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ABSTRACT

The present study was designedto test the efficacy of using Electroencephalogram (EEG) and
Event-Related Potentials (ERPs) for making task allocation decisions. Thirty-six participants
were randomly assigned to an experimental, yoked, or control group condition. Under the
experimental condition, a compensatory tracking task was switched between manual and
automatic task modes based upon the participant’s EEG. ERPs were also gathered to an
auditory, oddball task. Participants in the yoked condition performed the same tasks under the
exact sequence of task allocations that participants in the experimental group experienced. The
control condition consisted of a random sequence of task allocations that was representative of
each participant in the experimental group condition. Therefore, the design allowed a test of
whether the performance and workload benefits seen in previous studies using the biocybernetic
system were due to adaptive aiding or merely to the increase in task mode allocations. The
results showed that the use of adaptive aiding improved performance and lowered subjective
workload under negative feedback as predicted. Additionally, participants in the adaptive group
had significantly lower tracking error scores and NASA-TLX ratings than participants in either
the yoked or control group conditions. Furthermore, the amplitudes of the N1 and P3 ERP
components were significantly larger under the experimental group condition than under either
the yoked or control group conditions. These results are discussed in terms of their implications
for adaptive automation design.
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INTRODUCTION

Automation refers to "...systems or methods in which many of the processes of
production are automatically performed or controlled by autonomous machines or electronic
devices” (p.7). Automation is a tool, or resource, that the human operator can use to perform
some task that would be difficult or impossible without the help of machines (Billings, 1997).

Therefore, automation can be thought of as a process of substituting some device or machine
for some human activity; or it can be thought of as a state of technological development
(Parsons, 1985). However, some people (e.g., Woods, 1996) have questioned whether
automation should be viewed as a substitution of one agent for another. Nevertheless, the
presence of automation has pervaded every aspect of modern life. We have built machines and
systems that not only make work easier, more efficient and safer, but also have given us more
leisure time. The advent of automation has further enabled us to achieve these ends. With
automation, machines can now perform many of the activities that we once had to do. Now,
automatic doors open for us. Thermostats regulate the temperature in our homes for us.
Automobile transmissions shift gears for us. We just have to turn the automation on and off.

One day, however, there may not be a need for us to do even that.

Impact of Automation Technology

Advantages of Automation. Wiener (1980; 1989) noted a number of advantages to
automating human-machine systems. These include increased capacity and productivity,
reduction of small errors, reduction of manual workload and fatigue, relief from routine
operations, more precise handling of routine operations, and economical use of machines. In
an aviation context, for example, Wiener and Curry (1980) listed eight reasons for the increase
in flight-deck automation: Increase in available technology, such as the Flight Management
System (FMS), Ground Proximity Warning System (GPWS), Traffic Alert and Collision
Avoidance System (TCAS); concern for safety; economy, maintenance, and reliability; decrease
in workload for two-pilot transport aircraft certification; flight maneuvers and navigation
precision; display flexibility; economy of cockpit space; and special requirements for military
missions.

Disadvantages of Automation. Automation also has a number of disadvantages.
Automation increases the burdens and complexities for those responsible for operating,
troubleshooting, and managing systems. Woods (1996) stated that automation is "...a wrapped
package -- a package that consists of many different dimensions bundled together as a
hardware/software system. When new automated systems are introduced into a field of practice,
change is precipitated along multiple dimensions” (p.4).  Some of these changes include: (a)
adding to or changing the task, such as device setup and initialization, configuration control, and
operating sequences; (b) changing cognitive demands,such as decreasedsituational awareness; (c¢)
changing the role that people in the system have, often relegating people to supervisory
controllers; (d) increasing coupling and integration among parts of a system often resulting in
data overload and "transparency” (Billings,1997); and (e) increasing complacency by those who
use the technology. These changes can result in lower job satisfaction (automation seen as
dehumanizing), lowered vigilance, fault-intolerant systems, silent failures, an increase in
cognitive workload, automation-induced failures, over-reliance, increased boredom, decreased
trust, manual skill erosion, false alarms, and a decrease in mode awareness (Wiener, 1989).



Adaptive Automation

These disadvantages of automation have resulted in increased interest in advanced
automation concepts. One of these concepts is automation that is dynamic or adaptive in nature
(Hancock & Chignell, 1987; Morrison, Gluckman, & Deaton, 1991; Rouse, 1977; 1988). In
adaptive automation, control of tasks can be passed back and forth between the operator and
automated systems in response to the changing task demands. Consequently, this allows for the
restructuring of the task environment based upon (a) what is automated, (b) when it should be
automated, and (¢) how it should be automated (Rouse, 1988; Scerbo, 1996). Rouse (1988)
described the criteria for adaptive aiding systems:

The level of aiding, as well as the ways in which human and aid interact, should
change as task demands vary. More specifically, the level of aiding should
increase as task demands become suchthat human performance will unacceptably
degrade without aiding. Further,the ways in which human and aid interactshould
become increasingly streamlined as task demands increase. Finally, it is quite
likely that variations in level of aiding and modes of interaction will have to be
initiated by the aid rather than by the human whose excess task demands have
created a situation requiring aiding. The term adaptive aiding is used to denote
aiding concepts that meet [these] requirements (p.432).

Adaptive aiding attempts to optimize the allocation of tasks by creating a mechanism for
determining when tasks need to be automated (Morrison & Gluckman, 1994). In adaptive
automation, the level or mode of automation can be modified in real-time. Further, unlike
traditional forms of automation, both the system and the operator share control over changes
in the state of automation (Scerbo, 1994; 1996). Parasuraman, Bahri, Deaton, Morrison, and
Barnes (1992) have arguedthat adaptive automation represents the optimal couplingof the level
of operator workload to the level of automation in the tasks. Thus, adaptive automation
invokes automation only when task demands exceed the operator capabilities to perform the
task(s) successfully. Otherwise, the operator retains manual control of the system functions.
Although concerns have been raised about the dangers of adaptive automation (Billings &
Woods, 1994; Wiener, 1989), it promises to regulate workload, bolster situational awareness,
enhance vigilance, maintain manual skill levels, increase task involvement, and generally
improve operator performance (Endsley, 1996; Parasuraman et al., 1992; Parasuraman,
Mouloua, & Molloy, 1996; Scerbo, 1994, 1996; Singh, Molloy, & Parasuraman, 1993).

Adaptive Mechanisms

Perhaps, the most critical challenge facing system designers seeking to implement
adaptive automation concerns how changes among modes or levels of automation will be
accomplished (Parasuraman et al., 1992; Scerbo, 1996). The best approach involves the
assessment of measures that index the operators' state of mental engagement (Parasuraman et
al.,, 1992; Rouse, 1988). The question, however, is what should be the "trigger" for the
allocation of functions between the operator and the automation system. Numerous researchers
have suggested that adaptive systems respond to variations in operator workload (Hancock &
Chignell, 1987; 1988; Hancock, Chignell & Lowenthal, 1985; Humphrey & Kramer, 1994;
Reising, 1985; Riley, 1985; Rouse, 1977), and that measures of workload be used to initiate
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changes in automation modes. Such measures include primary and secondary-task measures,
subjective workload measures, and physiological measures. This, of course, presupposes that
levels of operator workload can be specified so as to make changes in automation modes (Scerbo,
1996). Rouse (1977), for example, proposed a system for dynamic allocation of tasks based
upon the operator's momentary workload level. Reising (1985) described a future cockpit in
which pilot workload states are continuously monitored and functions are automatically
reallocated back to the aircraft if workload levels get too high or too low. However, neither of
these researchers provided specific parameters in which to make allocation changes
(Parasuraman, 1990).

Morrison and Gluckman (1994), however, did suggest a number of workload indices
candidates that may be used for initiating changes among levels of automation. They suggested
that adaptive automation can be invoked through a combination of one or more real-time
technological approaches. One of these proposed adaptive mechanisms is biopsychometrics.
Under this method, physiological signals that reflect central nervous system activity, and
perhaps changes in workload, would serve as a trigger for shifting among modes or levels of
automation (Hancock, Chignell, & Lowenthal, 1985; Morrison & Gluckman, 1994; Scerbo,
1996).

Byrne and Parasuraman (1996) discussed the theoretical framework for developing
adaptive automation around psychophysiological measures. The use of physiological measures
in adaptive systems is based on the idea that there exists an optimal state of engagement
(Gaillard, 1993; Hockey, Coles, & Gaillard, 1986). Capacity and resource theories (Kahneman,
1973; Wickens, 1984; 1992) are central to this idea. These theories posit that there exists a
limited amount of resources to draw upon when performing tasks. These resources are not
directly observable, but instead are hypothetical constructs. Kahneman (1973) conceptualized
resources as being limited, and that the limitation is a function of the level of arousal. Changes
in arousal and the concomitant changes in resource capacity are thought to be controlled by
feedback from other ongoing activities. Anincrease in the activities (i.e., task load) causes a rise
in arousal and a subsequent decrease in capacity. Kahneman's model was derived from research
(Kahneman et al.,, 1967, 1968, 1969) on pupil diameter and task difficulty. Therefore,
physiological measures have been posited to index the utilization of cognitive resources.

Several biopsychometrics have been shown to be sensitive to changes in operator
workload suggesting them as potential candidates for adaptive automation. These include heart
rate variability (Backs, Ryan, & Wilson, 1994; Itoh, Hayashi, Tsukui, & Saito, 1989; Lindholm
& Cheatham, 1983; Lindqvist et al., 1983; Opmeer & Krol, 1973; Sayers, 1973; Sekiguchiet al.,
1978), EEG (Natani & Gomer, 1981; O'Hanlon & Beatty, 1977; Sterman, Schummer, Dushenko,
& Smith, 1987; Torsvall & Akerstedt, 1987), eyeblinks (Goldstein, Walrath, Stern, & Strock,
1985; Sirevaag, Kramer, deJong, & Mecklinger, 1988), pupil diameter (Beatty, 1982; 1986;
1988; Qiyuan, Richer, Wagoner, & Beatty, 1985; Richer & Beatty, 1985; 1987; Richer,
Silverman, & Beatty, 1983), electrodermal activity (Straube et al., 1987; Vossel & Rossmann,
1984; Wilson, 1987; Wilson & Graham, 1989) and event-related potentials (Defayolle, Dinand,
& Gentil, 1971; Gomer, 1981; Hancock, Chignell, & Lowenthal, 1985; Reising, 1985; Rouse,
1977; Sem-Jacobson, 1981).

The advantage to biopsychometrics in adaptive systems is that the measures can be
obtained continuously with little intrusion (Eggemeier, 1988; Kramer, 1991; Wilson &
Eggemeier, 1991). Also, because behavior is often at a low level when humans interact with
automated systems, it is difficult to measure resource capacity with performance indices.
Furthermore, these measures have been found to be diagnostic of multiple levels of arousal,
attention, and workload. Therefore, it seems reasonable to determine the efficacy of using
psychophysiological measures to allocate functions in an adaptive automated system. However,
although many proposals concerning the use of psychophysiological measures in adaptive
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systems have been advanced, not much research has actually been reported (Byme &
Parasuraman, 1996). Nonetheless, many researchers have suggested that perhaps the two most
promising psychophysiological indices for adaptive automation are the electroencephalogram
(EEG) and event-related potential (ERP) (Byrne & Parasurman, 1996; Kramer, Trejo, &
Humphrey, 1996; Morrison & Gluckman, 1994; Parasuraman, 1990; Scerbo, 1996).

