
NASA / TM-2001-210876

A Practical Tutorial

Decision Coverage

on Modified Condition/

Kelly J. Hayhurst

Langley Research Center, Hampton, Virginia

Dan S. Veerhusen

Rockwell Collins, Inc., Cedar Rapids, Iowa

John J. Chilenski

The Boeing Company, Seattle, Washington

Leanna K. Rierson

Federal Aviation Administration, Washington, D.C.

May 2001

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides
access to the NASA STI Database, the largest

collection of aeronautical and space science
STI in the world. The Program Office is also
NASA's institutional mechanism for

disseminating the results of its research and
development activities. These results are

published by NASA in the NASA STI Report
Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports

of completed research or a major
significant phase of research that

present the results of NASA programs
and include extensive data or theoretical

analysis. Includes compilations of
significant scientific and technical data
and information deemed to be of

continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less

stringent limitations on manuscript

length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia,
seminars, or other meetings sponsored

or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign
scientific and technical material

pertinent to NASA's mission.

Specialized services that complement the

STI Program Office's diverse offerings
include creating custom thesauri, building

customized databases, organizing and
publishing research results ... even

providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home
Page at http'//www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA / TM-2001-210876

A Practical Tutorial

Decision Coverage

on Modified Condition/

Kelly J. Hayhurst

Langley Research Center, Hampton, Virginia

Dan S. Veerhusen

Rockwell Collins, Inc., Cedar Rapids, Iowa

John J. Chilenski

The Boeing Company, Seattle, Washington

Leanna K. Rierson

Federal Aviation Administration, Washington, D. C.

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

May 2001

Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000

Table of Contents

1 BACKGROUND AND PURPOSE ... 1

1.1 SCOPE OF THE TUTORIAL .. 1

1.2 NOTES ON DEFINITIONS AND NOTATION .. 2

2 MC/DC APOLOGIA ... 2

2.1 THE VERIFICATION PROCESS .. 3

2.2 DEFINITION AND ROLE OF COVERAGE .. 4

2.2.1 Requirements Coverage Analysis .. 5

2.2.2 Structural Coverage Analysis ... 6

23 TYPES OF STRUCTURAL COVERAGE .. 7

2.3.1 Statement Coverage .. 8

2.3.2 Decision Coverage .. 8

2.3.3 Condition Coverage .. 8

2.3.4 Condition�Decision Coverage ... 9

235 Modified Condition�Decision Coverage ... 9

2.3.6 Multiple Condition Coverage .. 9

2.4 STRUCTURAL COVERAGE VERSUS STRUCTURAL TESTING .. 9

2.5 MORE DETAILS ABOUT MODIFIED CONDITION/DECISION COVERAGE .. 10

2.5.1 A Note on Source versus Object Code Coverage .. 11

2.6 CONFOUNDING ISSUES .. 12

3 MC/DC APPROACH .. 14

3.1 MC/DC BUILDING BLOCKS ("HOW DO I TEST A... ?") .. 15

3.1.1 and Gate .. 16

3.1.2 or Gate .. 16

3.1.3 xor Gate .. 17

3.1.4 not Gate ... 17

3.1.5 Comparator ... 18

3.1.6 If-then-else Statement .. 19

3.1.7 Loop Statements .. 20

3.2 EVALUATION METHOD ... 22

3.2.1 Source Code Representation ... 23

3.2.2 Identification of Test Inputs .. 25

3.2.3 Elimination of Masked Tests ... 25

3.2.4 Determination of MC/DC. ... 28

3.2.5 Output Confirmation ... 29

3.3 FOLLOWING THE FIVE-STEP EVALUATION PROCESS ... 29

3.4 GROUPED FUNCTIONALITY ... 36

3.5 DEVELOPING COMPLEX CONSTRUCTS .. 42

3.6 MC/DC wITH SHORT CIRCUIT LOGIC ... 42

3.7 MC/DC wITH BIT-WISE OPERATIONS ... 45

3. 7.1 Examples with Bit-Wise Operations .. 45

3. 7.2 Alternate Treatments of Bit-wise Operations .. 47

3.8 ANALYSIS RESOLUTION .. 47

4 MC/DC ADMONITIONS ... 49

4.1 AUTOMATION PROBLEMS ... 49

4.1.1 How Coverage Analysis Tools Work. .. 50

4.1.2 Factors to Consider in Selecting or Qualifying a Tool ... 50

4.2 PROCESS PROBLEMS ... 54

4.2.1 Inadequate Planningfor MC/DC .. 54

4.2.2 Misunderstanding the MC/DC Objective .. 55

4.2.3 Inefficient Testing Strategies ... 55

4.2.4 Poor Management of Verification Resources ... 55

iii

5 ASSESSMENT PROCESS .. .56

STEP 1 REVIEW VERIFICATION PLANS .. 57

STEP _DETERMINE NEED FOR TOOL QUALIFICATION .. 58

STEP 3 REVIEW DATA RELATED TO QUALIFICATION OF MC/DC TOOLS .. 58

STEP 4 REVIEW TEST CASES AND PROCEDURES. .. 59

STEP 5 REVIEW CHECKLISTS FOR TEST CASES, PROCEDURES, AND RESULTS ... 60

STEP 6 DETERMINE EFFECTIVENESS OF TEST PROGRAM .. 60

Task 6.1 Assess results of requirements-based tests. .. 61

Task 6.2_ssess failure explanations and rework ... 61

Task 6.3_ssess coverage achievement. .. 61

6 SUMMARY .. .62

APPENDIX A ... 65

SOLUTIONS TO EXERCISES. .. .65

Solution 2.5a ... 65

Solution 2.5b ... 65

Solution 3.3a, OR/XOR Exercise .. 65

Solution 3.3b, Ground Test Exercise .. 67

Solution 3.3c, Weight on Wheels Exercise .. 68

Solution 3.3d, Gain Exercise .. 69

Solution 3.5, Reset-Overides-Set Latch Exercise .. 70

APPENDIX B ... 72

CERTIFICATION AUTHORITIES SOFTWARE TEAM POSITION PAPER ON MASKING MC/DC 72

BACKGROUND ON TUTORIAL AUTHORS78

iv

Abstract

This tutorial provides a practical approach to assessing modified

condition�decision coverage (MC/DC) for aviation software products

that must comply with regulatory guidance for DO-178B level A

software. The tutorial's approach to MC/DC is a 5-step process that

allows a certification authority or verification analyst to evaluate

MC/DC claims without the aid of a coverage tool In addition to the

MC/DC approach, the tutorial addresses factors to consider in selecting

and qualifying a structural coverage analysis tool tips for reviewing life

cycle data related to MC/DC, and pitfalls common to structural coverage

analysis.

1 Background and Purpose

The RTCA/DO-178B document Software Considerations in Airborne Systems and Equipment

Certification is the primary means used by aviation software developers to obtain Federal Aviation
Administration (FAA) approval I of airborne computer software (ref. 1, 2). DO-178B describes software

life cycle activities and design considerations, and enumerates sets of objectives for the software life cycle

processes. The objectives applicable to a given piece of software are based on the software level

determined by a system safety assessment. The objectives serve as a focal point for approval of the
software.

This tutorial concerns one particular objective in DO-178B: objective 5 in Table A-7 of Annex A.

This objective, which is applicable to level A software only, requires that tests achieve modified

condition/decision coverage (MC/DC) of the software structure. The purpose of the tutorial is to provide

sufficient information upon which a diligent person may build a strong working knowledge of how to
meet the MC/DC objective, and provide a means to assess whether the objective has been met<

1.1 Scope of the Tutorial

This tutorial provides a broad view of MC/DC, concentrating on practical information for software

engineers. Topics include the role of MC/DC within the verification process described in DO-178B, the

rationale for the MC/DC objective, a pragmatic approach for manually evaluating MC/DC, and an aid for

assessing an applicant's MC/DC program. Although understanding the rationale for MC/DC is not

strictly necessary for developing a working knowledge of its use, information is included to help reduce

current well-documented misunderstandings about the topic (ref 3).

The tutorial is a self-study course designed for individuals who either develop and verify aviation

software products that must comply with the DO-178B objectives for level A, or who provide oversight

and assurance of such products. Readers are assumed to have a basic knowledge of Boolean algebra and

DO-178B. Specific references to DO-178B and other supporting materials are cited throughout. Also

included throughout are exercises designed to give readers structured opportunities to assess their

understanding of the concepts presented; solutions for the exercises are given in Appendix A. Readers

1 ED-12B, the European equivalent of DO-178B, is recognized by the Joint Aviation Authorities (JAA) via JAA
temporary guidance leaflet #4 as the primmy means for obtaining approval of airborne computer software.

2 This work was supported by the FAA William J. Hughes Technical Center, Atlantic City International Airport,
New Jersey.

areencouragedto completetheexercisesastheyareencounteredin thetextto obtainmaximumbenefit
fromthetutorial.

Aftersuccessfulcompletionofthistutorial,readersshouldbeableto:

• ExplaintherationaleforMC/DC

• AssesswhetherspecifictestcasesmeettheMC/DCcriteria

• Askinformedquestionsaboutstructuralcoverageanalysistools

• Determine if the integral processes support compliance with the MC/DC objective

• Avoid common problems associated with MC/DC

Lest anyone think otherwise, please recognize that this tutorial does not constitute regulatory

software policy or guidance. Furthermore, the approach to MC/DC presented in this tutorial is just

one possible approach to assessing compliance with the MC/DC objective and, as such, should not

be considered the only means of complying with the objective. We have tried to clearly identify all

places where the provided information goes beyond what is explicitly stated in DO-178B.

Chapter 2 provides the rationale for MC/DC. A manual approach to evaluating MC/DC is presented

in chapter 3. Chapter 4 provides a collection of ways to help mitigate problems associated with MC/DC,

including problems in selecting and qualifying a structural coverage analysis tool and process problems.

Finally, chapter 5 provides information on determining an applicant's compliance with the MC/DC

objective. For further information on relevant research and theoretical aspects of MC/DC see An

Investigation of Three Forms of the Modified Condition Decision Coverage (MCDC) Criterion (ref. 4).

1.2 Notes on definitions and notation

The definitions and descriptions of terms used in this tutorial are consistent with those given in the

Glossary of DO-178B, unless noted otherwise. The following notational conventions are used throughout
the tutorial:

Boolean operators are denoted by bolded italics: and, or, xor, not

Boolean conditions are denoted by bolded capital letters: A, B, C, ...

Non-Boolean variables are denoted in plain lower case letters: x, y, z, ...

Boolean outcomes are written as either false or true, or F or T

A test case for a Boolean function with n inputs is denoted by C = (C1C:... Cn), where Ci F or T

Where graphical representations are introduced in the text, the relevant symbols are defined when they

are introduced. Code segments used as examples are written in Ada unless noted otherwise.

2 MC/DC Apologia

This chapter explains the context in which the MC/DC objective exists, and presents a rationale for the

objective. Readers whose sole interest is in learning how to achieve or assess compliance may wish to

skim this chapter.

2

2.1 The Verification Process

"No product of human intellect comes out right the first time. We rewrite sentences, rip

out knitting stitches, replant gardens, remodel houses, and repair bridges. Why should

software be any different?" (ref 5)

According to DO-178B 3, the purpose of the verification process is to detect and report errors that have

been introduced in the development processes. The verification process does not produce software: its

responsibility is to ensure that the produced software implements intended function completely and

correctly, while avoiding unintended function. Because each development process may introduce errors,

verification is an integral process (see Figure 1), which is coupled with every development process.

Including verification activities with each development activity is intended to help "build in" quality at

each step, because "testing or analyzing in" quality at the end of the life cycle is impractical.

iii g g m_

I Requirements(Section 5.1)

t

Integral Processes

Verification (Section 6)
Planning. _ Configuration Management (Section 7)

(Section 4) QualityAssurance (Section 8)

... l 1-" D'e_li°idiiiiii°iieaiill !'1""" ('ieltill 9).. "1"

i u Design I i U C°ding _----_ Integrati°n _

-I (Section 5.2) I -I (Section 5.3) (Section 5.4)

t t t

Figure 1. DO-178B software life cycle processes. 4

Verification examines the relationship between the software product and the requirements. At an
abstract level, the software verification process exists to constantly ask the question: are we building the

system right?

Verification can be expensive and time consuming, even for software that is not safety critical. To

date, no one has been able to define objective test measures of software quality. That is, typical statistical

approaches to quality assurance, which work well for physical devices, do not apply to software.
Consequently, drawing conclusions about software quality short of testing every possible input to the

program is fraught with danger. This fact contributes to the current reliance on structural coverage as one

measure of the completeness of testing.

This is the last time the phrase "According to DO-178B" or its variants will appear in this document. The reader
should simply assume its presence eve17where.

This figure is based on a similar Life Cycle Diagram in RTCA/DO-254 Design Assurance Guidance for

Airborne Electronic Hardware (ref. 6).

2.2 Definition and Role of Coverage

"Our goal then, should be to provide enough testing to ensure that the probability of

failure due to hibernating bugs is low enough to accept. 'Enough' implies judgement."

(ref 7)

Coverage refers to the extent to which a given verification activity has satisfied its objectives.

Coverage measures can be applied to any verification activity, although they are most frequently applied

to testing activities. Appropriate coverage measures give the people doing, managing, and auditing

verification activities a sense of the adequacy of the verification accomplished; in essence, providing an

exit criteria for when to stop. That is, what is "enough" is defined in terms of coverage.

Coverage is a measure, not a method or a test. Thus, phrases such as "MC/DC testing" can do more
harm than good 5. As a measure, coverage is usually expressed as the percentage of an activity that is

accomplished. Two specific measures of test coverage are shown in Figure 2 (ref. 2): requirements

coverage and software structure coverage (to be consistent with common usage, we will use the phrase

structural coverage hereafter). Requirements coverage analysis determines how well the requirements-

based testing verified the implementation of the software requirements (DO-178B, section 6.4.4.1), and

establishes traceability between the software requirements and the test cases (DO-178B, section 6.2).

Structural coverage analysis determines how much of the code structure was executed by the

requirements-based tests (DO-178B, section 6.4.4.2), and establishes traceability between the code

structure and the test cases (DO-178B, section 6.2). Please note that requirements coverage analysis

precedes structural coverage analysis.

_1

j'/] Software Structure

_fV If--1 Coverage Analysis

End of Testing -"-_ Direct Path-- "_ Conditional Path

Figure 2. DO-178B software testing activities.

The terms "black-box testing" and "white-box testing", which are used extensively in software engineering

literature, also may be misleading. These terms (especially "white-box testing") tend to obscure the necessary

connection to requirements. These terms do not appear in DO-178B; neither do they appear in this tutorial. The

distinction between coverage and testing will be further discussed in section 2.4.

4

2.2.1 Requirements Coverage Analysis

According to software engineering theory, software requirements should contain a finite list of

behaviors and features, and each requirement should be written to be verifiable. Testing based on

requirements is appealing because it is done from the perspective of the user (thus providing a

demonstration of intended function), and allows for development of test plans and cases concurrently with

development of the requirements. Given a finite list of requirements and a set of completion criteria,

requirements-based testing becomes a feasible process, unlike exhaustive testing (ref. 5).

The Annex A objectives for requirements-based test coverage are stated with respect to both high- and

low-level requirements. Objective 3 in Table A-7 requires test coverage of high-level requirements for

software levels A-D; and objective 4 in Table A-7 requires test coverage of low-level requirements for

software levels A-C. The corresponding guidance in section 6.4.4.1 states that the test coverage analysis

should show that test cases exist for each software requirement, and that the test cases satisfy the criteria

for normal and robustness testing.

Unfortunately, a test set that meets requirements coverage is not necessarily a thorough test of the
software, for several reasons:

• the software requirements and the design description (used as the basis for the test set) may not

contain a complete and accurate specification of all the behavior represented in the executable

code;

• the software requirements may not be written with sufficient granularity to assure that all the

functional behaviors implemented in the source code are tested; and,

• requirements-based testing alone cannot confirm that the code does not include unintended

functionality.

"[D]uring the development of any non-trivial program, software structure is almost always created that

cannot be determined from top-level software specifications" (ref. 8). Derived requirements, as described

in DO-178B, were instituted for this reason, and should be tested as part of requirements-based testing. If

the derived requirements are not documented appropriately, however, there will likely be no

requirements-based tests for them; and, consequently, requirements coverage analysis has no

documentation basis from which to say that the requirements-based tests are insufficient. The software

structure or implementation detail, which is ideally documented as derived requirements, demands

structural coverage analysis.

Different engineers may generate different, yet functionally equivalent, low-level requirements from

the same set of high-level requirements. Likewise, different engineers may generate different, yet

functionally equivalent, source code from the same set of low-level requirements. For example, a low-

level requirement to assign to x twice the input value y may be coded as x := 2 * y; x := y + y; or x := y /

0.5. Logical low-level requirements may likewise be implemented in a different yet equivalent manner.

For example, a low-level requirement to monitor a stop light could be implemented as Red_On :=

Red Light; or as Red_On := not Green Light and not Yellow_Light. The designer of the low-level

requirements and the person testing the low-level requirements do not necessarily know the source code

implementation generated. Thus structural coverage analysis is required to assure that the as-

implemented code structure has been adequately tested and does not contain any unintended functionality.

For a detailed example of the impact of code structure on coverage, see Chilenski's analysis of various

implementations of the type-of-triangle problem 6 in An Investigation of Three Forms of the Modified

Condition Decision Coverage (MCDC) Criterion (ref. 4).

2.2.2 Structural Coverage Analysis

Structural coverage analysis provides a means to confmn that "the requirements-based test procedures

exercised the code structure" (DO-178B, section 6.4.4). Recall that in the flow of testing activities,

requirements coverage will have been accomplished and reviewed before structural coverage analysis

begins. The subsequent structural coverage analysis reveals what source code structure has been executed

with the requirements-based test cases. The RTCA/DO-248A 7 document Second Annual Report for

Clarification of DO-178B "Software Considerations in Airborne Systems and Equipment Certification"

(ref. 9) explains the intent of structural coverage analysis in the response to the Frequently Asked

Question (FAQ #43) "What is the intent of structural coverage analysis?":

Sections 6.4.4.2 and 6.4.4.3 of DO-178B/ED-12B define the purpose of structural coverage

analysis and the possible resolution for code structure that was not exercised during requirements-

based testing.

The purpose of structural coverage analysis with the associated structural coverage analysis

resolution is to complement requirements-based testing as follows:

1. Provide evidence that the code structure was verified to the degree required for the

applicable software level;

2. Provide a means to support demonstration of absence of unintended functions;

3. Establish the thoroughness of requirements-based testing.

With respect to intended function, evidence that testing was rigorous and complete is provided by

the combination of requirements-based testing (both normal range testing and robusmess testing)

and requirements-based test coverage analysis.

