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ABSTRACT

The present study was designedto test the efficacy of using Electroencephalogram (EEG) and
Event-Related Potentials (ERPs) for making task allocation decisions. Thirty-six participants
were randomly assigned to an experimental, yoked, or control group condition. Under the
experimental condition, a compensatory tracking task was switched between manual and
automatic task modes based upon the participant's EEG. ERPs were also gathered to an
auditory, oddball task. Participants in the yoked condition performed the same tasks under the
exact sequence of task allocations that participants in the experimental group experienced. The
control condition consisted of a random sequence of task allocations that was representative of
each participant in the experimental group condition. Therefore, the design allowed a test of
whether the performance and workload benefits seen in previous studies using the biocybernetic
system were due to adaptive aiding or merely to the increase in task mode allocations. The
results showed that the use of adaptive aiding improved performance and lowered subjective
workload under negative feedback as predicted. Additionally, participants in the adaptive group
had significantly lower tracking error scores and NASA-TLX ratings than participants in either
the yoked or control group conditions. Furthermore, the amplitudes of the N 1 and P3 ERP
components were significantly larger underthe experimental group condition than under either
the yoked or control group conditions. These results are discussed in terms of their implications
for adaptive automation design.
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INTRODUCTION

Automation refers to "...systems or methods in which many of the processes of
production are automatically performed or controlled by autonomous machines or electronic
devices" (p.7). Automation is a tool, or resource, that the human operator can use to perform
some task that would be difficult or impossible without the help of machines (Billings, 1997).

Therefore, automation can be thought of as a process of substituting some device or machine
for some human activity; or it can be thought of as a state of technological development
(Parsons, 1985). However, some people (e.g., Woods, 1996) have questioned whether
automation should be viewed as a substitution of one agent for another. Nevertheless, the
presence of automation has pervaded every aspect of modern life. We have built machines and
systems that not only make work easier, more efficient and safer, but also have given us more
leisure time. The advent of automation has further enabled us to achieve these ends. With

automation, machines can now perform many of the activities that we once had to do. Now,
automatic doors open for us. Thermostats regulate the temperature in our homes for us.
Automobile transmissions shift gears for us. We just have to turn the automation on and off.
One day, however, there may not be a need for us to do even that.

Impact of Automation Technology

Advantages of Automation. Wiener (1980; 1989) noted a number of advantages to
automating human-machine systems. These include increased capacity and productivity,
reduction of small errors, reduction of manual workload and fatigue, relief from routine
operations, more precise handling of routine operations, and economical use of machines. In
an aviation context, for example, Wiener and Curry (1980) listed eight reasons for the increase
in flight-deck automation: Increase in available technology, such as the Flight Management
System (FMS), Ground Proximity Warning System (GPWS), Traffic Alert and Collision
Avoidance System (TCAS); concern for safety; economy, maintenance, and reliability; decrease
in workload for two-pilot transport aircraft certification; flight maneuvers and navigation
precision; display flexibility; economy of cockpit space; and special requirements for military
missions.

Disadvantages of Automation. Automation also has a number of disadvantages.
Automation increases the burdens and complexities for those responsible for operating,
troubleshooting, and managing systems. Woods (1996) stated that automation is "...a wrapped
package -- a package that consists of many different dimensions bundled together as a
hardware/software system. When new automated systems are introduced into a field of practice,
change is precipitated along multiple dimensions" (p.4). Some of these changes include: (a)
adding to or changing the task, such as device setup and initialization, configuration control, and
operating sequences; (b) changing cognitive demands, such as decreasedsituational awareness; (c)
changing the role that people in the system have, often relegating people to supervisory
controllers; (d) increasing coupling and integration among parts of a system often resulting in
data overload and "transparency" (Billings, 1997); and (e) increasing complacency by those who
use the technology. These changes can result in lower job satisfaction (automation seen as
dehumanizing), lowered vigilance, fault-intolerant systems, silent failures, an increase in
cognitive workload, automation-induced failures, over-reliance, increased boredom, decreased
trust, manual skill erosion, false alarms, and a decrease in mode awareness (Wiener, 1989).



Adaptive Automation

These disadvantages of automation have resulted in increased interest in advanced
automation concepts. One of these concepts is automation that is dynamic or adaptive in nature
(Hancock & Chignell, 1987; Morrison, Gluckman, & Deaton, 1991; Rouse, 1977; 1988). In
adaptive automation, control of tasks can be passed back and forth between the operator and
automated systems in response to the changing task demands. Consequently, this allows for the
restructuring of the task environment based upon (a) what is automated, (b) when it should be
automated, and (c) how it should be automated (Rouse, 1988; Scerbo, 1996). Rouse (1988)
described the criteria for adaptive aiding systems:

The level of aiding, as well as the ways in which human and aid interact, should
change as task demands vary. More specifically, the level of aiding should
increase as task demands become suchthat human performance will unacceptably
degrade without aiding. Further, the ways in which human and aid interact should
become increasingly streamlined as task demands increase. Finally, it is quite
likely that variations in level of aiding and modes of interaction will have to be
initiated by the aid rather than by the human whose excess task demands have
created a situation requiring aiding. The term adaptive aiding is used to denote
aiding concepts that meet [these] requirements (p.432).

Adaptive aiding attempts to optimize the allocation of tasks by creating a mechanism for
determining when tasks need to be automated (Morrison & Gluckman, 1994). In adaptive
automation, the level or mode of automation can be modified in real-time. Further, unlike
traditional forms of automation, both the system and the operator share control over changes
in the state of automation (Scerbo, 1994; 1996). Parasuraman, Bahri, Deaton, Morrison, and
Barnes (1992) have arguedthat adaptive automation represents the optimal coupling of the level
of operator workload to the level of automation in the tasks. Thus, adaptive automation
invokes automation only when task demands exceed the operator capabilities to perform the
task(s) successfully. Otherwise, the operator retains manual control of the system functions.
Although concerns have been raised about the dangers of adaptive automation (Billings &

Woods, 1994; Wiener, 1989), it promises to regulate workload, bolster situational awareness,
enhance vigilance, maintain manual skill levels, increase task involvement, and generally
improve operator performance (Endsley, 1996; Parasuraman et al., 1992; Parasuraman,
Mouloua, & Molloy, 1996; Scerbo, 1994, 1996; Singh, Molloy, & Parasuraman, 1993).

Adaptive Mechanisms

Perhaps, the most critical challenge facing system designers seeking to implement
adaptive automation concerns how changes among modes or levels of automation will be
accomplished (Parasuraman et al., 1992; Scerbo, 1996). The best approach involves the
assessment of measures that index the operators' state of mental engagement (Parasuraman et
al., 1992; Rouse, 1988). The question, however, is what should be the "trigger" for the
allocation of functions between the operator and the automation system. Numerous researchers
have suggested that adaptive systems respond to variations in operator workload (Hancock &
Chignell, 1987; 1988; Hancock, Chignell & Lowenthal, 1985; Humphrey & Kramer, 1994;
Reising, 1985; Riley, 1985; Rouse, 1977), and that measures of workload be used to initiate



changesin automationmodes.Suchmeasuresincludeprimary andsecondary-taskmeasures,
subjectiveworkloadmeasures,andphysiologicalmeasures.This, of course,presupposesthat
levelsof operatorworkloadcanbespecifiedsoasto makechangesinautomationmodes(Scerbo,
1996).Rouse(1977),for example,proposeda systemfor dynamicallocationof tasksbased
upontheoperator'smomentaryworkloadlevel. Reising(1985)describeda futurecockpit in
whichpilot workloadstatesare continuouslymonitoredand functionsare automatically
reallocatedbackto theaircraftif workloadlevelsgettoohighor too low. However,neitherof
theseresearchersprovided specific parametersin which to make allocation changes
(Parasuraman,1990).

MorrisonandGluckman(1994),however,didsuggesta numberof workloadindices
candidatesthatmaybeusedforinitiatingchangesamonglevelsof automation.Theysuggested
that adaptiveautomationcanbeinvokedthrougha combinationof one or morereal-time
technologicalapproaches.Oneof theseproposedadaptivemechanismsisbiopsychometrics.
Underthis method,physiologicalsignalsthat reflect centralnervoussystemactivity, and
perhapschangesin workload,wouldserveasa triggerfor shiftingamongmodesor levelsof
automation(Hancock,Chignell,& Lowenthal,1985;Morrison& Gluckman,1994;Scerbo,
1996).

ByrneandParasuraman(1996) discussedthe theoreticalframeworkfor developing
adaptiveautomationaroundpsychophysiologicalmeasures.Theuseof physiologicalmeasures
in adaptivesystemsis basedon the ideathat there existsan optimal stateof engagement
(Gaillard,1993;Hockey,Coles,& Gaillard,1986). Capacityandresourcetheories(Kahneman,
1973;Wickens,1984;1992)arecentralto this idea. Thesetheoriespositthat thereexistsa
limitedamountof resourcesto drawuponwhenperformingtasks. Theseresourcesarenot
directlyobservable,but insteadarehypotheticalconstructs.Kahneman(1973)conceptualized
resourcesasbeinglimited,andthatthelimitationis a functionof the levelof arousal.Changes
in arousalandtheconcomitantchangesin resourcecapacityarethoughtto becontrolledby
feedbackfrom otherongoingactivities.Anincreasein theactivities(i.e.,taskload)causesarise
in arousalandasubsequentdecreasein capacity.Kahneman'smodelwasderivedfromresearch
(Kahnemanet al., 1967, 1968, 1969)on pupil diameterand task difficulty. Therefore,
physiologicalmeasureshavebeenpositedto indextheutilizationof cognitiveresources.

Severalbiopsychometricshavebeenshownto besensitiveto changesin operator
workloadsuggestingthemaspotentialcandidatesfor adaptiveautomation.Theseincludeheart
ratevariability(Backs,Ryan,& Wilson,1994;Itoh,Hayashi,Tsukui,& Saito,1989;Lindholm
& Cheatham,1983;Lindqvistetal., 1983;Opmeer& Krol, 1973;Sayers,1973;Sekiguchietal.,
1978),EEG(Natani& Gomer,1981;O'Hanlon& Beatty,1977;Sterman,Schummer,Dushenko,
& Smith,1987;Torsvall& Akerstedt,1987),eyeblinks(Goldstein,Walrath,Stern,& Strock,
1985;Sirevaag,Kramer,deJong,& Mecklinger,1988),pupil diameter(Beatty, 1982;1986;
1988;Qiyuan,Richer,Wagoner,& Beatty, 1985;Richer& Beatty, 1985; 1987; Richer,
Silverman,& Beatty,1983),electrodermalactivity(Straubeet al., 1987;Vossel& Rossmann,
1984;Wilson,1987;Wilson& Graham,1989)andevent-relatedpotentials(Defayolle,Dinand,
& Gentil,1971;Gomer,1981;Hancock,Chignell,& Lowenthal,1985;Reising,1985;Rouse,
1977;Sem-Jacobson,1981).

The advantageto biopsychometricsin adaptivesystemsis that the measurescanbe
obtainedcontinuouslywith little intrusion (Eggemeier,1988; Kramer, 1991; Wilson &
Eggemeier,1991).Also,becausebehavioris often at a low levelwhenhumansinteractwith
automatedsystems,it is difficult to measureresourcecapacitywith performanceindices.
Furthermore,thesemeasureshavebeenfoundto bediagnosticof multiplelevelsof arousal,
attention,andworkload.Therefore,it seemsreasonableto determinethe efficacyof using
psychophysiologicalmeasuresto allocatefunctionsin anadaptiveautomatedsystem.However,
althoughmanyproposalsconcerningthe useof psychophysiologicalmeasuresin adaptive



systemshavebeenadvanced,not much researchhas actually beenreported(Byrne &
Parasuraman,1996).Nonetheless,manyresearchershavesuggestedthat perhapsthetwo most
promisingpsychophysiologicalindicesfor adaptiveautomationarethe electroencephalogram
(EEG)andevent-relatedpotential (ERP)(Byrne & Parasurman,1996;Kramer,Trejo, &
Humphrey,1996;Morrison& Gluckman,1994;Parasuraman,1990;Scerbo,1996).

Mental WorMoad

The use of psychophysiological measures in adaptive automation requires that such
measures are capable of representing mental workload. Mental workload has been defined as the
amount of processing capacity that is expended during task performance (Eggemeier, 1988).
The basic concept refers to the difference between the processing resources available to the
operator and the resource demands required by the task (Sanders & McCormick, 1993).
Essentially, workload is invoked to describe the interaction between an operator performing the
task and the task itself. In other words, the term "workload" delineates the difference between

capacities of the human information processing system that are expected to satisfy performance
expectations and that capacity available for actual performance (Gopher & Donchin, 1986).
However, there is disagreement on the definition of the term, on the best means for measuring
it, and on the most effective ways for moderating workload. Some psychologists have defined
it in terms of the perceptual and cognitive demands imposed on the operator, whereas engineers
tend to prefer a definition based on the scheduling of tasks in multi-task environments or on
control theory models (Parasuraman, 1990). An emerging consensus is that workload is a
multidimensional construct, rather than a scalar quantity, that cannot be uniquely specified by
any one measurement technique (Howell, 1990). Despite this, research has shown that both the
EEG and ERP are useful as a metric of mental workload (Byrne & Parasurman, 1996; Gale &
Christie, 1987; Kramer, 1991; Parasuraman, 1990)

Electroencephalogram

Physiological Basis. The EEG derives from activity in neural tissue located in the
cerebral cortex, but the precise origin of the EEG, what it represents, and the functions that it
serves are not presently known. Current theory suggests that the EEG originates from post
synaptic potentials rather than action potentials. Thus, the EEG is postulated to result primarily
from the subthreshold post-synaptic potentials that may summate and reflect stimulus intensity
instead of firing in an all-or-none fashion (Gale & Edwards, 1983).

Description of the EEG. The EEG consists of a spectrum of frequencies between 0.5
Hz to 35 Hz (Surwillo, 1990). Delta waves are large amplitude, low frequency waveforms that
typically range between 0.5 and 3.5 Hz in frequency, in the range of 20 to 200 uV (Andreassi,
1995). Theta waves are a relatively uncommon type of brain rhythm that occurs between 4 and
7 Hz at an amplitude ranging from 20 to 100 uV. Alpha waves occur between 8 and 13 Hz at
a magnitude of 20 to 60 uV. Finally, beta waves are an irregular waveform at a frequency of 14
to 30 Hz at an amplitude of about 2 to 20 uV (Andreassi, 1995). An alert person performing
a very demanding task tends to exhibit predominately low amplitude, high Hz waveforms (beta
activity). An awake, but less alert person shows a higher amplitude, slower frequency of activity
(alpha activity). With drowsiness, theta waves predominate and in the early cycles of deep slow
wave sleep, delta waves are evident in the EEG waveform. The generalized effect of stress,
activation or attention is a shift towards the faster frequencies, lower amplitudes with an abrupt
blocking of alpha activity (Horst, 1987).