Mental Workload

The use of psychophysiological measures in adaptive automation requires that such
measures are capable of representing mental workload. Mental workload has been defined as the
amount of processing capacity that is expended during task performance (Eggemeier, 1988).
The basic concept refers to the difference between the processing resources available to the
operator and the resource demands required by the task (Sanders & McCormick, 1993).
Essentially, workload is invoked to describe the interaction between an operator performing the
task and the task itself. In other words, the term "workload" delineates the difference between
capacities of the human information processing system that are expected to satisfy performance
expectations and that capacity available for actual performance (Gopher & Donchin, 1986).
However, there is disagreement on the definition of the term, on the best means for measuring
it, and on the most effective ways for moderating workload. Some psychologists have defined
it in terms of the perceptual and cognitive demands imposed on the operator, whereas engineers
tend to prefer a definition based on the scheduling of tasks in multi-task environments or on
control theory models (Parasuraman, 1990). An emerging consensus is that workload is a
multidimensional construct, rather than a scalar quantity, that cannot be uniquely specified by
any one measurement technique (Howell, 1990). Despite this, research has shown that both the
EEG and ERP are useful as a metric of mental workload (Byrne & Parasurman, 1996; Gale &
Christie, 1987; Kramer, 1991; Parasuraman, 1990)

Electroencephalogram

Physiological Basis. The EEG derives from activity in neural tissue located in the
cerebral cortex, but the precise origin of the EEG, what it represents, and the functions that it
serves are not presently known. Current theory suggests that the EEG originates from post
synaptic potentials rather than action potentials. Thus, the EEG is postulated to result primarily
from the subthreshold post-synaptic potentials that may summate and reflect stimulus intensity
instead of firing in an all-or-none fashion (Gale & Edwards, 1983).

Description of the EEG. The EEG consists of a spectrum of frequencies between 0.5
Hz to 35 Hz (Surwillo, 1990). Delta waves are large amplitude, low frequency waveforms that
typically range between 0.5 and 3.5 Hz in frequency, in the range of 20 to 200 #V (Andreassi,
1995). Theta waves are a relatively uncommon type of brain rhythm that occurs between 4 and
7 Hz at an amplitude ranging from 20 to 100 V. Alpha waves occur between 8 and 13 Hz at
a magnitude of 20 to 60 #V. Finally, beta waves are an irregular waveform at a frequency of 14
to 30 Hz at an amplitude of about 2 to 20 #V (Andreassi, 1995). An alert person performing
a very demanding task tends to exhibit predominately low amplitude, high Hz waveforms (beta
activity). An awake, but less alert person shows a higher amplitude, slower frequency of activity
(alpha activity). With drowsiness, theta waves predominate and in the early cycles of deep slow
wave sleep, delta waves are evident in the EEG waveform. The generalized effect of stress,
activation or attention is a shift towards the faster frequencies, lower amplitudes with an abrupt
blocking of alpha activity (Horst, 1987).

Laboratory Studies. Gale (1987) found that there exists an inverse relationship
between alpha power and task difficulty. Other studies have also demonstrated the sensitivity
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of alpha waves to variations in workload associated with task performance. Natani and Gomer
(1981) found decreased alpha and theta power when high workload conditions were introduced
to pilots during pitch and roll disturbances in flight. Sterman, Schummer, Dushenko, and Smith
(1987) conducted a series of aircraft and flight simulation experiments in which they also
demonstrated decreased alpha power and tracking performance in flight with increasing task
difficulty.

Numerous studies have also demonstrated that theta may be sensitive to increases in
mental workload. Subjects have been trained to produce EEG theta patterns to regulate degrees
of attention (Beatty, Greenberg, Diebler, & O'Hanlon, 1974; Beatty & O'Hanlon, 1979;
O'Hanlon & Beatty, 1979; O'Hanlon, Royal, & Beatty, 1977). In particular, Beatty and
O'Hanlon (1979) found that both college students and trained radar operators, who had been
taught to suppress theta activity performed better than controls on a vigilance task. Though
theta regulation has been shown to affect attention, the magnitude of the effect is often small
(Alluisi, Coates, & Morgan, 1977). More recent research, however, has demonstrated its utility
in assessing mental workload. Both Natani and Gomer (1981) and Sirevaag, Kramer, deJong, and
Mecklinger (1988) found decreases in theta activity as task difficulty increased and during
transitions from single to multiple tasks, respectively.

Field Research. More recent research has demonstrated the utility of EEG in assessing
mental workload in the operational environment. Sterman et al. (1993) evaluated EEG data
obtained from 15 Air Force pilots during air refucling and landing exercises performed in an
advanced technology aircraft simulator. They found a progressive suppression of 8-12 Hz
activity (alpha waves) at medial (Pz) and right parietal (P4) sites with increasing amounts of
workload. Additionally, a significant decrease in the total EEG power (progressive engagement)
was found at P4 during the aircraft turning condition for the air refueling task (the most difficult
flight maneuver). This confirmed other research that found alpha rhythm suppression as a
function of increased mental workload (e.g., Ray & Cole, 1985).

Event-Related Potential

Description. The event-related potential, or ERP, is a transient series of voltage
oscillations that occurs in response to the occurrence of a discrete event. This temporal
relationship between the ERP and an event is what discriminates the ERP from the ongoing
clectroencephalogram (EEG) activity. The ERP, like EEG, is a multivariate measure; however,
unlike EEG, the ERP is broken down into a series of time rather than frequency domains
(Kramer, 1991).

ERPs can be seen as a sequence of separate but often temporally overlapping
components that are affected by a combination of the physical parameters of the stimuli and
psychological constructs such as motivation, expectancy, resources, task relevance, memory,
and attention (Kramer, 1987). Althoughthe ERP has been found to be dependentupon both the
psychological and physical characteristics of the eliciting stimuli, in some instances the ERP has
been found to be independent of specific stimuli (Andreassi, 1995). For example, ERPs have
been found to occur at the same time that the stimuli were expected to occur but were not
actually presented (Sutton, Teuting, Zubin, & John, 1967).

Classification. The ERP can be classified as cither being an evoked potential or an
emitted potential. The “evoked potentials” (EPs) are ERPs that occur in response to physical
stimulus presentation whereas “emitted potentials” occur in the absence of any invoking
stimulus. Emitted potentials may be associated with a psychologicl process, such as recognition
that a stimulus component is missing from a regular train of stimulus presentations or with some
preparation for an upcoming perceptual or motor act (Picton, 1988).



ERP components can also be categorized along a continuum from endogenous to
exogenous. The endogenous components are influenced by the processing demands imposed by
the task, and are not very sensitive to changes in the physical parameters of stimuli, especially
when these changes are not relevant to the task. In fact, endogenous components can be elicited
by the absence of an eliciting stimulus if this “event” is relevant to the subject's task. Subject's
strategies, expectancies, intentions, and decisions, in addition to task parameters and
instructions, account for most of the endogenous components (Kramer, 1991).

The exogenous components, on the other hand, represent a response to the presentation
of some discrete event. These components tend to occur somewhat earlier than endogenous
components and they are usuallyassociated with specific sensory systems, occur within 200 msec
after the presentation of a stimulus, and are elicited by the physical characteristics of stimuli.
For example, exogenous auditory potentials are influenced by the intensity, frequency,
patterning, pitch, and location of the stimulus in the auditory field (Kramer, 1987; 1991).

The difference between the endogenous and exogenous components suggest the need for
components to be clearly defined. ERP components are typically labeled with either a “N” or
“P”, for negative and positive polarity, respectively. Also, a number is assigned indicating the
minimal latency measured from the onset of a discrete event. The attributes of the ERP that
have served as definitional criteria have included: the arrangement of transient voltage changes
across the scalp, polarity, latency range, sequence, and the sensitivity of these components to
task instructions, parameters, and physical changes in the eliciting stimulus (Donchin, Ritter, &
McCallum, 1978; Kramer, 1985; 1987; 1991).

The scalp arrangement concerns the amplitude and polarity of the components across
various locations on the scalp. For example, research has demonstrated that the P300
component becomes increasingly smaller in amplitude from the parietal to the frontal sites,
whereas the N100 is largest over the Fz, Cz, and Pz sites (see Figure 3). The latency range is
influenced by both experimental manipulations and whether it is an endogenous or exogenous
component. For example, brainstem evoked potentials occur within 10 ms after the
presentation of a stimulus. These ERPs are influenced by both organismic and stimulus variables;
however, the latency range is only 2-5 ms. This is contrasted with the latency range of the
P300 which dependson the processing requirementsof the task and has been shown to span 300-
900 ms (Kramer, 1991).

Physiological and Theoretical Basis. The ERP is composed of a sequence of
“components” that are generated by groups of cells in different locations of the brain which
become active at different times after presentation of a stimulus. Although there is little
consensus as to what the different components are thought to measure, the early components
have been argued to represent the delivery of sensory input from various modalities through the
afferent pathways. The later components originate in the primary projection systems, the
different association areas, and the non-specific parietal and frontal regions (Vaughan & Arezzo,
1988).

To complicate matters further, the later the ERP components (e.g., P300), the more
the components represent “memory-driven” rather than “data-driven” processes. For example,
Hillyard and Picton (1979) have argued for a two-stage process for the ERP. The primary
sensory system carries out a feature analysis and evaluates characteristics of the stimulus and, if
it passes some criteria for selection, it then passes the sensory input to a second system. This
second system evaluates the stimulus with comparison to memory models of expected or salient
events (Gopher & Donchin, 1986).

The two-stage model of attentional processes involved in the etiology of the ERP has
implication for the study of mental workload. Donchin and his colleagues (Donchin, 1981;
Donchin, McCarthy, Kutas, & Ritter, 1983) argued that, because the P300 is e¢licited by
improbable or unexpected events, the P300 represents a “context-updating” of the mental
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model of the environment. The mental model is continually assessed for deviations from
expected sensory inputs and, when the events exceed some criterion, the mental model is
updated. The frequency at which the mental model is updated is based on the surprise value and
task relevance of the event. Donchin (1981) further developed a subroutine metaphor for the
various activities of the ERP components. The P300 subroutine was posited to be invoked
whenever there is a need to evaluate unusual, novel events in the environment (Gopher &
Donchin, 1986; Kramer, 1987; Kramer; 1991).

The finding that the subroutine, characterized by the P300, is invoked only with task-
relevant or surprising events has been important in the use of the ERP as a measure of mental
workload. Consider a situation in which a participant must perform an oddball task while
performing another task simultancously. Now, imagine that the difficulty of the primary task
is increased. Would the P300 subroutine still be invoked? If so, would the amplitude of the
P300 reflect the increased workload demands and, therefore, serve as an index of the resources
demanded by these two tasks? Such questions as these served as the impetus for researchers to
begin to investigate the use of the P300 in the assessment of workload (Kramer, 1987; Gopher
& Donchin, 1986; Parasuraman, 1990).

Dual-Task ERPs. The earlier ERP studies of mental workload were driven by research
findings connecting changes in ERP components to state variables, such as fatigue and arousal.

Haider, Spong, and Lindsley (1964) first reported that shifts in the N100 visual and auditory
ERP during discrimination tasks reflected both states, such as fatigue, arousal, and vigilance, as
well as discrimination task performance. Thereafter, ERPs were linked to the secondary-task
method, a method that was emerging as a technique for assessing primary task workload
demands. The earlier dual-task ERP studies of mental workload concentrated on stimulus-
evoked, exogenous, rather than task-evoked, endogenous ERP components. For example,
Defayolle, Dinand, and Gentil (1971) reported that the P100 component of the ERP to flashes
of red light was reduced when subjects performed a reasoning task as opposed to a control
condition in which no task was performed. Furthermore, as the difficulty of the reasoning task
was increased, the amplitude of the P100 showed further reductions. Spyker, Stackhouse,
Khalafall, and McLane (1971) demonstrated that the P250 component of the ERP was also
affected by the difficulty of the task. They reported that the amplitude of the P250 component
of the ERP to visual probe stimuli was reduced as the dynamic complexity of a tracking task was
increased (Parasuraman, 1990).

In a recent review of the research, Parasuraman (1990) concluded that these early studies
were plagued by lack of experimental control over the processing of the probe stimulus. The
experimental tasks were either not integrated with the presentation of the probe or, as in the
case of Defayolle, Dinand, and Gentil (1971), time domains of ERPs were not averaged
separately for various response categories and different stimuli. More recent research, however,
requires subjects to process the discrete event to some degree. A separate task is associated with
the ERP stimuli making this method a more exact analog of the dual-task procedure
(Parasuraman, 1990).

Many of these more recent studies have focused on the P300 component. These studies
were based upon the notion that P300 amplitude in a task should be proportional to the
attentional resources invested in the task (Johnson, 1986; Parasuraman, 1990). Put another
way, if subjects are given one task to perform while performing another task concurrently, the
demands imposed by the secondary task would impact the “memory-driven” processes and,
therefore, can be assessed by evaluating how the amplitude of the P300 changes in the primary
task (Parasuraman, 1990).