When drafting DO-178B/ED-12B, it was realized that requirements-based testing cannot

completely provide this kind of evidence with respect to unintended functions. Code that is

implemented without being linked to requirements may not be exercised by requirements-based

tests. Such code could result in unintended functions. Therefore, something additional should be

done since unintended functions could affect safety. A technically feasible solution was found in

structural coverage analysis.

The rationale is that if requirements-based testing proves that all intended functions are properly

implemented, and if structural coverage analysis demonstrates that all existing code is reachable

and adequately tested, these two together provide a greater level of confidence that there are no

unintended functions. Structural coverage analysis will:

• Indicate to what extent the requirements-based test procedures exercise the code structure;

and

• Reveal code structure that was not exercised during testing.

Note 1: In the above text, the term "exercised during requirements-based testing" does not only

mean that the specific code was exercised. It also means that the behavior of the code has been

compared with the requirements to which it traces.

The type-of triangle problem is taken from Glenford Myers' (ref. 10) classic example of requirements for
determining whether a triangle is scalene, equilateral, or isosceles based on the lengths of the sides of the
triangle.

Information from RTCA/DO-248A is quoted throughout the tutorial with permission from the RTCA.

Note2:OtherpapersonstructuralcoverageanalysisandthelinkbetweenDO-178B/ED-12Band
theFAR/JAR'smaybefoundbyusingkeywordindexinAppendixC[ofDO-248A].

Theamountof codestructurethathasbeenexercisedcanbemeasuredbydifferentcriteria.Severalof
thesestructuralcoveragecriteriaarediscussedbrieflyin thenextsection.

2.3 Types of Structural Coverage

Typically structural coverage criteria are divided into two types: data flow and control flow. Data

flow criteria measure the flow of data between variable assignments and references to the variables. Data

flow metrics, such as all-definitions and all-uses (ref. 7), involve analysis of the paths (or subpaths)

between the definition of a variable and its subsequent use. Because the DO-178B objectives for test

coverage of software structure do not include explicit data flow criteria, the following discussion focuses
on control flow.

Control flow criteria measure the flow of control between statements and sequences of statements.

The structural coverage criteria in many standards, including DO-178B, are often control flow criteria.

For control flow criteria, the degree of structural coverage achieved is measured in terms of statement

invocations, Boolean expressions evaluated, and control constructs exercised. Table 1 gives the

definitions of some common structural coverage measures based on control flow. A dot (.) indicates the

criteria that applies to each type of coverage.

Table 1. Types of Structural Coverage

Coverage Criteria Statement Decision Condition Condition/ MC/DC Multiple
Coverage Coverage Coverage Decision Condition

Coverage Coverage

Every point of entry and exit in the
program has been invoked at least
once

Every statement in the program .
has been invoked at least once

Every decision in the program has • • • •
taken all possible outcomes at least
once

Every condition in a decision in the
program has taken all possible
outcomes at least once

Every condition in a decision has • .8
been shown to independently affect
that decision's outcome

Every combination of condition •
outcomes within a decision has
been invoked at least once

Multiple condition coverage does not explicitly require showing the independent effect of each condition. This

will be done, in most cases, by showing that eveq¢ combination of decision inputs has been invoked. Note,
however, that logical expressions exist wherein every condition cannot have an independent effect.

Three of the measures in Table 1 are found in objectives for test coverage given in DO-178B Table A-
7 of Annex A9:

• objective 7 requires statement coverage for software levels A-C

• objective 6 requires decision coverage for software levels A-B

• objective 5 requires MC/DC for software level A

The structural coverage measures in Table 1 range in order from the weakest, statement coverage, to the

strongest, multiple condition coverage. A brief description of each of the structural coverage measures in

Table 1 is given in the following sections. For a more detailed description of each of these measures, see

The Art of Software Testing (ref. 10).

2.3.1 Statement Coverage

To achieve statement coverage, every executable statement in the program is invoked at least once

during software testing. Achieving statement coverage shows that all code statements are reachable (in

the context of DO-178B, reachable based on test cases developed from the requirements). Statement

coverage is considered a weak criterion because it is insensitive to some control structures (ref. 11).

Consider the following code segment (ref. 12):

if (x > 1) and (y = 0) then z := z / x; end if;

if (z = 2) or (y > 1) then z := z + 1; end if;

By choosing x = 2, y = 0, and z = 4 as input to this code segment, every statement is executed at least

once. However, if an or is coded by mistake in the first statement instead of an and, the test case will not

detect a problem. This makes sense because analysis of logic expressions is not part of the statement

coverage criterion. According to Myers (ref. 10), "statement-coverage criterion is so weak that it is

generally considered useless." At best, statement coverage should be considered a minimal requirement.

The remaining measures in Table 1 consider various aspects of decision logic as part of their criteria.

To highlight differences between these measures, we will refer to the decision (A or B), where A and B
are both conditions.

2.3.2 Decision Coverage

Decision coverage requires two test cases: one for a true outcome and another for a false outcome.

For simple decisions (i.e., decisions with a single condition), decision coverage ensures complete testing

of control constructs. But, not all decisions are simple. For the decision (A or B), test cases (TF) and

(FF) will toggle the decision outcome between true and false. However, the effect of B is not tested; that

is, those test cases cannot distinguish between the decision (A or B) and the decision A.

2.3.3 Condition Coverage

Condition coverage requires that each condition in a decision take on all possible outcomes at least

once (to overcome the problem in the previous example), but does not require that the decision take on all

There are actually four objectives in Table A-7 for test coverage of software structure. Objective 8, requiring
data coupling and control coupling for software levels A-C, is not addressed in this tutorial; but, is mentioned
here for completeness.

possibleoutcomesat leastonce.In thiscase,for thedecision(A or B) test cases (TF) and (FT) meet the

coverage criterion, but do not cause the decision to take on all possible outcomes. As with decision

coverage, a minimum of two tests cases is required for each decision.

2.3.4 Condition�Decision Coverage

Condition/decision coverage combines the requirements for decision coverage with those for condition

coverage. That is, there must be sufficient test cases to toggle the decision outcome between true and

false and to toggle each condition value between true and false. Hence, a minimum of two test cases are

necessary for each decision. Using the example (A or B), test cases (TT) and (FF) would meet the

coverage requirement. However, these two tests do not distinguish the correct expression (A or B) from

the expression A or from the expression B or from the expression (A and B).

2.3.5 Modified Condition�Decision Coverage

The MC/DC criterion enhances the condition/decision coverage criterion by requiring that each

condition be shown to independently affect the outcome of the decision. The independence requirement

ensures that the effect of each condition is tested relative to the other conditions. However, achieving

MC/DC requires more thoughtful selection of the test cases, as will be discussed further in chapter 3, and,

in general, a minimum of n+ 1 test cases for a decision with n inputs. For the example (A or B), test cases

(TF), (FT), and (FF) provide MC/DC. For decisions with a large number of inputs, MC/DC requires

considerably more test cases than any of the coverage measures discussed above.

2.3.6 Multiple Condition Coverage

Finally, multiple condition coverage requires test cases that ensure each possible combination of inputs

to a decision is executed at least once; that is, multiple condition coverage requires exhaustive testing of

the input combinations to a decision. In theory, multiple condition coverage is the most desirable

structural coverage measure; but, it is impractical for many cases. For a decision with n inputs, multiple
condition coverage requires 2n tests. 1°

2.4 Structural Coverage versus Structural Testing

The distinction between structural coverage analysis and structural (or structure-based) testing is often

misunderstood. Some of the confusion stems from the misguided notion that coverage is a testing
method. But, the confusion is undoubtedly fueled by language in DO-178A 11 specifically referring to

structure-based testing. According to DO-248A Discussion Paper #3 (ref. 9), "Basically, DO-178A/ED-

12A requires that structural testing is carried out but does not define explicitly what type of structural

testing is acceptable, nor does it define the scope of structural testing required for the different levels of

software." Neither structural testing nor structure-based testing is mentioned in DO-178B.

To clarify the difference between structural coverage analysis and structural testing, DO-248A

contains the following FAQ in response to the question "Why is structural testing not a DO-178B/ED-

12B requirement?" (ref. 9, FAQ #44):

In the context of DO-178B, the number of inputs and the number of conditions in an expression can be different.
For example, the expression (A and B) or (A and C) has three inputs, but four conditions, because each
occurrence of A is considered a unique condition. The maximum number of possible test cases is always 2n,
where n is the number of inputs, not the number of conditions.

DO-178A/ED-12A was the predecessor to DO-178B/ED-12B.

There is a distinction between structural coverage analysis and structural testing. The purpose of
structural coverage analysis is to "determine which code structure was not exercised by the

requirements-based test procedures"(reference DO-178B/ED-12B Section 6.4.4.2). Structural
testing is the process of exercising software with test scenarios written from the source code, not
from the requirements. Structural testing does not meet the DO-178B/ED-12B objective that all

code structure is exercised by the requirements-based test procedures. The correct approach when
structural coverage analysis identifies untested code is to consider the possible causes in

accordance with DO-178B/ED-12B Section 6.4.4.3. If any additional testing is required, it should

be requirements-based testing, using high-level, low-level, or derived requirements, as
appropriate.

Structured 12 testing cannot find errors such as the non-implementation of some of the

requirements. Since the starting point for developing structural test cases is the code itself, there is

no way of finding requirements (high-level, low-level, or derived) not implemented in the code
through structural tests. It is a natural tendency to consider outputs of the actual code (which is de
facto the reference for structural testing) as the expected results. This bias cannot occur when

expected outputs of a tested piece of code are determined by analysis of the requirements.

Since the code itself is used as the basis of the test cases, structural testing may fail to find simple
coding errors.

Structural testing provides no information about whether the code is doing what it is supposed to be

doing as specified in the requirements. With respect to control flow, structural testing does not provide

any information as to whether the right decisions are being made for the right reasons. Finally, structural

testing fails to assure that there are no unintended functions. In the best case, structural testing confirms

that the object code and processor properly implement the source code.

2.5 More Details about Modified Condition/Decision Coverage

According to legend, there were once folks who advocated requiring 100% multiple condition

coverage (that is, exhaustive testing) for level A software. The motivation was simple: testing all possible

combinations of inputs for each decision ensures that the correct decision outcome is reached in all cases.

The problem with such testing, however, is that for a decision with n inputs, 2 n tests are required. In cases

where n is small, running 2 n tests may be reasonable; running 2_ tests for large n is impracticable.

In avionics systems, complex Boolean expressions are common. Table 2 shows the number of

Boolean expressions with n conditions for all of the logic expressions taken from the airborne software

(written in Ada) of five different Line Replaceable Units (LRUs) from level A systems (ref. 4). The five

LRUs came from five different airborne systems from two different airplane models in 1995 (two from

one model and three from the other). As Chilenski's data shows, actual code has been written with more

than 36 conditions.

Table 2. Boolean Expression Profile for 5 Line Replaceable Units

Number of Boolean
expressions with n
conditions

Nu ofConditio nmber5 6.10nS,ll "15 16-20 21-35 36-76

16491 2262 685 391 131 219 35 36 4 2

12 Although the text of FAQ #44 that appears in DO-248A uses "Structured", the correct word for the FAQ (and the

word intended by the subgroup that wrote the FAQ) is "Structural".

10

Clearly, multiple condition coverage is impractical for systems such as these. MC/DC attempts to

provide a practical alternative. "The modified condition/decision coverage criterion was developed to

achieve many of the benefits of multiple-condition testing while retaining the linear growth in required

test cases of condition/decision testing. The essence of the modified condition/decision coverage criterion

is that each condition must be shown to independently affect the outcome of this decision, i.e., one must

demonstrate that the outcome of a decision changes as a result of changing a single condition." (re£ 13)

MC/DC is intended to assure, with a high degree of confidence, that the verification process has shown

that each condition in each decision in the source code has the proper effect.

Exercise 2.5a: Consider an expression with 36 inputs. How much time would it take to

execute all of the test cases required for multiple condition coverage (exhaustive testing)

of this expression if you could run 100 test cases per second?

Exercise 2.5b: If your test artifacts include a single line for the test resuks of each test case,

how tall would the report be for test resuks for achieving multiple condition coverage for an

expression with 36 inputs? (Assume 64 lines per sheet of paper, and 250 sheets of paper per

inch height.)

2.5.1 A Note on Source versus Object Code Coverage

Structural coverage achieved at the source code level can differ from that achieved at the object code

level. Depending on language and compiler features used, multiple object code statements can be

generated from a single source code statement (ref. 8). According to Beizer, a test suite that provides

100% statement coverage at the source code level for a "good piece of logic-intensive modem code"

might cover 75% or less of the statements at the object code level (ref. 7). Consequently, achieving

MC/DC at the source code level does not guarantee MC/DC at the object code level, and vice versa.

For software levels A-C, structural coverage analysis may be performed on the source code (DO-

178B, section 6.4.4.2b). For level A software, however, additional verification should be performed if the

compiler generates object code not directly traceable to the source code statements. A common

misconception exists that MC/DC must be performed on the object code if the compiler generates code

that is not directly traceable to the source code. The additional verification should establish the

correctness of the code sequences that are not directly traceable; that is, the requirement for additional

analysis applies only to those object code segments that are not traceable. Issues related to source code to

object code traceability are addressed in FAQ #41 and FAQ #42 in DO-248A and are being documented

in FAA policy.

There has been debate as to whether structural coverage, MC/DC in particular, can be demonstrated by

analyzing the object code in lieu of the source code. According to FAQ #42 in DO-248A (ref. 9),

structural coverage, including MC/DC, can be demonstrated at the object code level...

as long as analysis can be provided which demonstrates that the coverage analysis conducted at

the object code will be equivalent to the same coverage analysis at the source code level. In fact,

for Level A software coverage, DO-178B/ED-12B Section 6.4.4.2b states that if"...the compiler

generates object code that is not directly traceable to Source Code statements. Then, additional

verification should be performed on the object code... " This is often satisfied by analyzing the

object code to ensure that it is directly traceable to the source code. Hence, DO-178B/ED-12B

determines the conditions for analysis of the source code for structural coverage, and it does not

prevent one from performing analysis directly on the object code.

11

The analysis necessary to establish that coverage achieved at the object code level is equivalent to

achieving the same level of coverage at the source code is not trivial in the general case. In some cases,

however, showing equivalence may be simplified by using short-circuit control forms. According to

FAQ #42 (ref. 9), compiler features such as short-circuit evaluation of Boolean expressions can be used to

simplify the analysis.

"When utilizing compiler features to simplify analysis, one relies on the compiler to behave as
expected. Therefore, one may need to qualify the compiler features being used as a verification

tool. (See Section 12.2.2)."

Further information on source to object traceability is not included in this tutorial due to forthcoming

policy from the FAA. However, further information on short-circuit control forms is presented in section

3.6.

2.6 Confounding Issues

The requirement to show the independent effect of each condition within a decision makes MC/DC

unique among coverage criteria. Without any constraining definitions, determining whether a condition

has independent effect might seem rather simple: a condition has independent effect when that condition

alone determines the outcome of the decision. At first glance, this simple definition seems to be

consistent with the intent of MC/DC. Whether the simple notion is truly consistent with DO-178B,

however, requires knowing the full DO-178B definition 13 of MC/DC plus the definitions for condition

and decision (ref. 2).

Condition A Boolean expression containing no Boolean operators.

Decision A Boolean expression composed of conditions and zero or more Boolean operators. A

decision without a Boolean operator is a condition. Ira condition appears more than once in a
decision, each occurrence is a distinct condition.

Modified Condition�Decision Coverage Evely point of enOy and exit in the program has been
invoked at least once, evely condition in a decision in the program has taken all possible

outcomes at least once, evely decision in the program has taken all possible outcomes at least
once, and each condition in a decision has been shown to independently affect that decision's
outcome. A condition is shown to independently affect a decision's outcome by valying just that

condition while holding fixed all other possible conditions.

These definitions raise a number of confounding issues when determining whether a set of test cases

provides MC/DC.

The first issue involves the meaning of "condition". Without the last sentence in the definition of

decision, most people would probably say that the decision (A and B) or (A and C), where A, B, and C

are conditions set by the software, contains three conditions--A, B, and C. According to the last sentence

of the definition, however, this decision contains four conditions: the first A, B, C, and the second A. The

first occurrence of A is said to be coupled with the second occurrence of A because a change to one

condition affects the other. According to the definition of MC/DC above, showing independent effect in

this example requires, among other things, showing what happens when the value of the first A is held

constant, while the value of the second A is toggled between false and true. This typically cannot be

accomplished in any meaningful way.

We are using the word "definition" loosely. A strong case can be made that the Glossary entries provide, at best,

descriptions rather than definitions. Because the distinction between "definition" and "description" is probably
not important to most readers of this tutorial, we ignore it everywhere except this footnote.

12

The next issue involves the scope of "within a decision". For example, consider the following code
statements:

A: = B or C; (statement 1)

E: = A and D; (statement 2)

These two statements are logically equivalent to:

E: = (B or C) and D; (statement 3)

Statements 1, 2, and 3 all contain decisions, even though none of the statements are branch points such as

an if statement. That is, a decision is not synonymous with a branch point. MC/DC applies to all

decisions--not just those within a branch point.

Further, a test set that provides MC/DC for statements 1 and 2 individually will not necessarily provide

MC/DC for statement 3. That is, if a complex decision statement is decomposed into a set of less

complex (but logically equivalent) decision statements, providing MC/DC for the parts is not always

equivalent to providing MC/DC for the whole. For the example above, tests (TFT), (FTF), and (FFI) for

(B,C,D) provide MC/DC for statements 1 and 2 individually, but do not provide MC/DC for statement 3.

The final issue involves the concept of independent effect. Showing that a condition independently

affects a decision's outcome by varying just that condition while holding all others fixed is commonly

referred to as the unique-cause approach to MC/DC. This approach ensures that the effect of each

condition is tested relative to the other conditions without requiring analysis of the logic of each decision

(that is, if changing the value of a single condition causes the value of the decision outcome to change,

then the single condition is assumed to be the cause for the change--no further analysis is needed).

Historically, the unique-cause approach has often been the only acceptable means of showing the

independent effect of a condition. The unique-cause approach cannot be applied, however, to decisions

where there are repeated or strongly coupled conditions; e.g., (A and B) or (A and C).

The unique-cause approach commonly is taught by presenting a truth table for an expression; for

example, the decision Z: = (A or B) and (C or D) shown in Table 3. In the truth table approach, test cases

that provide MC/DC are selected by identifying pairs of rows where only one condition and the decision

outcome change values between the two rows. In Table 3, the columns shaded in gray indicate the

independence pairs for each condition. For example, test case 2 coupled with test case 10 together

demonstrate the independent effect of A, because A is the only condition that has changed value along

with the change in value of the outcome Z. Although the truth table is a simple approach to showing the

independent effect of a condition, the truth table approach suffers from a number of limitations: (a) the

truth table is unwieldy for large logical expressions; and, for a logical expression with n inputs, only n+l

of the 2n rows are useful; (b) the truth table addresses only one logical expression at a time; and, (c) the

truth table does not connect the inputs and outputs from the requirements-based tests with the source code
structure.