Laboratory Studies. Gale (1987) found that there exists an inverse relationship
between alpha power and task difficulty. Other studies have also demonstrated the sensitivity
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of alphawavesto variationsinworkloadassociatedwith taskperformance.NataniandGomer
(1981)founddecreasedalphaandthetapowerwhenhighworkloadconditionswereintroduced
to pilotsduringpitchandroll disturbancesin flight. Sterman,Schummer,Dushenko,andSmith
(1987)conducteda seriesof aircraft andflight simulationexperimentsin which they also
demonstrateddecreasedalphapowerandtrackingperformancein flight with increasingtask
difficulty.

Numerousstudieshavealsodemonstratedthat thetamaybesensitiveto increasesin
mentalworkload.Subjectshavebeentrainedto produceEEGthetapatternsto regulatedegrees
of attention (Beatty,Greenberg,Diebler,& O'Hanlon,1974; Beatty & O'Hanlon,1979;
O'Hanlon& Beatty, 1979;O'Hanlon,Royal, & Beatty, 1977). In particular,Beatty and
O'Hanlon(1979)foundthatbothcollegestudentsandtrainedradaroperators,whohadbeen
taughtto suppressthetaactivityperformedbetterthancontrolsona vigilancetask. Though
thetaregulationhasbeenshownto affectattention,themagnitudeof theeffectis oftensmall
(Alluisi,Coates,& Morgan,1977).Morerecentresearch,however,hasdemonstratedits utility
inassessingmentalworkload.BothNataniandGomer(1981)andSirevaag,Kramer,deJong,and
Mecklinger(1988) founddecreasesin theta activity astask difficulty increasedandduring
transitionsfrom singleto multipletasks,respectively.

Field Research.Morerecentresearchhasdemonstratedtheutility of EEGinassessing
mentalworkloadin theoperationalenvironment.Stermanet al. (1993)evaluatedEEGdata
obtainedfrom 15Air Forcepilots duringair refuelingandlandingexercisesperformedin an
advancedtechnologyaircraftsimulator. They founda progressivesuppressionof 8-12 Hz
activity(alphawaves)atmedial(Pz)andright parietal(P4)siteswith increasingamountsof
workload.Additionally,asignificantdecreasein thetotalEEGpower(progressiveengagement)
wasfoundatP4duringtheaircraftturningconditionfor theairrefuelingtask(themostdifficult
flight maneuver).This confirmedotherresearchthat foundalpharhythm suppressionasa
functionof increasedmentalworkload(e.g.,Ray& Cole,1985).

Event-Related Potential

Description. The event-related potential, or ERP, is a transient series of voltage
oscillations that occurs in response to the occurrence of a discrete event. This temporal
relationship between the ERP and an event is what discriminates the ERP from the ongoing
electroencephalogram (EEG) activity. The ERP, like EEG, is a multivariate measure; however,
unlike EEG, the ERP is broken down into a series of time rather than frequency domains
(Kramer, 1991).

ERPs can be seen as a sequence of separate but often temporally overlapping
components that are affected by a combination of the physical parameters of the stimuli and
psychological constructs such as motivation, expectancy, resources, task relevance, memory,
and attention (Kramer, 1987). Althoughthe ERP has been found to be dependentupon both the
psychological and physical characteristics of the eliciting stimuli, in some instances the ERP has
been found to be independent of specific stimuli (Andreassi, 1995). For example, ERPs have
been found to occur at the same time that the stimuli were expected to occur but were not
actually presented (Sutton, Teuting, Zubin, & John, 1967).

Classification. The ERP can be classified as either being an evoked potential or an
emitted potential. The "evoked potentials" (EPs) are ERPs that occur in response to physical
stimulus presentation whereas "emitted potentials" occur in the absence of any invoking
stimulus. Emitted potentials may be associated with a psychological process, such as recognition
that a stimulus component is missing from a regular train of stimulus presentations or with some
preparation for an upcoming perceptual or motor act (Picton, 1988).



ERPcomponentscanalsobecategorizedalonga continuumfrom endogenousto
exogenous.Theendogenouscomponentsareinfluencedby theprocessingdemandsimposedby
thetask,andarenotverysensitiveto changesin thephysicalparametersof stimuli,especially
whenthesechangesarenotrelevantto thetask.In fact,endogenouscomponentscanbeelicited
bytheabsenceof anelicitingstimulusif this"event"is relevantto thesubject'stask. Subject's
strategies,expectancies,intentions, and decisions,in addition to task parametersand
instructions,accountfor mostof theendogenouscomponents(Kramer,1991).

Theexogenouscomponents,on theotherhand,representaresponseto thepresentation
of somediscreteevent. Thesecomponentstendto occursomewhatearlierthanendogenous
componentsandtheyareusuallyassociatedwithspecificsensorysystems,occurwithin200msec
afterthepresentationof a stimulus,andareelicitedby thephysicalcharacteristicsof stimuli.
For example,exogenousauditorypotentialsare influencedby the intensity, frequency,
patterning,pitch,andlocationof thestimulusin theauditoryfield (Kramer,1987;1991).

Thedifferencebetweentheendogenousandexogenouscomponentssuggesttheneedfor
componentsto beclearlydefined.ERPcomponentsaretypically labeledwith eithera "N" or
"P", for negativeandpositivepolarity,respectively.Also,anumberis assignedindicatingthe
minimallatencymeasuredfrom theonsetof a discreteevent.Theattributesof the ERPthat
haveservedasdefinitionalcriteriahaveincluded:thearrangementof transientvoltagechanges
acrossthescalp,polarity,latencyrange,sequence,andthesensitivityof thesecomponentsto
taskinstructions,parameters,andphysicalchangesin theelicitingstimulus(Donchin,Ritter,&
McCallum,1978;Kramer,1985;1987;1991).

Thescalparrangementconcernstheamplitudeandpolarityof thecomponentsacross
variouslocationson the scalp. For example,researchhasdemonstratedthat the P300
componentbecomesincreasinglysmallerin amplitudefrom the parietalto the frontal sites,
whereastheN100is largestovertheFz,Cz,andPzsites(seeFigure3). The latencyrangeis
influencedby bothexperimentalmanipulationsandwhetherit is anendogenousor exogenous
component. For example,brainstemevokedpotentialsoccur within 10 ms after the
presentationof astimulus.TheseERPsareinfluencedbybothorganismicandstimulusvariables;
however,thelatencyrangeis only 2-5 ms.This is contrastedwith the latencyrangeof the
P300whichdependson theprocessingrequirementsof thetaskandhasbeenshownto span300-
900ms (Kramer,1991).

Physiological and Theoretical Basis. The ERPis composedof a sequenceof
"components"thataregeneratedby groupsof cellsin differentlocationsof the brainwhich
becomeactiveat differenttimesafter presentationof a stimulus. Althoughthere is little
consensusasto whatthedifferentcomponentsarethoughtto measure,theearlycomponents
havebeenarguedto representthedeliveryof sensoryinputfromvariousmodalitiesthroughthe
afferentpathways.The later componentsoriginatein the primaryprojectionsystems,the
differentassociationareas,andthenon-specificparietalandfrontalregions(Vaughan& Arezzo,
1988).

To complicatemattersfurther,the laterthe ERPcomponents(e.g.,P300),themore
thecomponentsrepresent"memory-driven"ratherthan"data-driven"processes.Forexample,
HillyardandPicton (1979)havearguedfor atwo-stageprocessfor the ERR The primary
sensorysystemcarriesouta featureanalysisandevaluatescharacteristicsof thestimulusand,if
it passessomecriteriafor selection,it thenpassesthesensoryinputto a secondsystem.This
secondsystemevaluatesthestimuluswithcomparisonto memorymodelsof expectedor salient
events(Gopher& Donchin,1986).

Thetwo-stagemodelof attentionalprocessesinvolvedin theetiologyof theERPhas
implicationfor the studyof mentalworkload. Donchinandhiscolleagues(Donchin,1981;
Donchin,McCarthy,Kutas,& Ritter, 1983)arguedthat, becausethe P300 is elicitedby
improbableor unexpectedevents,the P300representsa "context-updating"of the mental



modelof the environment.The mental modelis continuallyassessedfor deviationsfrom
expectedsensoryinputsand,whenthe eventsexceedsomecriterion,the mentalmodel is
updated.Thefrequencyatwhichthementalmodelisupdatedisbasedonthesurprisevalueand
taskrelevanceof the event. Donchin(1981)furtherdevelopeda subroutinemetaphorfor the
variousactivitiesof the ERPcomponents.The P300subroutinewaspositedto beinvoked
wheneverthereis a needto evaluateunusual,novel eventsin the environment(Gopher&
Donchin,1986;Kramer,1987;Kramer;1991).

Thefindingthatthesubroutine,characterizedby theP300,is invokedonlywith task-
relevantor surprisingeventshasbeenimportantin theuseof theERPasameasureof mental
workload.Considera situationin which a participantmustperforman oddballtask while
performinganothertasksimultaneously.Now, imaginethatthe difficultyof theprimarytask
is increased.WouldtheP300subroutinestill beinvoked? If so,wouldthe amplitudeof the
P300reflecttheincreasedworkloaddemandsand,therefore,serveasanindexof theresources
demandedby thesetwotasks?Suchquestionsastheseservedastheimpetusfor researchersto
beginto investigatetheuseof theP300in theassessmentof workload(Kramer,1987;Gopher
& Donchin,1986;Parasuraman,1990).

Dual-TaskERPs.TheearlierERPstudiesof mentalworkloadweredrivenby research
findingsconnectingchangesin ERPcomponentsto statevariables,suchasfatigueandarousal.
Haider,Spong,andLindsley(1964)first reportedthatshiftsin the N100visualandauditory
ERPduringdiscriminationtasksreflectedbothstates,suchasfatigue,arousal,andvigilance,as
well asdiscriminationtaskperformance.Thereafter,ERPswerelinkedto the secondary-task
method,a methodthat wasemergingasa techniquefor assessingprimary task workload
demands.The earlierdual-taskERPstudiesof mentalworkloadconcentratedon stimulus-
evoked,exogenous,ratherthan task-evoked,endogenousERPcomponents.For example,
Defayolle,Dinand,andGentil(1971)reportedthat theP100componentof theERPto flashes
of red light wasreducedwhensubjectsperformeda reasoningtask asopposedto a control
conditionin whichnotaskwasperformed.Furthermore,asthedifficultyof thereasoningtask
wasincreased,the amplitudeof the P100 showedfurtherreductions. Spyker,Stackhouse,
Khalafall,andMcLane(1971)demonstratedthat the P250componentof the ERPwasalso
affectedby thedifficultyof thetask. Theyreportedthattheamplitudeof theP250 component
of theERPto visualprobestimuliwasreducedasthedynamiccomplexityof atrackingtaskwas
increased(Parasuraman,1990).

In arecentreviewof theresearch,Parasuraman(1990)concludedthattheseearlystudies
wereplaguedby lackof experimentalcontrolovertheprocessingof theprobestimulus.The
experimentaltaskswereeithernot integratedwith thepresentationof theprobeor, asin the
caseof Defayolle,Dinand,andGentil (1971),time domainsof ERPswere not averaged
separatelyfor variousresponsecategoriesanddifferentstimuli. Morerecentresearch,however,
requiressubjectsto processthediscreteeventto somedegree.A separatetaskis associatedwith
the ERP stimuli makingthis methoda more exact analogof the dual-taskprocedure
(Parasuraman,1990).

Manyof thesemorerecentstudieshavefocusedon theP300component.Thesestudies
werebaseduponthe notion that P300 amplitudein a task shouldbeproportionalto the
attentionalresourcesinvestedin thetask(Johnson,1986;Parasuraman,1990). Put another
way,if subjectsaregivenonetaskto performwhileperforminganothertask concurrently,the
demandsimposedby the secondarytaskwouldimpactthe "memory-driven"processesand,
therefore,canbeassessedby evaluatinghowtheamplitudeof theP300changesin theprimary
task(Parasuraman,1990).

Oneof thefirst suchstudieswasperformedby Wickens,Isreal,andDonchin(1977).In
thisstudy,theP300amplitudeto countedtonesdecreasedwhenavisualtrackingtaskwasalso
performed.Thisfinding is not muchdifferentthan the earlierERPstudies,exceptthat the
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effectwasfor a task-evoked,endogenousratherthan a stimulus-evoked,exogenousERP
component. However,P300 amplitudewasnot foundto be sensitiveto increasesin the
difficultyof thetrackingtask,eitherwhenthenumberoftrackeddimensionswasincreasedfrom
oneto two (Wickenset al., 1977)or whenthebandwidthof the trackingtaskwasincreased
(Isreal,Chesney,Wickens,& Donchin,1980). Thefact thattheP300did notvarymuchasa
functionof primarytaskdifficultywasattributedto the ideathatprimaryandsecondarytasks
drawondifferent"resourcepools." Thisview contendsthat the trackingtask difficulty taps
response-relatedresources;however,theP300countingtasktapsperceptualresources.

In anotherstudy,Isreal,Wickens,Chesney,andDonchin(1980)coupledacountingtask
withavisualmonitoringtask. Subjectswereaskedto monitorthevisualtaskfor changesin the
intensityor directionof squaresandtrianglesthatmovedoveravisualdisplay. In this study,
perceptualfactorsweremanipulatedbyrequiringsubjectstomonitoreitherfouror eightdisplay
elements.Theresultsshowedthat the P300amplitudeto the stimuli in the visualtaskwas
smallerin thedual-taskconditions.Moreover,P300wasdecreasedfurther in the high-load,
eightdisplayelementcondition;however,this effectwasfoundonly for the direction-change
primarytask. Similarstudies(e.g.,Kutas,McCarthy,& Donchin,1977;McCarthy& Donchin,
1981;Ragot,1984)havealsofoundthattheP300is influencedbyperceptualfactors.Taken
together,thesestudiessupportthe viewthat P300 amplitudecanbeusedasa measureof
workloadof aperceptualandcognitive,butnotresponse-relatednature.Further,P300latency
hasbeenfoundto changewith stimulusparameters,suchasmasking,thatareknownto affect
encodingandcentralprocessing,butnot for stimulus-responseprocessing,suchasstimulus-
responsecompatibility(McCarthy& Donchin,1981;Parasuraman,1990).Theseresultshave
beendiscussedintermsof themultiple-resourceviewof workloadthatholdsthatseveralseparate
resourcepoolsexistcorrespondingto differentmodalities,perceptualversusresponseprocesses,
andsoon (Wickens,1984). Thefactthat the P300amplitudewasnot sensitiveto tracking
difficulty suggeststhat this factor depletesresourcesthat arenot usedby the P300process
(Hoffman,1990;Parasuraman,1990).