One of the first such studies was performed by Wickens, Isreal, and Donchin (1977). In
this study, the P300 amplitude to counted tones decreased when a visual tracking task was also
performed. This finding is not much different than the earlier ERP studies, except that the
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effect was for a task-evoked, endogenous rather than a stimulus-evoked, exogenous ERP
component. However, P300 amplitude was not found to be sensitive to increases in the
difficulty of the tracking task, either when the number of tracked dimensions was increased from
one to two (Wickens et al., 1977) or when the bandwidth of the tracking task was increased
(Isreal, Chesney, Wickens, & Donchin, 1980). The fact that the P300 did not vary much as a
function of primary task difficulty was attributed to the idea that primary and secondary tasks
draw on different "resource pools." This view contends that the tracking task difficulty taps
response-related resources; however, the P300 counting task taps perceptual resources.

In another study, Isreal, Wickens, Chesney, and Donchin (1980) coupled a counting task
with a visual monitoring task. Subjects were asked to monitor the visual task for changes in the
intensity or direction of squares and triangles that moved over a visual display. In this study,
perceptual factors were manipulated by requiring subjects to monitor either four or eight display
clements. The results showed that the P300 amplitude to the stimuli in the visual task was
smaller in the dual-task conditions. Moreover, P300 was decreased further in the high-load,
eight display element condition; however, this effect was found only for the direction-change
primary task. Similar studies (e.g., Kutas, McCarthy, & Donchin, 1977; McCarthy & Donchin,
1981; Ragot, 1984) have also found that the P300 is influenced by perceptual factors. Taken
together, these studies support the view that P300 amplitude can be used as a measure of
workload of a perceptual and cognitive, but not response-related nature. Further, P300 latency
has been found to change with stimulus parameters, such as masking, that are known to affect
encoding and central processing, but not for stimulus-response processing, such as stimulus-
response compatibility (McCarthy & Donchin, 1981; Parasuraman, 1990). These results have
been discussedin terms of the multiple-resource view of workload that holds that several separate
resource pools exist correspondingto different modalities, perceptual versus response processes,
and so on (Wickens, 1984). The fact that the P300 amplitude was not sensitive to tracking
difficulty suggests that this factor depletes resources that are not used by the P300 process
(Hoffman, 1990; Parasuraman, 1990).

Primary Task ERPs. The afore-mentioned studies utilized a dual-task methodology to
assess ERP as a metric to resources of a perceptual/cognitivenature and were taken as supporting
the multiple-resource view of workload. The results demonstrated that, if the primary task
difficulty is manipulated and yields secondary task performance decrements, in addition to
secondary task P300 amplitude decrements, then the results can be taken as reflecting
competition for perceptual/central processing resources over and above those placed upon the
response/output system. However, according to Sirevaag, Kramer, Coles, and Donchin (1989),
the P300 associated with the primary task has been overlooked. They contended that, if P300
amplitude does indeed evince resource competition shown to occur during dual-task performance,
logically then the P300s elicited by the primary task should resultin an increase in amplitude as
the workload of the primary task is increased. Further, in dual-task studies where ERPs can be
recorded in response to both discrete primary and secondary task events, one should find a
reciprocal relationship between primary and secondary task P300 amplitudes (Sirevaag et al.,
1989).

The amplitude reciprocity hypothesis was tested in a study by Wickens, Kramer,
Vanasse, and Donchin (1983) in which subjects were asked to track a target with a cursor. The
ERPs elicited by the discrete changes of the primary task were recorded in one experimental run.
ERPs for tones counted during the secondary task were also recorded in a separate trial. In this
study, task demands were manipulating by changing the number of integrations between the
joystick output and the movements of the cursor on the screen. They found that the P300
associated with the step changes increased in amplitude with increasing primary task difficulty;
whereas secondary task P300 amplitudes decreased.
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Recent studies have also found that P300s elicited to events from the primary task
increase in amplitude with increases in primary task difficulty (Sirevaag et al., 1989; Strayer &
Kramer, 1990; Ullsperger, Metz, & Gille, 1988) For example, Sirevaag et al. (1989) employed
a method where both primary and secondary ERPs could be concurrently recorded within the
same experimental condition. Measures of P300 amplitude and performance were obtained from
40 subjects within the context of a pursuit step tracking task performed alone and with a
concurrent secondary auditory discrimination task. The pursuit tracking task difficulty was
manipulated by varying both the velocity and acceleration control dynamics as well as the
number of dimensions, either one or two, to be tracked. ERPs were recorded for both the
tracking task setup changes and for the secondary task tones. The results showed that, as the
primary task difficulty was increased as reflected in increased root mean squared error (RMSE)
scores, there was decreased secondary task P300 amplitudes and increased primary task P300
amplitudes. Moreover, the increases in primary task P300 amplitudes were concomitant with
the amplitude decrements obtained for the secondary task. These findings were taken as
supporting the amplitude reciprocity hypothesis between primary and secondary task P300
amplitudes as a function of primary task difficulty.

Simulation Research. The previously mentioned research has provided important
evidence about the relationship between the P300 and mental workload. However, these studies
have not addressed whether such findings can generalize to real-world environments. This is
especially important if such studies are to be applied to adaptively automated systems.
Fortunately, much research has been conducted that has addressed this issue. Studies have
employed a number of primary tasks, including pursuit and compensatory tracking, flight control
and navigation, and memory/visual search, as well as both visual and auditory secondary tasks
(Hoffman et al., 1985; Humphrey & Kramer, 1994; Kramer & Strayer, 1988; Kramer, Sirevaag,
& Braune, 1987; Kramer, Wickens, & Donchin, 1983; 1985; Lindholm, Cheatham, Koriath,
Longridge, 1984; Natani & Gomer, 1981; Sirevaag et al.,, 1993; Strayer & Kramer, 1990;
Theissen, Lay, & Stern, 1986). For example, Lindhom et al. (1985) elicited ERPs to auditory
stimuli during simulated landings and attack scenarios. They reported a larger P300 amplitude
decrease as the workload in the primary task was increased. A related study used an oddball, or
rare event, secondary-task to elicit ERPs as subjects performed a flight task simulation (Natani
& Gomer, 1981). This study found significant P300 amplitude decrements as well as longer
P300 latencies under the high workload conditions. However, similar results were not found for
a second replication of the task (Wilson & Eggemeier, 1991).

Theissen, Lay, and Stern (1986) employed a visual oddball task to eclicit ERPs while
electronic warfare officers performed various tasks in a fighter aircraft simulator. Task difficulty
levels were manipulated by changing task parameters, such astarget characteristics (e.g., number
and type) and threats to aircraft. The results demonstrated smaller P300 amplitudes in the
single-task control condition than in the simulated flight conditions. Kramer, Sirevaag, and
Braune (1987) evaluated workload during a flight simulation experiment that used an auditory,
rather than visual, oddball task that required subjects to discriminate infrequent from frequent
tones. They found that the P300 component of the ERP consistently indexed changes in flight
difficulty level with a finding of decreasedP300 amplitude with increased primary-task difficulty.
Further, P300 amplitude demonstrated a negative correlation with deviations from flight
headings. Such a finding suggests that primary task data can be coupled with ERP data to make
allocation decisions in an adaptively automated environment.

Sirevaag etal. (1993) elicited ERPs to irrelevant probes as helicopter pilots flew a series
of reconnaissance missions in a motion-based, high-fidelity helicopter simulator. They reported
smaller P300s amplitudes to probes as the communication load imposed on the pilots was
increased. Biferno (1985) also looked at communication load and ERPs. He recorded ERPs
from radio call signs as subjects performed flight simulator missions. P300 amplitude was found
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to be smaller as the workload increased. Furthermore, both fatigue and subjective workload
estimates of workload were reported to discriminate between various levels of workload. These
results suggest that ERPs are associated with other measuresof taskload thereby attesting to their
utility for workload estimation and adaptive automation.

Most of the research conducted with ERPs and mental workload has been focused on
flight simulation. In one of the few applications of ERPs outside of aviation, Wesensten et al.
(1993) recorded auditory ERPs from 10 male participants at 0900, 1600, and 1830 hours.
P300s were collected while participants were at sea level and another one was collected following
a rapid ascent to a simulated 4,300 meter altitude. The results of the study were a decrease in
P300 amplitude, while P300 latency and reaction time increased, following the ascent. Another
study (Janssen & Gaillard, 1985) used an auditory Sternberg memory task to elicit ERPs from
automobile drivers as they drove on three different types of roadway: rural, city, and highway.
Expressway driving was foundto elicit the smallest P300 amplitudes, and this was interpreted as
being the driving segment with the highest workload (Wilson & Eggemeier, 1991).

Conflicting Simulator Studies. A number of field studies have demonstrated that the
ERP reliably varies with workload. However, a few studies exist that have not shown such clear-
cut evidence (e.g., Fowler, 1994; Jannsen & Gaillard, 1985; Natani & Gomer, 1981). For
example, Fowler (1994) elicited ERPs using auditory and visual oddball tasks as subjects flew a
final approach and landing manuever under workloads varied by manipulating turbulence and
hypoxia. The oddball tasks required subjectsto detect infrequent tones or flashes of an artificial
horizon. Although RMSE flying performance was found to be systematically degraded by the
two workload conditions, the P300 amplitude was not strongly related to performance.
However, P300 amplitude was inversely related to high taskload when the visual condition was
analyzed separately. The authors accounted for this result by invoking the amplitude reciprocity
hypothesis. As stated previously, this hypothesis suggests that, as the primary task difficulty is
increased and the P300 amplitude elicited by the secondary task decreases, P300 amplitude for
task-relevant events embeddedin the primary task increases. Therefore, the flashing horizontal
horizon was processed as part of the primary task causing the P300 amplitude to increase as a
function of task difficulty. However, this cannot account for the results reported for the
auditory condition as no systematic pattern emerged in contrast to a similar study done by
Kramer, Sirevaag, and Braune (1987).

Fowler (1994) also reported that P300 latency was found to covary with flight
performance, increasing as a function of workload in both modalities. O'Donnell and Eggemeier
(1986) suggested that the P300 amplitude indexes workload because it is sensitive to subject
expectancy that is disrupted by workload. This would explain the disassociationbetween latency
and amplitude because the mechanisms controlling expectancy would be different than those
indexing the speed of perceptual/cognitive processing. According to this view, the instrument
flight rules (IFR) flying task used by Kramer, Sirevaag, and Braune (1987) primarily interrupted
subject expectancy whereas the visual flight rules (VFR) task used by Fowler (1994) primarily
slowed stimulus evaluation. The authors noted that this possibility suggests that both P300
amplitude and latency can be used as indices of mental workload, depending on the nature of the
task (Fowler, 1994)

In a second study, Janssen and Gaillard (1985) were unable to replicate the finding of a
smaller P300 amplitude to probes during expressway driving despite the fact that heart-rate
variability was found to be significantly decreased in the more demanding expressway segment
in both studies. Also, Natani and Gomer (1981) were unable to replicate the findings of their
first study. Similar to Fowler (1994), however, Janssen and Gaillard reported that P300 latency
was sensitive to increases in taskload.

Real-Time Assessment of Mental Workload. Although the simulator studies cited
above, have yielded useful information, they have not addressed whether ERPs could measure
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dynamic changes in mental workload. For example, in simulator studies, 50-100 single trial ERPs
may be collected and then averaged to determine whether ERP components discriminate
workload or performance levels. In an adaptively automated environment, collection of this
quantity of ERP data may not be practical. A number of earlier studies, however, have suggested
that ERPs can be used for on-line evaluations of moment-to-moment fluctuations in operator
workload (Defayolle et al., 1971; Gomer, 1981; Sem-Jacobsen, 1981). Although research on
real-time assessment of mental workload is still in its infancy, this line of research has been
expanded in several recent studies that have suggested that on-line assessment may soon be
feasible. For example, Farwell and Donchin (1988) asked subjects to attend to one item in a 6
x 6 matrix of items. The columns and rows flashed randomly and ERPs e¢licited from the flashes
were used to discriminate between the attended and unattended items. A 95 percent accuracy
level was found using just 26 seconds of ERP data. Kramer, Humphrey, Sirevaag, and Mecklinger
(1989) also found that on-line assessment of mental workload can be performed with a small
amount of ERP data (Kramer, 1991).