The approach to MC/DC given in this tutorial differs from the traditional approach and mitigates many

of the difficulties described above. The approach, presented in the next chapter, requires analysis of the

logic of a decision to confirm independent effect of the conditions. This analysis (which goes beyond that

required for the unique-cause approach) has the advantages of (a) allowing more test cases to meet the

MC/DC criteria than unique cause (which may make confirming MC/DC easier), (b) applying to

decisions with coupled conditions that frequently occur in avionics applications, and (c) having capability

equivalent to the unique-cause approach to detect errors (see Appendix B).

13

Table3. TruthTableApproachto MC/DC
I A I B I c I ° II z I1_1 _ I_ I _

:::::::::::::::::::::::::::;::::::::::::::::::::::::::::;::::::::::::::::::::::::::::;::::::::::::::::::::::::::::

1 F F F F F iiiiiiiiiiiiiiiiiiiiiiiiiii[iiiiiiiiiiiiiiiiiiiiiiiiiii[iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii
2 F F F T F iiiiiiiiii_iiiiiii_iiiiiiiiiii_iiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii
3 P P T P P iiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii
4 F F T T F iiiiiiiiii_iiiiiii_iiiiiiiiiii8iiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii

5 F r F F F iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiiiiiii_::_:iiiiiiiii_iiiiiiiiiii
6 F T F T T iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiii_iiiiiiiiii]iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiisiiiiiiiiiii

7 F T T F T iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiiiiiiii]iiiiiiiiii_iiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii

8 F r r r r iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiii_iiiiiiiiii]iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii

9 r F F F F iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiii_;.__iiiiiiiiieiiiiiii
10 T F F T T iiiiiiiii_iiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiiiiiiiii
11 T F T F T iiiiiiiiii_iiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii9iiiiiiiii:_:_iiiiiiiiiiiiiiiiiiiiiiiiii
12 T F T T T iiiiiiiii_iiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii
13 T T F F F iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiii]_iiiiiiiii_iiiiiii
14 T T F T T iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiiiii
15 T T T F T iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiii_._iiiiiiiiiiiiiiiiiiiiiiiiii

:::::::::::::::::::::::::::iiiiiiiiiiiiiiiiiiiiiiiiii ::::::::::::::::::::::::::16 T T T T T ii

3 MC/DC Approach

This chapter presents a practical approach based on gate-level representations of logic constructs for

evaluating whether a given set of requirements-based test cases conforms with three of the four
requirements for MC/DC14:

• every decision in the program has taken all possible outcomes at least once

• every condition in a decision in the program has taken all possible outcomes at least once

• every condition in a decision has been shown to independently affect that decision's outcome

The MC/DC approach for the tutorial was selected because it requires an explicit mapping of the

requirements-based tests to the source code structure. This approach applies to any source code written

regardless of whether it is in a high-level language such as Ada or in assembly language. Mapping

requirements-based test cases to source code structure reinforces the notion that structural coverage

analysis is a check on the adequacy of requirements-based tests for a given source code implementation.

The approach also capitalizes on several concepts familiar to engineers, including a schematic

representation of the source code (which allows you to see everything needed for assessing MC/DC on

one page), and the hardware testing concepts of controllability and observability.

The MC/DC approach provides simple steps that allow a certification authority or verification analyst

to evaluate MC/DC claims without the aid of a coverage tool. The steps can also be used to help confirm

that a tool properly assesses MC/DC. The MC/DC approach in this chapter does not evaluate the

correctness of existing requirements-based tests--it is assumed that these tests have been reviewed

adequately for correctness and coverage of the requirements. The purpose of the approach, however, is to

determine if existing requirements-based test cases provide the level of rigor required to achieve MC/DC

14 The fourth requirement for meeting MC/DC, testing of enU7 and exit points, is common to all structural
coverage measures, except for statement coverage, and, as such, is not critical to a discussion of MC/DC.

14

of the source code. This approach is not intended to be the only method for determining compliance

with the MC/DC objective, but rather a method to be added to your array of review techniques.

This chapter is divided into eight sections. Section 3.1 discusses basic building blocks that are

fundamental to the MC/DC approach. Section 3.2 presents the steps of the approach. Sections 3.3-3.7

address how to apply the approach to different scenarios, such as grouped functionality, short-circuit

control forms, and bit-wise operations. Finally, resolving errors or shortcomings identified through the

structural coverage analysis is discussed in section 3.8.

3.1 MC/DC Building Blocks ("how do I test a ...?")

Understanding how to test individual logical operators, such as a logical expression with a single and

operator, is essential to understanding MC/DC. In this tutorial, logical operators are shown schematically

as logical gates; and, the terms "logical operator" and "gate" are used interchangeably. Table 4 shows the

schematic representation of the elementary logical operators: and, or, xor, and not.

Table 4. Representations for Elementary Logical Expressions

Name Schematic Representation Code example Truth Table

Input __A

Output ___

A B Cand Gate

or Gate

xor Gate

not Gate

C

C

C

E>A 1>o (3

C := A and B;

C := A orB;

C := A xor B;

B := notA;

T T T

T F F

F T F

F F F

A B C

T T T

T F T

F T T

F F F

A B C

T T F

T F T

F T T

F F F

A B

T F

F T

According to Chilenski and Miller, showing that each logical condition independently affects a

decision's outcome requires specific minimal test sets for each logical operator (ref. 13). Knowing the

minimal test sets for each logical operator provides the basis for determining compliance with the MC/DC

objective. Here, the and gate, or gate, xor gate, and the not gate are considered to be basic constructs.

Given the test requirements for these basic constructs, more complex constructs containing Boolean

expressions can be examined, including a comparator, /f statement, and loop statements. Minimum

testing requirements and a tabular example for each of these constructs are described below.

15

3.1.1 and Gate

Minimum testing to achieve MC/DC for an and gate requires the following:

(1) All inputs are set true with the output observed to be true. This requires one test case for each n-

input and gate.

(2) Each and every input is set exclusively false with the output observed to be false. This requires n

test cases for each n-input and gate.

The requirements make sense when considering how an and gate works. Changing a single condition

starting from a state where all inputs are true will change the outcome; that is, an and gate is sensitive to

any false input. Hence, a specific set ofn+l test cases is needed for an n-input and gate. These specific

n+l test cases meet the intent of MC/DC by demonstrating that the and gate is correctly implemented.

An example of the minimum testing required for a three-input and gate (shown in Figure 3) is given in

Table 5. In this example, test case 1 in Table 5 provides the coverage for (1) above, and test cases 2-4

provide coverage for (2).

Figure 3. Three-input and gate.

Table 5. Minimum Tests for Three-input and Gate

Test Case Number] 1] 2] 3] 4

InputA T F T T

InputB T T F T

InputC T T T F

Output D T F F F

3.1.2 or Gate

Minimum testing to achieve MC/DC for an or gate requires the following:

(1) All inputs are set false with the output observed to be false. This requires one test case for each
n-input or gate.

(2) Each and every input is set exclusively true with the output observed to be true. This requires n

test cases for each n-input or gate.

These requirements are based on an or gate's sensitivity to a true input. Here again, n+l specific test

cases are needed to test an n-input or gate. These specific n+l test cases meet the intent of MC/DC by
demonstrating that the or gate is correctly implemented.

An example of the minimum testing required for a three-input or gate (shown in Figure 4) is given in

Table 6. In this example, test case 1 provides the coverage for (1) while test cases 2-4 provide the

coverage for (2).

16

Figure4.

°C

Three-input or gate.

Table 6. Minimum Tests for a Three-input or Gate

Te,tCa,eNumberI1 12 13 I"
Input A F T F F

Input B F F T F

Input C F F F T

Output D F T T T

3.1.3 xor Gate

The xor gate differs from both the and and the or gates with respect to MC/DC in that there are

multiple minimum test sets for an xor. Consider the two-input xor gate shown in Figure 5. All of the
possible test cases for this xor gate are shown in Table 7. For a two-input xor gate, any combination of

three test cases will provide MC/DC.

Figure 5. Two-input xor gate.

Table 7.

Test Case Number 1

InputA T

InputB T

Output C F

Test Cases for a Two-input xor Gate

2 3 4

T F F

F T F

T T F

Hence, minimum testing to meet the definition of MC/DC for a two-input xor gate requires one of the

following sets of test cases from Table 7:

(1) test cases 1, 2, and 3

(2) test cases 1, 2, and 4

(3) test cases 1, 3, and 4

(4) test cases 2, 3, and 4

Note that for a test set to distinguish between an or and an xor gate it must contain test case 1 in Table 7.

Hence, test sets 1, 2, and 3 above can detect when an or is coded incorrectly for an xor, and vice versa.

While not explicitly required by MC/DC, elimination of test set 4 as a valid test set is worth considering.

Note also that minimum tests to achieve MC/DC for an xor gate with more than two inputs are

implementation dependent. Hence, no single set of rules applies universally to an xor gate with more

than two inputs.

3.1.4 not Gate

The logical not works differently from the previous gates: the not works only on a single operand.

That operand may be a single condition or a logical expression. But, with respect to a gate level

representation, there is a single input to the not gate as shown in Figure 6.

D A

Figure 6. not gate.

17

MinimumtestingtoachieveMC/DCfor alogicalnot requires the following:

(1) The input is set false with the output observed to be true.

(2) The input is set true with the output observed to be false.

3.1.5 Comparator

A comparator evaluates two numerical inputs and returns a Boolean based on the comparison criteria.

Within the context of DO-178B, a comparator is a condition and also a simple decision. The following

comparison criteria are considered in this tutorial:

• less than

• greater than

• less than or equal to

• greater than or equal to

• equal to

• not equal to

In general, the comparison point can be a constant or another variable (see Figure 7).

E -ixl x> comparison point

A

Figure 7. Two types ofcomparators.

In either case, two test cases will confirm MC/DC for a comparator--one test case with a true outcome,

and one test case with a false outcome. Hence, minimum testing for a comparator requires the following:

(1) Input x set at a value above the comparison point (or y)

(2) Input x set at a value below the comparison point (or y)

However, the numerical aspects of a comparator must also be considered in determining reasonable

tests. For example, given a software requirement to test (x _<5000), one test case with a true outcome

(e.g., x = -30000), and one test case with a false outcome (e.g., x = 30000) provide MC/DC. However,

these cases do not confirm that the design is accurately implemented in the source code. Specifically in

this example, the test cases do not confirm that 5000 is the correct comparison point or less-than-or-equal-

to is the appropriate relational operator. The source code could have been implemented as x < -5000 or as

x _<500 and still pass the test cases.

Selecting two test cases closer to the comparison point is better, but does not cover certain coding

errors. For example, test cases with x = 5000 and x = 5001 are better, but they will not detect a coding
error ofx = 5000.

In general, three test cases are needed to assure that simple coding errors have not been made; that is,

18

thatthecorrectrelationaloperatorandcomparisonpointareusedin thecode. So,whileMC/DConly
requirestwotests,minimumgood requirements-based testing for a comparator requires:

(1) Input x set at a value slightly above the comparison point

(2) Input x set at a value slightly below the comparison point

(3) Input x set at a value equal to the comparison point

The definition of "slightly" is determined by engineering judgement based on the numerical resolution

of the target computer, the test equipment driving the inputs, and the resolution of the output device.

Consider for example, the following set of test cases for a design that sets the output A true when akitude

is greater than 2500 (see Figure 8 and Table 8).

E_ altitude ix laltitude > 2500 _.A_ _

Figure 8. Comparator for altitude >2500.

Table 8. Test Cases for Comparator Example

Test Case Number 1 2 3 4 5

Input altitude 25 32000 2500 2499 2501

Output A F T F F T

Test cases 1 and 2 give the desired MC/DC output. However, those test cases do not confirm that the

toggle occurred at 2500, and not elsewhere. Even adding test case 3 does not improve the test suite much.

The design could have been implemented with a comparison point anywhere between 2501 and 32000,

and give the same result for test cases 1, 2, and 3. Test cases 3, 4, and 5 are a better set, because this set
confu-ms that the transition occurs at 2500.

3.1.6 If-then-else Statement

The _then-else statement is a switch that controls the execution of the software. Consider the

following example where x, y, and z are integers and C is a Boolean:

if C then z := x else z := y;

Two different schematic representations of this code are shown in Figure 9.

D

D c

c

I i
z<3 z := y z :=x

Figure 9. Two if-then-else constructs.

19

Minimumtestingfortheif-then-else statement requires the following:

(1) Inputs that force the execution of the then path (that is, the decision evaluates to true)

(2) Inputs that force the execution of the else path (that is, the decision evaluates to false). Note that

the decision must evaluate to false with confirmation that the then path did not execute, even if

there is no else path.

(3) Inputs to exercise any logical gates in the decision as required by sections 3.1.1-3.1.5

For example, for a single condition Z, the statement ifZ then...else.., requires only two test cases to

achieve MC/DC. The decision in ifX or Y or Z then.., else.., requires four test cases to achieve MC/DC.

A minimal test set for the statement ifZ then a : x else a : y is shown in Table 9.

Table 9. Minimum tests for if Z then a : x else a : y

Test Case Number 1 2
Traverse the then path Traverse the else path

Inputx 12 18

Inputy 50 34

Input Z T F

Output a 12 34

Note that a case statement may be handled similarly to the if-then-else statement.

3.1. 7 Loop Statements

Loop statements are constructs that cause a sequence of statements to be executed zero or more times.
Constructs such as the while loop and the for loop are switches to control the execution of the software

similar to an if-then-else construct. In the context of MC/DC, the challenge is to confirm that loops have
been traversed appropriately.

While Loop

Consider the following example where Weight On Wheels is a Boolean:

while Weight On Wheels loop
radar mode := Off;

end loop;

A schematic representation of this code is shown in Figure 10. In this case, Weight_On_Wheels is the

decision for the while loop construct.

20

while Weight_On_Wheels

I
radar_mode := Off

I
end Loop

Figure 10. while loop construct.

Minimum testing for the while loop requires the following:

(1) Inputs to force the execution of the statements in the loop (that is, the decision evaluates to true)

(2) Inputs to force the exit of the loop (that is, the decision evaluates to false)

(3) Inputs to exercise any logical gates in the decision as required by sections 3.1.1-3.1.5

In Figure 10, two test cases may be used to achieve MC/DC. One test case confirms that radar mode

remains off as long as WeightOn_Wheels is true. The second test case confirms that radar mode could

be set to something other than off when Weight On_Wheels is false. In the case where

Weight_On_Wheels is replaced by a Boolean expression, the Boolean expression would also need to be

evaluated, and the setting of radar mode to off confirmed, by the methods previously described in
sections 3.1.1-3.1.5.

Exit when

Not all decisions must appear at the start of a loop. The exit when statement can be used anywhere
within a loop construct or a for loop to terminate the execution of the loop. 15 Consider the following

example of a loop statement with an exit when condition. In this example, Current_Signal =false is the

decision (see Figure 11).

loop
get (Current Signal);

exit when Current Signal = false;

end loop;

Minimum testing for the exit when statement requires the following:

(1) Inputs to force the repeated execution of the statements in the loop when the decision for the exit

when evaluates to false

The Ada language permits multiple exit when statements within a loop. Because this may be interpreted as
violating the single exit principle in software engineering, some developers may restrict the use of exit when
statements.

21

(2) Inputsto forcetheimmediateexitof theloopwhenthedecisionfortheexit when evaluates to
true

(3) Inputs to exercise any logical gates in the decision as required by sections 3.1.1-3.1.5

loop

I
get (Current_Signal)

I
exit when

Current_Signal =

false

Figure 11.

J
loop

get (Current_Signal)

exit when

Current_Signal = false

{Loop} J {Exit}

Two types of exit when statements.

3.2 Evaluation Method

The minimum test requirements in section 3.1 establish the inputs and expected output for individual
logical operators necessary to confirm that:

• the decision has taken all possible outcomes at least once,

• every condition in the decision has taken all possible outcomes at least once, and

• every condition in the decision independently affects the decision's outcome.

Only one minimum test set will provide MC/DC when the only operator in the decision is an and, and

only one minimum test set will provide MC/DC when the only operator in the decision is an or; however,

a number of different test sets will meet the minimum test requirements when the operator is an xor.

Confirming MC/DC for a decision with mixed logical operators, such as (A or B) and (C or D), is

complicated by the fact that the output from one logical operator may mask the output of another logical

operator. For example, any false input to an and gate masks all other inputs; that is, the output of the and

gate will be false regardless of the other inputs. Similarly, any true input to an or gate masks all other

inputs; a true input will cause the output to be true regardless of the other inputs.

Two concepts taken from testing logic circuits are helpful in understanding MC/DC for complex

logical expressions: controllability and observability (ref. 14). For software, controllability can be

described loosely as the ability to test each logical operator of an expression by setting the values of the

expression's inputs (this corresponds to meeting the minimum test requirements in section 3.1).
Observability refers to the ability to propagate the output of a logical operator under test to an observable

point.

To evaluate MC/DC using the gate-level approach, each logical operator in a decision in the source

code is examined to determine whether the requirements-based tests have observably exercised the

operator using the minimum tests from section 3.1. This approach, which applies to both decisions with

22

commonlogicaloperatorsanddecisionswithmixedlogicaloperators,involvesthefollowingfivesteps:

(1) Createaschematicrepresentationofthesourcecode.

(2) Identifythetestinputsused.Testinputsareobtainedfromtherequirements-basedtestsof the
softwareproduct.

(3) Eliminatemaskedtestcases.A maskedtestcaseis onewhoseresultsfor a specificgateare
hiddenfromtheobservedoutcome.

(4) DetermineMC/DCbasedonthebuildingblocksdiscussedinsection3.1.

(5) Finally, examine the outputs of the tests to confirm correct operation of the software. This step

may seem redundant because this confirmation is accomplished in the comparison of the

requirements-based test cases and results with the requirements. However, if the expected result
in the test case does not match the output expected based on the gate representation of the code,

an error is indicated, either in the source code or in its schematic representation.

Each of these steps is described below.

3.2.1 Source Code Representation

In the first step of the process, a schematic representation of the software is generated. The symbols

used to represent the source code are not important, so long as they are consistent. For this tutorial, the
symbols shown in Table 4 and Table 10 are used.

The following example is used to illustrate the steps of the evaluation method, starting with the source
code representation.

Example 1. Consider the following line of source code:

A := (B and C) or D;

This source code is shown schematically in Figure 12.

D °

Figure 12. Schematic representation of example 1 source code.