Primary TaskERPs. Theafore-mentionedstudiesutilizedadual-taskmethodologyto
assessERPasa metricto resourcesof aperceptual/cognitivenatureandweretakenassupporting
themultiple-resourceview of workload.Theresultsdemonstratedthat, if the primary task
difficulty is manipulatedandyieldssecondarytaskperformancedecrements,in additionto
secondarytask P300 amplitudedecrements,then the resultscanbe taken as reflecting
competitionfor perceptual/centralprocessingresourcesoverandabovethoseplaceduponthe
response/outputsystem.However,accordingto Sirevaag,Kramer,Coles,andDonchin(1989),
theP300associatedwith theprimarytaskhasbeenoverlooked.Theycontendedthat, if P300
amplitudedoesindeedevinceresourcecompetitionshownto occurduringdual-taskperformance,
logicallythentheP300selicitedbytheprimarytaskshouldresultin anincreaseinamplitudeas
theworkloadof theprimarytaskis increased.Further,in dual-taskstudieswhereERPscanbe
recordedin responseto bothdiscreteprimaryandsecondarytask events,one shouldfind a
reciprocalrelationshipbetweenprimaryandsecondarytask P300amplitudes(Sirevaaget al.,
1989).

The amplitudereciprocityhypothesiswastestedin a studyby Wickens,Kramer,
Vanasse,andDonchin(1983)in whichsubjectswereaskedto tracka targetwitha cursor.The
ERPselicitedbythediscretechangesof theprimarytaskwererecordedinoneexperimentalrun.
ERPsfortonescountedduringthesecondarytaskwerealsorecordedin aseparatetrial. In this
study,task demandsweremanipulatingby changingthe numberof integrationsbetweenthe
joystickoutputandthemovementsof the cursoron the screen.They foundthat the P300
associatedwith thestepchangesincreasedin amplitudewith increasingprimarytaskdifficulty;
whereassecondarytaskP300amplitudesdecreased.

11



Recentstudieshavealsofoundthat P300selicitedto eventsfrom the primary task
increasein amplitudewith increasesin primarytaskdifficulty (Sirevaagetal., 1989;Strayer&
Kramer,1990;Ullsperger,Metz,& Gille, 1988) Forexample,Sirevaagetal.(1989)employed
amethodwherebothprimaryandsecondaryERPscouldbeconcurrentlyrecordedwithin the
sameexperimentalcondition.Measuresof P300amplitudeandperformancewereobtainedfrom
40 subjectswithin the contextof a pursuitsteptrackingtask performedaloneandwith a
concurrentsecondaryauditorydiscriminationtask. The pursuittrackingtask difficulty was
manipulatedby varyingboth the velocity andaccelerationcontrol dynamicsaswell asthe
numberof dimensions,eitheroneor two, to betracked. ERPswererecordedfor both the
trackingtasksetupchangesandfor thesecondarytasktones.Theresultsshowedthat, asthe
primarytaskdifficultywasincreasedasreflectedin increasedrootmeansquarederror(RMSE)
scores,therewasdecreasedsecondarytaskP300amplitudesandincreasedprimarytask P300
amplitudes.Moreover,the increasesin primarytaskP300amplitudeswereconcomitantwith
the amplitudedecrementsobtainedfor the secondarytask. Thesefindingsweretaken as
supportingthe amplitudereciprocityhypothesisbetweenprimaryandsecondarytask P300
amplitudesasafunctionof primarytaskdifficulty.

Simulation Research. Thepreviouslymentionedresearchhasprovidedimportant
evidenceabouttherelationshipbetweentheP300andmentalworkload.However,thesestudies
havenot addressedwhethersuchfindingscangeneralizeto real-worldenvironments.This is
especially important if such studies are to be applied to adaptively automated systems.
Fortunately, much research has been conducted that has addressed this issue. Studies have
employed a number of primary tasks, including pursuit and compensatory tracking, flight c onlrol
and navigation, and memory/visual search, as well as both visual and auditory secondary tasks
(Hoffman et al., 1985; Humphrey & Kramer, 1994; Kramer & Strayer, 1988; Kramer, Sirevaag,
& Braune, 1987; Kramer, Wickens, & Donchin, 1983; 1985; Lindholm, Cheatham, Koriath,
Longridge, 1984; Natani & Gomer, 1981; Sirevaag et al., 1993; Strayer & Kramer, 1990;
Theissen, Lay, & Stern, 1986). For example, Lindhom et al. (1985) elicited ERPs to auditory
stimuli during simulated landings and attack scenarios. They reported a larger P300 amplitude
decrease as the workload in the primary task was increased. A related study used an oddball, or
rare event, secondary-task to elicit ERPs as subjects performed a flight task simulation (Natani
& Gomer, 1981). This study found significant P300 amplitude decrements as well as longer
P300 latencies under the high workload conditions. However, similar results were not found for
a second replication of the task (Wilson & Eggemeier, 1991).

Theissen, Lay, and Stern (1986) employed a visual oddball task to elicit ERPs while
electronic warfare officers performed various tasks in a fighter aircraft simulator. Task difficulty
levels were manipulated by changing task parameters, such as target characteristics (e.g., number
and type) and threats to aircraft. The results demonstrated smaller P300 amplitudes in the
single-task control condition than in the simulated flight conditions. Kramer, Sirevaag, and
Braune (1987) evaluated workload during a flight simulation experiment that used an auditory,
rather than visual, oddball task that required subjects to discriminate infrequent from frequent
tones. They found that the P300 component of the ERP consistently indexed changes in flight
difficulty level with a finding of decreasedP300 amplitude with increased primary-task difficulty.
Further, P300 amplitude demonstrated a negative correlation with deviations from flight

headings. Such a finding suggests that primary task data can be coupled with ERP data to make
allocation decisions in an adaptively automated environment.

Sirevaag et al. (1993) elicited ERPs to irrelevant probes as helicopter pilots flew a series
of reconnaissance missions in a motion-based, high-fidelity helicopter simulator. They reported
smaller P300s amplitudes to probes as the communication load imposed on the pilots was
increased. Biferno (1985) also looked at communication load and ERPs. He recorded ERPs
from radio call signs as subjects performed flight simulator missions. P300 amplitude was found

12



to besmallerastheworkloadincreased.Furthermore,both fatigueandsubjectiveworkload
estimatesof workloadwerereportedto discriminatebetweenvariouslevelsof workload.These
resultssuggestthatERPsareassociatedwithothermeasuresof taskloadtherebyattestingto their
utility for workloadestimationandadaptiveautomation.

Mostof theresearchconductedwith ERPsandmentalworkloadhasbeenfocusedon
flight simulation.In oneof thefewapplicationsof ERPsoutsideof aviation,Wesenstenet al.
(1993)recordedauditoryERPsfrom 10maleparticipantsat 0900, 1600,and1830hours.
P300swerecollectedwhileparticipantswereat sealevelandanotheronewascollectedfollowing
arapidascentto asimulated4,300meteraltitude.Theresultsof thestudywerea decreasein
P300amplitude,whileP300latencyandreactiontimeincreased,followingtheascent.Another
study(Janssen& Gaillard,1985)usedanauditorySternbergmemorytaskto elicit ERPsfrom
automobiledriversastheydroveonthreedifferenttypesof roadway:rural,city, andhighway.
ExpresswaydrivingwasfoundtoelicitthesmallestP300amplitudes,andthiswasinterpretedas
beingthedrivingsegmentwith thehighestworkload(Wilson& Eggemeier,1991).

Conflicting Simulator Studies. A number of field studies have demonstrated that the
ERP reliably varies with workload. However, a few studies exist that have not shown such clear-
cut evidence (e.g., Fowler, 1994; Jannsen & Gaillard, 1985; Natani & Gomer, 1981). For
example, Fowler (1994) elicited ERPs using auditory and visual oddball tasks as subjects flew a
final approach and landing manuever under workloads varied by manipulating turbulence and
hypoxia. The oddball tasks required subjects to detect infrequent tones or flashes of an artificial
horizon. Although RMSE flying performance was found to be systematically degraded by the
two workload conditions, the P300 amplitude was not strongly related to performance.
However, P300 amplitude was inversely related to high taskload when the visual condition was
analyzed separately. The authors accounted for this result by invoking the amplitude reciprocity
hypothesis. As stated previously, this hypothesis suggests that, as the primary task difficulty is
increased and the P300 amplitude elicited by the secondary task decreases, P300 amplitude for
task-relevant events embeddedin the primary task increases. Therefore, the flashing horizontal
horizon was processed as part of the primary task causing the P300 amplitude to increase as a
function of task difficulty. However, this cannot account for the results reported for the
auditory condition as no systematic pattern emerged in contrast to a similar study done by
Kramer, Sirevaag, and Braune (1987).

Fowler (1994) also reported that P300 latency was found to covary with flight
performance, increasing as a function of workload in both modalities. O'Donnell and Eggemeier
(1986) suggested that the P300 amplitude indexes workload because it is sensitive to subject
expectancy that is disrupted by workload. This would explain the disassociationbetween latency
and amplitude because the mechanisms controlling expectancy would be different than those
indexing the speed of perceptual/cognitive processing. According to this view, the instrument
flight rules (IFR) flying task used by Kramer, Sirevaag, and Braune (1987) primarily interrupted
subject expectancy whereas the visual flight rules (VFR) task used by Fowler (1994) primarily
slowed stimulus evaluation. The authors noted that this possibility suggests that both P300
amplitude and latency can be used as indices of mental workload, depending on the nature of the
task (Fowler, 1994)

In a second study, Janssen and Gaillard (1985) were unable to replicate the finding of a
smaller P300 amplitude to probes during expressway driving despite the fact that heart-rate
variability was found to be significantly decreased in the more demanding expressway segment
in both studies. Also, Natani and Gomer (1981) were unable to replicate the findings of their
first study. Similar to Fowler (1994), however, Janssen and Gaillardreported that P300 latency
was sensitive to increases in taskload.

Real-Time Assessment of Mental Workload. Although the simulator studies cited
above, have yielded useful information, they have not addressed whether ERPs could measure
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dynamicchangesin mentalworkload.Forexample,in simulatorstudies,50-100singletrialERPs
maybe collectedandthen averagedto determinewhetherERP componentsdiscriminate
workloador performancelevels. In anadaptivelyautomatedenvironment,collectionof this
quantityof ERPdatamaynot bepractical.A numberof earlierstudies,however,havesuggested
thatERPscanbeusedfor on-lineevaluationsof moment-to-momentfluctuationsin operator
workload(Defayolleet al., 1971;Gomer,1981;Sem-Jacobsen,1981). Althoughresearchon
real-timeassessmentof mentalworkloadis still in its infancy,this line of researchhasbeen
expandedin severalrecentstudiesthat havesuggestedthat on-lineassessmentmaysoonbe
feasible.Forexample,FarwellandDonchin(1988)askedsubjectsto attendto oneitemin a 6
x 6 matrixof items.ThecolumnsandrowsflashedrandomlyandERPselicitedfromtheflashes
wereusedto discriminatebetweentheattendedandunattendeditems. A 95percentaccuracy
levelwasfoundusingjust26secondsof ERPdata.Kramer,Humphrey,Sirevaag,andMecklinger
(1989)alsofoundthaton-lineassessmentof mentalworkloadcanbeperformedwith a small
amountof ERPdata(Kramer,1991).

HumphreyandKramer(1994)alsoreportedastudythatexaminedwhetherERPscould
measuredynamicchangesinmentalworkload.TheyexaminedhowmuchERPdataisnecessary
to discriminatebetweenlevelsof mentalworkloadin complex,real-worldtasks. In ordert o
addressthis question,theyemployedabootstrappingapproachto investigatethe accuracyof
discriminatingbetweenworkloadlevelsusingdifferentamounts(e.g.,1to 75sec)of ERPdata.
Participantswereaskedto perform two tasks,monitoring and mental arithmetic, both

separatelyandtogether.Followingananalysisoftheperformance,subjectiveworkloadratings,
andaverageERPdatain thesingle-anddual-taskconditions,two differentconditionsfromeach
of the taskswereselectedfor furtheranalysis.Theresultsof the studyindicatedthat 90%
correctdiscriminationcouldbeachievedwith from 1to 11secof ERPdata.Theseresultswere
discussedin termsof real-timeassessmentof mentalworkloadusingERPdata. Kramer,Trejo,
andHumphrey(1996)discussedtheseresultsasevidencethat event-relatedpotentialscanbe
usefulin thedesignof adaptivesystems.

Research Purpose

The EEG and ERP represent viable candidates for determining shifts between modes of
automation in adaptive systems. Because real-time assessment of workload is the goal of system
designers wanting to implement adaptive automation, it is likely that these measures willbecome
the focus of research on adaptive automation. This optimism stems from a number of studies
that have suggested that they might be useful for on-line evaluations of operator workload
(Defayolle et al., 1971; Farwell & Donchin, 1988; Gomer, 1981; Humphrey & Kramer, 1994;
Kramer, 1991; Kramer et al., 1989; Sem-Jacobsen, 1981). Although these results suggest that
on-line assessment of mental workload may be possible in the near future, a good deal of
additional research is needed.

The determination of measures on which to dynamically allocate automation does not
represent the only area that needs exploration. Other areas include the frequency with which
task allocations are made, when automation shouldbe invoked, and how this invocation changes
the nature of the operator's task (Parasuraman et al., 1992). Specifically, it is not known how
changing among automation task modes impacts the human-automation interaction.