Humphrey and Kramer (1994) also reported a study that examined whether ERPs could
measure dynamic changes in mental workload. They examined how much ERP data is necessary
to discriminate between levels of mental workload in complex, real-world tasks. In order to
address this question, they employed a bootstrapping approach to investigate the accuracy of
discriminating between workload levels using different amounts (e.g., 1 to 75 sec) of ERP data.

Participants were asked to perform two tasks, monitoring and mental arithmetic, both
separately and together. Following an analysis of the performance, subjective workload ratings,
and average ERP data in the single- and dual-task conditions, two different conditions from each
of the tasks were selected for further analysis. The results of the study indicated that 90%
correct discrimination could be achieved with from 1 to 11 sec of ERP data. These results were
discussed in terms of real-time assessment of mental workload using ERP data. Kramer, Trejo,
and Humphrey (1996) discussed these results as evidence that event-related potentials can be
useful in the design of adaptive systems.

Research Purpose

The EEG and ERP represent viable candidates for determining shifts between modes of
automation in adaptive systems. Becausereal-time assessment of workload is the goal of system
designers wanting to implement adaptive automation, it is likely that these measures will become
the focus of research on adaptive automation. This optimism stems from a number of studies
that have suggested that they might be useful for on-line evaluations of operator workload
(Defayolle et al., 1971; Farwell & Donchin, 1988; Gomer, 1981; Humphrey & Kramer, 1994;
Kramer, 1991; Kramer et al., 1989; Sem-Jacobsen, 1981). Although these results suggest that
on-line assessment of mental workload may be possible in the near future, a good deal of
additional research is needed.

The determination of measures on which to dynamically allocate automation does not
represent the only area that needs exploration. Other areas include the frequency with which
task allocations are made, when automation should be invoked, and how this invocation changes
the nature of the operator's task (Parasuraman et al., 1992). Specifically, it is not known how
changing among automation task modes impacts the human-automation interaction.

The present study attempted to examine the impact of cycles of automation on
behavioral, subjective, and psychophysiological correlates of operator performance.
Furthermore, the efficacy of use of EEG and ERPs for adaptive task allocation was also
examined. The study was an off-shoot of previous research by Pope, Bogart, and Bartolome
(1995) who examinedthe use of EEG as an adaptive trigger for changing among automation task
modes.
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The Biocybernetic System

Electroencephalogram. Pope, Bogart, and Bartolome (1995) reported one of the few
studies examining the utility of EEG for adaptive automation technology. These researchers
developed an adaptive system that uses a closed-loop method to adjust modes of automation
based upon changes in the operator's EEG patterns. The closed-loop method was developed to
determine optimal task allocation using an EEG-based index of engagement or arousal. The
system uses a biocybernetic loop that is formed by changing levels of automation in response to
changing taskload demands. These changes were made based upon an inverse relationship
between the level of automation in the task set and the level of pilot workload.

The level of automation in atask set could be suchthat all, none, or a subset of the tasks
could be automated. The task mix is modified in real time according to operator's level of
engagement. The system assigns additional tasks to the operator when the EEG reflects a
reduction in task set engagement. On the other hand, when the EEG indicates an increase in
mental workload, a task or set of tasks may be automated, reducing the demands on the operator.
Thus, the feedback system should eventually reach a steady-state condition in which neither
sustained rises nor sustained declines in the EEG are observed.

One issue for the biocybernetic system concerns the nature of the EEG signal used to
drive changes in task mode. Pope, Bogart, and Bartolome (1995) argued that differences in task
demand elicit different degrees of mental engagement that could be measured through the use of
EEG-based engagement indices. These researchers tested several candidate indices of engagement
derived from EEG power bands (alpha, beta, & theta). These indices of engagement were derived
from recent research in vigilance and attention (Davidson, 1988; Davidson et al., 1990; Lubar,
1991; Offenloch & Zahner, 1990; Streitberg, Rohmel, Herrmann, & Kubicki, 1987). For
example, Davidson et al. (1990) argued that alpha power and beta power are negatively
correlated with each other to different levels of arousal. Therefore, these power bands can be
coupled to provide an index of arousal. For example, Lubar (1991) found that the band ratio of
beta/theta was able to discriminate between normal children and those with attention deficit
disorder.

Pope and his colleagues (1995) reasoned that the usefulness of a task engagement index
would be determined by a demonstrated functional relationship between the candidate index and
task operating modes (i.e., manual versus automatic) in the closed-loop configuration. They
used both positive and negative feedback controls to test candidate indices of engagement
because each should impact system functioning in the opposite way, and a good index should be
able to discriminate between them. For example, under negative feedback conditions, the level
of automation in the tasks was lowered (i.e., automated) when the EEG index reflected increasing
engagement. On the other hand, when the EEG reflected increasesin task demands, automation
levels were increased. Task changes were made in the opposite direction under positive feedback
conditions; that is, the level of automation in the tasks was maintained when the EEG
engagement index reflected increasing task demands. If there was a functional relationship
between an index and task mode, the index should demonstrate stable short-cycle oscillation
under negative feedback and longer and more variable periods of oscillation under positive
feedback. The strength of the relationship would be reflected in the degree of contrast between
the behavior of the index under the two feedback contingencies.

Pope, Bogart, and Bartolome (1995) found that the closed-loop system was capable of
regulating participants’ engagement levels based upon their EEG activity. They reported that
the index 20 beta/(alphattheta) possessedthe best responsiveness for discriminating between the
positive and negative feedback conditions. The conclusion was based upon the increased task
allocations in the negative feedback condition witnessed under this index than under either the
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beta/alpha or alpha/alpha indexes. These results were taken to suggest that the closed-loop
system provides a means for evaluating the use of psychophysiological measures for adapting
automation. A number of subsequent studies (Prinzel, Scerbo, Freeman, & Mikulka, 1995;
Prinzel, Hitt, Scerbo, Freeman, & Mikulka, 1995; Prinzel, Scerbo, Freeman, & Mikulka, 1997)
have also reported that the system is capable of moderating workload on behavioral,
physiological, and subjective dimensions.

Recently, an improvement had been made to the biocybernetic system. The previous
system used by Pope, Bogart, and Bartolome initiated changes in automation levels basedon the
slope of the index taken from successivemeasurements. One problem with using a slope measure
concerns its sensitivity to changes in operator arousal and its reflection of levels of operator
engagement. The system makes task allocation decisions regardless of whether the engagement
level is high or low. In other words, an operator's overall engagement level may be quite low
relative to his or her normal baseline engagement level. However, the system may make a task
allocation decision to automate a task merely because the arousal level is higher, when the next
EEG engagement index is derived, despite the fact that the overall arousal level is still low
(Hadley, et al., 1997; Prinzel, Scerbo, Freeman, & Mikulka, 1997). Therefore, the system
makes task allocation decisions without a consideration of individual differences in engagement.

One strong candidate for making such decisions is the use of algorithms based on the
absolute levels of the EEG engagement index. In such a system, baseline data could be obtained,
such asthe mean of the EEG engagementindex, for an individualoperator. That data couldthen
be fed into a biocybernetic system and task allocation decisions made based upon the absolute
value of the index relative to the mean data obtained during the baseline period.

Prinzel, Freeman, Scerbo, and Mikulka (1997) reported on such a biocybernetic system.

They examined the effectiveness of the three indices derived from the same four cortical sites
as Pope, Bogart, and Bartolome (1995). Their system used the average index derived from the
participant's baseline EEG to make task allocation decisions. Participants were askedto perform
a compensatory tracking task under both negative and positive feedback conditions. The results
were that participants performed better under the negative feedback condition than under the
positive feedback condition. Also, the index 20 beta/(alpha+theta) was found to be superior in
distinguishing between negative and positive feedback in terms of behavioral, subjective, and
physiological correlates. Thus, the task allocation and physiological data were found to be
comparable to the previous results of studies using a slope method to drive the biocybernetic
system. However, the results demonstrated that the system was also better able to improve
performance and moderate workload demands. These findings are important for the design of
adaptive automation. The use ofa slope approach may work well with binary types of adaptive
automation. More complex systems incorporating multiple levels of automation, however,
would require algorithms that can trigger task allocations based upon differences among several
engagement levels. These findings suggest that a system, using absolute measures of operator
engagement, may be used to allocate tasks among various task engagement levels.

Short-Cycle Automation. Clearly, the research on automation has shown that a
number of deleterious effects on human performance often accompany the advantages that
automation provides. As Endsley and Kiris (1994) have noted, research is needed that examines
various techniques that would establish human-centered automation that minimizes the negative
effects of automation while maximizing overall human-system performance. Adaptive
automation has been toutedas just such aremedy. However, although much speculation has been
made concerning adaptive automation, it remains to be seen whether adaptive automation can
deliver on its promises (Glenn et al., 1994). Woods (1996) stated that, "conventional wisdom
about automation makes technology change seem simple....However, the reality of technology
change ...is that technological possibilities often are used clumsily, resulting in strong, silent,
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difficult-to-direct systems that are not team players (p. 15)"; this is what he calls "apparent
simplicity, real complexity”. What is required then is to examine whether adaptive automation
really can provide anything additional not already present by other, less technological
approaches.

A number of studies have demonstrated that cycling between automation modes may be
beneficial (Ballas, Heitmeyer, & Perez, 1991; Hadley, Prinzel, Freeman, & Mikulka, 1998;
Hilburn, Molloy, Wong, & Parasuraman, 1993; Parasuraman, Molloy, & Singh, 1993;
Parasuraman, Bahri, Molloy, & Singh, 1992; Johannsen, Pfendler, & Stein, 1976; Scallen,
Hancock, & Duley, 1995). These studies have shown that short-cycle automation can
significantly improve performance and lower workload. For example, Scallen, Hancock, and
Duley (1995) had six pilots perform tracking, fuel management, and system monitoring tasks
for nine trials lasting five minutes each. The nine trials consisted of factorial combinations of
three conditions of tracking difficulty (low, medium, and high) and three conditions of cycle
duration (15, 30, or 60 seconds). These researchers found that tracking performance was
significantly better at the 15-sec cycle duration, but there were no differences in mental
workload across the three cycling conditions (p < .07).

Hadley, Prinzel, Freeman, and Mikulka (1998) expanded on the Scallen, Hancock, and
Duley (1995) study. These researchers asked nine participants to perform a tracking task and
an auditory, oddball task for three trials consisting of a 15-, 30-, and 60-sec cycle durations.
ERPs were gathered to infrequent, high tones presented in an auditory oddball task. The results
showed that tracking performance was significantly better under the 15-sec duration, but
participants rated workload significantly higher under this condition. These results were
interpreted in terms of a micro-tradeoff; that is, participants did better under the 15-sec
condition at the expense of working harder. The conclusion was supported by the ERP results.
An examination of the EEG gathered five seconds after each task allocation revealed that P300
latency was foundto be considerably longer and the amplitude considerably smaller under the 15-
sec cycle duration than under either the 30- or 60-sec cycle conditions. Therefore, these results
suggest that short periods of manual reallocation may prove beneficial to performance and
moderating workload demands. However, such benefits are tempered by increased return-to-
manual deficits (Wiener & Nagel, 1988). Moreover, they support the use of ERPs metrics of
workload in the design and implementation of adaptive automation technology. Note that
the question of adaptive automation does not hinge on its conceptual underpinnings. Inherently,
it makes sense to transform the operator's task at times when the operator's mental state is less
than optimal. However, this is not to say that adaptive automation provides utility that
supersedes the difficulties that we, as researchers, designers, and practitioners, may face with the
implementation of this type of technology. Such studies, as those discussed previously,
demonstrate that schedules of static automation can also have positive effects on performance
and workload. Therefore, it is of theoretical and practical interest to determine what benefits,
if any, that adaptive automation provides beyond that of static automation that cycles between
automation modes based upon scripted automation schedules.