23

Table 10. Symbols for Source Code Representation 16

Name Schematic Representation Code example

Comparator

(x with constant)

Comparator

(x with y)

Summer

(addition or
subtraction may be

shown)

Multiplier

Divider

If-then-else

If-then-else

While Loop

'_]XIx > constantlY- _

A<3

IC>"
A

I I
z := y; z := x;

w:=5; w:=3;

I I

While A

--1
Read (A);

I
End Loop

A := x > constant;

A:=x>y;

z:=x+y;

z:=x*y;

z:=x/y;

If A then

Z := X;

Else

z := y;

End if;

If A then

Z := X;

w := 3;

Else

z := y;

w := 5;

End if;

While A Loop

Read (A);

End loop;

16 Note that some of the symbols in Table 10 are not building block constructs (for example, the arithmetic

symbols), but are needed to represent functionality typical in avionics applications.

24

3.2.2 Identification of Test Inputs

The next step of the process takes the inputs from the requirements-based test cases and maps them to

the schematic representation. This provides a view of the test cases and the source code in a convenient

format. Inputs and expected observable outputs for the requirements-based test cases for example 1 are
given in Table 11.

Table 11. Requirements-based Test Cases for Example 1

Test Case Number 1 2 3 4 5

InputB T F F T T

InputC T T T T F

InputD F F T T F

Output A T F T T F

Figure 13 shows the test cases annotated on the schematic representation. Note that intermediate

results are also determined from the test inputs and shown on the schematic representation.

12345

D B TFFTT

k 12345

D TFFTF 12345D O TTTTF TFTTF

D

FFTTF

Figure 13. Schematic representation with test cases for example 1.

Knowing the intermediate results is important because some inputs may mask the effect of other
inputs when two or more logic constructs are evaluated together. Test cases where the output is masked

do not contribute to achieving MC/DC.

Using the annotated figure, the requirements-based tests cases that do not contribute (or count for
credit) towards achieving MC/DC can be identified. Once those test cases are eliminated from

consideration, the remaining test cases can be compared to the building blocks to determine if they are
sufficient to meet the MC/DC criteria.

3.2.3 Elimination of Masked Tests

This step is necessary to achieve observability. Only test cases whose outputs are observable can be

counted for credit towards MC/DC. In the following discussion, the electrical analogy of "shorting"

various "control inputs" such that they do not impact the "input of interest" being transmitted through
them is used to describe several key principles of observability.

To introduce the first principle, consider an and gate. Since we will concentrate on only one input at a
time, we will refer to the experimental input as the input of interest and the other inputs as the control

inputs. The truth table for an and gate in Table 12 shows that the output of the and gate will always be

the input of interest if the control input to the and gate is true. The state of the input of interest is
indeterminate in the case where the control input is false.

25

Table 12. Control Input to an and Gate

Input of Interest Control Input Output

T T T (input of interest)

F T F (input of interest)

Tor F (don't care) F F

This leads to Principle 1: W and true = W

Thus any and gate may be viewed as a direct path from the input of interest to the output whenever the

other input(s) to the and gate are true.

Taking a similar approach with the or gate yields the second principle. The truth table for an or gate

in Table 13 shows that the output of the or gate will always be the input of interest if the control input to

the or gate is false. The state of the input of interest is indeterminate in the case where the control input is

true.

Table 13. Control Input to an or Gate

Input of Interest Control Input Output

T F T (input of interest)

F F F (input of interest)

Tor F (don't care) T T

Hence, Principle 2: W or false = W

That is, any or gate may be viewed as a direct path from the input of interest to the output whenever

the other input(s) to the or gate are false.

Finally, consider the xor gate. The truth table for an xor gate in Table 14 shows that the output of the

xor gate will always be the input of interest if the control input is false. The truth table for an xor gate

also shows that the output of the xor gate will always be the logical not of the input of interest if the

control input is true. Thus, the input of interest is always determinate if the control input and output are
known.

Table 14. Control Input to an xor Gate

Input of Interest Control Input Output

F F F (input of interest)

F T T (Not input of interest)

T F T (input of interest)

T T F (Not input of interest)

This establishes the final two principles:

Principle 3: W xorfalse = W

Principle 4: W xor true = not W

26

The judicious selection of a control input for the and gate, or gate, or xor gate opens a direct path from

the input of interest to the output. This selection can be used repeatedly to allow visibility of an input of

interest across multiple gates as shown in Figures 14 and 15. Figure 14 shows that the output will always

be the input of interest when the control inputs are as shown. Any changes to control inputs 1 or 2 will

make the input of interest become indeterminate when examining the output. A change to control input 3

will result in the output being the logical not of the input of interest.

D Input of Interest

_ Control Input 1 (false)

_ Control Input 2 (true)

D Controllnput3 (false)
Output

Figure 14. Simple example of directly observable output.

Figure 15 shows another example that allows the input of interest to be directly visible at the output.

This is accomplished by the use of three control inputs as shown. Two additional inputs are "don't care"

inputs, as their state has no impact on the output for this example. These examples show that the proper

selection of control inputs allows an input of interest to be directly observable at the output.

The converse of each of the above principles is used to identify whether a test case is masked. For

example, a false input to an and gate will mask all other inputs to that gate. Similarly, a true input to an

or gate will mask all other inputs to that gate.

_ Input of Interest

D Control Input 1 (false) _

D Control Input 2 (true) I _ [--

D Don'tCare 1

D Control Input3(false) L

D D°n't care 2 D

Output

Figure 15. Directly observable output with complex gate structure.

27

To determinewhichtestcasesaremasked,it is easiestto workbackwardsthroughthelogicdiagram.
Consideragaintheexpressionin example1: A:= (B and C) or D. Test cases where D is true cannot be

used to determine if the and gate is implemented correctly. Any time D is true, the output A will be true.

By setting D true, the correct output of the and gate cannot be determined by looking at the results at A.

Figure 16 shows that test cases 3 and 4 are eliminated from consideration for the and gate.

12345

T F._](T

D" /
D cTT,,,,F[2)

D °

12345

TFFTF

FFTTF

12345

TFTTF A

Figure 16. Schematic representation with masked test cases for example 1.

In Figure 16, only test cases 1, 2, and 5 are valid for testing the and gate, because D is set to false (W

or false = W) only in these cases. The and gate is masked in test cases 3 and 4 because D is true (W or

true = true). Note, masking is not an issue for the or gate because the output of the or gate does not feed

another gate. Hence, all of the test cases for the or gate are valid. Table 15 lists the masked test cases and

the valid test cases for each gate in the example code.

Table 15. Masked and Valid Test Cases for Example 1

Gate Masked Test Rationale for Rejection Valid Test
Cases Cases

and 3, 4 and is masked by T inputto orgate for test cases3 1, 2, 5
and4

or None 1, 2, 3, 4, 5

3.2.4 Determination of MC/DC

Having established that test cases 1, 2, and 5 are valid for showing MC/DC for the and gate in

example 1, and that all of the test cases are valid for the or gate, the next step is to determine whether the

valid test cases are sufficient to provide MC/DC.

Starting with the and gate, the valid test cases are compared with the test case building blocks defined

in section 3.1.1. The test combinations TT, TF, and FT are needed. In the example, test case 1 provides

the TTtest, test case 2 provides the FTtest, and test case 5 provides the TF test case. Hence, test cases 1,

2, and 5 are sufficient to provide MC/DC for the and gate.

Next, the or gate tests are compared with the test case building blocks defined in section 3.1.2. Test

combinations FF, TF, and FT are needed. For the example, test case 2 provides the FF test, test case 1

provides the TF test, and test case 3 provides the FT test. Test case 4, a TT input to the or gate, is not

needed for MC/DC; and test case 5 duplicates test case 2 for the or gate. Table 16 summarizes these
results.

28

Table 16. Comparison of Building Blocks with Valid Tests for Example 1

Gate Valid Test Inputs Missing Test Cases

and TT Case 1 None

TF Case 5

FT Case 2

or TF Case 1 None

FT Case 3

FF Case2or5

Hence, test cases 1, 2, 3, and 5 satisfy MC/DC for example 1. Note that test cases 1, 2, and 5

contribute to demonstrating coverage for both the and gate and the or gate. Test case 4 does not
contribute to MC/DC.

3.2.5 Output Confirmation

After confu'ming that the requirements-based tests provide MC/DC, the final step of the process is to

confirm that the expected results are actually obtained by the tests. The output confirmation step is

included as a reminder that showing compliance to MC/DC requirements is done in conjunction with the

determination of the proper requirements-based test results. In example 1, the outputs determined by

following the test inputs through the logic gates match the expected results.

3.3 Following the Five-step Evaluation Process

This section contains three examples to further illustrate the five-step process of evaluating test cases
for MC/DC.

Example 2. Suppose you have examined the test cases in Table 17 and determined that they are

adequate requirements-based tests. Note that Z is the only observable output for these test cases.

Determine if the test cases provide MC/DC for the source code provided.

Table 17. Requirements-based Test Cases for Example 2

Test Case Number 1 2 3 4 5

Input A F F T F T

Input B F T F T F

Input C T F F T T

Input D F T F F F

Output Z F T F T T

Source Code:

Z := (A or B) and (C or D);

29

Step 1: Show the source code schematically (see Figure 17).

E)2--1

I
zC

Figure 17. Example 2, step 1--schematic representation of source code.

Step 2: Map test cases to the source code picture (see Figure 18).

FFTFT

--J FT FT F orl

TFFTT

_or2

__I FTFFF

FTTTT

TTF

1_[_ FTFTT

and

zC

Figure 18. Example 2, step 2--schematic representation with test cases.

Step 3: Eliminate masked tests (see Figure 19). In this case, any false input to the and gate will mask the

other input. Hence, the false outcome of or1 will mask test case 1 for the or,? gate. Similarly, the false

outcome of or,? will mask test case 3 for the or1 gate.

FFXFT

F T,,_T F or1

XFFTT _)

.__1 XTFFF or2

FTTTT

TTFTT and

FTFTT Z_

Figure 19. Example 2, step 3--masked test cases.

30

Step 4: Determine MC/DC. As shown in Table 18, the test set in Table 17 provides MC/DC for this

example.

Table 18. Comparison of Building Blocks with Valid Tests for Example 2

Gate Valid Test Inputs Missing Test Cases

or1 FF Case 1 None

FT Case2or4

TF Case 5

or2 FF Case 3 None

FT Case 2

TF Case 4 or 5

and TT Case 2, 4, or 5 None

TF Case 3

FT Case 1

Step 5: Confirm output. The outputs computed match those provided.

Example 2A. Consider a change to test case 2 in example 2 from FTFT to TFFT. Does this change

result in a test suite that still provides MC/DC? The change, shown in Figure 20, amounts to changing the

inputs to orl in test case 2 from FTto TF. There are no other changes.

A FT_FT

FF TF

C XFFTT

Do "TFFF

FTTTT

TTFTT_

z<3

Figure 20. Example 2A, step 3--schematic representation with test cases.

The comparison with the building blocks results in the identical results for or,? and and. The results

for or1 are slightly different as shown in Table 19 below.

Table 19. Comparison of Results for or1 Gate for Example 2 and 2A
Example 2 Example 2A

Valid Test Inputs for or1 Missing Test Cases Valid Test Inputs for or1 Missing Test Cases

FF Case 1 None FF Case 1 None

FT Case 2 or4 FT Case 4

TF Case 5 TF Case 2 or 5

31

This example shows the difference between unique-cause MC/DC and masking MC/DC. Although

the test suites in both example 2 and example 2A provide MC/DC, only the test suite in example 2A

complies with the unique-cause definition. The difference in the test suites can be seen by looking at the

independence pairs for each condition, as shown in Table 20.

Table 20. Independence Pairs for Example 2 and 2A

Independence Pairs for Example 2 Independence Pairs for Example 2A

A B

FFTF FFTF

TFTF FTTF

C D A

TFFF iF_ FFTF

TFTF TFFF TFTF

B

FFTF

FTTF

C D

TFFF _

TFTF TFFF

The difference between example 2 and example 2A lies in how the independent effect of input D is

shown. In example 2, tests FTFT and TFFF together show the independent effect of D; however, more

than one input changes between the two test cases--violating unique cause. The fact that A and B change

values between the two test cases does not impact the decision outcome, because the value of the or1

subterm remains the same. That is, input D is changed while all other subterms remain fixed as shown by

test cases 2 and 3.

As explained in Appendix B, either the unique-cause or masking approach to MC/DC will detect the

same types of errors.

Example 3. Suppose you have a design that calls for the evaluation of (A and not B) or (C xor D).

Further, suppose you have examined the test cases in Table 21 and determined that they are adequate

requirements-based tests. Determine if the test cases provide MC/DC of the source code provided.

Table 21. Requirements-based Test Cases for Example 3

Test Case Number 1 2 3 4 5

Input A T T F F F

Input B T F T T T

Input C F F F F T

Input D F F F T F

Output Z F T F T T

Source Code:

Z := (A and not B) or (C xor D);

32

Step 1: Show the source code schematically (Figure 21).

zC

Figure 21. Example 3, step 1--schematic representation of source code.

Step 2: Map test cases to the source code picture (see Figure 22).

ITTFFFTFTTTI_IFTFFF
i

FTFFF

_FTFTT (_Z

FFFTT

Figure 22. Example 3, step 2--schematic representation with test cases.

Step 3: Eliminate masked tests (Figure 23).

I TTF_ [__
T FXX)I{ I_;)_I FTFX_

FTFFF_ FTFTTz,_

FFFTT

Figure 23. Example 3, step 3--eliminating masked test cases.

Step 4: Determine MC/DC. As shown in Table 22, a test case is needed where the and gate has A false
and not B true. To ensure visibility at Z, the output ofC xor D must be false also. One possible test case

for (ABCD) is (FFTT).

33

Table 22. Comparison of Building Blocks with Valid Tests for Example 3

Gate Valid Test Inputs Missing Test Cases

and TF Case 1 FT

TT Case 2

not T Case 1 None

F Case 2

xor FF Case 1 or 3 None

FT Case 4

TF Case 5

or FF Case 1 or 3 None

TF Case 2

FT Case4or5

Step 5: Confirm output. The outputs computed match those provided. Hence, test cases 1, 2, 4, 5, and

(FFTT) provide MC/DC for example 3.

Exercises: For each of the following, complete the five steps of the evaluation process to

determine whether the given requirements-based test set provides MC/DC.

Exercise 3.3a: Suppose that the source code in example 3 is actually

Z: = (A and not B) or (C or D);

Would the test cases in Table 21 catch the coding error?

Exercise 3.3b: Suppose you are evaluating a design that controls the start of a ground test function.

The requirements for the design are as follows:

1. The ground test function is initiated when the discrete StartGT is set true.

2. The user has requested the initiation of ground test when the discrete MaintRqst is set true.

3. The ground test function is to be initiated only if the maintenance system is valid

(Maint Valid = true).

4. The ground test function is to be disabled (StartGT =false) if the weight on wheel

discrete (WOW) is false.

5. The ground test function is to be disabled (StartGT =false) if either engine 1 is

running (Engine 1 On) or engine 2 is running (Engine 2 On).

The following tests are provided as verification of the design.

TestCase.umberl 1 12 13 I" 15 18
Maint_Rqst T F T T T T

Maint_Valid T T F T T T

WOW T T T T T F

Engine 1 On F F F T T F

Engine 2 On F F F T F F

Start_GT T F F F F F

The source code used to implement the design is as follows:

Start GT := Maint Rqst and Maint Valid and WOW and not (Engine 1

Engine 2 On);

Do the test cases given provide MC/DC of the above source code?

Oil or

34

Exercise 3.3c: Suppose you are evaluating a design that determines when the airplane is on

the ground with weight on the wheels (WOW). The WOW requirements state

that the WOW discrete is to be set when 1) both squat switches (Squat L, Squat R)

are set or 2) airspeed is valid and less than 40 knots.

The following tests are provided as verification of the design.

TestCaseNumberl1 12 13 14 15
Squat_L T F T T T

Squat_R T T F F T

Airspeed 35 35 45 35 45

Airspeed_Valid T T T F F

WOW T T F F T

The source code used to implement the design is as follows:

WOW := (Squat L and Squat R) or ((Airspeed < 40.0) and Airspeed Valid);

Do the test cases given provide MC/DC based on the above source code?

Exercise 3.3d: Requirements for a set of gains are as follows:

Gain Air Data Valid and In Air Not(Air Data Valid and In Air)

Gain_q 0.34 * True Air Speed 100

Gain_2 0.0012 * Ground Speed 0.5

Gain_3 0.056 * Vertical Speed 0

For this example the following data names and units are used:

Parameter Variable Name Units

True Air Speed TAS Miles per Hour (MPH)

Ground Speed Gnd_Spd Miles per Hour (MPH)

Vertical Speed VS Feet per Minute (FPM)

In Air In_Air Boolean

Air Data Valid Air Data_Valid Boolean

The following test cases are provided for the requirements:

Test 1 Conditions: Set up the simulation while In Air with Air Data Valid and a True Air

Speed of 500 MPH, a ground speed of 550 MPH and a vertical speed of + 100 FPM.

Observe that Gain_l = 170, Gain 2 = 0.66 and Gain_3 = 5.6.

Test 2 Conditions: Set up the simulation while In Air with Air Data not Valid and a True

Air Speed of 500 MPH, a ground speed of 550 MPH and a vertical speed of+100 FPM.

Observe that Gain_l = 100, Gain 2 = 0.66 and Gain_3 = 0.0.

Test 3 Conditions: Set up the simulation while not In Air with Air Data Valid and a True

Air Speed of 50 MPH, a ground speed of 55 MPH and a vertical speed of + 10 FPM.

Observe that Gain_l = 100, Gain 2 = 0.66 and Gain_3 = 0.0.

The requirements are implemented as:

35

If Air Data Valid and In Air then

Gain_l := TAS * 0.34;

Gain 2 := Gnd_Spd * 0.0012;
Gain_3 := VS * 0.056;

Else

Gain_l := 100.0;

Gain 2 := 0.5;

Gain_3 := 0.0;
End If;

Do the test cases above meet the requirements of MC/DC for the source code implemented?

3.4 Grouped Functionality

The discussion in section 3.3 focused on determining compliance with the MC/DC criteria for a single

line of code. Because the five-step approach considers the observability of each decision outcome with

respect to the expected results, the approach can be used for assessing coverage of multiple lines of source
code.

Example 4. Consider the following source code and the requirements-based test cases in Table 23:

Source Code:

A := (B or C) and D;

E := (X and Y) or C;

Z := A and E;

Table 23. Requirements-based Test Cases for Example 4

TostCosoN,,mborl1 12 13 14 15
InputB T F F T T

InputC F T F F F

InputD T T T F T

InputX T F T T T

Input Y T T T T F

Output Z T T F F F

Step 1: Show the source code schematically (Figure 24).

DD
A

D

Figure 24. Example 4, step 1--schematic representation of source code.

36

Step2: Maptestcasesto thesourcecodepicture(seeFigure25). Notethatthevaluesobtainedfor
variablesA andE arenot includedin thetestresultsgivenin Table23. Becausetherearenoexpected
resultsfor A andE,weneedtomakesurethattheresultsof A andE arevisibleatZ.