The present study attempted to examine the impact of cycles of automation on
behavioral, subjective, and psychophysiological correlates of operator performance.
Furthermore, the efficacy of use of EEG and ERPs for adaptive task allocation was also
examined. The study was an off-shoot of previous research by Pope, Bogart, and Bartolome
(1995) who examinedthe use of EEG as an adaptive trigger for changing among automation task
modes.
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The Biocybernetic System

Electroencephalogram. Pope, Bogart, and Bartolome (1995) reported one of the few
studies examining the utility of EEG for adaptive automation technology. These researchers
developed an adaptive system that uses a closed-loop method to adjust modes of automation
based upon changes in the operator's EEG patterns. The closed-loop method was developed to
determine optimal task allocation using an EEG-based index of engagement or arousal. The
system uses a biocybernetic loop that is formed by changing levels of automation in response t o
changing taskload demands. These changes were made based upon an inverse relationship
between the level of automation in the task set and the level of pilot workload.

The level of automation in a task set couldbe suchthat all, none, or a subset of the tasks

could be automated. The task mix is modified in real time according to operator's level of
engagement. The system assigns additional tasks to the operator when the EEG reflects a
reduction in task set engagement. On the other hand, when the EEG indicates an increase in
mental workload, a task or set of tasks may be automated, reducing the demands on the op erator.
Thus, the feedback system should eventually reach a steady-state condition in which neither

sustained rises nor sustained declines in the EEG are observed.

One issue for the biocybernetic system concerns the nature of the EEG signal used to
drive changes in task mode. Pope, Bogart, and Bartolome (1995) argued that differences in task
demand elicit different degrees of mental engagement that could be measured through the use of
EEG-based engagement indices. These researchers tested several candidate indices of engagement
derived from EEG power bands (alpha, beta, & theta). These indices of engagement were derived
from recent research in vigilance and attention (Davidson, 1988; Davidson et al., 1990; Lubar,
1991; Offenloch & Zahner, 1990; Streitberg, Rohmel, Herrmann, & Kubicki, 1987). For
example, Davidson et al. (1990) argued that alpha power and beta power are negatively
correlated with each other to different levels of arousal. Therefore, these power bands can be
coupled to provide an index of arousal. For example, Lubar(1991) found that the band ratio of
beta/theta was able to discriminate between normal children and those with attention deficit
disorder.

Pope and his colleagues (1995) reasoned that the usefulness of a task engagement index
would be determined by a demonstrated functional relationship between the candidate index and
task operating modes (i.e., manual versus automatic) in the closed-loop configuration. They
used both positive and negative feedback controls to test candidate indices of engagement
because each should impact system functioning in the opposite way, and a good index should be
able to discriminate between them. For example, under negative feedback conditions, the level
of automation in the tasks was lowered (i.e., automated) when the EEG index reflected increasing
engagement. On the other hand, when the EEG reflected increases in task demands, automation
levels were increased. Task changes were made in the opposite direction under positive feedback
conditions; that is, the level of automation in the tasks was maintained when the EEG

engagement index reflected increasing task demands. If there was a functional relationship
between an index and task mode, the index should demonstrate stable short-cycle oscillation
under negative feedback and longer and more variable periods of oscillation under positive
feedback. The strength of the relationship wouldbe reflected in the degree of contrast between
the behavior of the index under the two feedback contingencies.

Pope, Bogart, and Bartolome (1995) found that the closed-loop system was capable of
regulating participants' engagement levels based upon their EEG activity. They reported that
the index 20 beta/(alpha+theta) possessedthe best responsiveness for discriminating between the
positive and negative feedback conditions. The conclusion was based upon the increased task
allocations in the negative feedback condition witnessed under this index than under either the
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beta/alphaor alpha/alphaindexes.Theseresultsweretaken to suggestthat the closed-loop
systemprovidesameansfor evaluatingtheuseof psychophysiologicalmeasuresfor adapting
automation.A numberof subsequentstudies(Prinzel,Scerbo,Freeman,& Mikulka, 1995;
Prinzel,Hitt, Scerbo,Freeman,& Mikulka, 1995;Prinzel,Scerbo,Freeman,& Mikulka, 1997)
have also reportedthat the systemis capableof moderatingworkload on behavioral,
physiological,andsubjectivedimensions.

Recently,animprovementhadbeenmadeto thebiocyberneticsystem.Theprevious
systemusedby Pope,Bogart,andBartolomeinitiatedchangesin automationlevelsbasedon the
slopeof theindextakenfromsuccessivemeasurements.Oneproblemwithusingaslopemeasure
concernsits sensitivityto changesin operatorarousalandits reflectionof levelsof operator
engagement.Thesystemmakestaskallocationdecisionsregardlessof whethertheengagement
levelis highor low. In otherwords,anoperator'soverallengagementlevelmaybequitelow
relativeto hisor hernormalbaselineengagementlevel. However,thesystemmaymakeatask
allocationdecisionto automateataskmerelybecausethearousallevelis higher,whenthenext
EEGengagementindexis derived,despitethe fact that the overallarousallevel is still low
(Hadley,et al., 1997;Prinzel,Scerbo,Freeman,& Mikulka, 1997). Therefore,the system
makestaskallocationdecisionswithouta considerationof individualdifferencesinengagement.

Onestrongcandidatefor makingsuchdecisionsis theuseof algorithmsbasedon the
absolutelevelsof theEEGengagementindex. In suchasystem,baselinedatacouldbeobtained,
suchasthemeanof theEEGengagementindex,for anindividualoperator.Thatdatacouldthen
befedinto abiocyberneticsystemandtaskallocationdecisionsmadebaseduponthe absolute
valueof the indexrelativeto themeandataobtainedduringthebaselineperiod.

Prinzel,Freeman,Scerbo,andMikulka(1997)reportedonsucha biocyberneticsystem.
Theyexaminedtheeffectivenessof thethreeindicesderivedfromthesamefour corticalsites

asPope,Bogart,andBartolome(1995). Theirsystemusedtheaverageindexderivedfromthe
participant'sbaselineEEGtomaketaskallocationdecisions.Participantswereaskedto perform
a compensatorytrackingtaskunderbothnegativeandpositivefeedbackconditions.Theresults
werethatparticipantsperformedbetterunderthenegativefeedbackconditionthan underthe
positivefeedbackcondition.Also, the index20beta/(alpha+theta)wasfoundto besuperiorin
distinguishingbetweennegativeandpositivefeedbackin termsof behavioral,subjective,and
physiologicalcorrelates.Thus,the task allocationandphysiologicaldatawerefoundto be
comparableto thepreviousresultsof studiesusinga slopemethodto drivethe biocybernetic
system.However,the resultsdemonstratedthat the systemwasalsobetterableto improve
performanceandmoderateworkloaddemands.Thesefindingsareimportantfor thedesignof
adaptiveautomation.Theuseof a slopeapproachmayworkwellwithbinarytypesof adaptive
automation.More complexsystemsincorporatingmultiple levelsof automation,however,
wouldrequirealgorithmsthatcantriggertaskallocationsbasedupondifferencesamongseveral
engagementlevels.Thesefindingssuggestthat a system,usingabsolutemeasuresof operator
engagement,maybeusedto allocatetasksamongvarioustaskengagementlevels.

Short-Cycle Automation. Clearly,the researchon automationhasshownthat a
numberof deleteriouseffectson humanperformanceoftenaccompanythe advantagesthat
automationprovides.AsEndsleyandKiris(1994)havenoted,researchisneededthatexamines
varioustechniquesthat wouldestablishhuman-centeredautomationthatminimizesthenegative
effectsof automationwhile maximizingoverall human-systemperformance. Adaptive
automationhasbeentoutedasjustsucharemedy.However,althoughmuchspeculationhasbeen
madeconcerningadaptiveautomation,it remainsto beseenwhetheradaptiveautomationcan
deliveronits promises(Glennet al., 1994).Woods(1996)statedthat, "conventionalwisdom
aboutautomationmakestechnologychangeseemsimple....However,thereality of technology
change...isthattechnologicalpossibilitiesoften areusedclumsily,resultingin strong,silent,
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difficult-to-directsystemsthatarenot teamplayers(p. 15)";this is whathecalls"apparent
simplicity,realcomplexity". Whatisrequiredthenis to examinewhetheradaptiveautomation
really can provideanythingadditionalnot alreadypresentby other, less technological
approaches.

A numberof studieshavedemonstratedthat cyclingbetweenautomationmodesmaybe
beneficial(Ballas,Heitmeyer,& Perez,1991;Hadley,Prinzel,Freeman,& Mikulka, 1998;
Hilburn,Molloy, Wong, & Parasuraman,1993; Parasuraman,Molloy, & Singh, 1993;
Parasuraman,Bahri,Molloy, & Singh,1992;Johannsen,Pfendler,& Stein,1976;Scallen,
Hancock,& Duley, 1995). Thesestudieshave shownthat short-cycleautomationcan
significantlyimproveperformanceandlowerworkload. For example,Scallen,Hancock,and
Duley(1995)hadsixpilotsperformtracking,fuelmanagement,andsystemmonitoringtasks
for ninetrials lastingfive minuteseach.Theninetrials consistedof factorialcombinationsof
threeconditionsof trackingdifficulty (low, medium,andhigh)andthreeconditionsof cycle
duration(15, 30, or 60 seconds).Theseresearchersfoundthat tracking performancewas
significantlybetterat the 15-seccycleduration,but therewereno differencesin mental
workloadacrossthethreecyclingconditions(12< .07).

Hadley,Prinzel,Freeman,andMikulka(1998)expandedon theScallen,Hancock,and
Duley(1995)study. Theseresearchersaskednineparticipantsto performa trackingtaskand
anauditory,oddballtaskfor threetrials consistingof a 15-,30-, and60-seccycledurations.
ERPsweregatheredto infrequent,hightonespresentedin anauditoryoddballtask.Theresults
showedthat tracking performancewassignificantlybetterunder the 15-secduration,but
participantsratedworkloadsignificantlyhigherunderthis condition. Theseresultswere
interpretedin terms of a micro-tradeoff;that is, participantsdidbetter underthe 15-sec
conditionat theexpenseof workingharder.Theconclusionwassupportedby theERPresults.
An examinationof theEEGgatheredfive secondsaftereachtaskallocationrevealedthat P300
latencywasfoundto beconsiderablylongerandtheamplitudeconsiderablysmallerunderthe 15-
seccycledurationthanundereitherthe30-or 60-seccycleconditions.Therefore,theseresults
suggestthat shortperiodsof manualreallocationmayprovebeneficialto performanceand
moderatingworkloaddemands.However,suchbenefitsaretemperedby increasedreturn-to-
manualdeficits(Wiener& Nagel,1988). Moreover,theysupporttheuseof ERPsmetricsof
workloadin thedesignandimplementationof adaptiveautomationtechnology. Note that
thequestionof adaptiveautomationdoesnothingeon itsconceptualunderpinnings.Inherently,
it makessenseto transformthe operator'staskattimeswhentheoperator'smentalstateis less
thanoptimal. However,this is not to saythat adaptiveautomationprovidesutility that
supersedesthedifficultiesthatwe,asresearchers,designers,andpractitioners,mayfacewith the
implementationof this type of technology.Suchstudies,as thosediscussedpreviously,
demonstratethatschedulesof staticautomationcanalsohavepositiveeffectson performance
andworkload.Therefore,it is of theoreticalandpracticalinterestto determinewhatbenefits,
if any,thatadaptiveautomationprovidesbeyondthatof staticautomationthat cyclesbetween
automationmodesbaseduponscriptedautomationschedules.

The presentstudysoughtto examinethe impact that adaptiveautomationhason
performanceaswell assubjectiveandpsychophysiologicalmeasuresofworkload.To assessthe
researchquestion,the biocyberneticsystemwasusedto dynamicallyallocatetasksbetween
manualandautomaticmodes.Participantswereyokedto otherparticipantsthat alsoperformed
theexperimentaltasks. However,thetaskallocationsthattheparticipantsexperiencedwere
basedupontheexactcycleschedulingof theyokedcounterpart.Therefore,it waspossibleto
examinethe impactthat adaptiveandstaticcyclinghason variouscorrelatesof workload.
Further,thedesignalloweda comparisonof thesetwo formsof taskallocation.

Event-RelatedPotentials. As noted,many theories,models,andplatforms for
implementingadaptiveautomationhavealreadybeenproposed(Mouloua& Parasuraman,
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1995),includingtheuseofbiopsychometricmeasures,suchasERPs,asindicesof operatorstates
in adaptivesystems(Defayolle,Dinand,& Gentil,1971;Gomer,1981;Hancock,Chignell,&
Lowenthal,1985;Reising,1985;Rouse,1977;Sem-Jacobson,1981).Theuseof ERPsin the
designof adaptiveautomationsystemswasconsideredsomeyearsago in the context of
developing"biocybernetic"communicationbetweenthepilot andtheaircraft(Donchin,1980;
Gomer,1981). The ideaconcernedsystemsin whichtasksor functionscouldbeallocated
flexibly to operators,usingERPs,whichmayallowtheoptimizationof mentalworkloadto be
soughtin a dynamic,real-timeenvironment.Forexample,a methodmightbedevelopedfor
obtainingmomentaryworkloadlevelsallowinganindexto bederived,suchastheamplitudeof
theP300waveoftheERP. Theworkloadindexcouldthenbecomparedin real-timeto astored
profileof theERPassociatedwith that task(s). The profile wouldbegeneratedfrom initial
baselinedata.If theoptimalphysiologicallevelfor ataskisexceeded,thenthetask(s)couldbe
off-loadedfrom the operatorandallocatedto the system. Further,if the workloadlevels
becometoolow,thenthetask(s)couldbetransferredbacktotheoperator(Parasuraman,1990).
In recentreviews,however,Parasuraman(Byrne& Parasuraman,1996;Parasuraman,1990)
concludedthatalthoughmanyproposalshavebeenmadeconcerningtheuseof ERPsin adaptive
systems,little actualresearchhasbeenconducted.

Theproposedstudyattemptedto furthertheresearchon theuseof ERPsfor adaptive
automation.Whatis proposedis thattheabsolutebiocyberneticsystembeusedto maketask
allocationdecisionsbetweenmanualandautomatictask modesas previouslydescribed.
Participantswerealsoaskedto perform an oddball,auditory task concurrentlywith the
compensatorytrackingtask. TheEEGsignalwasfedto boththebiocyberneticsystemandto
a dataacquisitionsystemthatpermittedtheanalysisof ERPsto highandlow frequencytones.
Suchresultsarehopedto assesstheefficacyof usingERPsin thedesignof adaptiveautomation
technology.

Research Hypotheses

1. Based upon previous findings (Hadley, Mikulka, Freeman, Scerbo, & Prinzel, 1997;
Prinzel, Freeman, Scerbo, & Mikulka, 1997) with the absolute biocybernetic system, it is
predicted that the system will make significantly more task allocations under the negative
feedback condition than under the positive feedback condition. The hypothesis is confined to
the data gathered from the adaptive automation group as the schedules of task allocations for
the yoked and control groups are determined based upon the data gathered from the former
group.