The present study sought to examine the impact that adaptive automation has on
performance as well as subjective and psychophysiological measures of workload. To assess the
research question, the biocybernetic system was used to dynamically allocate tasks between
manual and automatic modes. Participants were yoked to other participants that also performed
the experimental tasks. However, the task allocations that the participants experienced were
based upon the exact cycle scheduling of the yoked counterpart. Therefore, it was possible to
examine the impact that adaptive and static cycling has on various correlates of workload.
Further, the design allowed a comparison of these two forms of task allocation.

Event-Related Potentials. As noted, many theories, models, and platforms for
implementing adaptive automation have already been proposed (Mouloua & Parasuraman,
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1995), including the use of biopsychometric measures, such as ERPs, asindices of operator states
in adaptive systems (Defayolle, Dinand, & Gentil, 1971; Gomer, 1981; Hancock, Chignell, &
Lowenthal, 1985; Reising, 1985; Rouse, 1977; Sem-Jacobson, 1981). The use of ERPs in the
design of adaptive automation systems was considered some years ago in the context of
developing "biocybernetic”" communication between the pilot and the aircraft (Donchin, 1980;
Gomer, 1981). The idea concerned systems in which tasks or functions could be allocated
flexibly to operators, using ERPs, which may allow the optimization of mental workload to be
sought in a dynamic, real-time environment. For example, a method might be developed for
obtaining momentary workload levels allowing an index to be derived, such as the amplitude of
the P300 wave ofthe ERP. The workload index could then be compared in real-time to a stored
profile of the ERP associated with that task(s). The profile would be generated from initial
baseline data. If the optimal physiological level for a task is exceeded, then the task(s) could be
off-loaded from the operator and allocated to the system. Further, if the workload levels
become too low, then the task(s) could be transferred back to the operator (Parasuraman, 1990).
In recent reviews, however, Parasuraman (Byrne & Parasuraman, 1996; Parasuraman, 1990)
concluded that although many proposals have been made concerning the use of ERPs in adaptive
systems, little actual research has been conducted.

The proposed study attempted to further the research on the use of ERPs for adaptive
automation. What is proposed is that the absolute biocybernetic system be used to make task
allocation decisions between manual and automatic task modes as previously described.
Participants were also asked to perform an oddball, auditory task concurrently with the
compensatory tracking task. The EEG signal was fed to both the biocybernetic system and to
a data acquisition system that permitted the analysis of ERPs to high and low frequency tones.
Such results are hoped to assess the efficacy of using ERPs in the design of adaptive automation
technology.

Research Hypotheses

1. Based upon previous findings (Hadley, Mikulka, Freeman, Scerbo, & Prinzel, 1997;
Prinzel, Freeman, Scerbo, & Mikulka, 1997) with the absolute biocybernetic system, it is
predicted that the system will make significantly more task allocations under the negative
feedback condition than under the positive feedback condition. The hypothesis is confined to
the data gathered from the adaptive automation group as the schedules of task allocations for
the yoked and control groups are determined based upon the data gathered from the former
group.

2. Parasuraman, Molloy, and Singh (1993) demonstrated that manual task reallocation
may be a potential countermeasure to decrements in performance often observed with
automation. They found a temporary return to manual control of a monitoring task from
automated functioning reduced failures of omissions for both pilots and nonpilots. Furthermore,
more sustained benefits were observed with multiple or repetitive manual reallocations. Similar
findings have been reported by Scallen, Hancock, and Duley (1995) and Hadley, Prinzel,
Freeman, and Mikulka (1998) for tracking performance. Therefore, because the negative
feedback condition is predicted to produce the most task allocations, the increase in manual
reallocations should result in significantly better tracking performance and lower subjective
workload scores than under the positive feedback condition.

3. Another hypothesis concerns how behavioral and subjective measures are moderated
by adaptive automation relative to static automation. It is predicted that participants in the
adaptive automation condition will have better tracking performance and lower subjective
workload ratings than the yoked participants in the static automation condition. Therefore,
performance and workload metrics should evince significant differences between the adaptive and
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yoked group conditions with no differences observed between the yoked and control group
conditions. Specifically, participants in the adaptive automation, negative feedback condition
should have significantly better performance and lower workload scores than all other group,
feedback conditions.

4. Because task allocations between operating modes are not contingent upon changes
in workload as measured by EEG patterns for those participants in the yoked condition, there
should be no differences in tracking performance or subjective workload estimates between
negative and positive feedback conditions. The reason is that any task allocations made are
determined based upon the schedule of their yoked counterpart and are unrelated to the mental
state of the participant. Likewise, there should be no differences in performance or subjective
workload metrics between the yoked and control group conditions.

Conversely, if the effects are due to increased manual reallocations and not to the
adaptive method of task allocation, increasing the automation cycle schedule should result in
improved performance and lowered workload for participants in the yoked condition under the
negative feedback condition than under the positive feedback condition. Additionally, there
should be no differences in performance or subjective workload scores between the three group
conditions.

5. For participants in the adaptive automation group, the derived EEG engagement
index is hypothesized to vary as a function of which feedback condition and which task mode
the system was operating under. Under positive feedback, when the EEG patterns reflect a low
task engagement state, the system automates the tracking task that theoretically further lowers
engagement levels. However, ifthe EEG patterns reflected increasing engagement, the system
allocates the tracking task to the manual task mode. Therefore, for positive feedback, it is
hypothesized that the EEG engagement index would be highest during manual task mode and
lowest during the automatic task mode.

The opposite pattern is expected for negative feedback. Negative feedback is designed
to induce optimal states of task engagement. The system does this by allocating tasks to the
operator when the EEG shows that the engagement state is below baseline levels and automates
the task when the engagement state is above baseline levels. Therefore, for negative feedback,
the EEG engagement index is expected to be significantly lower during the manual task mode
than during the automatic task mode (Prinzel, Freeman, Scerbo, & Mikulka, 1997; Prinzel, Hitt,
Scerbo, Freeman, & Mikulka, 1995; Prinzel, Scerbo, Freeman, & Mikulka, 1995; Prinzel, Scerbo,
Freeman, & Mikulka, 1997).

6. Numerous studies have demonstrated that the P300 amplitude and latency reflects
workload levels wherein the amplitude decreases and latency increases with increases in workload
demands. Therefore, it is predicted that the amplitude of the P300 component to infrequent,
high tones in a secondary, auditory oddball task is predicted to be significantly smaller and P300
latency longer under the higher workload, positive feedback condition than under the lower
workload, negative feedback condition.

7. There should be a significant feedback condition X group condition interaction with
the P300 discriminating between the two feedback conditions only for those participants in the
adaptive automation group. No differences are expected to be evident between the yoked
condition and control conditions regardless of which feedback condition the biocybernetic
system is operating under.

However, as the results of Scallen, Hancock, and Duley (1995) suggest, if increasing the
number of task allocations between manual and automated operating modes results in lowered
performance errors and workload scores, then differencesin the P300 components may be seen
between the two feedback conditions for participants in the yoked condition. If performance
and workload differences are seen, it is predicted that the P300 amplitude should be smaller and
latency longer under the positive feedback condition than under the negative feedback condition.
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Also, no differences would be expected between the three group conditions for P300 amplitude
and latency.

8. Efficient task performance requires selective attention to task-relevant events.
Attention to these events amplifies a range of ERP components, including P100, N100, P200,
and N200 as well as slower, broad negativities. Therefore, in addition to the P300 component,
the study will also examine the relationship of other ERP components. Although most research
has focused on the P300 component of the ERP, a number of researchers have suggested that
these other components can also be used in the assessment of workload (e.g., Lindholm,
Cheatham, & Koriath, 1984). The consensus is that attention in high workload situations
requires allocation of both common, nonspecific resources (e.g., N100 component) and task-
specific resources (i.e., P300 component). Generally, the amplitude decreases and latency
increases as workload demands are increased (Parasuraman, 1990). Therefore, there should be
a significant difference in amplitudeand latency of these ERP components between negative and
positive feedback conditions.

9. Furthermore, it is expected that there will be a significant feedback X experimental
group interaction for these different waveforms. The amplitudes are predicted to be greater and
the latencies shorter for infrequent, high tones under the negative feedback condition only for
those participants in the adaptive automation group. No differences are expected between any
other group, feedback condition combination.

However, if increased manual reallocations are responsible for the lowered task load
under negative feedback, no differences in these ERP components would be expected between
the three group conditions. Rather, only a main effect should be found between negative and
positive feedback.
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METHOD

Participants

Thirty-six undergraduate and graduate students served as participants for this
experiment. The ages of the participants ranged from 18 to 40. Participants were given
monetary compensation or extra course credit for their voluntary participation. All participants
were right-handed as measured by the Edinburgh handedness survey (Oldfield, 1971) and had
normal or corrected-to-normal vision.

Apparatus

Electrical cortical activity was recorded with an Electro-Cap International sensor cap.
The lycra sensor cap consists of 22 recessed tin electrodes arranged according to the

International 10-20 system (Jasper, 1958). One mastoid electrode was used for a reference.
Conductive gel was placed into each of the four electrode sites, the reference, and the ground
using a dispenser tube and a blunt-tipped hypodermic needle.

The NeuroScan SynAmps isa AC/DC amplifierthat provides both a broadband amplifier
and a high speed digital acquisition system. The system has four high speed digital signal
processors (DSPs) with 1 MByte of RAM per DSPs for data acquisition. The SynAmps has a 33
MHz 486 DX processor with 4 MBytes of RAM and an electronic flash disk dedicated to
management of DSPs. It provides for real-time digital filtering by the DSPs allowing filter
settings from DC to 10kHz. Sampling rates can be set between 100 Hz to 20 kHz from 1 to 32
channels. Also, the system has 28 monopolar and 4 bipolar channels provided through a
NeuroScan SynAmps headbox connector. The SynAmps amplifier has tracking anti-aliasing
filters, first stage amplification to reduce Signal/Noiseratio, and an on-line DC offset correction.
All impedance calibration is built-in and the input signal is managed through SCAN software.

The system was used for ERP acquisition and analyses.

The SynAmps amplifier was connected via an analog output board to a Biopac EEG100A
Analog/Digital converter through a four-line buffered cable. The analog output board takes the
output signal from the SynAmps prior to the sample and hold (S/H) circuits. The analog output
board filters the signal and then routes the output to a D-37 connector on the SynAmps back
panel. Band-limiting is gathered from single-pole high-pass (1 Hz) and low-pass (70 Hz) filters.

The anti-aliasing filters are set for 0.2 times the sample frequency.

The system was also connected to a PC computer through the parallel port on the back
panel of the SynAmps amplifier. The Biopac system consists of a four channel, high gain,
differential input, bio-potential amplifier. The frequency response is 1 to 100 Hz. The gain
setting is x5000 that allows an input signal range of 4000uV (peak-to-peak). However, for the
present study, only the Biopac A/D converter was used.

The Biopac A/D converter was connectedto the Macintosh Virtual Instrument (VI). The
software designed to run the VI is the Real Time Cognitive Load Evaluation System (RCLES v
3.3.1). It calculates the total EEG power in four bands: theta (4-8 Hz), alpha (8-13 Hz), beta
(13-22 Hz), and high beta (38-42 Hz). The VI also performs the engagement index calculations
and commands the task mode changes through serial port connections to the task computer.

The Macintosh Virtual Instrument was connected to a PC WIN 486 DX computer that
was used to run the MAT (see below). Data was binned according to assigned bit numbers placed
in the data record from the PC computer. Auditory oddball tone sequencing and gating was
controlled by the VI software and these event signals were also placed in the data record as ERP
synchronization triggers.
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The monitor was a NEC MultiSync 2A color monitor. A joystick was used for the
compensatory tracking task. The gain on the joystick was set to 60% of its maximum and had
a bandwidth of 0.8 Hz. A graphical depiction of the experimental set-up is shown in Figure 1.

Experimental Design

A 2 feedback condition (positive or negative feedback) X 2 task mode (automatic or
manual mode) X 3 experimental group condition (yoked, control, or adaptive automation)
mixed-subjects design was employed. The experimental group condition represented the only
nested variable. All other conditions were counterbalanced.