12345

D ° F_D. L
12345 A TTFFT

DB TFFTT rid1

_> TTFTT DT T
DC FTFFF_ or1 V

FTFFF &_2 TTTTF and3

[D--_T FTTT I

D TFTTF

Y---JTTTT F and2

12345

FFF Z

Figure 25. Example 4, step 2-- schematic representation with test cases.

Step 3: Eliminate masked tests (see Figure 26). Table 24 gives the rationale for test cases that are

masked for each gate.

12345

D ° F_D. L
12345 A TTFFT

D B TFF_-XF_o rid1 D

TTFTX TT

D C F T F;E;E rl and3

F T_F &_2 T TTTFV

D TFXXF

--_JYlXX g and2

12345

FFF Z

Figure 26. Example 4, step 3--eliminating masked test cases.

Table 24. Masked and Valid Test Cases for Example 4

Gate Masked Test Cases Rationale for Rejection Valid Test Cases

and1 5 and1 is masked by F output of or2 for case 5 1, 2, 3, 4

and2 2, 3, 4 and2 is masked by F output of and1 for cases 3 and 4 1, 5

and2 is masked by T input to or2 for case 2

and3 None 1, 2, 3, 4, 5

or1 4, 5 or1 is masked by F input to and1 for case 4 1, 2, 3

or1 is masked by F output of or2 for case 5

or2 3, 4 or2 is masked by F output of and1 for cases 3 and 4 1, 2, 5

37

Step 4: Determine MC/DC by evaluating the valid test cases for each gate against the building blocks in

section 3.1. Table 25 summarizes the valid test cases for each gate and shows which tests defined in

section 3.1 are missing.

Table 25. Comparison of Building Blocks with Valid Tests for Example 4

Gate Valid Test Inputs Missing Test Cases

and1 TT Case 1 or 2 None

TF Case 3

FT Case 4

and2 TT Case 1 FT

TF Case 5

and3 TT Case 1 or 2 None

FT Case3or4

TF Case 5

or1 TF Case 1 None

FT Case 2

FF Case 3

or2 FT Case 1 None

TF Case 2

FF Case 5

Table 25 shows that MC/DC has been obtained for all of the gates with the exception of and2. The

and2 gate does not have a valid test for the case where X is false and Y is true. It is interesting to note

that there is a test case for and2 which provides the X false, Y true inputs (namely, case 2). This shows

that although test cases are present, they may not contribute towards MC/DC if their outcome is not

observable. One possible valid test case with an observable output is B true, C false, D true, X false, and

Y true.

Exhaustive testing of the design would require 32 test cases (25). If each line of source code is

examined individually, the truth table approach would require four test cases for A, four test cases for B,

and three test cases for E. Some of those test cases may overlap, but comparison of the entries in the

different truth tables would be required to know if they do. Example 4 has shown, in a single analysis,

that 6 test cases (5 inputs + 1) can provide complete MC/DC.

Step 5: Confirm output. The outputs computed match those provided.

Example 5. Suppose you are evaluating a power management design for a system that has two

generators. Failure flags (Generator 1 Fail, Generator 2 Fail) are set when the respective generator

fails. There is a requirement to set a flag (Shed Partial_Load) to start electrical load shedding in the

event of a single generator failure. Another flag (Shed_Full_Load) is to be set if both generators fail.

Does the following set of tests provide MC/DC based on the source code provided?

Test 1: Both generators are failed and observe Shed_Partial_Load is false and Shed_Full_Load is
true.

38

Test 2: Fail #1 generator with #2 generator valid and observe Shed Partial_Load is true and
Shed_Full_Load is false.

Test 3: Fail #2 generator with #1 generator valid and observe Shed Partial_Load is true and
Shed_Full_Load is false.

Source Code:

Shed Partial_Load := Generator 1 Fail xor Generator 2 Fail;

Shed Full_Load := Generator 1 Fail and Generator 2 Fail;

Step 1: Show the source code schematically (see Figure 27).

_ Generator 1 Fail

D Generator 2 Fail

Shed_Partial_Load

D Shed Full Load _

Figure 27. Example 5, step 1--schematic representation of source code.

Step 2: Map test cases to the source code picture as in Figure 28.

D Generator 1 Fail TTF

D Generator 2 Fail

TFT
J

TTF

F T T Shed_Partial_Load

TFT D TFF Shed Full Load _

Figure 28. Example 5, step 2--schematic representation with test cases.

Step 3: Eliminate masked tests (see Figure 29). In this example, no test cases are masked, because no

gate outputs are input to other gates.

39

D Generator 1 Fail TTF

E>Generator 2 Fail

l
TFT

TTF

TFT

F T T Shed_Partial_Load

D TFF Shed Full Load

Figure 29. Example 5, step 3--masked test cases.

Step 4: Determine MC/DC (see Table 26).

Table 26. Comparison of Building Blocks with Valid Tests for Example 5

Gate Valid Test Inputs Missing Test Cases

xor TT Case 1 None

TF Case 2

FT Case 3

and TT Case 1 None

TF Case 2

FT Case 3

Step 5: Confirm output. Outputs computed match those provided.

Example 5A. Does the test set in example 5 provide MC/DC if the design is implemented in the
source code as:

Shed_Full_Load := Generator 1 Fail and Generator 2 Fail;

Shed_Partial_Load := (Generator 1 Fail or Generator 2 Fail) and not Shed_Full_Load;

Step 1: Show the source code schematically (see Figure 30).

D Generator 1 Fail

D Generator 2 Fail

' I

D , Shed_Full_Load _

J and1

L D Shed_Partial_Load _
or and2

Figure 30. Example 5 Example 5A, step 1--schematic representation of source code.

40

Step2: Maptestcasestothesourcecodepicture(seeFigure31).

_ Generator 1 Fail

D Generator 2 Fail

' I TTF

D • TFF

J T F T and1

I not

TTF [@O FTT

TTT

TFT or

D FTT

and2

Shed_Full_Load

Shed_Partial_Load

Figure 31. Example 5, step 2--schematic representation with test cases.

Step 3: Eliminate masked tests (see Figure 32).

D Generator 1 Fail

D Generator 2 Fail

' I TTF

D " TFF Shed_Full_Load _

J T F T and1

I not

) FTT Shed_Partia,_LoadC
T T T and2

XFT or

Figure 32. Example 5, step 3--masked test cases.

Step 4: Determine MC/DC. While Table 27 seems to indicate that two additional test cases are required,

only one other test case is possible (i.e., Generator 1 Fail and Generator 2 Fail both set false). This

additional test provides complete coverage of the inputs and completes the test cases needed for and2 and
OF.

Table 27. Comparison of Building Blocks with Valid Tests for Example 5

Gate Valid Test Inputs Missing Test Cases

and1 TT Case I None

TF Case 2

FT Case 3

and2 TT Case I TF

FT Case 3

or TF Case 2 FF

FT Case 3

not T Case I None

F Case 2 or 3

41

Step 5: Confirm output. Outputs computed match those provided.

Example 5a is an excellent case of showing that the determination of MC/DC is directly related to the

source code implementation.

3.5 Developing Complex Constructs

The building blocks provided in section 3.1 provide the capability to perform MC/DC analysis on a
wide variety of source code. These building blocks may be expanded into more complex constructs as

needed. This is valuable when common logic strings are repeated throughout the software design.

Example 6. Consider a Reset-Overides-Set latch as shown in Figure 33. This latch could be

expressed in the following source code where Output, Set, and Reset are all Booleans:

Output := (Output or Set) and not Reset;

D Reset
Output C

Figure 33. Reset-Overides-Set Latch--schematic representation of source code.

While evaluating the latch every time it is used is valid, it may make sense to create a building block

applicable to the specific function of the latch. This is similar to the reuse principal in software

engineering. Once a valid set of test cases are determined for the function, they may be reused elsewhere.

The minimum test cases for the latch are shown in Table 28.

Table 28. Minimum Test Cases for the Reset-Overides-Set Latch

Test Case Number 1 2 3 4 5

Input Set F F T F T

Input Reset T F F F T

Output F F T T F

Exercise 3.5: Confirm that the minimum test cases in Table 28 provide MC/DC

for the Reset-Overides-Set Latch. Also, consider why test case 1 is included but does

not directly contribute to MC/DC.

3.6 MC/DC with Short Circuit Logic

When using a standard and or or operator, both of the operands in the expression are typically

evaluated. For some programming languages, the order of evaluation is defined by the language, while

for others, it is left as a compiler-dependent decision. Some programming languages also provide short-
circuit control forms.

42

In Ada,theshort-circuitcontrolforms,and then and or else, produce the same resuks as the logical

operators and and or for Boolean types, except that the left operand is always evaluated first (re£ 15).

The right operand is only evaluated if its value is needed to determine the resuk of the expression. The

&& and the [[operators in C and C++ are similar (ref. 16, 17).

Short circuit logic also occurs when compiler options are selected which do not require all of the

operands within an expression to be evaluated once the output has been determined. Short circuit logic,

whether by language construct or compiler option, is similar to the masking discussion of section 3.2.3.

That is, the compiler takes advantage of the converse of the principles discussed in section 3.2.3. For

example, once any operand used by an and gate has been evaluated to false, the outcome of that

expression is known to be false. No further evaluation is required, nor will it change the outcome

expected. An or gate likewise will always result in a true outcome once any of the inputs evaluates to
true.

For MC/DC, short circuit expressions can be treated in the same manner as conventional and and or

gates, as shown in example 7. The follow-on to the example shows how testing can take advantage of the

deterministic evaluation order provided by short circuit logic.

Example 7. You have examined the test cases in Table 29 and determined that they are adequate

requirements-based test cases. Determine if the test cases provide MC/DC using the source code

provided.

Table 29. Requirements-based Test Cases for Example 7

TestCaseNumber I 1 I 2 I 3 I 4 I 5

Input A T T T T F

Input B T T T F T

Input C T T F T T

Input D T F T T T

Output Z T F F F F

Source Code:

Z := A and then B and then C and then D;

Step 1: Show the source code schematically (see Figure 34). Note that the and then is shown as the
conventional and.

A

D °

zG

Figure 34. Example 7, step 1--schematic representation of source code.

43

Step2: Maptestcasestothesourcecodepicture(seeFigure35).

D A TTTTF

E_ TTTFT

_ TTFTT

D D TFTTT

DTFFFF Z

Figure 35. Example 7, step 2--schematic representation with test cases.

Step 3: Eliminate masked tests. Because there are no intermediate gates in this example, there are no
masked test cases.

Step 4: Determine MC/DC (see Table 30). In the gate-level approach to determining MC/DC, there is no

difference in the determination of MC/DC between the and gate or the and then gate.

Table 30. Comparison of Building Blocks with Valid Tests for Example 7

Gate Valid Test Inputs Missing Test Cases

and TTTT Case 1

TTTF Case 2

TTFT Case 3

TFTT Case 4

FTTT Case 5

None

Step 5: Confirm output. Outputs computed match those provided.

Example 7 follow-on. Now consider example 7 again with the test cases in Table 31.

Table 31. Test Set 2 for Example 7

Test Case Number 1 2 3 4 5

Input A T T T T F

Input B T T T F F

Input C T T F F F

Input D T F F F F

Output Z T F F F F

Would these test cases provide MC/DC for the source code? Yes. In this example, the operands are

evaluated as short circuit logic. Once an operand evaluates to false, Z is set to false without evaluation of

the remaining operands. In essence, the value of the remaining operands does not matter. So, for a 4-

input and gate implemented in short circuit logic, the minimum tests are given in Table 32, where the

value X represents "don't care".

44

Table 32. Minimum Tests for a Four-input and Gate with Short Circuit Logic

Test Case Number 1 2 3 4 5

Input A T F T T T

Input B T X F T T

Input C T X X F T

Input D T X X X F

Output Z T F F F F

Similarly, the minimum tests for a 4-input or gate implemented in short circuit logic (e.g., A or else B

or else C or else D) are given in Table 33. Keep in mind that using the minimum tests in Tables 30 and

31 is valid only if the compiler works correctly, even when optimizing.

Table 33. Minimum Tests for a Four-input or Gate with Short Circuit Logic

TestCaseNumberI1 12 13 I" 15
Input A F T F F F

Input B F X T F F

Input C F X X T F

Input D F X X X T

Output Z F T T T T

3.7 MC/DC with Bit-wise Operations

Some real time embedded applications require bit-wise operations to support hardware interfaces,

memory and throughput constraints, testability issues, or contiguous data transfer constraints. In such

cases, Boolean expressions may be represented by individual bits within a word (and some bits in the

word may not be used at all). For MC/DC for these cases, bit-wise operations require testing of each

individual bit that represents a condition. Testing the code gets more interesting as more bits are packed

into a word to represent multiple conditions within a single word. In the case of a word where each of the

16 bits represent separate conditions, all 16 bits are treated as separate conditions.

3. 7.1 Examples with Bit-Wise Operations

Example 8. Consider the bit-wise and of packed 16-bit words x and y with an assignment to z. The

source code may be expressed in the C language where & represents a bit-wise and operator as:

z=x&y;

The test set in Table 34 provides MC/DC of the source code/fz is examined as an integer value (not as a

Boolean).

Test Case Number

Input x

Input y
Observed z

Table 34. Test Set 1 for Example 8

1 2 3

2#1111111111111111# 2#0000000000000000# 2#1111111111111111#

2#0000000000000000# 2#1111111111111111# 2#1111111111111111#

2#0000000000000000# 2#0000000000000000# 2#1111111111111111#

45

The test set in Table 35 also provides MC/DC for the source code/fz is examined as an integer value (not
as a Boolean).

Table 35. Test Set 2 for Example 8

Test Case Number 1 2

Inputx 2#1111000011110000# 2#0000111100001111#

Inputy 2#0000111100001111# 2#1111111111110000#
Observed z 2#0000000000000000# 2#0000111100000000#

3

2#1111111111111111#
2#1111000011111111#
2#1111000011111111#

Both test sets show that each individual bit location is tested with the TF, FT, and TT combinations

required for an and gate.

Example 9. As the complexity of a source code line increases, so does the effort required to show

MC/DC. For example, consider a design where the first two bits of a variable 'status' are used to

represent Boolean conditions. Here, status_bit0 represents WeightOn Wheels, and status bitl

represents Engine_Off. A Boolean condition, On_Ground, is determined when either

Weight_On_Wheels or Engine_Off is true as shown by the following test (in the C language):

On_Ground = (status & (3)) != 0;

Due to the combination of a bit-wise and involving a constant along with a comparison in a single

statement, the output of the bit-wise and is not observable as an integer. This forces us to change status

one bit at a time to observe that the output changes state as a result of only that bit. Thus the test cases

required for example 9 are given in Table 36. Note that there is an advantage to setting the 'X' values in

Table 36 to one because that will also detect a coding error where the mask inadvertently picks up data in

bits 2 through 15.

Table 36. Test Set for Example 9

Test Case Number 1 2 3

Status #2XXX_00# #2_01# 2#_XXXX10#

O n_G ro u nd False True True

Note that the observability of the output in example 8 allows testing of the two-input bit-wise and gate

with three test cases and that example 9 requires n+l test cases where n is the number of bits being

evaluated in the comparison.

Example 10. It is often necessary to strip certain bits out of data before the data can be used.

Consider the case where bits 12 to 15 of a word (input word) contain status information regarding the

data contained in bits 0 to 11. Before the data can be used, the status information must be removed. One

method for removing the status information is to define a constant for a mask and then bit-wise and the

mask with the word. For example,

output word = input word & 0FFF;

Testing the requirement to mask out the upper four bits of input word requires showing that each of

the upper four bits of output word are set to zero and that the lower 12 bits remain as they are in

46

input word. Becausethemaskis afixedvaluethatcannotbechanged,onlytwo of thethreetestcases
definedfor anand gate are possible. Tests that show that the four upper bits of output word are always

set to zero for inputs of zero or one in the upper four bits of input word are reasonable.

3. 7.2 Alternate Treatments of Bit-wise Operations

Not everyone treats bit-wise operations in the way described in the previous section. At least three

different assertions supporting akernate treatments have been made. We will address each of these

briefly.

Some people assert that using bit-wise operations at all is poor programming practice. However, as

mentioned previously, some embedded applications require bit-wise operations.

Some people assert that bit-wise operations are merely arithmetic operations and thus do not need to

be considered for MC/DC. Following the logical implication of this assertion to its natural conclusion

would allow coding standards to be developed requiring bit-wise representations of all Booleans. This

effective elimination of the need to achieve MC/DC violates the intent of the MC/DC objective.

Some people assert that far more test cases than shown in the above examples are needed to

demonstrate independence. This assertion is based on the belief that independent effect of the individual

bits within a word with respect to the other bits within the word must be shown. However, what must be

shown is independent effect of the conditions for each bit-wise operation with respect to each bit location.

That is, independence does not apply within a single word, but between relevant bits of two separate
words.

3.8 Analysis Resolution

Structural coverage analysis using the MC/DC approach in this tutorial can identify errors or

shortcomings in two ways. First, the analysis may show that the code structure was not exercised

sufficiently by the requirements-based tests to meet the MC/DC criteria; as shown in example 3.

According to section 6.4.4.3 of DO-178B, the unexecuted code may result from shortcomings in

requirements-based test cases or procedures, inadequacies in software requirements, dead code, or

deactivated code. Section 6.4.4.3 provides guidance for each of these. The MC/DC approach may also

identify errors in the source code, as shown in example 11.

Example 11. Suppose you have a requirement to evaluate the expression A and (B xor C), and the

requirements-based test cases, shown in Table 37, have been accepted as adequate.

Table 37. Requirements-based Test Cases for Example 11

Test Case Number 1 2 3 4

InputA F T T T

InputB F F T T

InputC T F F T

Output Z F F T F

47

Consider the source code:

Z:= B and (B xor C);

In this case, the coder has incorrectly coded a B for the A.

Step 1: Show the source code schematically (see Figure 36).

DB I

I z(]
Figure 36. Example 11, step 1--schematic representation of source code.

Step 2: Map test cases to the source code picture (see Figure 37).

B

Figure 37. Example 11, step 2--schematic representation with test cases.

Step 3: Eliminate masked tests (see Figure 38).

B

Figure 38. Example 11, step 3---eliminating masked test cases.

Step 4: Determine MC/DC. As shown in Table 38, there are not sufficient tests to meet the minimum

tests required for the xor gate. In this example, the requirements-based test cases do not sufficiently
exercise the code because there is an error in the code. This error should be identified when the

verification engineer examines the requirements to create the missing test case. When the structural

coverage analysis identifies incorrect code, the code should be corrected and test procedures executed in

accord with the program's procedures for code changes. Note that if the source code did not have an
error, then the test cases in Table 37 would provide MC/DC.

