B e mar e e =D it hp === AT
P [ C (w, Pz) Cdt] [p Peo (1) (Pl Py ¢ pia
aj)v gt 3')’pvd R 3(7 =y 1)qv.za gy 3’7€R1:Ta =0, (IV"Z)
1 20 ] TR |
=h s TR ) Ta“l = Gya G, — = |\ =0 a) 3» IVES
[pl (p a> By }6 Gva — Qi 2<pl = 3 (IV-3)
(IV-4)

g .
g—m‘:[ps(’ra)_pv] .—0-
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We then transform (r,t) — (n,t) with n = r/a(t) to fix the moving boundary in the heat

transfer problems:

puTa {6Tv _ (r=1pT, <g+ Pv ) BTU}
i) s L a2 3yp,) " on
e
7 on \" on on )
Xg 0T,
Qua = — — 3’/] ,7=1, Tvl