2. Parasuraman, Molloy, and Singh (1993) demonstrated that manual task reallocation
may be a potential countermeasure to decrements in performance often observed with
automation. They found a temporary return to manual control of a monitoring task from
automated functioning reduced failures of omissions for both pilots and nonpilots. Furthermore,
more sustained benefits were observed with multiple or repetitive manual reallocations. Similar
findings have been reported by Scallen, Hancock, and Duley (1995) and Hadley, Prinzel,
Freeman, and Mikulka (1998) for tracking performance. Therefore, because the negative
feedback condition is predicted to produce the most task allocations, the increase in manual
reallocations should result in significantly better tracking performance and lower subjective
workload scores than under the positive feedback condition.

3. Another hypothesis concerns how behavioral and subjective measures are moderated
by adaptive automation relative to static automation. It is predicted that participants in the
adaptive automation condition will have better tracking performance and lower subjective
workload ratings than the yoked participants in the static automation condition. Therefore,
performance and workload metrics should evince significant differences between the adaptive and
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yokedgroupconditionswith no differencesobservedbetweenthe yoked andcontrol group
conditions.Specifically,participantsin theadaptiveautomation,negativefeedbackcondition
shouldhavesignificantlybetterperformanceandlowerworkloadscoresthanall othergroup,
feedbackconditions.

4. Becausetaskallocationsbetweenoperatingmodesarenotcontingentuponchanges
in workloadasmeasuredbyEEGpatternsfor thoseparticipantsin theyokedcondition,there
shouldbeno differencesin trackingperformanceor subjectiveworkloadestimatesbetween
negativeandpositivefeedbackconditions.The reasonis that anytask allocationsmadeare
determinedbaseduponthescheduleof their yokedcounterpartandareunrelatedto themental
stateof theparticipant.Likewise,thereshouldbenodifferencesin performanceor subjective
workloadmetricsbetweentheyokedandcontrolgroupconditions.

Conversely, if the effects are due to increased manual reallocations and not to the
adaptive method of task allocation, increasing the automation cycle schedule should result in
improved performance and lowered workload for participants in the yoked condition under the
negative feedback condition than under the positive feedback condition. Additionally, there
should be no differences in performance or subjective workload scores between the three group
conditions.

5. For participants in the adaptive automation group, the derived EEG engagement
index is hypothesized to vary as a function of which feedback condition and which task mode
the system was operating under. Under positive feedback, when the EEG patterns reflect a low
task engagement state, the system automates the tracking task that theoretically further lowers
engagement levels. However, if the EEG patterns reflected increasing engagement, the system
allocates the tracking task to the manual task mode. Therefore, for positive feedback, it is
hypothesized that the EEG engagement index would be highest during manual task mode and
lowest during the automatic task mode.

The opposite pattern is expected for negative feedback. Negative feedback is designed
to induce optimal states of task engagement. The system does this by allocating tasks to the
operator when the EEG shows that the engagement state is below baseline levels and automates
the task when the engagement state is above baseline levels. Therefore, for negative feedback,
the EEG engagement index is expected to be significantly lower during the manual task mode
than during the automatic task mode (Prinzel, Freeman, Scerbo, & Mikulka, 1997; Prinzel, Hitt,
Scerbo, Freeman, & Mikulka, 1995; Prinzel, Scerbo, Freeman, & Mikulka, 1995; Prinzel, Scerbo,
Freeman, & Mikulka, 1997).

6. Numerous studies have demonstrated that the P300 amplitude and latency reflects
workload levels wherein the amplitude decreases and latency increases with increases in workload
demands. Therefore, it is predicted that the amplitude of the P300 component to infrequent,
high tones in a secondary, auditory oddballtask is predicted to be significantly smaller and P300
latency longer under the higher workload, positive feedback condition than under the lower
workload, negative feedback condition.

7. There should be a significant feedback condition X group condition interaction with
the P300 discriminating between the two feedback conditions only for those participants in the
adaptive automation group. No differences are expected to be evident between the yoked
condition and control conditions regardless of which feedback condition the biocybernetic
system is operating under.

However, as the results of Scallen, Hancock, and Duley (1995) suggest, if increasing the
number of task allocations between manual and automated operating modes results in lowered
performance errors and workload scores, then differences in the P300 components may be seen
between the two feedback conditions for participants in the yoked condition. If performance
and workload differences are seen, it is predicted that the P300 amplitude should be smaller and
latency longer under the positive feedback condition than under the negative feedback condition.
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Also,nodifferenceswouldbeexpectedbetweenthethreegroupconditionsfor P300amplitude
andlatency.

8. Efficient taskperformancerequiresselectiveattentionto task-relevantevents.
Attentionto theseeventsamplifiesarangeof ERPcomponents,includingP100,N100,P200,
andN200aswellasslower,broadnegativities.Therefore,in additionto theP300 component,
thestudywill alsoexaminetherelationshipof otherERPcomponents.Althoughmostresearch
hasfocusedon theP300componentof theERP,anumberof researchershavesuggestedthat
theseother componentscanalsobeusedin the assessmentof workload(e.g., Lindholm,
Cheatham,& Koriath, 1984). The consensusis that attention in high workloadsituations
requiresallocationof bothcommon,nonspecificresources(e.g.,N100component)andtask-
specificresources(i.e.,P300component). Generally,the amplitudedecreasesandlatency
increasesasworkloaddemandsareincreased(Parasuraman,1990).Therefore,thereshouldbe
asignificantdifferencein amplitudeandlatencyof theseERPcomponentsbetweennegativeand
positivefeedbackconditions.

9. Furthermore,it is expectedthattherewill bea significantfeedbackX experimental
groupinteractionfor thesedifferentwaveforms.Theamplitudesarepredictedto begreaterand
thelatenciesshorterfor infrequent,hightonesunderthenegativefeedbackconditiononly for
thoseparticipantsin theadaptiveautomationgroup.Nodifferencesareexpectedbetweenany
othergroup,feedbackconditioncombination.

However,if increasedmanualreallocationsareresponsiblefor the loweredtask load
undernegativefeedback,no differencesin theseERPcomponentswouldbeexpectedbetween
thethreegroupconditions.Rather,only a main effect shouldbefoundbetweennegativeand
positivefeedback.
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METHOD

Participants

Thirty-six undergraduate and graduate students served as participants for this
experiment. The ages of the participants ranged from 18 to 40. Participants were given
monetary compensation or extra course credit for their voluntary participation. All participants
were right-handed as measured by the Edinburgh handedness survey (Oldfield, 1971) and had
normal or corrected-to-normal vision.

Apparatus

Electrical cortical activity was recorded with an Electro-Cap International sensor cap.
The lycra sensor cap consists of 22 recessed tin electrodes arranged according to the

International 10-20 system (Jasper, 1958). One mastoid electrode was used for a reference.
Conductive gel was placed into each of the four electrode sites, the reference, and the ground
using a dispenser tube and a blunt-tipped hypodermic needle.

The NeuroScan SynAmps is a AC/DC amplifierthat provides both a broadband amplifier
and a high speed digital acquisition system. The system has four high speed digital signal
processors (DSPs) with 1 MByte of RAM per DSPs for data acquisition. The SynAmps has a 33
MHz 486 DX processor with 4 MBytes of RAM and an electronic flash disk dedicated to
management of DSPs. It provides for real-time digital filtering by the DSPs allowing filter
settings from DC to 10kHz. Sampling rates can be setbetween 100 Hz to 20 kHz from 1 to 32
channels. Also, the system has 28 monopolar and 4 bipolar channels provided through a
NeuroScan SynAmps headbox connector. The SynAmps amplifier has tracking anti-aliasing
filters, first stage amplification to reduce Signal/Noiseratio, and an on-line DC offset correction.
All impedance calibration is built-in and the input signal is managed through SCAN software.
The system was used for ERP acquisition and analyses.

The SynAmps amplifier was connected via an analog output board to a Biopac EEG 100A
Analog/Digital converter through a four-line buffered cable. The analog output board takes the
output signal from the SynAmps prior to the sample and hold (S/H) circuits. The analog output
board filters the signal and then routes the output to a D-37 connector on the SynAmps back
panel. Band-limiting is gathered from single-pole high-pass (1 Hz) and low-pass (70 Hz) filters.
The anti-aliasing filters are set for 0.2 times the sample frequency.

The system was also connected to a PC computer through the parallel port on the back
panel of the SynAmps amplifier. The Biopac system consists of a four channel, high gain,
differential input, bio-potential amplifier. The frequency response is 1 to 100 Hz. The gain
setting is x5000 that allows an input signal range of 4000uV (peak-to-peak). However, for the
present study, only the Biopac A/D converter was used.

The Biopac A/D converter was connectedto the Macintosh Virtual Instrument (VI). The
software designed to run the V1 is the Real Time Cognitive Load Evaluation System (RCLES v
3.3.1). It calculates the total EEG power in four bands: theta (4-8 Hz), alpha (8-13 Hz), beta
(13-22 Hz), and high beta (38-42 Hz). The V1 also performs the engagement index calculations
and commands the task mode changes through serial port connections to the task computer.

The Macintosh Virtual Instrument was connected to a PC WIN 486 DX computer that
was used to run the MAT (see below). Data was binned according to assigned bit numbers placed
in the data record from the PC computer. Auditory oddball tone sequencing and gating was
controlled by the V1 software and these event signals were also placed in the data record as ERP
synchronization triggers.
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The monitor wasa NECMultiSync2A colormonitor. A joystick wasusedfor the
compensatorytrackingtask. Thegainonthejoystickwassetto 60%of itsmaximumandhad
abandwidthof 0.8Hz.A graphicaldepictionof theexperimentalset-upis shownin Figure1.

Experimental Design

A 2 feedback condition (positive or negative feedback) X 2 task mode (automatic or
manual mode) X 3 experimental group condition (yoked, control, or adaptive automation)
mixed-subjects design was employed. The experimental group condition represented the only
nested variable. All other conditions were counterbalanced.

Automation Cycle Sequencing. Each of the thirty-six participants was randomly
assigned either to the adaptive automation group (n - 12), the yoked (n - 12), or the control
(n - 12) group. The adaptive automation condition required the participants to perform the
compensatory tracking task and auditory oddballtask under the closed-loop configuration. The
data records of switches between task modes were then used to determine the pattern of task
allocations to be made between automatic and manual task modes for participants in the yoked
condition. Therefore, these participants performed the tracking task under the exact same
schedule of manual and automatic task modes as their experimental complement. The control
group, on the other hand, consisted of participants who performed a random assignment of task
allocations between task modes. The

schedule of task allocations was determined for each control participant based upon the average
number of switches in both the positive and negative feedback conditions for the adaptive
automation group. For example, control participant number one received a random schedule of
task allocations based upon the average number of task allocations that adaptive automation
participant number one experienced. All participants, however, had the same sequence of high
and low tones in the auditory oddball task.

Dependent Variables. The dependent variables included: (a) the EEG engagement
index defined as 20 beta / (alpha+theta); (b) the amplitude and latency of the ERP waveform was
analyzed; (c) the number of switches, or task allocations, under each feedback condition; (d)
tracking performance as measured by root-mean-squared-error (RMSE); (e) the number of
counted high tones in the oddball task; and (7) subjective workload assessed by the NASA-TLX
(task load index; Hart & Staveland, 1988; Byers, Bittner, & Hill, 1989).

Statistical Tests and C rite rio n. All ANOVAs using a repeated measures variable were
corrected with the Greenhouse_3eisserprocedure (Greenhouse & Geisser, 1959). Alpha level was
set at .05. All post hoc comparisons used simple effects analyses and the Tukey post hoc
procedure.

Experimental Tasks

Tracking Task. Participants were run using a modified version of the NASA Multi-
Attribute Task (MAT) battery (Comstock & Arnegard, 1992). The MAT battery is composed
of four separate task areas, or windows, constituting the monitoring, compensatory tracking,
communication, and resource management tasks. These different tasks were designedto simulate
the tasks that airplane crew members often perform during flight. Only the compensatory
tracking task was used in the present study. The task requires participants to use a joystick to
maintain a moving circle, approximately 1 cm in diameter, centered on a .5 cm by .5 cm cross
located in the center of the screen. Failure to control the circle results in its drifting away from
the center cross.

Auditory Oddball Task. The auditory oddball secondary task consisted of high and
low tones at 1100 Hz and 900 Hz, respectively. The frequency of the tone presentation was
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oncepersecond,andtheprobabilityof ahightonewas.10msecswhichwasrandomlyassigned
for presentation.The inter-stimulusinterval waskept uniform acrossthe experimental
conditions.Therefore,overa 16-minutetrial therewere96hightonesignalsand864low tone
signals.Theorderingof theonsetof toneswasheldconsistentacrossparticipants.Thetones
weregatedtoprovideariseandfall timeof. 10shapingasquarewavesignal. The toneswere
presentedto bothof theparticipant'searsthroughstereoKOSSheadphonesat 60dBSPL.

EEG Recording and Analysis

The EEG was recorded from sites Pz, Cz, P3, and P4. A ground site was used located
midway between Fpz and Fz. Each site was referenced to the left mastoid. The EEG was routed
through a SynAmps amplifier from an analog output board to the Biopac A/D converter. The
outputed analog signal was converted by the BioPac A/D converter to digital, and the digital
signals were arranged into epochs of 1024 data points (roughly two and one half seconds).
Digitized input channels were then converted back to analog and then routed to an EEG interface
with a LabVIEW Virtual Instrument (VI). The V1 calculated total EEG power from the bands of
theta, alpha, and beta for each of the four sites and converted the signal into a spectral power
form using a Fast Fourier Transform (FFT).

The EEG frequency bands were set as follows: alpha (8-13 Hz), beta (13-22 Hz), theta
(4-8 Hz), and high beta (38-42 Hz). The V1 also calculated the EEG engagement index that
determines the MAT Battery task mode changes. Automation task mode was switched between
manual and automatic depending upon the feedback condition. The EEG index was calculated
every 2 sec with a moving 20-sec window. The window was then advanced two seconds and a new
average was derived. This moving window process continued for the duration of the trial. At
each epoch, the index was compared to the mean value determined during a five-minute baseline
period for each participant. An EEG index above baseline (see below) indicated that the
participant's engagement level was high while an EEG index below baseline indicated that
engagement level was low. An artifact rejection subroutine examined the amplitudes of each
epoch from the four channels of digitized EEG and compared them with a preset threshold. If
the voltage in any channel exceeded the threshold for more than 25% of the epoch (about two-
thirds of a second) the epoch was marked as artifact and the calculated index was replaced with
a value of zero. These epochs were then ignored when computing the value of the index. The
data record resulting from an epoch containing an artifact was marked when it was written to the
data file so that it could be ignored during later data analyses.