48

Table38. Comparison oft3uilding Blocks with Valid Tests for Example 1

Gate Valid Test Inputs Missing Test Cases

xor TF Case 3 either FF or FT

TT Case 4

and TT Case 3 None

FT Case 1
TF Case 4

Step 5: Confirm output. Note that the output computed in step 2 matches the expected output. That is,

running the test cases and checking expected results is not sufficient in this example to catch the error.

Note that step 5 may identify an error if the outcome computed from step 2 differs from the expected

outcome in the test cases. In this instance, the error may be in the requirements or the source code, or the

error may be in the schematic representation. If the error is in the software requirements, the

requirements should be corrected and additional test cases developed and test procedures executed, as
discussed in section 6.4.4.3b in DO-178B. If the error is in the source code, the code should be corrected

and test procedures executed in accord with the program's procedures for code changes.

4 MC/DC Admonitions

"We learn wisdom from failure much more than from success." -Samuel Smiles (ref 18)

Knowing how to assess requirements-based test sets for MC/DC is necessary, but not sufficient, for

complying with the MC/DC objective. Making mistakes in areas other than test set assessment is still a

real possibility. This chapter discusses some of the common mistakes that can be made when trying to

comply with the MC/DC objective. These problems fall into two broad categories: automation and

process.

4.1 Automation Problems

Using a structural coverage analysis tool is particularly appealing for replacing the manual tedium of

MC/DC analysis. Using tools to perform tasks that are repetitive, complex, and time consuming can help

eliminate the possibility of errors resulting from mental fatigue and release humans for tasks that cannot

be automated, such as technical reviewing. While the potential benefit from using tools to automate

structural coverage analysis is obvious, the potential harm from using tools without properly confirming

operation of the tool may not be.

"Automation is a great idea. To make it a good investment, as well, the secret is to think

about testing first and automation second." (ref 19)

A tool should never be used to replace knowledge about structural coverage analysis, in general, or

about MC/DC, in particular. Whenever the decision is made to automate coverage analysis, candidate

tools should be carefully assessed to determine the functionality and limitations of each. Appropriate

verification procedures should be implemented to account for all tool limitations. The approach given in

chapter 3 can be used to help evaluate whether a tool performs properly.

49

To help prevent problems related to automation of coverage analysis, the following sections give a

general overview of how structural coverage analysis tools work and some important factors to consider

in selecting and qualifying a structural coverage tool. Please note that the factors outlined in this section

do not cover all the factors that should be considered in using automated tools for structural coverage

analysis. Also, specific tool and tool vendors are not discussed.

4.1.1 How Coverage Analysis Tools Work

"[I]t's dangerous to automate something that we don't understand" (ref 19)

Structural coverage analysis tools typically provide increased visibility into testing by either

instrumenting code, or providing other intervention techniques to gain visibility. In general, code is

instrumented by adding a series of probes (hardware or software), flags, or other monitoring mechanisms

to the original source code or object code. This enables the analysis tool to determine exactly what parts

of the code are exercised. Once the code is instrumented, test cases are executed and the coverage

analysis tool is expected to track which parts of the code are exercised by the test cases and, where

complex analysis is required, how they are exercised. If pass/fail criteria for structural coverage are

specified, the tool should analyze the code against these criteria. If pass/fail criteria are not specified, the

tool should report the level of structural coverage the test cases achieve.

Because instrumentation changes the code, demonstrating that the instrumentation does not conceal or

introduce an error is essential. This is usually achieved by running the same test cases on both the

original source code and the instrumented code and comparing results. This implies that sufficient

visibility exists in the uninstrumented code, as well as the device being tested and the test equipment, to

observe the same results as in the instrumented version. Other methods of demonstrating that the

instrumentation did not affect the expected results are also possible. Keep in mind that the coverage tool

confirms that the instrumented code meets the MC/DC criteria. The assumption is that the

uninstrumented code does, too. Whether this is the case depends on the instrumentation method and

compiler combination used.

Different coverage analysis tools use different instrumentation schemes. Knowing which scheme is

used by a particular tool is important.

4.1.2 Factors to Consider in Selecting or Qualifying a Tool

The instrumentation scheme is not the only thing that must be understood for tool selection and

qualification. The following factors are also important:

• types of monitored statements

• where statements are monitored (source versus object code)

• maximum number of conditions and decisions that can be monitored

• algorithms used for determining independent effect

• handling of relational operators

• instrumentation effects

For each of these, several key questions, along with the rationale for those questions, are listed below.

50

4.1.2.1Types of Monitored Statements

Does the tool monitor all of the coverage points?

Can the tool properly handle coverage points for all of the coverage requirements a

single statement generates?

To demonstrate MC/DC, a structural coverage analysis tool should monitor statements, entry and exit

points, decision and branching statements, and Boolean conditions. Some tools do not support all of the
coverage points required for MC/DC. For example, not all structural coverage tools support coverage of

entry and exit points. Such a tool can support part of the structural coverage analysis if other means are

used to cover entry and exit points. Programming language can also impact the type of statements that

are monitored by the tool. For example, certain programming languages 17 do not have a Boolean or

logical type. For these languages, the tool may have to infer which expressions are Boolean and which

are not by the use of Boolean operators. In these cases, the coverage analysis tool may not be able to
monitor all Boolean expressions.

A structural coverage analysis tool should also be able to monitor a statement for multiple coverage

points. Consider the following return statement:

return (A and B) or C;

This statement should be monitored for the following coverage points:

• Statement-must be invoked at least once

• Exit Point-must be invoked at least once

• Decision-must take all possible outcomes (false, true) at least once

• Condition-each condition (A, B, C) must take all possible outcomes (false, true) at least once, and

each condition (A, B, C) must demonstrate its independent effect

A different return statement (for example, return (x + y) / z;) requires monitoring for different coverage

points.

4.1.2.2 Source versus Object Monitoring

Does analysis show that coverage at the object code level is equivalent to coverage at the source
code level?

Some structural coverage analysis tools monitor coverage at the source code level; others monitor at

the object code level. Achieving MC/DC at the object code level is not necessarily equivalent to

achieving MC/DC at the source code level.

As discussed in section 2.5.1, MC/DC may be demonstrated at the object code level "as long as

analysis can be provided which demonstrates that the coverage analysis conducted at the object code will

be equivalent to the same coverage analysis at the source code level" (ref. 9, FAQ #42). Consequently,

using a tool that monitors coverage at the object code level requires additional analysis to confirm the

equivalence between coverage at the object code level for the tool and coverage at the source code level.

17 C is a notorious example of such a language.

51

Thisanalysisis not typically trivial and shouldbe reviewedby certificationauthoritiesearlyin the
project.

4.1.2.3 Maximum number of conditions and decisions that can be monitored

Does the tool have limits on the number of conditions monitored in a given Boolean

expression ?

Does the tool have limits on the total number of conditions, decisions, or statements that
can be monitored?

Some tools limit the number of conditions that can be monitored in a Boolean expression, and some

also limit the total number of conditions, decisions, or statements that can be monitored. For a single

decision, the monitoring scheme may depend on the number of conditions in the decision. For example, a

tool may use one scheme for decisions of eight or less conditions, another for decisions of nine through

sixteen conditions, yet another for seventeen through thirty-two conditions, and may not handle decisions
with more than thirty-two conditions. In some cases, large expressions may be completely ignored, or the

tool may monitor a portion of the expression. Limits on monitored coverage points should be clearly

identified and understood. In cases where these limits affect the coverage analysis, mitigation strategies

and procedures should be defined and documented. For example, if the total number of elements to be

monitored exceeds the tool's limit, one approach would be to monitor different subsets of the system, run
the tests once for each monitored subset, and combine the multiple analyses into one analysis for the

system. If an expression is too big for the tool, then manual analysis will likely be needed.

4.1.2.4 Algorithms Used for Determining Independent Effect

What is the basis for determining independent effect?

Different structural coverage analysis tools use different algorithms to determine independent effect of

a condition. This tutorial covers one method: the MC/DC approach given in chapter 3. Other approaches

use expression trees, Boolean difference functions, KV-maps, or function trees. There may be other
akernatives in addition to these.

4.1.2.5 Handling Relational Operators

Does the tool properly monitor conditions for independent effect in the presence of

relational operators?

When relational operators are used in a Boolean expression (for example, (x<y) and (x>z)), the

independent effect of the conditions in the expression must be demonstrated. Because relational operators

are not Boolean operators, the tool should be examined to make sure that it properly monitors conditions

in the presence of relational operators.

4.1.2.6 Instrumentation Effects

Does the instrumentation affect the structural coverage analysis?

The effect of probes used for structural coverage analysis fall into the following categories and are
discussed below:

52

• Increased resources, memory and throughput, necessary to support the probes

• Compiler operation due to the presence of software probes

• Factors due to different environments, compiler and/or target, between uninstmmented and
instrumented code

4.1.2.6.1 Impact on Resources

What are the effects of instrumentation on resources, memory, and throughput?

Do hardware monitors need to be disabled to allow the instrumented code to execute?

Do real-time computations have different outcomes based on timing differences?

Do the additional memory requirements of the instrumented software cause different memory

page boundaries to be crossed?

Ideally, instrumentation would only add the overhead necessary to support the probes themselves,

leaving all other aspects of the airborne software and system unchanged. For hardware probes, the ideal

can be realized to a very high degree. It can be met fully if the hardware running the airborne software

has been designed to provide run-time execution data directly from the hardware at hardware speeds. The

major question about hardware probes is: are they catching what is actually going on within the

software? Unfortunately, hardware probes generally monitor instruction fetches and can be fooled by
modem hardware architectures with cache memories. Just because an instruction is fetched into cache

does not mean that it is actually executed. Because an instruction is executed, does not mean it is

executed properly. Just as with software probes, hardware probes need to be analyzed to determine what

information they are actually producing, under what circumstances, with what assumptions.

Software probes add overhead for memory and CPU cycles. Consequently, the instrumented airborne
software may not perform properly in memory or throughput critical components. Throughput critical

components may not be able to handle the extra CPU cycles necessary to execute the probes. Memory

critical components may not be able to handle the extra memory necessary for the probe instructions.

Other resources may be necessary to support the probes besides memory and throughput. For
example, a communication mechanism may be needed that allows for the capture or transfer of the

execution data provided by the probes. These additional resources need to be investigated to determine

their effects on the development, verification, and structural coverage analysis processes.

4.1.2.6.2 Compiler Operation

Is the behavior of the compiler affected by software probes?

The behavior of the compiler and the resulting executable may be changed by software probes inserted

into the source code. Ideally, the only change in the executable would be the support of the probes, and

all other functional aspects of the airborne software would still perform correctly (other than throughput

and memory usage). However, the presence of the probes may cause the compiler to generate code that

will not perform properly.

For example, an expression may require the calling of two functions, say A and B, where B is

dependent on a side-effect of A. The uninstmmented airborne software executes properly because the

compiler always generates code that calls A before B. In the instrumented code, the compiler now

generates code that calls B before A in the expression. Now the instrumented code no longer performs

53

correctlyin thesystemcontext,andthisincorrectbehaviorhasnothingto dowiththememoryandtiming
effectsoftheprobes.

4.1.2.6.3EnvironmentFactors

What elements of the software environment are subject to change due to requirements for the

structural coverage analysis tool?

Using an automated structural coverage analysis tool may require different tools or tool settings for the
instrumented software from those required for the airborne software. The differences may include:

• Compiler-either a different compiler, or different compiler switches

• Linker-either a different linker, or a different linker switches

• Target-a different target environment (such as, an emulator or simulator)

Each of these can affect the fidelity of the execution results between uninstmmented and instrumented

source code. The degree of fidelity should be assessed to determine the proper role of the structural

coverage analysis tool. Multiple tools may be required (just as in normal verification testing, multiple test

tools may be required).

4.2 Process Problems

Even when automated tools are not used, or when the potential pitfalls of such tools are avoided,

problems in the development and verification processes can occur. Some of the common ones related to

compliance with the MC/DC objective are discussed below.

4.2.1 Inadequate Planning for MC/DC

Planning in advance for both the technical and administrative aspects of verification is essential for

project success; however, planning for MC/DC is often inadequate. The following planning problems are

frequently seen:

• planning for the wrong software level

• inadequate detail in the Software Verification Plan (and other plans) to allow team members to
follow

• underestimating resources (including time, cost, and personnel) needed to meet the MC/DC
objective

• inadequate planning for the change process

• inadequate planning for use and qualification of structural coverage analysis tools

• poor compliance with plans by the development and verification teams

• inadequate updates for plans

• inadequate planning for design and code standards; that is, underestimating the impact of
complex designs and tightly coupled conditions and decisions on achieving MC/DC

54

4.2.2 Misunderstanding the MC/DC Objective

As discussed in chapter 2, the rationale for the MC/DC objective is often misunderstood--especially

the connection to requirements-based testing and unintended function. On one hand, achieving coverage

helps confirm that the code does not include unintended function; on the other hand, achieving coverage

does not confirm that all of the requirements have been tested. Hence, some applicants do more testing

than required; while others do less. The following are some examples of misunderstanding the MC/DC

objective:

• not understanding the intent of structural coverage

• trying to meet the MC/DC objective apart from requirements-based testing; that is, using the

source code to derive inputs for all test cases

• trying to achieve MC/DC before having a stable implementation

• using MC/DC as a testing method; that is, expecting MC/DC to find errors instead of assuring

that requirements-based testing is adequate

• having erroneous expectations about the capability of structural coverage analysis tools (see

section 4.1)

• not knowing when MC/DC has been met

• not recognizing the potential impact of obtaining MC/DC on coding standards and compiler

settings and options

• relying on MC/DC to find problems that should have been addressed earlier in the software life

cycle (such as complex or erroneous logic)

• not knowing whether to meet the MC/DC objective at the source code or object code level. This

is often caused by misunderstanding source to object code traceability.

4.2.3 Inefficient Testing Strategies

Another problem is failing to take advantage of the coverage hierarchy, as shown in Table 1.

Statement coverage and decision coverage are often monitored independently of MC/DC. While DO-

178B does not prohibit this approach; it may not be the most efficient use of resources. Treating coverage

criteria separately may result in the following inefficiencies:

• complicated software change tracking, because the software could change before each type of

coverage analysis has been completed

• redundant activities

• conflicting resuks if different tools are used for each analysis

4.2.4 Poor Management of Verification Resources

Verification resources (time, funding, and personnel) are rarely abundant. Consequently,

mismanagement of those resources can lead to a number of problems, including the following:

• test cases being developed by inexperienced or unqualified engineers

• inadequate training of the verification team, especially training for new verification tools

• inadequate documentation of test cases and procedures in order to support future changes and

regression analysis and testing

55

• extensive and detailed work being performed late in the project life cycle within a compressed
schedule

• testing critical functions late in the project life cycle

• inadequate change control process, including inadequate regression testing

• reliance on structural coverage analysis tools to compensate for inadequate personnel or

experience

5 Assessment Process

Thus far, this tutorial has focused exclusively on MC/DC. This chapter does not. Instead, this chapter

provides hints to certification authorities about what to look for in the assessment process. Although the

chapter is intended primarily for authorities responsible for review and approval, software developers may

find this section useful to better understand the evidence sought in the assessment process or to perform

internal reviews in preparation for scrutiny by certification authorities or designated engineering
representatives (DERs) TM.

General steps in the review of the verification process are shown in Figure 40. For each assessment

step, questions are given to guide the evaluation process with respect to MC/DC. Because the review of

MC/DC data typically takes place within the context of the overall verification review, most of the

questions apply regardless of the structural coverage level. However, the focus is on assessment of the

MC/DC approach and evidence. The questions are not intended to be used strictly as a checklist and are

not inclusive of all possible situations that need to be reviewed.

J 1. Review verification plans J

3. Review data related to Jtool qualification

Y

J 4. Review test cases and I_
procedures

I
5. Review checklists for test J

Icases, procedures, and

results

7
!

6. Determine effectiveness of J

Itesting

No

Figure 40. Steps in the review of an applicant's testing program.

DERs are used by the FAA to make findings of compliance and conduct oversight on behalf of the FAA.
Transport Canada has a similar delegation system. The JAA does not have a designee system.

56

The stepsin Figure40 complementthe guidancein the FAA's JobAid "ConductingSoftware
ReviewsPrior to Certification"(ref. 20), providingspecificguidancefor reviewingdatarelevantto
structuralcoverage.TheJobAidpartitionstheassessmentprocessintofourstagesof involvement:

• Stageof Involvement#1--ThePlanningReview
• Stageof Involvement#2--TheDevelopmentReview
• Stageof Involvement#3--TheVerification/TestReview
• Stageof Involvement#4--TheFinalReview

Typically,Steps1-2in Figure40 wouldoccurduringStageof Involvement#1. Step3 maybe
evaluatedinitially in Stageof Involvement#1andcompletedduringStageof Involvement#3. Steps4-6
wouldoccurduringStageof Involvement#3.

Step 1--Review Verification Plans

Early in the review process, the Software Verification Plan should be reviewed to ensure that activities

planned for achieving MC/DC, if followed, will satisfy the DO-178B obj ective. Other plans including the

Plan for Software Aspects of Certification, Software Configuration Management Plan, Software Quality

Assurance Plan, and tool plans may contain additional information related to MC/DC.

The following questions might be considered when reviewing the plans:

• Are the plans sufficiently clear and detailed to allow the development and verification engineers to

follow them consistently?

• Do the plans (or supporting documents) specify who is allowed to perform verification tasks?

• Do the plans specify how each requirement will be tested (e.g., module test, software integration,

etc.)?

• Do the plans address all aspects of MC/DC analysis? For example, are the following addressed:

tools and tool qualification, if tools are used for MC/DC

the relationship between requirements-based testing and measuring MC/DC

a process for determining when additional requirements-based tests should be added, if
coverage is not achieved as expected

a procedure for regression analysis and testing, if necessary

the transition criteria to start and end MC/DC

• Do the plans address the software change process for the airborne software and tools (if tools are

used)?

• Do the plans address regression analysis and testing with respect to the unique requirements for
MC/DC?

• Do the plans address possible reuse of verification tools? For example, is credit being claimed from

previous tool qualifications or will the tool qualification data be used in a future program?

• Is there evidence that the plans are being followed (such as, progress against timeframes, staffing,

verification records, and SQA records)?

57

Step 2--Determine need for tool qualification

Applicants may use tools to perform some verification activities, including MC/DC analysis. Tool

usage (that is, which tools are used for what purposes) should be clearly documented during the

applicant's planning process along with additional verification processes to cover for limitations of the

tools (for example, additional questions in checklists).

Tool qualification should be addressed in the applicant's planning documents when structural

coverage tools are used. Tool qualification is required if the tool reduces, eliminates, or automates an

objective of DO-178B and if the output of the tool is not verified as required by section 6 of DO-178B.