Automation Cycle Sequencing. Each of the thirty-six participants was randomly
assigned either to the adaptive automation group (n = 12), the yoked (n = 12), or the control
(n = 12) group. The adaptive automation condition required the participants to perform the
compensatory tracking task and auditory oddball task under the closed-loop configuration. The
data records of switches between task modes were then used to determine the pattern of task
allocations to be made between automatic and manual task modes for participants in the yoked
condition. Therefore, these participants performed the tracking task under the exact same
schedule of manual and automatic task modes as their experimental complement. The control
group, on the other hand, consisted of participants who performed a random assignment of task
allocations between task modes. The
schedule of task allocations was determined for each control participant based upon the average
number of switches in both the positive and negative feedback conditions for the adaptive
automation group. For example, control participant number one received a random schedule of
task allocations based upon the average number of task allocations that adaptive automation
participant number one experienced. All participants, however, had the same sequence of high
and low tones in the auditory oddball task.

Dependent Variables. The dependent variables included: (a) the EEG engagement
index defined as 20 beta/ (alphattheta); (b) the amplitude and latency of the ERP waveform was
analyzed; (c) the number of switches, or task allocations, under each feedback condition; (d)
tracking performance as measured by root-mean-squared-error (RMSE); (e) the number of
counted high tones in the oddball task; and (7) subjective workload assessed by the NASA-TLX
(task load index; Hart & Staveland, 1988; Byers, Bittner, & Hill, 1989).

Statistical Tests and Criterion. All ANOVAsusinga repeated measures variable were
corrected with the Greenhouse-Geisser procedure (Greenhouse & Geisser, 1959). Alpha level was
set at .05. All post hoc comparisons used simple effects analyses and the Tukey post hoc
procedure.

Experimental Tasks

Tracking Task. Participants were run using a modified version of the NASA Multi-
Attribute Task (MAT) battery (Comstock & Arnegard, 1992). The MAT battery is composed
of four separate task areas, or windows, constituting the monitoring, compensatory tracking,
communication, and resource management tasks. These different tasks were designedto simulate
the tasks that airplane crew members often perform during flight. Only the compensatory
tracking task was used in the present study. The task requires participants to use a joystick to
maintain a moving circle, approximately 1 cm in diameter, centered on a .5 cm by .5 cm cross
located in the center of the screen. Failure to control the circle results in its drifting away from
the center cross.

Auditory Oddball Task. The auditory oddball secondary task consisted of high and
low tones at 1100 Hz and 900 Hz, respectively. The frequency of the tone presentation was
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once per second, and the probability of a high tone was .10 msecs which was randomly assigned
for presentation. The inter-stimulus interval was kept uniform across the experimental
conditions. Therefore, over a 16-minute trial there were 96 high tone signals and 864 low tone
signals. The ordering of the onset of tones was held consistent across participants. The tones
were gated to provide a rise and fall time of .10 shaping a square wave signal. The tones were
presented to both of the participant's ears through stereco KOSS head phones at 60 dB SPL.

EEG Recording and Analysis

The EEG was recorded from sites Pz, Cz, P3, and P4. A ground site was used located
midway between Fpz and Fz. Each site was referenced to the left mastoid. The EEG was routed
through a SynAmps amplifier from an analog output board to the Biopac A/D converter. The
outputed analog signal was converted by the BioPac A/D converter to digital, and the digital
signals were arranged into epochs of 1024 data points (roughly two and one half seconds).
Digitized input channels were then converted back to analog and then routed to an EEG interface
with a LabVIEW Virtual Instrument (VI). The VI calculated total EEG power from the bands of
theta, alpha, and beta for each of the four sites and converted the signal into a spectral power
form using a Fast Fourier Transform (FFT).

The EEG frequency bands were set as follows: alpha (8-13 Hz), beta (13-22 Hz), theta
(4-8 Hz), and high beta (38-42 Hz). The VI also calculated the EEG engagement index that
determines the MAT Battery task mode changes. Automation task mode was switched between
manual and automatic depending upon the feedback condition. The EEG index was calculated
every 2 sec with a moving 20-sec window. The window wasthen advanced two seconds and a new
average was derived. This moving window process continued for the duration of the trial. At
each epoch, the index was compared to the mean value determined duringa five-minute baseline
period for each participant. An EEG index above baseline (see below) indicated that the
participant's engagement level was high while an EEG index below baseline indicated that
engagement level was low. An artifact rejection subroutine examined the amplitudes of each
epoch from the four channels of digitized EEG and compared them with a preset threshold. If
the voltage in any channel exceeded the threshold for more than 25% of the epoch (about two-
thirds of a second) the epoch was marked as artifact and the calculated index was replaced with
a value of zero. These epochs were then ignored when computing the value of the index. The
data record resulting from an epoch containing an artifact was marked when it was written to the
data file so that it could be ignored during later data analyses.

ERP Recording and Analyses

The NeuroScan SynAmps amplifier system was used for ERP acquisition and analyses.
The software package for gathering ERPs was the Acquire386 SCAN software version 3.00.
Data was acquired based upon assigned bit numbers placed in the data record from the MAT
computer. The signal was gathered with 500 sweeps and points in the time domain providing an
A/D rate of 500. All corrections and artifactual rejection were done off-line. The amplifier had
a gain setting of 500 with a range of 11 mV and an accuracy rate of 0.168 uV/bit. The low pass
filter was 30 Hz and the high pass filter was setat 1.0 Hz. EEG electrodes had an impedance of
below 5 KOhms.

The continuous EEG data file was analyzed to reduced ocular artifact through VEOG and
HEOG electrodes. These channels were assigned weights according to a sweep duration of 40 ms
and minimum sweep criteria of 20. The continuous EEG data file then transformed into an EEG
epoch file based on a setting of 500 points per data file. The epoch file was then baseline
corrected in the range of -100 to 0 msec from the onset of the signal. ERPs were acquired
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through a sorting procedure based upon the assigned bit numbers in the data file. The signal was
then further filtered with a low pass frequency of 62.5 and a low pass slope of 24 db/oct. The
high pass frequency was 5.00 Hz with a high pass slope of 24 db/oct. All filtering was performed
in the time domain. All EEG was referenced to a common average and was smoothed by the
SCAN software.

The criteria for ERP component classification was determined by the largest base-peak
amplitude and latency within a pre-set window (Kramer, Trejo, & Humphrey, 1996): N100 (0-
150 msec), N200 (150-250 msec), P100 (0-150 msec), P200 (150-250 msec), and P300 (275-
750 msec).

Experimental Procedure

The participant's scalp was prepared with rubbing alcohol and electrolyte gel. A
reference electrode wasthen affixed to the participant's left mastoid by means of electrode tape
and an adhesive pad. ECI Electro-Gel conductive gel was then placed in the reference electrode
with a blunt-tip hypodermic needle. Electrode gel was also placed in each of the four electrode
sites (Pz, Cz, P3, P4), the ground site, and VEOG and HEOG electrodes. Using the blunt-tip
hypodermic needle, the scalp was lightly abraded to reduce the impedance level at each site,
relative to the ground, to less than five KOhms.

Participants were then instructed on how to perform the auditory oddball task and the
compensatory tracking task. Once the participant had an understanding of these tasks, the EEG
clectrode cap was connected to the SynAmps headbox connector. Participants were then asked
to sit quietly with their eyes open and then with their eyes closed for five minutes each. EEG
was gathered during this time to establish baseline parameters. The mean EEG value during this
time represented the baseline criteria for determining task allocations during the experimental
session.

After gathering baseline data, participants were given a five-minute break and, thereafter,
the experimental session began. For participants in the adaptive automation group, there were
two experimental trials consisting of 16 minutes of either positive or negative feedback.
Participants in the yoked and control conditions also had two 16-minute trials. However, the
yoked participants performed the tasks based upon the schedule of task allocations of their
yoked counterparts. For the control group, the two 16-minute trials consisted of a random
assignment of the same number of task allocations between manual and automatic task modes
for both positive and negative feedback that participants in the adaptive automation group
experienced (sec above).

After each experimental trial, all participant were asked to fill out the NASA-TLX (see
Appendix A). After the experimental session is completed, all participants were debriefed.
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RESULTS

The data from the study were analyzed using a series of MANOVAs (multivariate
analysis of variance) and ANOVAs (analysis of variance) statistical procedures. In all cases,
alpha level was set at .05 and was used to determine statistical significance. The Greenhouse-
Geisser procedure was used to correct psychophysiological data (Greenhouse & Geisser, 1971).
Analyses of simple effects and Student Newman-Keuls (SNK) post-hoc tests were used to
examine significant interaction effects.

Task Allocations

A simple ANOVA procedure was performed on the task allocation data for feedback
condition for the adaptive group only. The negative feedback condition (M = 68.92) produced
more task allocations than the positive feedback condition (M = 50.83), F (1, 11) = 6.50 (see
Table 1). An ANOVA also revealed that the amounts of time participants performed the

tracking task in the automatic and manual task modes was not significantly different regardless
of feedback condition, F (1, 11) = 0.97.

Table 1. Analysis of Variance for Task Allocations

Source df SS MS F
Feedback Condition 1 1962.0416 1962.0416 6.50%*
Note. *p < .05

Tracking Performance

A 3 (group) X 2 (feedback) ANOVA revealed significant main effects for feedback
condition, F (1, 33) = 9.01; and group condition, F (2, 33) = 3.31 (see Table 2). Participants
performed significantly better under the negative feedback condition (M = 8.91) than under the
positive feedback condition (M = 11.14). Additionally, participants in the adaptive automation
group did significantly better on the tracking task (M = 8.55) than those participants in the
yoked condition (M = 11.06) or in the control condition (M = 10.45).

There was also a group X feedback condition interaction for tracking performance, F (2,
33) = 4.84 (see Table 2). Participants in the adaptive automation group had significantly lower
tracking error when performing the task under the negative feedback condition than under any
of the other group, feedback condition combinations.
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Table 2. Analysis of Variance for Tracking Performance

Source df SS MS F
Feedback Condition 1 357.1981 357.1981 9.01%*
Group Condition 2 327.9033 163.9561 3.31%
Group X Feedback 2 383.4233 191.7116 4.84%
Note. *p < .05

Subjective Workload

A significant main effect was found for feedback condition, F (1, 11) = 39.83 (see Table
3). Participants in the adaptive automation group rated the negative feedback condition to be
lower in workload (M = 72.50) than the positive feedback condition (M = 87.66). There was
also a main effect for group condition, F (2, 33) = 13.76. Those participants in the adaptive
automation group reported overall workload (M = 63.70) to be much lower than those
participants in the yoked condition (M = 88.04) or in the control condition (M = 88.50).

A group X feedback condition interaction was also found, F (2, 33) = 27.67. A simple
effects analysis showed that participants in the adaptive automation group rated the negative
feedback to be much lower in workload than under any of the other group, feedback condition
combinations. No other differences were found to be significant.

Table 3. Analysis of Variance for Subjective Workload

Source df SS MS F
Feedback Condition 1 4140.500 4140.500 39.83%
Group Condition 2 9655.583 4827.791 13.76*
Group X Feedback 2 5752.583 2876.291 27.67%*
Note. *p < .05

Auditory Oddball Task Performance

There was a significant group X feedback condition interaction for secondary task
performance, F (2,33) = 4.12 (see Table 4). Participants, in the adaptive automation group,
were more accurate in counting the number of high tones presented when they performed the
task under the negative feedback condition (M = 94.32) than under the positive feedback
condition (M = 83.29). Also, performance under the adaptive automation, negative feedback
condition was significantly better than performance under the yoked group condition for
positive feedback (M = 85.32) or negative feedback (M = 87.32). Additionally, performance for
participants in the control condition for positive feedback (M =84.32) or negative feedback (M
= 84.98) was significantlypoorer than when performing the task under the adaptive automation,
negative feedback condition. Simple effects analyses found no differences between the yoked
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group or control group conditions. Furthermore, performance was not significantly different
between these two group conditions and the adaptive automation, positive feedback condition.