ERP Recording and Analyses

The NeuroScan SynAmps amplifier system was used for ERP acquisition and analyses.
The software package for gathering ERPs was the Acquire386 SCAN software version 3.00.

Data was acquired based upon assigned bit numbers placed in the data record from the MAT
computer. The signal was gathered with 500 sweeps and points in the time domain providing an
A/D rate of 500. All corrections and artifactual rejection were done off-line. The amplifier had
a gain setting of 500 with a range of 11 mV and an accuracy rate of 0.168 uV/bit. The low pass
filter was 30 Hz and the high pass filter was set at 1.0 Hz. EEG electrodes had an impedance of
below 5 KOhms.

The continuous EEG data file was analyzedto reduced ocular artifact through VEOG and
HEOG electrodes. These channels were assigned weights according to a sweep duration of 40 ms
and minimum sweep criteria of 20. The continuous EEG data file then transformed into an EEG
epoch file based on a setting of 500 points per data file. The epoch file was then baseline
corrected in the range of -100 to 0 msec from the onset of the signal. ERPs were acquired
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througha sortingprocedurebasedupontheassignedbitnumbersin thedatafile. Thesignalwas
thenfurtherfilteredwitha low passfrequencyof 62.5andalow passslopeof 24db/oct. The
highpassfrequencywas5.00Hzwithahighpassslopeof 24db/oct.All filteringwasperformed
in thetimedomain.All EEGwasreferencedto a commonaverageandwassmoothedby the
SCANsoftware.

Thecriteriafor ERPcomponentclassificationwasdeterminedbythelargestbase-peak
amplitudeandlatencywithinapre-setwindow(Kramer,Trejo,& Humphrey,1996):N100(0-
150msec),N200(150-250msec),Pl00 (0-150msec),P200(150-250msec),andP300(275-
750msec).

Experimental Procedure

The participant's scalp was prepared with rubbing alcohol and electrolyte gel. A
reference electrode was then affixed to the participant's left mastoid by means of electrode tape
and an adhesive pad. ECI Electro-Gel conductive gel was then placed in the reference electrode
with a blunt-tip hypodermic needle. Electrode gel was also placed in each of the four electrode
sites (Pz, Cz, P3, P4), the ground site, and VEOG and HEOG electrodes. Using the blunt-tip
hypodermic needle, the scalp was lightly abraded to reduce the impedance level at each site,
relative to the ground, to less than five KOhms.

Participants were then instructed on how to perform the auditory oddball task and the
compensatory tracking task. Once the participant had an understanding of these tasks, the EEG
electrode cap was connected to the SynAmps headbox connector. Participants were then asked
to sit quietly with their eyes open and then with their eyes closed for five minutes each. EEG
was gathered during this time to establish baseline parameters. The mean EEG value during this
time represented the baseline criteria for determining task allocations during the experimental
session.

After gathering baseline data, participants were given a five-minute break and, thereafter,
the experimental session began. For participants in the adaptive automation group, there were
two experimental trials consisting of 16 minutes of either positive or negative feedback.
Participants in the yoked and control conditions also had two 16-minute trials. However, the
yoked participants performed the tasks based upon the schedule of task allocations of their
yoked counterparts. For the control group, the two 16-minute trials consisted of a random
assignment of the same number of task allocations between manual and automatic task modes
for both positive and negative feedback that participants in the adaptive automation group
experienced (see above).

After each experimental trial, all participant were asked to fill out the NASA-TLX (see
Appendix A). After the experimental session is completed, all participants were debriefed.
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RESULTS

The data from the study were analyzed using a series of MANOVAs (multivariate
analysis of variance) and ANOVAs (analysis of variance) statistical procedures. In all cases,
alpha level was set at .05 and was used to determine statistical significance. The Greenhouse-
Geisser procedure was used to correct psychophysiological data (Greenhouse & Geisser, 1971).
Analyses of simple effects and Student Newman-Keuls (SNK) post-hoc tests were used to

examine significant interaction effects.

Task Allocations

A simple ANOVA procedure was performed on the task allocation data for feedback
condition for the adaptive group only. The negative feedback condition (M - 68.92) produced

more task allocations than the positive feedback condition (M__- 50.83), F (1, 11) - 6.50 (see

Table 1). An ANOVA also revealed that the amounts of time participants performed the
tracking task in the automatic and manual task modes was not significantly different regardless
of feedback condition, F (1, 11) - 0.97.

Table 1. Analysis of Variance for Task Allocations

Source df SS MS F

Feedback Condition 1 1962.0416 1962.0416 6.50*

Note. *p < .05

Tracking Performance

A 3 (group) X 2 (feedback) ANOVA revealed significant main effects for feedback
condition, F (1, 33) - 9.01; and group condition, F (2, 33) - 3.31 (see Table 2). Participants
performed significantly better under the negative feedback condition (M- 8.91)than under the
positive feedback condition (M - 11.14). Additionally, participants in the adaptive automation
group did significantly better on the tracking task (M - 8.55) than those participants in the
yoked condition (M- 11.06) or in the control condition (M- 10.45).

There was also a group X feedback condition interaction for tracking performance, F (2,
33) - 4.84 (see Table 2). Participants in the adaptive automation group had significantly lower
tracking error when performing the task under the negative feedback condition than under any
of the other group, feedback condition combinations.
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Table2. Analysisof Variancefor TrackingPerformance

Source df SS MS F

Feedback Condition 1 357.1981 357.1981 9.01"

Group Condition 2 327.9033 163.9561 3.31"
Group X Feedback 2 383.4233 191.7116 4.84*

Note. *p < .05

Subj ective Workload

A significant main effect was found for feedback condition, F (1, 11) - 39.83 (see Table
3). Participants in the adaptive automation group rated the negative feedback condition to be
lower in workload (M- 72.50) than the positive feedback condition (M - 87.66). There was
also a main effect for group condition, F (2, 33) - 13.76. Those participants in the adaptive
automation group reported overall workload (M- 63.70) to be much lower than those
participants in the yoked condition (M - 88.04) or in the control condition (M- 88.50).

A group X feedback condition interaction was also found, F (2, 33) - 27.67. A simple
effects analysis showed that participants in the adaptive automation group rated the negative
feedback to be much lower in workload than under any of the other group, feedback condition
combinations. No other differences were found to be significant.

Table 3. Analysis of Variance for Subjective Workload

Source df SS MS F

Feedback Condition 1 4140.500 4140.500 39.83*

Group Condition 2 9655.583 4827.791 13.76"
Group X Feedback 2 5752.583 2876.291 27.67*

Note. *p < .05

Auditory Oddball Task Performance

There was a significant group X feedback condition interaction for secondary task
performance, F (2,33) - 4.12 (see Table 4). Participants, in the adaptive automation group,
were more accurate in counting the number of high tones presented when they performed the
task under the negative feedback condition (M- 94.32) than under the positive feedback
condition (M- 83.29). Also, performance under the adaptive automation, negative feedback
condition was significantly better than performance under the yoked group condition for
positive feedback (M - 85.32) or negative feedback (M - 87.32). Additionally, performance for
participants in the control condition for positive feedback (M- 84.32) or negative feedback (M
- 84.98) was significantlypoorer than when performing the task under the adaptive automation,
negative feedback condition. Simple effects analyses found no differences between the yoked
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groupor controlgroupconditions.Furthermore,performancewasnot significantlydifferent
betweenthesetwo groupconditionsandtheadaptiveautomation,positivefeedbackcondition.

Table4. Analysisof Variancefor SecondaryTaskPerformance

Source df SS MS F

Feedback Condition 1 309.3410 309.3410 3.94

Group Condition 2 198.3400 99.1700 2.97
Group X Feedback 2 420.3420 210.1710 5.25*

Note. "1o < .05

Electroencephalogram

An ANOVA on the EEG engagement index for the adaptive automation condition
revealed no main effects for feedback condition, F (1,11) - 0.89; or task mode, F (1,11) - 0.34.
There was, however, a significant feedback condition X task mode interaction for the EEG

engagement index, F (1, 11) - 201.32 (see Table 5). A simple effects analysis foundthat the EEG
engagement was higher during positive feedback, manual task mode (M - 11.91) and lower during
negative feedback, manual task mode (M- 8.23). Also, the EEG engagement index was larger
under the negative feedback, automatic task mode (M - 11.45) than under the positive feedback,
automatic task mode (M- 8.10). No differences were found between the negative feedback,
automatic task mode and the positive feedback, manual task mode. Additionally, there were no
differences found between the negative feedback, manual task mode and the positive feedback,
automatic task mode (see Table 6).

Table 5. Analysis of Variance for EEG Engagement Index

Source df SS MS F

Feedback 1 75.3421 75.3421 0.89
Task 1 18.2532 18.2532 0.34
Feedback X Task 1 976.5401 976.5401 201.31"

Note. "1o < .05

Table 6. Means for EEG Engagement Index

Task Mode

Manual Automatic

Negative Feedback 8.12 11.83
Positive Feedback 11.98 8.05
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Event-Related Potentials

Wilk's Lambda MANOVAs were performed on the base-peak amplitude and latency data
for N100, P200, and P300 ERP components for electrodes Cz, Pz, P3, and P4. There were no
significant effects found across the four electrodes, F (3, 33) - 1.12. Therefore, subsequent
analyses were on collapsed data across electrode sites.

Significant effects were found for feedback condition, F (6, 28) - 13.64; group condition,
F (12, 56) - 6.29; and group X feedback condition, F (12, 56) - 8.31. Therefore, subsequent
ANOVAs were performed on these main effects and interaction for both ERP amplitude and
latency.

N100 Amplitude. There was a significant main effect found for feedback condition, F (1, 11)
- 4.93. The N100 amplitude tended to be larger under the negative feedback condition (M - -
4.97) than underthe positive feedback condition (M - -4.01). There was also a main effect found
for group condition, F (2, 33) - 17.58. A Tukey post hoc test revealed that the amplitude was
larger for those participants in the adaptive automation group (M- -4.49) and yoked group (M
- -4.15) than in the control group (M- -3.15).

In addition to main effects, there was a group X feedback condition interaction, F (2, 33)
- 13.00. N100 amplitude was significantly larger under the adaptive automation, negative
feedback condition than under any other group X feedback conditions (See Tables 7-8). Simple
effects analyses revealed no other significant effects for this interaction. The group X feedback
condition interaction is presented in Table 7.

Table 7. Means for ERP Components
N 1 Amplitude N1 Latency

Group Feedback
a p -5.39 136.33
a n -3.60 140.16

y p -4.94 147.66
y n -3.35 142.00
c p -3.08 139.33
c n -3.21 141.91

P2 Amplitude P2 Latency

Group Feedback
a p 3.38 239.91
a n 3.55 210.00

y p 3.90 212.00
y n 3.80 213.91
c p 3.22 210.83
c n 3.19 215.66
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No te.

P3 Amplitude P3 Latency

Group Feedback
a p 1.75 350.41
a n 4.40 306.91

y p 1.99 348.75
y n 2.20 331.00
c p 2.10 338.00
c n 2.18 329.66

a - adaptive; y - yoke; c - control; n - negative; p - positive

Table 8. Analysis of Variance for N100 Amplitude

Source df SS MS F

Feedback Condition 1 3.2200 3.2200 4.93*

Group Condition 2 23.6000 11.8000 17.58"
Group X Feedback 2 34.1733 17.0866 13.00"

Note. *p < .05

N100 Latency. No main effects or interactions were found for feedback condition, F (1, 11)
- 0.67; group condition, F (2, 33) - 0.94; or the group X feedback condition interaction, F (2,
33) - 0.79 (see Table 9).

Table 9. Analysis of Variance for N100 Latency

Source df SS MS F

Feedback Condition 1 95.6805 95.6805 0.67

Group Condition 2 533.5277 266.7638 0.94
Group X Feedback 2 225. 1944 112.5972 0.79

Note. *p < .05

P200 Amplitude. No effects were found for feedback condition, F (1, 11) - 0.01; group
condition, F (2, 33) - 2.87; or the group X feedback condition interaction, F (2, 33) - 0.19.
Table 10 presents ANOVA statistics for P200 amplitude.
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Table10.Analysisof Variancefor P200Amplitude

Source df SS MS F

Feedback Condition 1 0.0037 0.0037 0.01

Group Condition 2 5.0512 2.5256 2.87
Group X Feedback 2 0.2391 0.1195 0.19

Note. *p < .05

P200 Latency. Significant main effects were found for feedback condition, F (1, 11) - 7.40;
and for group condition, F (2, 33) - 4.18. P200 latency to attended tones were longer when
participants performed the auditory oddball task under the positive feedback condition (M-
220.91) than under the negative feedback condition (M - 213.19). Also, P200 latency was longer
for participants in the adaptive automation group (M - 224.95)than for participants in the yoked
condition (M- 212.95) or in the control condition (M_ - 213.25).

The results found for P200 latency for group condition must be viewed in consideration
of the group X feedback interaction, F (2, 33) - 15.37 (see Table 11). A simple effects analysis
shows that only the adaptive automation, positive feedback combination (M- 239.19) was
significantly different from the other group, feedback conditions. The other group, feedback
condition combinations averaged approximately 212 msec in latency. Therefore, the differences
found for the main effect of group condition are due to the increased P200 latency in the positive
feedback condition for participants in the adaptive automation group.

Table 11. Analysis of Variance for P200 Latency

Source df SS MS F

Feedback Condition 1 1073.3888 1073.3888 7.40*

Group Condition 2 2249.3611 1124.6805 4.18"
Group X Feedback 2 4458.8611 2229.4305 15.37*

Note. *p < .05

P300 Amplitude. An ANOVA yielded significant main effects for feedback condition, F (1,
11) - 78.72; and for group condition, F (2, 33) - 20.40. P300 amplitude was significantly larger
when participants performed the task under the negative feedback condition (M- 2.93) than under
the positive feedback condition (M- 1.94). Also, P300 amplitude was higher for those
participants in the adaptive automation group (M - 3.08) than for those participants in the yoked
condition (M- 2.09) or the control condition (M- 2.14).