FAA Notice 8110.91, Guidelines for the Qualification of Software Tools Using RTCA/DO-178B (ref. 21),

provides guidelines to determine if a tool should be qualified.

The following questions might be considered when determining whether a tool needs to be qualified:

• Can the tool allow an existing error to remain undetected?

• Will there be little or no verification of the output of the tool?

• Will the tool be used to assist or replace a process that has a significant effect on the integrity of the

product being developed?

Step 3--Review data related to qualification of MC/DC tools

If tools are used for MC/DC analysis, the following questions should be considered when reviewing

the qualification data:

• Do the plans state which MC/DC tools are being qualified and the rationale for qualification?

(Note: this might be in the Plan for Software Aspects of Certification or a separate tool
qualification plan.)

• Are the specific tool requirements documented? DO-178B, section 12.2.3.2 lists the typical

information that should be included in the Tool Operational Requirements document.

• Does the Tool Operational Requirements document identify all of the tool's functions?

• Is the effect of various coding considerations (e.g. structures and naming conventions) addressed?

• Does the tool qualification data address whether the tool needs to instrument the code to perform

MC/DC analysis?

• If the tool needs to instrument the code, has the effect of the instrumentation on the code been
assessed?

• If the tool measures coverage at the object code level, is additional analysis available to support the

equivalence of coverage at the object and source code levels?

• Is the tool qualification process sufficient to discover errors in the tool and limitations of the tool's
functions?

• Does the tool qualification data address how tool deficiencies that are found while the tools are

being used in a certification project should be handled?

• Does the tool qualification data detail how changes to the tool will be evaluated and controlled?

• Are procedures for using each tool documented?

58

• Are limitationsof the tool that may affect assessmentof coverageclearlydocumentedand
addressed(e.g.,thelimitationsdiscussedinchapter4)?

• Is the tool configurationcontrolledand documentedin the plansand SoftwareLife Cycle
EnvironmentConfigurationIndex?

• Are theverificationengineersusingthetool configurationidentifiedin theplansandtheSoftware
Life CycleEnvironmentConfigurationIndex?

Step 4--Review test cases and procedures

From an assessment perspective, evidence is needed to determine whether the test cases and

procedures were developed according to the documented plans, whether the test cases cover all the

software requirements, and whether the test cases are sufficient to meet the MC/DC objective. The test

cases may be spread across multiple test procedures or multiple test levels (i.e., module tests, integration

tests, etc.). Regardless, the connection between the test cases and requirements should be identified

clearly in traceability matrices.

In most projects, the applicant reviews their requirements-based test cases to assure that all

requirements are adequately covered prior to review by a certification authority. If these requirements-

based tests are not adequate to achieve MC/DC, then additional requirements-based tests or analysis may
be needed.

The following questions may be used to evaluate the test cases and procedures:

• Do the test cases and procedures adhere to the relevant plans and standards? For example, have

coding standards, especially those relevant to limitations of structural coverage tools, been
followed?

• If plans or standards have not been followed, is there documented rationale for deviations from

stated plans and standards?

• Is the rationale for each test case clearly explained?

• Are the test cases and procedures appropriately commented to allow future updates?

• Have the test cases and procedures been subjected to appropriate change and configuration control?

• Is the separation between test cases clear? For example, are test start and stop identified? This
assists tracing the source of unexpected drops in coverage.

• Do the test cases and procedures specify required input data and expected output data?

• Were the inputs for each test case derived from the requirements (as opposed to being derived from

the source code)?

• Have the appropriate memory locations and variables been preset?

• Are the test cases and procedures sufficient to cover all the relevant requirements? That is, do the
traceability matrices provide clear association between test cases and requirements?

• Are the test cases and procedures sufficient to achieve MC/DC?

• Are sufficient tests to provide MC/DC identified for each logic construct?

• Are there sufficient robustness test cases and procedures?

59

• Are onlytestinputsthatareunmasked (that is, whose outcomes are directly observable) identified
or counted for credit for MC/DC?

• Are requirements where analysis is required in addition to (or in lieu of) requirements-based testing

clearly documented (e.g., requirements for hardware polling)?

• Are test cases and procedures correct?

Step 5--Review checklists for test cases, procedures, and results

For most level A projects, the applicant has checklists for reviewing test cases, procedures, and results.

During a review, these checklists should be assessed considering the following questions for MC/DC:

• Are the checklists sufficient to determine that the requirements-based test cases, procedures, and

results meet the MC/DC objective?

• Have the checklists been reviewed?

• Do the checklists specify:

who performed the review?

what data was reviewed (with revision)?
when it was reviewed?
what was found?

what corrective actions were taken, if necessary?

• Do the checklists require evaluation of tolerances specified in the requirements?

• Do the checklists ensure that results of the test cases can be visually verified? (e.g., can the
verification engineer visually determine when requirements-based tests have passed or failed?)

• Will the checklists reveal whether the results of the test cases that are counted for credit towards

MC/DC are observable?

• Will the checklists address limitations of the structural coverage analysis tool as documented in the
tool qualification?

• Will the checklists reveal test cases that violate project standards?

• Will the checklists reveal test cases that are not expected to achieve 100% structural coverage (e.g.,

hardware polling)?

Step 6--Determine effectiveness of test program

In general, three tasks are associated with determining the effectiveness of the overall test program

(see Figure 41). The final task deals with assessing whether the appropriate level of structural coverage is
achieved.

rerun tests

explanations _ requirements-
AIIpass_ @

coverage

Figure 41. Tasks for assessing test program effectiveness.

60

Task 6.1--Assess results of requirements-based tests

Because MC/DC is a measure of the adequacy of requirements-based testing, the first logical step after

test execution is to determine whether all requirements-based tests pass. In addition to checking the final

pass/fail resuks, the test cases and resuks for some randomly selected requirements should be examined to

ensure that the results reflect the given inputs for those cases. Test resuks also should be checked

carefully with respect to any specified tolerances.

Questions to assess the requirements-based test results are listed below:

• Are the test result files clearly linked to the test procedures and code? (i.e., does configuration

control and traceability exist?)

• Are failed test cases obvious from the test results?

• Do the test results indicate whether each procedure passed or failed and the final pass/fail results?

• Do the test results adhere to the relevant plans, standards, and procedures?

• Have the test results been subjected to appropriate configuration control?

Task 6.2--Assess failure explanations and rework

Understanding the failed cases is equally as important as verifying those test cases that pass. Each

failed test case should have a suitable explanation for why it failed including references to all applicable

problem reports. In some cases, rework of some life cycle data will be required; in other cases, only an

explanation for the failed test cases is needed. If rework is required, the impact of changes should be

carefully evaluated and the changed items should be subjected to the appropriate change and
configuration control. According to section 7.2.4 of DO-178B, "[S]oftware changes should be traced to

their origin and the software life cycle processes repeated from that point at which the change affects their

outputs." Once all rework is complete, test cases should be rerun in compliance with plans for regression

testing. Note: there may be cases where failed requirements-based tests are acceptable; however, it is

typical for them to be fixed and rerun.

The following questions might be considered to assess failures and rework:

• Is there an acceptable rationale for deviations from expected results, standards, or plans?

• Are explanations for the failed test cases technically sound and accurate?

• Do explanations for failed test cases contain accurate references to relevant problem reports?

• Are explanations for code or test rework suitable to address the failure?

• Have test cases been re-executed in compliance with plans for regression testing?

• Have the test results from regression testing been documented appropriately?

Task 6.3--Assess coverage achievement

Some test sets will be expected to achieve 100% MC/DC; others may not. Test documentation such as

that described in chapter 3 should be examined to verify compliance. Where full coverage is not

expected, the supporting analysis should be well documented.

Unanticipated levels of coverage from test execution also should be explained. The explanation

should cover exactly what parts of the code have not been exercised and why. If all the requirements

61

havebeencoveredby testswithoutachievingMC/DC,deadcode,unintendedfunction,or incorrectly
documentedde-activatedcodemaybeindicated.Dead code should be removed, and unintended function

and de-activated code should be explained and addressed, as discussed in section 6.4.4.3 of DO-178B.

Source code errors may also be indicated if the requirements-based tests do not provide MC/DC, as

shown in example 11. The source code errors should be corrected and test procedures executed in accord

with the program's procedures for code changes. In all cases, supplemental test cases added to achieve

MC/DC should be consistent with the requirements.

The following questions may be considered when assessing coverage achievement:

• Has the applicant correctly applied the MC/DC criteria?

• If statement coverage and decision coverage are assumed in the implementation of MC/DC, have

they truly been achieved?

• Is 100% MC/DC achieved through requirements-based testing?

• If 100% MC/DC is not achieved through requirements-based testing, is there an explanation
detailing which parts of the code were not executed and why?

Have additional test cases been added?

• Are explanations for drops in coverage sufficiently detailed and acceptable?

• Are there problem reports associated with dead code?

• Has dead code been analyzed or removed?

6 Summary

The subject of MC/DC has been a source of consternation for many within the aviation software

community. This tutorial attempted to relieve anxiety and confusion by providing practical information

regarding the intent of the MC/DC objective in DO-178B, and an approach to assess whether the

objective has been met. In addition to presenting an analysis approach, the tutorial also reviewed

important factors to consider in selecting and qualifying a structural coverage tool and tips for appraising

an applicant's life cycle data relevant to MC/DC. Mastery of the topics presented in this tutorial will

enable a certification authority or verification analyst to effectively evaluate MC/DC claims on a level A

software project, and will aid in selection, qualification, and approval of structural coverage analysis
tools.

62

7 References

1. Advisoly Circular #20-115B. U. S. Department of Transportation, Federal Aviation Administration, issued

January 11, 1993.

2. RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certification. RTCA, Inc.,

Washington, D. C., December 1992.

, Hayhurst, Kelly J.; Dorsey, Cheryl A.; Knight, John C.; Leveson, Nancy G.; McCormick, G. Frank:

Streamlining Software Aspects of Certification: Report on the SSAC Survey. NASA/TM-1999-209519, August
1999.

4. Chilenski, John Joseph: An Investigation of Three Forms of the Modified Condition Decision Coverage (MCDC)

Criterion. FAA Tech Center Report DOT/FAA/AR-01/18, April 2001.

5. Wiener, Ruth: Digital Woes, Why We Should Not Depend on Software. Addison-Wesley Publishing Company,
1993.

6. RTCA/DO-254, Design Assurance Guidance for Airborne Electronic Hardware. RTCA, Inc., Washington, D. C.,

April 2000.

7. Beizer, Boris: Software Testing Techniques. Second ed., Van Nostrand Reinhold Company, Inc., 1983.

8. Herring, Michael Dale: Testing Safety Critical Software. M. S. Thesis, Florida Institute of Technology, May
1997.

9. RTCA/DO-248A, Second Annual Report for Clarification of DO-178B "Software Considerations in Airborne

Systems and Equipment Certification". RTCA, Inc., Washington, D. C., September 13, 2000.

10.Myers, Glenford J.: The Art of Software Testing. John Wiley & Sons, 1979.

11. Cornett, Steve: Code Coverage Analysis,

http://www.bullseye.com/webCoverage.html Accessed March 2001.

Bullseye Testing Technology,

12.DeWalt, Michael: MCDC, A blistering love/hate relationship. Proceedings of the Federal Aviation

Administration Software Standardization Seminar, Long Beach, CA, April 1999.

13. Chilenski, John Joseph; and Miller, Steven. P.: Applicability of modified condition/decision coverage to software

testing. Software Engineering Journal, Vol. 7, No. 5, September 1994, pp. 193-200.

14.Abramovici, Miron; Breuer, Melvin A.; and Friedman, Arthur D.: Digital Systems Testing and Testable Design.

Computer Science Press, 1990.

15.International Standard ANSI/ISO/IEC-8652:1995, Ada 95 Reference Manual. Intermetrics, Inc., January 1995.

16.Ellis, Margaret A; and Stroustrup, Bjarne: The Annotated C++ Reference Manual. Addison-Wesley Publishing

Company, 1990.

17. Kernighan, Brian W.; and Ritchie, Dennis M.: The C Programming Language. Second ed., Prentice Hall, 1988.

18.Bartlett, John; Kaplan, Justin, ed.: Bartlett's Familiar Quotations : A Collection of Passages, Phrases, and

Proverbs Traced to Their Sources in Ancient and Modern Literature. Little Brown & Company, 1992.

63

19.Bach, James: Testing Automation Snake Oil, http://www.satisfice.com/articles/test_automation_snake_oil.pdf
Accessed March 2001.

20.FAA Job Aid: Conducting Software Reviews Prior to Certification. Aircraft Certification Service, June 1998,

http://av-info.faa.gov/software/jobaid.htm. Accessed Janua1_¢ 2001.

21.Notice 8110.91. Guidelines for the Qualification of Software Tools using RTCA/DO-178B. U. S. Department of

Transportation, Federal Aviation Administration, Cancellation Date 1/15/02. (Note: 8110.83 was renumbered to

8110.91 in January 2001)

64

Appendix A

Solutions to Exercises

Solution 2.5a

(236 tests)*(1 sec/100 tests)*(1 minute/60 sec)*(lhour/60 min)*(1 day/24 hour)*(1 year/365 day) =

Approximately 21.79 years

Solution 2.5b

(236 tests)*(1 page/64 lines)*(1 inch/250 pages)*(1 yard/36 inch)*(1 mile/1759.65 yards) =

Approximately 67.8 miles

Solution 3.3a, OR/XOR Exercise

Step 1: Show the source code schematically.

E)A I

D B

or1

or2

Step 2: Map test cases to the source code picture.

ITTFFF

TFTTTF[_F_L_

or2

FTFFF_ FTFTTz_

FFFTT or1

65

Step 3: Eliminate masked tests.

IT T F#]K
T F#)_)__ FTFKK

or2

FTFFF

FTFTTz_

FFFTT or1

Step 4: Determine MC/DC. As in example 3, a test case is still needed where the and gate has A

false and not B true.

Gate Valid Test Inputs Missing Test Cases

and TF Case 1 FT

TT Case 2

not T Case 1 None

F Case 2

or1 FF Case 1 or 3 None

FT Case4or5

TF Case 2

or2 FF Case 1 or 3 None

TF Case 5

FT Case 4

Step 5: Confirm output. The outputs computed match those provided. Hence, test cases 1, 2, 4, and

5 plus (FFTT) provide MC/DC for example 3.

The requirements-based tests in this case will not detect that the or,? gate should have been an xor

gate.

66

Solution 3.3b, Ground Test Exercise

Step 1: Show the source code schematically.

D Maint_Rqst

D Maint-valid I

I

E>wow I

D Engine_l_On

D Engine_2_On J

D Start_GT

Step 2: Map test cases to the source code picture.

D Maint_Rqst

D Maint_Valid I

[2>vvovv I

D Engine_l_On] FFFTTF

]FFFTFF'D Engine_2_On

TFTTTT

TTFTTT

TTTTT I
TTTFF

FFTTFDo

D T F F F F F Start_GT

Step 3: Eliminate masked tests.

D Maint_Rqst

D Maint_Valid

D WOW

D Engine_l_On

D Engine_2_On

TFTTTT

TTFTTT

TTTTT I
TTTFF

TN_

D T F F F F F Start_GT

67

Step 4: Determine MC/DC. Note that the testing for the or-gate is incomplete.

Gate Valid Test Inputs Missing Test Cases

and TTTT Case 1

FTTT Case 2

TFTT Case 3

TTFT Case 6

TTTF Case 4 or 5

None

or FF Case 1 FT

TF Case 5

not T Case 4 or 5 None

F Case 1

Step 5: Confirm output. Outputs computed match those provided.

Solution 3.3c, Weight on Wheels Exercise

Step 1: Show the source code schematically.

D Squat_L I

D Squat_R I

D Airspeed

D Airspeed_Valid

andl

_and2

F

Step 2: Map test cases to the source code picture.

D Squat_L I T F T T T

D Squat_R I T T F F T

D Airspeed
35 35 45 35 45

D Airspeed_Valid

and1

TFFFT

D TTFFF
TTFTF

TTTFFF and2

TTFFT

68

Step 3: Eliminate masked tests.

D Squat_L]X_TTT

D Squat_R]XXF FT

D Airspeed
_35 45 _

D Airspeed_Valid

TFFFT

D andl]

F'_ _TFT;ff D TTFFF "_
and2

XTTF U

wow
TTFFT

Step 4: Determine MC/DC.

Gate Valid Test Inputs Missing Test Cases

and1 TT Case 5 FT

TF Case 3 or 4

and2 TT Case 2 None

FT Case 3

TF Case 4

or FF Case 3 or 4 None

TF Case 5

FT Case 2

Comparator T Case 2 None
F Case 3

Step 5: Confirm output. Outputs match those provided.

Solution 3.3d, Gain Exercise

Step 1: Show the source code schematically.

Air_Data_Validand In_Air

I I
Gain_l := 100.0; Gain_l := TAS * 0.34;

Gain_2 := 0.5; Gain_2 := Gnd_Spd * 0.0012;

Gain_3 := 0.0; Gain_3 := VS * 0.056;

I I

69

Step 2: Map test case to the source code picture.

I Air_Data_Valid T F Tand In_Air TT F

I I
Gain_l := 100.0; Gain_l := TAS * 0.34;

Gain_2 := 0.5; Gain_2 := Gnd_Spd * 0.0012;

Gain_3 := 0.0; Gain_3 := VS * 0.056;

I I

Step 3: Eliminate masked tests. There are no masked tests to remove for this example

Step 4: Determine MC/DC. For this example, testing the design with three test cases is sufficient to

show MC/DC. Note that while the first two test conditions exercise both branches in the software,

they are not sufficient to show MC/DC. The third test case must be used to provide the MC/DC

assurance for the and gate. Note also that for complex decisions it may be advantageous to show the

decision logic using the gate level schematic representation.

Step 5: Confirm output. Outputs match expected results.

Solution 3.5, Reset-Overides-Set Latch Exercise

Step 1: Show the source code schematically.

D Reset _O D Output _

D set

Step 2: Map test cases to the source code picture. Note that the lower input to the or gate is delayed

by one because it uses the past value of Output to compute the current value of Output.

D Reset TFFFT _o FTTTF

D FFTTF Output_

D Set FFTFT _ ?FTTT _

?FFTT

70

Step 3: Eliminate masked tests.

D Reset _I_FFT _O FTTTF
D FFTTF Output_

DSet _FTF_ _ ?FTTT _

_F FT-IX

Step 4: Determine MC/DC. The test set meets the MC/DC objectives.

Gate Valid Test Inputs Missing Test Cases

not F Case 3 or4 None

T Case 5

and TT Case 3 or 4 None

TF Case 2

FT Case 5

or TF Case 3 None

FT Case 4

FF Case 2

Step 5: Confirm output. Outputs computed match those provided.

This example is interesting because it shows the impact of using an output in the computation of

itself. In this case, the value obtained in the last computation of the output feeds back into the
computation. This results in the observation that the initial input to the or gate is indeterminate based

on the test data provided. Test case 1 thus does not contribute to the MC/DC testing, but is required

to provide a baseline state for the subsequent tests.