Table 4. Analysis of Variance for Secondary Task Performance

Source df SS MS F
Feedback Condition 1 309.3410 309.3410 3.94
Group Condition 2 198.3400 99.1700 2.97
Group X Feedback 2 420.3420 210.1710 5.25%
Note. *p < .05

Electroencephalogram

An ANOVA on the EEG engagement index for the adaptive automation condition
revealed no main effects for feedback condition, F (1,11) = 0.89; or task mode, F (1,11) = 0.34.
There was, however, a significant feedback condition X task mode interaction for the EEG
engagement index, F (1, 11) = 201.32 (see Table 5). A simple effects analysis found that the EEG
engagement was higher during positive feedback, manual task mode (M = 11.91) and lower during
negative feedback, manual task mode (M = 8.23). Also, the EEG engagement index was larger
under the negative feedback, automatic task mode (M = 11.45) than under the positive feedback,
automatic task mode (M = 8.10). No differences were found between the negative feedback,
automatic task mode and the positive feedback, manual task mode. Additionally, there were no
differences found between the negative feedback, manual task mode and the positive feedback,
automatic task mode (see Table 6).

Table 5. Analysis of Variance for EEG Engagement Index

Source df SS MS F
Feedback 1 75.3421 75.3421 0.89
Task 1 18.2532 18.2532 0.34

Feedback X Task 1 976.5401 976.5401 201.31%*

Note. *p < .05

Table 6. Means for EEG Engagement Index

Task Mode

Manual  Automatic

Negative Feedback 8.12 11.83
Positive Feedback 11.98 8.05
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Event-Related Potentials

Wilk’s Lambda MANOVAs were performed on the base-peak amplitude and latency data
for N100, P200, and P300 ERP components for ¢lectrodes Cz, Pz, P3, and P4. There were no
significant effects found across the four electrodes, F (3, 33) = 1.12. Therefore, subsequent
analyses were on collapsed data across electrode sites.

Significant effects were found for feedback condition, F (6, 28) = 13.64; group condition,
F (12, 56) = 6.29; and group X feedback condition, F (12, 56) = 8.31. Therefore, subsequent
ANOVAs were performed on these main effects and interaction for both ERP amplitude and
latency.

N100 Amplitude. There was a significant main effect found for feedback condition, F (1, 11)
= 4,93, The N100 amplitude tended to be larger under the negative feedback condition (M = -
4.97) than under the positive feedback condition (M = -4.01). There wasalso a main effect found
for group condition, F (2, 33) = 17.58. A Tukey post hoc test revealed that the amplitude was
larger for those participants in the adaptive automation group (M = -4.49) and yoked group (M
= -4.15) than in the control group (M = -3.15).

In addition to main effects, there was a group X feedback condition interaction, F (2, 33)
= 13.00. N100 amplitude was significantly larger under the adaptive automation, negative
feedback condition than under any other group X feedback conditions (See Tables 7-8). Simple
effects analyses revealed no other significant effects for this interaction. The group X feedback
condition interaction is presented in Table 7.

Table 7. Means for ERP Components
N1 Amplitude NI Latency

Group Feedback
a p -5.39 136.33
a n -3.60 140.16
y p -4.94 147.66
y n -3.35 142.00
c p -3.08 139.33
c n -3.21 141.91

P2 Amplitude P2 Latency

Group Feedback
a p 3.38 239.91
a n 3.55 210.00
y p 3.90 212.00
y n 3.80 213.91
c p 3.22 210.83
c n 3.19 215.66
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P3 Amplitude P3 Latency
Group Feedback
a p 1.75 350.41
a n 4.40 306.91
y p 1.99 348.75
y n 2.20 331.00
c p 2.10 338.00
c n 2.18 329.66

Note. a = adaptive; y = yoke; ¢ = control; n = negative; p = positive

Table 8. Analysis of Variance for N100 Amplitude

Source df SS MS F
Feedback Condition 1 3.2200 3.2200 4.93%
Group Condition 2 23.6000 11.8000 17.58*
Group X Feedback 2 34,1733 17.0866 13.00%*
Note. *p < .05

N100 Latency. No main effects or interactions were found for feedback condition, F (1, 11)
= 0.67; group condition, F (2, 33) = 0.94; or the group X feedback condition interaction, F (2,
33) = 0.79 (see Table 9).

Table 9. Analysis of Variance for N100 Latency

Source df SS MS F
Feedback Condition 1 95.6805 95.6805 0.67
Group Condition 2 533.5277 266.7638 0.94
Group X Feedback 2 225.1944 112.5972 0.79
Note. *p < .05

P200 Amplitude.

No effects were found for feedback condition, F (1, 11) = 0.01; group

condition, F (2, 33) = 2.87; or the group X feedback condition interaction, F (2, 33) = 0.19.
Table 10 presents ANOVA statistics for P200 amplitude.
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Table 10. Analysis of Variance for P200 Amplitude

Source af 8§ MS F
Feedback Condition 1 0.0037 0.0037 0.01
Group Condition 2 5.0512 2.5256 2.87
Group X Feedback 2 0.2391 0.1195 0.19
Note. *p < .05

P200 Latency. Significant main effects were found for feedback condition, F (1, 11) = 7.40;
and for group condition, F (2, 33) =4.18. P200 latency to attended tones were longer when
participants performed the auditory oddball task under the positive feedback condition (M =
220.91) than under the negative feedback condition (M = 213.19). Also, P200 latency was longer
for participants in the adaptive automation group (M = 224.95)than for participants in the yoked
condition (M = 212.95) or in the control condition (M = 213.25).

The results found for P200 latency for group condition must be viewed in consideration
of the group X feedback interaction, F (2, 33) = 15.37 (see Table 11). A simple effects analysis
shows that only the adaptive automation, positive feedback combination (M = 239.19) was
significantly different from the other group, feedback conditions. The other group, feedback
condition combinations averaged approximately 212 msec in latency. Therefore, the differences
found for the main effect of group condition are due to the increased P200 latency in the positive
feedback condition for participants in the adaptive automation group.

Table 11. Analysis of Variance for P200 Latency

Source df SS MS F
Feedback Condition 1 1073.3888 1073.3888 7.40%
Group Condition 2 2249.3611 1124.6805 4.18%*
Group X Feedback 2 4458.8611 2229.4305 15.37%
Note. *p < .05

P300 Amplitude. An ANOVA yielded significant main effects for feedback condition, F (1,
11) = 78.72; and for group condition, F (2, 33) =20.40. P300 amplitude was significantly larger
when participants performed the task under the negative feedback condition (M =2.93) than under
the positive feedback condition (M = 1.94). Also, P300 amplitude was higher for those
participants in the adaptive automation group (M = 3.08) than for those participants in the yoked
condition (M = 2.09) or the control condition (M = 2.14).

There was also a feedback condition X group interaction, F (2, 33) = 57.21 (see Table 12).
P300 amplitude was significantly higher under the negative feedback condition for participants
in the adaptive automation group than under any other group, feedback combination.
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Table 12. Analysis of Variance for P300 Amplitude

Source df SS MS F
Feedback Condition 1 17.2872 17.2872 78.72%
Group Condition 2 14.8793 7.4396 20.42%
Group X Feedback 2 25.1251 12.5625 57.21%*
Note. *p < .05

P300 Latency. P300 latency was found to be significant only for feedback condition, F (1,
33) = 13.91. P300 latency was significantly longer under the positive feedback condition (M =
345.72) than under the negative feedback condition (M = 322.52). Neither group condition, F (2,
33) = 0.99; or group X feedback condition interaction, F (2, 33) = 2.86 were significant. Table
13 presents ANOVA statistics for P300 latency.

Table 13. Analysis of Variance for P300 Latency

Source df SS MS F
Feedback Condition 1 9683.6805 9683.6805 13.91%
Group Condition 2 1510.5833 755.2916 0.99
Group X Feedback 2 3976.8611 3976.4305 2.86
Note. *p < .05
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DISCUSSION

The present study was conducted to examine the efficacy of using event-related
potentials and electroencephalogram for use in adaptive automation technology. Because
psychophysiology is likely to be an essential aspect in the development of adaptive automation
systems, it is necessary to research the issues that surround the use of these metrics.
Furthermore, the present study sought to remedy a short-coming in the literature concerning the
impact that adaptive automation has on behavioral, subjective, and psychophysiological
measures of workload and task engagement.

To accomplish these research goals, a multi-group design wasused composed of adaptive
automation, yoked, and control group conditions. Participants in the adaptive automation group
were asked to perform a compensatory tracking task and an auditory oddball task while their
EEG was continuously monitored. The tracking task was switched between manual and
automatic task modes based upon whether their EEG was above or below bascline levels of task
engagement and which feedback condition the system operated under. The automation schedule
for each participant in the
adaptive automation group was presented to a participant in the yoked condition. Therefore,
cach participant performed the tasks in the exact cycle sequence as their yoked counterpart.
Additionally, a control group was employed that received a random assignment of task mode
allocations.

The design was intended to enable the assessment of whether the adaptive automation
method of task mode allocation represents a significantly better way of keeping operators “in-
the-loop.” If so, performance, subjective workload estimates, and psychophysiological
correlates of workload would be better moderated for participants in the adaptive automation
group, and no differences witnessed between the yoked or control group conditions. However,
if adaptive automation does not significantly enhance the human-automation interaction, then
no differences would be expected between the three experimental groups. Additionally, the
design allowed for a determination to be made as to the utility of using EEG and ERPs in
adaptive task allocation.

Task Allocations

If there was a functional relationship betweenthe EEG engagement index and task mode,
the index should demonstrate stable short-cycle oscillation under negative feedback and longer
and more variable periods of oscillation under positive feedback. The strength of the
relationship would be reflected in the degree of contrast between the behavior of the index under
the two feedback contingencies. This should be reflected in significantly more task allocations
under the negative feedback condition than under the positive feedback condition. The results
showed that indeed the system made more switches between manual and automatic task modes
in the negative feedback condition than in the positive feedback condition. Therefore, the
system demonstrated expected feedback control behavior under these two feedback contingencies
and supports Pope, Bogart, and Bartolome’s (1995) finding that the 20 beta/(alpha+theta) EEG
engagement index possesses utility as part of an adaptive algorithm for controlling automation
task allocation.

Performance and Subjective Workload

A number of researchers have found that manual reallocation can serve as a
countermeasure to performance decrements that often accompany the use of automation. For
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example, researchers have found that short periods of return-to-manual control reduced
ommissions and lowered workload ratings (Hadley et al., 1998; Parasuraman, Molloy, & Singh,
1994; Scallen, Hancock, & Duley, 1995).  Additionally, increasing the number of manual
reallocations resulted in even better performance and lower subjective workload. Therefore,
because the negative feedback condition produces more task allocations, the increase in manual
reallocations was predicted to result in significantly better performance and modulated workload
than in the positive feedback condition.

It was found that participants performed the tracking task and auditory oddball task
significantly better under the negative feedback condition than under the positive feedback
condition. Also, subjective workload ratings were found to be significantly lower under the
negative feedback condition. Furthermore, an analysis revealed that, although there were more
task allocations under the negative feedback condition, participants spent the same amount of
time in the automatic (M = 7.45 min) and manual task (M= 8.15 min) modes. Therefore, these
results can not be attributed to an inequality in task mode duration between the two feedback
contingencies.

The present study was also designedto determine how behavioral and subjective measures
are moderated by the use of adaptive automation methods. The rationale behind adaptive
automation is that a balance is made between task load and levels of automation. That is, an
assessment is made of operator state and changes in task mode are made in response to high or
low workload levels. The changes are made in real-time and should produce better performance
and lowered workload ratings because of the regulation of workload and maintenance of operator
engagement (Hancock & Chignell, 1989; Scerbo, 1996). Therefore, participants in the adaptive
automation group should do significantly better and rate subjective workload lower under the
negative feedback condition than under any other group and feedback condition combination.
However, if the benefits found with adaptive automation are due solely to an increase in manual
reallocations, there should be no differences between the three group conditions in terms of
performance or subjective workload ratings because all groups experienced the same number of
manual reallocations.

The group X feedback condition interaction for performance and workload ratings
support the contention that the benefits found with adaptive automation are not due solely to
increased manual reallocations. Participants in the adaptive automation group did significantly
better and had lower subjective workload ratings while performing the tasks under the negative
feedback condition compared to any other group, feedback condition. Although across all three
group conditions participants had lower performance errors and workload ratings in the negative
feedback condition, the finding is tempered by the overwhelming results for the adaptive
automation group, negative feedback condition for both performance and subjective workload.
Therefore, these results support the logic of adaptive algorithms for dynamic task allocation
based upon psychophysiological indices with demonstrated behavioral and subjective workload
outcomes.