There was also a feedback condition X group interaction, F (2, 33) - 57.21 (see Table 12).
P300 amplitude was significantly higher under the negative feedback condition for participants

in the adaptive automation group than under any other group, feedback combination.
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Table12.Analysisof Variancefor P300Amplitude

Source df SS MS F

Feedback Condition 1 17.2872 17.2872 78.72*

Group Condition 2 14.8793 7.4396 20.42*
Group X Feedback 2 25. 1251 12.5625 57.21 *

Note. *p < .05

P300 Latency. P300 latency was found to be significant only for feedback condition, F (1,
33) - 13.91. P300 latency was significantly longer under the positive feedback condition (M-
345.72) than underthe negative feedbackcondition (M- 322.52). Neither group condition, F (2,
33) - 0.99; or group X feedback condition interaction, F (2, 33) - 2.86 were significant. Table
13 presents ANOVA statistics for P300 latency.

Table 13. Analysis of Variance for P300 Latency

Source df SS MS F

Feedback Condition 1 9683.6805 9683.6805 13.91 *

Group Condition 2 1510.5833 755.2916 0.99
Group X Feedback 2 3976.8611 3976.4305 2.86

Note. *p < .05
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DISCUSSION

The present study was conducted to examine the efficacy of using event-related
potentials and electroencephalogram for use in adaptive automation technology. Because
psychophysiology is likely to be an essential aspect in the development of adaptive automation
systems, it is necessary to research the issues that surround the use of these metrics.
Furthermore, the present study sought to remedy a short-coming in the literature concerning the
impact that adaptive automation has on behavioral, subjective, and psychophysiological
measures of workload and task engagement.

To accomplish these research goals, a multi-group design was used composed of adaptive
automation, yoked, and control group conditions. Participants in the adaptive automation group
were asked to perform a compensatory tracking task and an auditory oddball task while their
EEG was continuously monitored. The tracking task was switched between manual and
automatic task modes based upon whether their EEG was above or below baseline levels of task
engagement and which feedback condition the system operated under. The automation schedule
for each participant in the
adaptive automation group was presented to a participant in the yoked condition. Therefore,
each participant performed the tasks in the exact cycle sequence as their yoked counterpart.
Additionally, a control group was employed that received a random assignment of task mode
allocations.

The design was intended to enable the assessment of whether the adaptive automation
method of task mode allocation represents a significantly better way of keeping operators "in-
the-loop." If so, performance, subjective workload estimates, and psychophysiological
correlates of workload would be better moderated for participants in the adaptive automation
group, and no differences witnessed between the yoked or control group conditions. However,
if adaptive automation does not significantly enhance the human-automation interaction, then
no differences would be expected between the three experimental groups. Additionally, the
design allowed for a determination to be made as to the utility of using EEG and ERPs in
adaptive task allocation.

Task Allocations

If there was a functional relationship betweenthe EEG engagement index and task mode,
the index should demonstrate stable short-cycle oscillation under negative feedback and longer
and more variable periods of oscillation under positive feedback. The strength of the
relationship wouldbe reflected in the degree of contrast between the behavior of the index under
the two feedback contingencies. This should be reflected in significantly more task allocations
under the negative feedback condition than under the positive feedback condition. The results
showed that indeed the system made more switches between manual and automatic task modes
in the negative feedback condition than in the positive feedback condition. Therefore, the
system demonstrated expected feedback control behavior under these two feedback contingencies
and supports Pope, Bogart, and Bartolome's (1995) finding that the 20 beta/(alpha+theta) EEG
engagement index possesses utility as part of an adaptive algorithm for controlling automation
task allocation.

Performance and Subjective Workload

A number of researchers have found that manual reallocation can serve as a

countermeasure to performance decrements that often accompany the use of automation. For
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example,researchershave foundthat short periodsof return-to-manualcontrol reduced
ommissionsandloweredworkloadratings(Hadleyetal., 1998;Parasuraman,Molloy, & Singh,
1994;Scallen,Hancock,& Duley, 1995). Additionally, increasingthe numberof manual
reallocationsresultedin evenbetterperformanceandlowersubjectiveworkload.Therefore,
becausethenegativefeedbackconditionproducesmoretaskallocations,theincreasein manual
reallocationswaspredictedto resultin significantlybetterperformanceandmodulatedworkload
thanin thepositivefeedbackcondition.

It wasfoundthat participantsperformedthe trackingtask andauditoryoddballtask
significantlybetterunderthe negativefeedbackconditionthanunderthe positive feedback
condition. Also,subjectiveworkloadratingswerefoundto besignificantlylowerunderthe
negativefeedbackcondition. Furthermore,ananalysisrevealedthat, althoughthereweremore
taskallocationsunderthenegativefeedbackcondition,participantsspentthesameamountof
timein theautomatic(M- 7.45min)andmanualtask(M- 8.15min)modes.Therefore,these
resultscannotbeattributedto aninequalityin taskmodedurationbetweenthe two feedback
contingencies.

Thepresentstudywasalsodesignedto determinehowbehavioralandsubjectivemeasures
aremoderatedby theuseof adaptiveautomationmethods. The rationalebehindadaptive
automationis thatabalanceis madebetweentaskloadandlevelsof automation.That is, an
assessmentis madeof operatorstateandchangesin taskmodearemadein responseto highor
lowworkloadlevels.Thechangesaremadein real-timeandshouldproducebetterperformance
andloweredworkloadratingsbecauseoftheregulationof workloadandmaintenanceof operator
engagement(Hancock& Chignell,1989;Scerbo,1996). Therefore,participantsin the adaptive
automationgroupshoulddosignificantlybetterandrate subjectiveworkloadlowerunderthe
negativefeedbackconditionthanunderanyothergroupandfeedbackconditioncombination.
However,if thebenefitsfoundwithadaptiveautomationareduesolelyto anincreaseinmanual
reallocations,thereshouldbeno differencesbetweenthe threegroupconditionsin termsof
performanceorsubjectiveworkloadratingsbecauseall groupsexperiencedthesamenumberof
manualreallocations.

The groupX feedbackconditioninteractionfor performanceandworkloadratings
supportthe contentionthatthebenefitsfoundwith adaptiveautomationarenot duesolelyto
increasedmanualreallocations.Participantsin theadaptiveautomationgroupdid significantly
betterandhadlowersubjectiveworkloadratingswhileperformingthetasksunderthenegative
feedbackconditioncomparedto anyothergroup,feedbackcondition.Althoughacrossall three
groupconditionsparticipantshadlowerperformanceerrorsandworkloadratingsin thenegative
feedbackcondition,the finding is temperedby the overwhelmingresultsfor the adaptive
automationgroup,negativefeedbackconditionfor bothperformanceandsubjectiveworkload.
Therefore,theseresultssupportthe logicof adaptivealgorithmsfor dynamictaskallocation

baseduponpsychophysiologicalindiceswith demonstratedbehavioralandsubjectiveworkload
outcomes.

Implications for Adaptive Automation. Perhaps, the most fundamental reason for
introducing automation is to lessen the workload demands placed on human operators who must
interact with often complex systems. Although the evidence to support this assertion has not
always been found (e.g., Riley, 1994), those who use such systems often cite excessive workload
as a factor in their choice of automation. For example, Riley, Lyall, and Wiener (1993)
reported that urgency of the situation and workload were the two most important factors in
pilots' choice to use automated functions, such as autopilot, Flight Management System (FMS),
and flight director. Furthermore, Wiener (1988) noted that automated systems tend be "clumsy"
in that the automation requires interaction at times when workload is already high; the effect
of which is to further increase workload demands. Therefore, it is of high importance to assess
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howanyform of automationtaskallocation,includingadaptiveautomation,impactstaskload
andsubjectiveimpressionsof workload.

Adaptive automation has been suggested as a remedy to the "out-of-the-loop" problems
that often are associated with human-automation interaction. Some of these problems include
increased performance errors and cognitive workload (Parasuraman, & Riley, 1997). However,
few empirical studies are available that have demonstrated that adaptive task allocation does
indeed improve performance and lower workload.

Adaptive aiding has been found to improve performance and workloadin studies of aerial
search (Morris & Rouse, 1986), flight management (Hilburn, Parasuraman, & Mouloua, 1995;
Parasuraman, 1993), monitoring (Parasuraman, Mouloua, & Molloy, 1996), and air traffic
control (Hilburn, Jorna, & Parasuraman, 1995). However, none of these studies changed levels
of automation based upon real-time measures of workload. The research here used
psychophysiological indices and made task allocations in real time based upon whether the EEG
characterized low or high task engagement and workload. Therefore, the present study provides
support for our previous studies in demonstrating that adaptive task allocation using a real-time
approach improves performance and lowers workload demands. Future research, however, is
needed to determine whether these effects are transferable to other areas of human and system
performance (e.g., monitoring performance).

Electroencephalogram

Byrne and Parasuraman (1996) stated that the use of any candidate
psychophysiological metric must be predicated on how well it aids the development of adaptive
automation. Although numerous psychophysiological measures are available for use in adaptive
automation, only the EEG has been foundto be useful as a measure of operator state under both
low task engagement and high task engagement (Kramer, 1991). Therefore, the present study
sought to examine the use of the EEG (i.e., EEG engagement index) as an adaptive mechanism
for task allocation.

Generally, research has shown that with increases in task engagement, theta is suppressed
and alpha is blocked while beta increases in relative power. As task engagement decreases, the
EEG decreases in beta and shows concomitant increases in both theta and alpha (Kramer, 1991).
Therefore, such EEG characteristics allowed for predictions to be made based upon whether the

EEG engagement index operated under positive or negative feedback control.
Positive feedback mechanisms react to "disturbances" in a system, in this case high or

low engagement states, by amplifying the magnitude of the effect (Smith & Smith, 1987).
When EEG patterns were below baseline levels of engagement, the system was designed to
automate the tracking task which should further lower the engagement state. However, when
the EEG patterns were above baseline levels of engagement characterized by high beta, alpha
blocking, and theta suppression, the system allocated the tracking task to the manual task mode.
Therefore, for positive feedback, the EEG engagement index should be lower under the

automatic task mode and higher under the manual task mode.
Negative feedback should contrast that of positive feedback control behavior. The

reason is that this feedback contingency takes corrective action to keep system behavior within
operational limits (Smith & Smith, 1987). To accomplish this, the biocybernetic system, under
negative feedback control, automated the tracking task when the EEG engagement index was
above baseline levels of engagement and allocated manual control when the EEG engagement
index was below baseline levels of engagement. The EEG engagement index should, therefore,
be higher under the automatic task mode and lower under the manual task mode.

The feedback condition X task mode interaction confirmed that the EEG demonstrated

these characteristics. The value of the EEG engagement index was contingent upon which
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feedbackconditionandtaskmodethesystemwasoperatingunder.Underthemanualtaskmode,
theEEGengagementindexwashigherfor positivefeedbackandlower for negativefeedback.
Conversely,the indexwashigherundertheautomatictaskmodefor negativefeedback,andit

wassignificantlylowerundertheautomatictaskmodefor positivefeedback.

Implications for Adaptive Automation. These results support other studies that have
demonstrated the efficacy of EEG for the modulation of mental state in a closed-loop
environment. For example, Schwilden, Stoeckel, and Schuttler (1989) have developed medical
models for the closed-loop regulation of anesthetic state using EEG metrics. Such findings are
important as Byrne and Parasuraman (1996) noted that assessment of candidate
psychophysiological measures for adaptive automation requires iterative closed-loop testing.

Another implication of these results concerns the emphasis in adaptive automation that
has been placed on the prevention of task overload. However, a more beneficial application of
adaptive automation may be the prevention of task underload in which psychophysiological
measures will play a key role (Byrne & Parasuraman, 1996). The present study demonstrated
that the EEG was capable of discriminating between different levels of task load and, therefore,
suggests its efficacy as an adaptive mechanism for adaptive automation. Although the negative
consequences of task underload have not always been appreciated (e.g., Redondo & Del Valle-
Inclan, 1992), because of the uniqueness of the EEG as a measure of task underload, the use of
this psychophysiological metric should continue to find application in the development and use
of adaptive task allocation (Byrne & Parasuraman, 1996; Kramer, 1991).

Event-Related Potentials

A number of researchers (Billings, 1997; Sheridan, 1997; Wickens, 1992; Wiener &
Nagel, 1988) have noted that automation has changed the nature rather than reduced the
workload demands placed on human operators. For example, pilots now focus on monitoring
system controls and intervene only to detect, assess, and correct system failures. An important
by-product of this role shift is the decreased ability to infer operator state because of limited
interaction with the automated system. The use of advanced automation concepts, such as
adaptive automation, would only increase such role transfer prompting the need for more
diagnostic measures for the regulation of mental workload and other psychological constructs.

Byrne and Parasuraman (1996) discussed the role that various psychophysiological
measures can play in the development of adaptive automation technology. They stated that
ERPs possess a number of characteristics that make them ideal as candidate indices for adaptive
task allocation. These include diagnostic specificity, sensitivity, and reliability (see Eggemeier,
1988). However, Parasuraman (Byrne & Parasuraman, 1996; Parasuraman, 1990) concluded
that, although many proposals have been made concerning the use of ERPs in adaptive
automation, little empirical evidence has been collected to support its efficacy.

The present study sought to address this limitation and assess whether ERPs can be used
to make task allocations in an adaptive fashion. Specifically, it was designedto examine whether
the ERP can discriminate between positive and negative feedback conditions. Furthermore, the
study sought to determine whether differences were evident between the adaptive automation,
yoked, and control group conditions in terms of ERP component waveforms. Finally, because
any approach to adaptive automation requires multiple measures of operator state, another goal
was to measure the degree of congruence that ERPs have with other workload metrics.

The ERP waveform components to the infrequent, high tones demonstrated significant
differences in amplitude and latency between positive and negative feedback conditions. N 100

35



andthe P300 ERPcomponentsweresignificantlyhigherin amplitudeunderthe negative
feedbackconditionthan underthe positive feedbackcondition. Additionally, the P300
componentwassignificantlyshorterin latencyunderthenegativefeedbackcondition.These
resultssupportthefindingsfor performanceandsubjectiveworkloadanddemonstratethatthe
ERPwascapableof discriminatingbetweenlevelsof taskloadin anadaptiveenvironment.
Therefore,they supportother studiesthat have found that ERPscan be usefulin the
developmentandapplicationof adaptiveautomationtechnology(Kramer,1991;Humphrey&
Kramer,1994;Trejo,Humphrey,& Kramer,1996).