71

Appendix B

Certification Authorities Software Team Position Paper on Masking MC/DC

On February 6-7, 2001, the Certification Authorities Software Team (CAST) was given a presentation

titled "Rationale for Accepting Masking MC/DC in Certification Projects", based on a white paper of the

same title submitted to CAST. The CAST members in attendance concurred that masking MC/DC should

be considered an acceptable method for meeting objective 5 of Table A-7 in DO-178B. However, the

CAST requested revisions to the white paper. The revised version of the white paper, resulting from the

CAST comments, appears below. This version of the paper has been re-submitted to CAST for review

and approval at their next meeting. Lest anyone think otherwise, please recognize that this white

paper does not constitute regulatory software policy or guidance.

Title: Rationale for Accepting Masking MC/DC in Certification Projects

Background

Structural coverage analysis in DO-178B (ref. B1) asks the question: Do the requirements-based test

cases adequately exercise the structure of the source code? Two factors in exercising any structural

element of the source code are: (a) the ability to test that element by setting the values of the element's

inputs (this is the concept of controllability), and (b) the ability to propagate the output of that element to

some observable point (this is the concept of observability). Controllability and observability are

fundamental concepts used in testing logic circuits, and also apply well to testing software.

Different coverage measures found in Table A-7 of DO-178B address different structural elements of
the code.

• For statement coverage, the structural elements to be exercised are the statements, and the adequacy

requirement is that each statement must be executed at least once.

• For decision coverage, the structural elements to be exercised are the decisions, and the adequacy

requirement is that each decision must take on each possible value at least once.

• For modified condition/decision coverage (MC/DC), the structural elements to be exercised are the

logical conditions within a decision, and the adequacy requirement is that each logical condition

must be shown to independently affect the decision's outcome.

Showing that each logical condition within a decision independently affects the decision's outcome

requires a minimum test set for each logical operator as given in the original paper on MC/DC by

Chilenski and Miller (ref. B2) and repeated here as follows:

• For a 2-input and operator, there is one test set: (TT, TF, FT).*

• For a 2-input or operator, there is one test set: (FF, TF, FT).

• For a 2-input xor operator, there are 4 possible test sets: (TT, TF, FT); (TF, FT, FF); (FT, FF, TT),

and (FF, TT, TF).

These minimum test sets establish the inputs needed at a logical operator to show independent effect

* For convenience, the inputs to a test case are written as T for true and F for false. The notation TT, for example,
represents a 2-input test case where both inputs are true.

72

of eachinputtothatoperator. Note that the minimum test sets are not exhaustive test sets and, hence, will

not detect all possible errors. For example, a test set that contains the minimum tests for an or operator

will not detect an error if an xor is incorrectly coded in place of an or, and vice versa. However, the

minimum test cases are sufficient to show independent effect required to meet the MC/DC criteria.

Two different approaches to confirming that the minimum tests are achieved are the unique-cause

approach and the masking approach.

For unique-cause MC/DC, a condition is shown to independently affect a decision's outcome by

varying just that condition while holding fixed all other possible conditions.

For masking MC/DC, a condition is shown to independently affect a decision's outcome by applying

principles of Boolean logic to assure that no other condition influences the outcome (even though more

than one condition in the decision may change value).

Purpose

The purpose of this white paper is to establish that masking MC/DC:

• meets the definition of independent effect by guaranteeing the same minimum test cases at each

logical operator as unique cause, and

• is acceptable for meeting the MC/DC objective of DO-178B (objective 5 in Table A-7).

Showing Independent Effect

A condition independently affects a decision's outcome if that condition alone can determine the value

of the decision's outcome. Two test cases that show the independent effect of a condition within a

decision are referred to as an independence pair.

Unique-Cause MC/DC

Unique cause is the original approach to showing the independent effect of a condition mentioned in

the description of MC/DC in the DO-178B Glossary. In the unique-cause approach, only the values of

the condition of interest and the decision's outcome can change between the two test cases in an

independence pair-everything else must remain the same. Holding the value of every other condition

fixed ensures that the one condition that changed value is the only condition that influences the value of

the decision's outcome. The logic of the decision does not need to be examined to determine that the

condition of interest is solely responsible for the change in the value of the decision's outcome.

A truth table is often used to illustrate the unique-cause approach. The left-hand columns of the truth

table list all possible input combinations for the decision, while the shaded columns on the fight indicate

the possible independence pairs for each condition. The truth table for the decision Z = (A or B) and (C

or D), where A, B, C, D, and Z are Boolean conditions, is shown in Table 1.

With unique cause, each test case can pair with at most one other test case to show independent effect

of a condition. In Table 1, for example, test case 2 can only be paired with test case 10 to show the

independent effect of A. The following are the possible independence pairs for each condition as shown

in Table 1: test pairs (2, 10), (3, 11), and (4, 12) show the independent effect of A; (2, 6), (3, 7), (4, 8)

show the independent effect of B; (5, 7), (9, 11), and (13, 15) show the independent effect of C; and (5,

6), (9, 10), and (13, 14) show the independent effect of D.

73

Table1.Unique-CauseApproachto Independence Pairs for Z = (A or B)

TestCase# I A I B I C I D I I Z I _iiiiiiiiii_iiiiiiiiii_iiiiiiiiiii_iiiiiiiiiii_iiiiiiiiiii_iiiiiiiiiii_iiiiiiiiiiipiiiiiiiii

1 F F F F F iii

2 F F F T F iiiiiiiiii_iiiiiiiii_iiiiiiiiiii6iiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiii
3 F F T F F iiiiiiiiiiiiiiiiiiiii_iiiiiiiii_iiiiiiiiiii]_iiiiiiiiiiiiiiiiiiiiiiiiiiii[iiiiiiiiiiiiiiiiiiiiiiiiii

4 F F m m F iiiiiiiii_iiiiiiiii_iiiiiiiiiii_iiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiii
5 F T F F F iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii:_:iiiiiiiiii_iiiiiiiiiii.iiiiiiiiiii6iiiiiiiiii

6 F T F T T iiiiiiiiiiiiiiiiiiiiiiiiiii'_iiiiiiiii2iiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiii_'iiiiiiiiiii_iiiiiiiiii

7 F T T F T iiiiiiiiiiiiiiiiiiiiiiiiiii_:_iiiiiiiiii_iiiiiiiiiii:_:iiiiiiiiiii_iiiiiiiiiii:_iiiiiiiiiiiiiiiiiiiiiiiiiii
::8 F T T T T _._

9 T F F F F iiiiiiiiiiiiiiiiiiiiiiiiiii[iiiiiiiiiiiiiiiiiiiiiiiiiii:':iiiiiiii_ii_iiiiiiiii'iiiiiiiii_ii_iiiiiii

_o T p P T T iiiiiiiii_iiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiii_iiiiiiiiii
_ T F T F T iiiiiiiii_iiiiiiiiiiii:_iiiiiiiiiiiiiiiiiiiiiiiiii_:_iiiiiiiiii_iiiiiiiiiii_:iiiiiiiiiiiiiiiiiiiiiiiiiii
_2 T F T T T iiiiiiiii_iiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiii
13 T T F F F iiiiiiiiiiiiiiiiiiiiiiiiiii[iiiiiiiiiiiiiiiiiiiiiiiiiii:':iiiiiiii_ii5iiiiiiii'iiiiiiiii_i_iiiiiii

14 T T F T T iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_'iiiiiiiii_i_iiiiiii

_ T T T F T iiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii:_:iiiiiiiiii_iiiiiiii:_iiiiiiiiiiiiiiiiiiiiiiiiiii
:::::::::::::

i:i:i:i:i:i:i:i:i:i:i:i:i:i :::::::::::::::::::::::::::
16 T T T T T iii_i_i_i_i_i_i_i_i_i_i_i_i_i_

and (C or D)

Any combination of the independence pairs (with a minimum of one pair for each condition) will yield

the minimum tests described by Chilenski and Miller for each logical operator. To see this, consider test

cases 2, 5, 6, 7, and 10 from Table 1 for Z = (A or B) and (C or D). This set of test cases contains an

independence pair for each condition. These test cases are mapped to a schematic representation of the

code in Figure 1.

Test Cases

256710

[_'_ FFFFT)

_ FTTTF

F F FTF _)

T FT FT

FTTTT

TFTTT

FFTTT

z<]

Figure 1. Schematic View of Z = (A or B) and (C or D) with test cases 2, 5, 6, 7, and 10

For a test case to count for credit towards MC/DC at a particular logical operator, the output of the test

case at that operator must be observable. In Figure 1, the output of (A or B) is unobservable at Z for test

case 5 because of the false output of (C or D) for that test. Similarly, the output of (C or D) is

unobservable at Z for test case 2 because of the false output of (A or B). Discounting those test cases,

there are FF, FT, and TF tests for each or operator, and TT, TF, and FT tests for the and operator.

The unique-cause approach guarantees the minimum tests for each logical operator for decisions

without strongly coupled conditions (such as repeated conditions). The difficulty with coupled conditions

stems from the DO-178B Glossary definition of decision that states that "If a condition appears more than

once in a decision, each occurrence is a distinct condition". Hence, for the decision (A and B) or (A and

C), showing independent effect by unique cause requires, among other things, showing what happens

when the value of the first A is held constant, while the value of the second A is toggled between false

and true. This typically cannot be accomplished in any meaningful way. Note that some developers may

74

establish coding standards that do not allow decisions with coupled conditions to avoid the coupling

problem with unique-cause MC/DC.

Masking

Masking refers to the concept that specific inputs to a logic construct can hide the effect of other

inputs to the construct. For example, a false input to an and operator masks all other inputs, and a true

input to an or operator masks all other inputs. The masking approach to MC/DC allows more than one

input to change in an independence pair, as long as the condition of interest is shown to be the only

condition that affects the value of the decision outcome. However, analysis of the internal logic of the

decision is needed to show that the condition of interest is the only condition causing the value of the

decision's outcome to change.

To illustrate masking MC/DC, consider again the decision Z = (A or B) and (C or D). To show the

independent effect of A, the subterm (C or D) must be true because the value of the decision's outcome

will always be false if (C or D) is false. For unique-cause, the values of C and D must be fixed in any

independence pair for A. However, masking allows C and D to change values in the independence pair

for A as long as the outcome of (C or D) is true. In this way, the masking approach allows for more

independence pairs for each condition than unique cause. For example, test case 2 could be paired with

either test case 10, 11, or 12 to show the independent effect of A using masking. Table 2 shows the

possible independence pairs for the example decision using the masking approach.

Table 2. Masking Approach to

Test A B X* C D Y*Case #

1 F F F F F F

2 F F F F T T F

3 F F F T F T F

4 F F F T T T

5 F T T F F F

6 F T T F T T

7 F T T T F T

8 F T T T T T

9 T F T F F F F

10 T F T F T T

11 T F T T F T

12 T F T T T T

13 T T T F F F

14 T T T F T T

15 T T T T F T T

16 T T T T T T

Independence Pairs for (A or B) and (C or D)

z

T

* Note that X and _.Yrepresent intermediate subterm (A or B) and subterm (C or D), respectively

Another way of examining the issue is to substitute proxy variables for all but the subterm of interest.

For example, when looking for the independence of A or B in the above example, substitute the value of

_.Yfor the subterm (C or D) and then the same rules as unique-cause apply.

To verify that the minimum test cases exist for each logical operator with masking, consider the test

cases 2, 5, 6, 7, and 12 shown with the schematic representation in Figure 2. This test set is the same as

75

the test set in Figure 1, except test case 12 has replaced test case 10. In terms of independence pairs, test

cases 2 and 12 together form an independence pair for A under the definition of masking.

Note that the input values in Figure 2 are the same as in Figure 1 except for the inputs in test case 12

to (C or D). That is, the difference that masking makes for the independence pair for A is localized to a

single logical operator. Note also, that the minimum tests at each operator are still observed in this

example. Minimum tests for each logical operator are guaranteed in all cases with the masking approach,

for decisions with non-coupled as well as coupled conditions.

Test Cases

256712

[_)--_ FFFFT _

FTTTF

F F FTT

T FT FT

FTTTT

TFTTT

FFTTT z_

Figure 2. Schematic View of(A or B) and (C or D) with test cases 2, 5, 6, 7, and 12

Comparing Unique Cause and Masking

Both unique-cause MC/DC and masking MC/DC guarantee the minimum tests discussed by Chilenski

and Miller at each logical operator of a decision--thus, showing the independent effect of each condition

in the decision. Unique-Cause MC/DC and Masking MC/DC are identical for decisions with a common

logical operator; that is, for decisions such as (A and B and C) or (A or B or C). When comparing

unique cause and masking for decisions with mixed logical operators (e.g., (A or B) and C), the

following points should be considered:

• In most cases, masking MC/DC allows more independence pairs per condition than unique-cause
MC/DC. Any test set that satisfies unique cause will also satisfy masking; that is, masking

independence pairs are a superset of unique-cause independence pairs. The advantage of having

more independence pairs is the potential to reduce time for both humans and tools to determine
whether the requirements-based test cases provide MC/DC.

• In general, the same number of test cases are needed to satisfy unique cause as masking.

• Masking MC/DC requires analysis of the decision logic to confirm either the minimum tests for

each logical operator, or the independence pair for each condition in the decision. This analysis is

not needed for unique-cause MC/DC.

• Masking MC/DC can be applied to decisions with coupled conditions. Hence, masking can be

applied to decisions where unique-cause cannot be applied.

Note on Error Sensitivity

It is tempting to compare the unique-cause approach to masking with respect to the ability to detect

errors. In a research project funded by the FAA, John Chilenski (of the Boeing Company) carried out a

comparison of unique-cause MC/DC and masking MC/DC. The full report (ref. B3) will be available on

the FAA web-site in the very near future (http://av-info.faa.gov/software). In a recent white paper,

76

Chilenskiconcludedthathis analysisof errorsensitivitybetweenunique-causeandmasking"hasnot
shownthatthereis anysignificantdifference"(ref.B4). However,relianceonsucha comparisonis
unwisebecause:(a)thepurposeof MC/DCis to determinetheadequacyof therequirements-basedtests
toexercisethestructureofthecode--notto detecterrors,(b)analysisof theabilityof differenttestsetsto
detectdifferenttypesof errorsis extremelycomplexandsubjective,and(c) Chilenski'sworkhasnot
beenreviewedbytheengineeringoracademiccommunity.

Summary

According to SC-190/WG-52 Frequently Asked Question #43 (ref. B5), structural coverage analysis

complements requirements-based tests by:

1. Providing "evidence that the code structure was verified to the degree required for the applicable
software level";

2. Providing "a means to support demonstration of absence of unintended functions"; and

3. Establishing "the thoroughness of requirements-based testing".

Masking MC/DC, as well as unique-cause MC/DC, satisfies all three of these "intents".

Both the unique-cause and masking approaches to MC/DC provide the same minimum tests of a

logical operator in a decision. These minimum tests confirm that each condition independently affects the

decision's outcome. The significant difference between the two approaches is that masking requires

analysis of the logic of each decision, whereas unique-cause does not. Note that the masking MC/DC

artifacts should be subject to the same planning, configuration management, and quality assurance

requirements as any other artifact of the verification process.

When DO-178B was written, the research on masking MC/DC was still being carried out; therefore,

unique-cause MC/DC was the technique documented. Since that time, research has shown that masking

MC/DC also meets the intent of the MC/DC objective. Therefore, it is proposed that masking MC/DC be

considered an acceptable method for meeting MC/DC by applicants striving to meet the objectives of
DO-178B, level A.

References [for the white paper]

B1. RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certification.

RTCA, Inc., Washington, D. C., December 1992.

B2. Chilenski, John Joseph; and Miller, Steven. P.: Applicability of modified condition/decision
coverage to software testing. Software Engineering Journal, Vol. 7, No. 5, September 1994, pp.
193-200.

B3. Chilenski, John Joseph: An Investigation of Three Forms of the Modified Condition Decision
Coverage (MCDC) Criterion. FAA Tech Center Report DOT/FAA/AR-01/18, March 2001.

B4. Chilenski, John Joseph: MCDC Forms (Unique-Cause, Masking) versus Error Sensitivity. a white
paper submitted to NASA Langley Research Center under contract NAS 1-20341, January 2001.

B5. RTCA/DO-248A, Second Annual Report for Clarification of DO-178B "Software Considerations in

Airborne Systems and Equipment Certification". RTCA, Inc., Washington, D. C., September 13,
2000.

77

Appendix C

Background on Tutorial Authors

Ms. Kelly Hayhurst is a senior research scientist in the area of design correctness and certification at

NASA Langley Research Center and has supported research on MC/DC with the FAA since 1996. Mr.

Dan Veerhusen is a Principal Software Engineer and software DER in the Air Transport Systems Division

of Rockwell Collins, Inc. Mr. Veerhusen is involved in software process development and verification

techniques for Flight Control products. Mr. John Chilenski, an Associate Technical Fellow of The

Boeing Company, primarily works in the area of verification and validation of software and systems. Mr.

Chilenski is the co-author of "Applicability of modified condition/decision coverage to software testing",

one of the first papers published on the topic. Ms. Leanna Rierson is the Federal Aviation

Administration's Chief Scientific and Technical Advisor (also known as, National Resource Specialist)

for Aircraft Computer Software.

78

REPORT DOCUMENTATION PAGE Form ApprovedOMBNO.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 2001 Technical Memorandum

4. TITLE AND SUBTITLE

A Practical Tutorial on Modified Condition/Decision Coverage

6. AUTHOR(S)

Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K.
Rierson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 728-30-10-03

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-18088

10. SPONSORING/MONITORING

AGENCYREPORTNUMBER

NASA/TM-2001-210876

11. SUPPLEMENTARY NOTES

Hayhurst: Langley Research Center, Hampton, VA; Veerhusen: Rockwell Collins, Inc., Cerdar Rapids, IA;

Chilenski: The Boeing Company, Seattle, WA; Rierson: Federal Aviation Administration, Washington, D.C.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61 Distribution: Nonstandard

Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This tutorial provides a practical approach to assessing modified condition/decision coverage (MC/DC) for

aviation software products that must comply with regulatory guidance for DO-178B level A software. The
tutorial's approach to MC/DC is a 5-step process that allows a certification authority or verification analyst to

evaluate MC/DC claims without the aid of a coverage tool. In addition to the MC/DC approach, the tutorial
addresses factors to consider in selecting and qualifying a structural coverage analysis tool, tips for reviewing

life cycle data related to MC/DC, and pitfalls common to structural coverage analysis.

14. SUBJECT TERMS

Modified condition/decision coverage; MC/DC; Software; Certification; DO-178B;

Structural coverage

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

85

16. PRICE CODE

A05

20. LIMITATION

OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z-39-18
298-102