TherewasalsoanexperimentalgroupX feedbackconditioninteractionfor N100and
P300amplitude.Theadaptiveautomation,negativefeedbackconditionproducedP3sthatwere
significantlylargerinamplitudethananyothergroup,feedbackcondition.TheN100wasalso
foundto besignificantlyhigherin amplitudeundertheadaptiveautomation,negativefeedback
condition.Therewerenodifferencesfoundbetweentheyokedandcontrolgroupconditions.
Additionally,positivefeedbackfor the adaptiveautomationgroupdid not produceERP
waveformsthatweresignificantlydifferentfromtheyokedorcontrolgroupconditionsineither
amplitudeor latencymeasures.

Implications for Adaptive Automation

Mental Models. These findings for the ERP are important for two reasons. First, the
P300 is thought to index a context updating of our mental model of the environment (Donchin,
Ritter, & McCallum, 1978). Donchin, McCarthy, Kutas, and Ritter (1983) stated that the P300
is a representationof neural action for updating the user's "mental model" that seems to underlie
the ability of the nervous system to control behavior. The mental model then is an assessment
of deviations from expected inputs and is, therefore, revised whenever discrepancies are found.
The frequency of such revisions is dependent upon the "surprise value" and task relevance of

the attended stimuli (e.g., high tones). Donchin (1981) noted that ERP components are
associated with specific information processing functions, andthe P300 "subroutine" is activated
whenever there exists a need to evaluate unusual, task-relevant events (Gopher & Donchin,
1986; Kramer, 1991). Therefore, the group X feedback condition interaction for P300
amplitude suggests that participants in the adaptive automation group may have been better able
to predict the "state" of system operation, develop controlstrategies, select appropriate actions,
and interpret the effects of selected actions (Gentner & Stevens, 1983; Johnson-Laird, 1983;
Wickens, 1992; Wilson & Rutherford, 1989). The outcomes of such an improved mental model
were improved performance and lowered workload and evidenced by larger amplitudes for the
P300 ERP component.

Applications to Adaptive Automation. The recent interest in mental models is due
to changing technology and there is a growing need for metaphors to describe the increasingly
"black box" nature of systems (Howell, 1990; Wickens, 1992; Wilson & Rutherford, 1989). It
is commonly accepted that people form mental models of tasks and systems, and that these
models are used to guide behavior at the interface. Norman (1983) explains that people form
internal, mental models of themselves and of the things with which they are interacting with.
These extent to which the mental models provide a good fit determines whether users can

understand the nature of this interaction. Therefore, automated processes must be made
compatible with the users' internal representation of the system (Kantowitz & Campbell, 1996;
Norman, 1983; Parasuraman & Riley, 1997; Scerbo, 1996).

The National Research Council (1982) further noted that the effectiveness of
automation depends on matching the designs of automated systems to user's representations of
the tasks they perform. The lack of a "match" between the operating characteristics of a
system, the user's mental model of the system, and designer's conceptual model of the system
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canleadto increasederrors,workload,responsetimes,andsoforth. AsKantowitzandCampbell
(1996)suggest,automateddesignshouldprovide timely, consistent,andaccuratefeedback,
matchtaskdemandsto environmentaldemands,designhighstimulus-responsecompatibility,and
developappropriateoperatortrainingthat facilitatesthe developmentof an accuratemental
model.

Theuseof thementalmodelmetaphorthenis likely to beof continuedservicein the
designof automatedsystems.Moreover,the developmentof advancedautomationconcepts
shouldonlyincreasetheneedfor accessingthe"blackbox" of thehumanoperator.Theneed
arises,therefore,for waysof measuringthedegreeof disparitybetweena user'smentalmodel
andthedesigner'sconceptualmodel. Thepresentresultssuggestthatsuchcanbesuppliedbythe
useof ERPmeasuresalthoughadditionalresearchwouldbeneededto specifythenatureof the
ERP,its relationto usermentalmodels,andhowit couldbeusedin adaptiveautomationdesign.

ResourceAllocation. Another implication of these results concerns how the ERP
relates to cognitive workload. As stated previously, the P300 is thought to represent the
context updating of our mental model whenever a novel event occurs. Such an updating only
occurs if the stimuli associated with a task requires that it be processed; that is, task-irrelevant
stimuli that are ignored do not elicit a P300. However, consider the situation in which a
participant is instructed to only partially ignore a stimulus, or a participant is asked to perform
an oddball task while concurrently performing a tracking task as in the present study. Will the
P300 measures reflect these graded changes in task difficulty? If so, then the P300 may serve
as an index of the resource demands and, therefore, the cognitive workload imposed on the
human operator (Gopher & Donchin, 1986; Kramer, 1987).

Research has consistently demonstrated that the P300 amplitude reflects the amount of
expenditure of perceptual/central processing resources associated with performing a task(s)
(Gopher & Donchin, 1986; Kramer, 1991; Parasuraman, 1990). The characteristics of the
P300 exhibit a decrease in amplitude and an increase in latency to secondary task performance
as the difficulty of the primary task is increased ("amplitude reciprocity hypothesis"; Isreal et
al., 1977). The results of this study revealed that the P300 did indeed decrease in amplitude and
increase in latency as the workload demands in the task increased. Furthermore, the group X
feedback condition interaction for P300 supports the findings for performance and subjective
workload and demonstrated that the use of adaptive task allocation reduced the workload for
those participants performing the tasks in the negative feedback condition. In addition, the
N 100 and P200 waveforms further support these results because they are thought to represent
the early processes of selective attention and resource allocation (Hackley, Woldoroff, &
Hillyard, 1990; Hillyard, Hink, Schwent, & Picton, 1973).

Applications to Adaptive Automation. Parasuraman, Bahri, Deaton, Morrison, and
Barnes (1992) argued that adaptive automation represents the coupling of levels of automation
to levels of operator workload. Therefore, candidate indices which serve as adaptive
mechanisms must be capable of discriminating between various levels of task load. Although a
number of measures have been proposed, Morrison and Gluckman (1994) suggested the use of
psychophysiological metrics because of their potential to yield real-time estimates of mental
state with little or no impact on operator performance.

There are many psychophysiological measures available to system designers seeking to
use them in adaptive automation design. Such measures include heart rate, heart-rate variability,
EEG, EDA, pupillometry, ERP, and others. However, because of the multidimensional nature of
mental workload and other psychological constructs (e.g., memory, attention, language
processes) that require attention in the design of automated systems, only the ERP has been
found to be sensitive to these different information processing activities (Kramer, 1991;
Kramer, Trejo, & Humphrey, 1996). Although the biocybernetic system did not predicate
task allocation on the basis of ERP data, the results showed that the ERP was capable of
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discriminatingbetweenlevelsof taskloadin anadaptiveenvironment.Therefore,a nextstep
wouldrequirethedevelopmentof anadaptivealgorithmthatusesthecomponentsof theERP
waveformasanadaptivemechanismfor allocatingtasksbetweentheoperatorandautomated
system. The researchby Humphreyand Kramer (1994) as well asthe presentresults
demonstratesthatsucha biopsychometricsystemis capableof development.Despitethe fact
thatsucha systemmaybeyearsfrom fruition,at thevery leasttheseresultsdemonstratethat
theERPcanservein the developmentalrole (seeByrne& Parasuraman,1996)of adaptive
automationdesign.Takentogether,then,theresultsof theERPdatasupportthe conclusion
of manyhumanfactorsprofessionalsthatERPspossesstheadaptivecapabilitiesfor determining
optimalhuman-automationinteraction(Byrne& Parasuraman,1996;Defayolleet al., 1971;
Donchin,1980;Farwell&Donchin,1988;Gomer,1981;Kramer& Humphrey,1994;Kramer,
Humphrey,Sirevaag,& Mecklinger,1989;Kramer,Trejo,& Humphrey,1996;Sem-Jacobsen,
1981;Scerbo,1996).

CONCLUSIONS

The field of human factors has been traditionally defined as the design and evaluation of
systems and tools for human use. The goal of human factors is directed at how people,
machines, and the environment interact, and what can be done to make certain that

productivity, efficiency, and safety are ensured. The idea that one should account for the human
during the design process often seems too obvious to deserve much attention. Recently,
however, several known disasters, such as Three Mile Island, Challenger space shuttle, and Ralph
Nader's consumer product crusades, have challenged such prevailing attitudes towards human
factors research. The idea has certainly relevant for the use of automation especially in light
of several disastrous accidents that have happened in the past few years in aviation
transportation (e.g., Bangalore, India, 2/14/1990; Charlotte, North Carolina, 1994; Nagoya,
Japan, 4/26/1994; Roselawn, Indiana, 10/31/1994). The concern is very relevant for adaptive
automation when one considers that aid-initiated adaptation was a factor in the Charlotte wind
shear accident (1994).

Scerbo (1996) noted that automation is neither inherently good nor bad. He stated that
automation does, however, change the nature of work; it solves some problems while it creates
others. Adaptive automation represents the next phase in the development of automated
systems. To date, it is not known how this type of technology will impact work performance
(Billings, 1997; Scerbo, 1996; Woods, 1996). However, it is clear that automation will continue
to impact our lives requiring humans to co-evolve with the technology; this is what Hancock
(1996) calls "techneology." Therefore, professionals involved with adaptive automation are
incumbent to investigate the issues surrounding the use of adaptive automation technology. As
Weiner and Curry (1980) conclude:

The rapid pace of automation is outstripping one's ability to comprehend all the
implications for crew performance. It is unrealistic to call for a halt to cockpit
automation until the manifestations are completely understood. We do,
however, call for those designing, analyzing, and installing automatic systems in
the cockpit to do so carefully;to recognize the behavioral effects of automation;
to avail themselves of present and future guidelines; and to be watchful for
symptoms that might appear in training and operational settings (p.7)

The concerns they raised are as valid today as they were 18 years ago. Fortunately, at present,
adaptive automation represents only a conceptual view of how automation can be advanced to
improve the human-automation interaction. We now have an opportunity to research the
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technologybeforelarge-scaleimplementationof adaptiveautomationbecomesavailable(Scerbo,
1996).

Thereareanumberof issuesthat mustbeaddressedbeforeadaptiveautomationcan
moveforwardin thedesignof automatedsystems.To dootherwise,wouldbeto riskrepeating
thefatal lessonsof thepast.As Billings andWoods(1994)noted,

In high-risk,dynamicenvironments..,technology-centeredautomationhas
tendedto decreasehumaninvolvementin systemtasks,andhasthusimpaired
humansituationalawareness;bothareunwantedconsequencesof today'ssystem
designs,butbotharedangerousin high-risksystems.[At it's presentstateof
development,]adaptive("self-adapting")automationrepresentsa potentially
seriousthreat..,to theauthoritythatthehumanpilot musthaveto fulfill hisor
herresponsibilityfor flight safety(p. 265).

Sucha strongcautionaryvoicepointsto theneedfor moreresearchin thisarea.Thepresent
study examinedbut a small share of these issues.These issuesincludedthe use of
psychophysiologicalmeasuresin adaptiveautomationdesignaswellasa comparisonof adaptive
taskallocationto statictaskallocation.

ByrneandParasuraman(1996)statedthatpsychophysiologyis anintegralcomponent
of adaptiveautomationasanon-invasivemethodusedto assessoperatorstate. Theysuggested
thatsuchmeasurescouldbeusednotonlyasaninputsignalfor theregulationof automation,but
alsoto assessunderlyingchangesaccompanyingperformancechangesduringdevelopmentof
adaptiveautomationsystems.Theresultssupportsucha conclusion.TheERPandEEGwere
foundto discriminatebetweenpositiveandnegativefeedbackcontrolsandthesewereassociated
with otherworkloadmeasures.ByrneandParasuramannotedthat anypsychophysiological
measuremustbeusedin conjunctionwith othermetricsof operatorstateandanycandidate
indicesmustbecapableof suchanassociation.Indeed,theEEGandERPmeasuresaccordedwell
with theperformanceandsubjectiveworkloadmeasuresand,therefore,supportByrne and
Parasuraman'sassessmentthat biopsychometricswill play an important role in advanced
automation.

Furthermore,this study representson of the first experimentsto demonstrate
conclusivelytheadvantagesof theadaptiveautomationparadigmusingareal-timeapproach.
Parasuraman,Mouloua,& Molloy (1996)alsoexaminedtheeffectsof adaptivetaskallocation,
buttheyusedmodel-basedandperformance-basedapproaches.Theseadaptivemethodsdonot
representanadaptiveaidingmechanismbasedonreal-timemeasurementsof operatorworkload.
Furthermore,theseresearchersusedonlyperformancemeasures(i.e.,reactiontime,falsealarms,
hit rate,omissions).Kramer,Trejo,andHumphrey(1996)alsoexaminedthe useof adaptive
automationandprovidedbothperformanceandpsychophysiologicalmeasures.However,their
studywasadefactoassessmentof howmuchERPdatais neededto discriminatedifferentlevels
of mentalworkloadand,therefore,wasnotadaptiveautomationin thetruestsense.Therefore,
the presentstudyprovidesone of the first controlled,empiricalstudiesto evaluatethe
conjunctive effects of adaptive task allocation on behavioral, subjective, and
psychophysiologicalcorrelatesof workload.

Future Directions

Although the findings presented here give strong support for the benefits of adaptive
automation and the use of psychophysiology in the design of this technology, the study only
examined some of the many issues that need consideration. Parasuraman and his colleagues
(Byrne & Parasuraman, 1996; Parasuraman, 1993; Parasuraman, Bahri, & Molloy, 1991;
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Parasuramanet al., 1992;Parasuraman,Mustapha,& Molloy, 1996)havenoteda numberof
variablesandfactorsthatshouldberesearchedinadaptiveautomationdesign.Theseincludethe
frequencyof adaptivechanges,adaptivealgorithms,automationreliabilityandconsistency,the
typeof interface,andcontextualfactorsthatareuniquetospecificsystems.Scerbo(1996)also
addedsystemresponsiveness,timing,andauthorityandinvocationto this list. He furtherstated
that researchshouldbranchout to otherareasthat arelikely to beof concernfor adaptive
automationtechnology,suchasmentalmodels,teams,training,andcommunication.Moreover,
if oneconsidersthe concernsof Woods(1996) that automationrepresentswhat he calls,
"apparentsimplicity,realcomplexity,"onecannotleavewithoutan impressionthatthereis a
considerableamountof workthatisneeded.However,researchmustbeginsomewhereandour
workhereandtheworksof othersin thefield arehopedto stimulateadditionalresearchin this
newbut excitingareaof automationtechnology.
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