Implications for Adaptive Automation. Perhaps, the most fundamental reason for
introducing automation is to lessen the workload demands placed on human operators who must
interact with often complex systems. Although the evidence to support this assertion has not
always been found (e.g., Riley, 1994), those who use such systems often cite excessive workload
as a factor in their choice of automation. For example, Riley, Lyall, and Wiener (1993)
reported that urgency of the situation and workload were the two most important factors in
pilots’ choice to use automated functions, such as autopilot, Flight Management System (FMS),
and flight director. Furthermore, Wiener (1988) noted that automated systems tend be “clumsy”
in that the automation requires interaction at times when workload is already high; the effect
of which is to further increase workload demands. Therefore, it is of high importance to assess
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how any form of automation task allocation, including adaptive automation, impacts task load
and subjective impressions of workload.

Adaptive automation has been suggested as aremedy to the “out-of-the-loop” problems
that often are associated with human-automation interaction. Some of these problems include
increased performance errors and cognitive workload (Parasuraman, & Riley, 1997). However,
few empirical studies are available that have demonstrated that adaptive task allocation does
indeed improve performance and lower workload.

Adaptive aiding has been found to improve performance and workloadin studies of aerial
search (Morris & Rouse, 1986), flight management (Hilburn, Parasuraman, & Mouloua, 1995;
Parasuraman, 1993), monitoring (Parasuraman, Mouloua, & Molloy, 1996), and air traffic
control (Hilburn, Jorna, & Parasuraman, 1995). However, none of these studies changed levels
of automation based upon real-time measures of workload. The research here used
psychophysiological indices and made task allocations in real time based upon whether the EEG
characterized low or high task engagement and workload. Therefore, the present study provides
support for our previous studies in demonstrating that adaptive task allocation usinga real-time
approach improves performance and lowers workload demands. Future research, however, is
needed to determine whether these effects are transferable to other areas of human and system
performance (e.g., monitoring performance).

Electroencephalogram

Byme and Parasuraman (1996) stated that the wuse of any candidate
psychophysiological metric must be predicated on how well it aidsthe development of adaptive
automation. Although numerous psychophysiological measures are available for use in adaptive
automation, only the EEG has been found to be useful as a measure of operator state under both
low task engagement and high task engagement (Kramer, 1991). Therefore, the present study
sought to examine the use of the EEG (i.e., EEG engagement index) as an adaptive mechanism
for task allocation.

Generally, research has shown that with increasesin task engagement, theta is suppressed
and alpha is blocked while beta increases in relative power. As task engagement decreases, the
EEG decreases in beta and shows concomitant increases in both theta and alpha (Kramer, 1991).

Therefore, such EEG characteristics allowed for predictions to be made based upon whether the
EEG engagement index operated under positive or negative feedback control.

Positive feedback mechanisms react to “disturbances” in a system, in this case high or
low engagement states, by amplifying the magnitude of the effect (Smith & Smith, 1987).
When EEG patterns were below baseline levels of engagement, the system was designed to
automate the tracking task which should further lower the engagement state. However, when
the EEG patterns were above baseline levels of engagement characterized by high beta, alpha
blocking, and theta suppression, the system allocated the tracking task to the manual task mode.

Therefore, for positive feedback, the EEG engagement index should be lower under the
automatic task mode and higher under the manual task mode.

Negative feedback should contrast that of positive feedback control behavior. The
reason is that this feedback contingency takes corrective action to keep system behavior within
operational limits (Smith & Smith, 1987). To accomplish this, the biocybernetic system, under
negative feedback control, automated the tracking task when the EEG engagement index was
above baseline levels of engagement and allocated manual control when the EEG engagement
index was below baseline levels of engagement. The EEG engagement index should, therefore,
be higher under the automatic task mode and lower under the manual task mode.

The feedback condition X task mode interaction confirmed that the EEG demonstrated
these characteristics. The value of the EEG engagement index was contingent upon which
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feedback condition and task mode the system was operating under. Under the manual task mode,
the EEG engagement index was higher for positive feedback and lower for negative feedback.
Conversely, the index was higher under the automatic task mode for negative feedback, and it
was significantly lower under the automatic task mode for positive feedback.

Implications for Adaptive Automation. These results support other studies that have
demonstrated the efficacy of EEG for the modulation of mental state in a closed-loop
environment. For example, Schwilden, Stoeckel, and Schuttler (1989) have developed medical
models for the closed-loop regulation of anesthetic state using EEG metrics. Such findings are
important as Byme and Parasuraman (1996) noted that assessment of candidate
psychophysiological measures for adaptive automation requires iterative closed-loop testing.

Another implication of these results concerns the emphasis in adaptive automation that
has been placed on the prevention of task overload. However, amore beneficial application of
adaptive automation may be the prevention of task underload in which psychophysiological
measures will play a key role (Byrne & Parasuraman, 1996). The present study demonstrated
that the EEG was capable of discriminating between different levels of task load and, therefore,
suggests its efficacy as an adaptive mechanism for adaptive automation. Although the negative
consequences of task underload have not always been appreciated (¢.g., Redondo & Del Valle-
Inclan, 1992), because of the uniqueness of the EEG as a measure of task underload, the use of
this psychophysiological metric should continue to find application in the development and use
of adaptive task allocation (Byrne & Parasuraman, 1996; Kramer, 1991).

Event-Related Potentials

A number of researchers (Billings, 1997; Sheridan, 1997; Wickens, 1992; Wiener &
Nagel, 1988) have noted that automation has changed the nature rather than reduced the
workload demands placed on human operators. For example, pilots now focus on monitoring
system controls and intervene only to detect, assess, and correct system failures. An important
by-product of this role shift is the decreased ability to infer operator state because of limited
interaction with the automated system. The use of advanced automation concepts, such as
adaptive automation, would only increase such role transfer prompting the need for more
diagnostic measures for the regulation of mental workload and other psychological constructs.

Byrne and Parasuraman (1996) discussed the role that various psychophysiological
measures can play in the development of adaptive automation technology. They stated that
ERPs possess a number of characteristics that make them ideal as candidate indices for adaptive
task allocation. These include diagnostic specificity, sensitivity, and reliability (see Eggemeier,
1988). However, Parasuraman (Byrne & Parasuraman, 1996; Parasuraman, 1990) concluded
that, although many proposals have been made concerning the use of ERPs in adaptive
automation, little empirical evidence has been collected to support its efficacy.

The present study sought to address this limitation and assess whether ERPs can be used
to make task allocations in an adaptive fashion. Specifically,it was designedto examine whether
the ERP can discriminate between positive and negative feedback conditions. Furthermore, the
study sought to determine whether differences were evident between the adaptive automation,
yoked, and control group conditions in terms of ERP component waveforms. Finally, because
any approach to adaptive automation requires multiple measures of operator state, another goal
was to measure the degree of congruence that ERPs have with other workload metrics.

The ERP waveform components to the infrequent, high tones demonstrated significant
differences in amplitude and latency between positive and negative feedback conditions. N100
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and the P300 ERP components were significantly higher in amplitude under the negative
feedback condition than under the positive feedback condition. Additionally, the P300
component was significantly shorter in latency under the negative feedback condition. These
results support the findings for performance and subjective workload and demonstrate that the
ERP was capable of discriminating between levels of task load in an adaptive environment.
Therefore, they support other studies that have found that ERPs can be useful in the
development and application of adaptive automation technology (Kramer, 1991; Humphrey &
Kramer, 1994; Trejo, Humphrey, & Kramer, 1996).

There was also an experimental group X feedback condition interaction for N100 and
P300 amplitude. The adaptive automation, negative feedback condition produced P3s that were
significantly larger in amplitude than any other group, feedback condition. The N100 was also
found to be significantly higher in amplitude under the adaptive automation, negative feedback
condition. There were no differences found between the yoked and control group conditions.
Additionally, positive feedback for the adaptive automation group did not produce ERP
waveforms that were significantly different from the yoked or control group conditions in either
amplitude or latency measures.

Implications for Adaptive Automation

Mental Models. These findings for the ERP are important for two reasons. First, the
P300 is thought to index a context updating of our mental model of the environment (Donchin,
Ritter, & McCallum, 1978). Donchin, McCarthy, Kutas, and Ritter (1983) stated that the P300
is a representationof neural action for updating the user’s “mental model” that seems to underlie
the ability of the nervous system to control behavior. The mental model then is an assessment
of deviations from expected inputs and is, therefore, revised whenever discrepancies are found.

The frequency of such revisions is dependent upon the “surprise value” and task relevance of
the attended stimuli (e.g., high tones). Donchin (1981) noted that ERP components are
associated with specific information processing functions, and the P300 “subroutine” is activated
whenever there exists a need to evaluate unusual, task-relevant events (Gopher & Donchin,
1986; Kramer, 1991). Therefore, the group X feedback condition interaction for P300
amplitude suggests that participants in the adaptive automation group may have been better able
to predict the “state” of system operation, develop controlstrategies, select appropriate actions,
and interpret the effects of selected actions (Gentner & Stevens, 1983; Johnson-Laird, 1983;
Wickens, 1992; Wilson & Rutherford, 1989). The outcomes of such an improved mental model
were improved performance and lowered workload and evidenced by larger amplitudes for the
P300 ERP component.

Applications to Adaptive Automation. The recent interest in mental models is due
to changing technology and there is a growing need for metaphors to describe the increasingly
"black box" nature of systems (Howell, 1990; Wickens, 1992; Wilson & Rutherford, 1989). It
is commonly accepted that people form mental models of tasks and systems, and that these
models are used to guide behavior at the interface. Norman (1983) explains that people form
internal, mental models of themselves and of the things with which they are interacting with.
These extent to which the mental models provide a good fit determines whether users can
understand the nature of this interaction. Therefore, automated processes must be made
compatible with the users' internal representation of the system (Kantowitz & Campbell, 1996;
Norman, 1983; Parasuraman & Riley, 1997; Scerbo, 1996).

The National Research Council (1982) further noted that the effectiveness of
automation depends on matching the designs of automated systems to user’s representations of
the tasks they perform. The lack of a "match" between the operating characteristics of a
system, the user's mental model of the system, and designer's conceptual model of the system
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can lead to increased errors, workload, response times, and so forth. As Kantowitz and Campbell
(1996) suggest, automated design should provide timely, consistent, and accurate feedback,
match task demands to environmental demands, design high stimulus-responsecompatibility, and
develop appropriate operator training that facilitates the development of an accurate mental
model.

The use of the mental model metaphor then is likely to be of continued service in the
design of automated systems. Moreover, the development of advanced automation concepts
should only increase the need for accessing the “black box” of the human operator. The need
arises, therefore, for ways of measuring the degree of disparity between a user’s mental model
and the designer’s conceptual model. The present results suggest that such can be suppliedby the
use of ERP measures although additional research would be needed to specify the nature of the
ERP, its relation to user mental models, and how it could be used in adaptive automation design.

Resource Allocation. Another implication of these results concerns how the ERP
relates to cognitive workload. As stated previously, the P300 is thought to represent the
context updating of our mental model whenever a novel event occurs. Such an updating only
occurs if the stimuli associated with a task requires that it be processed; that is, task-irrelevant
stimuli that are ignored do not elicit a P300. However, consider the situation in which a
participant is instucted to only partially ignore a stimulus, or a participant is asked to perform
an oddball task while concurrently performing a tracking task as in the present study. Will the
P300 measures reflect these graded changes in task difficulty? If so, then the P300 may serve
as an index of the resource demands and, therefore, the cognitive workload imposed on the
human operator (Gopher & Donchin, 1986; Kramer, 1987).

Research has consistently demonstrated that the P300 amplitude reflects the amount of
expenditure of perceptual/central processing resources associated with performing a task(s)
(Gopher & Donchin, 1986; Kramer, 1991; Parasuraman, 1990). The characteristics of the
P300 exhibit a decrease in amplitude and an increase in latency to secondary task performance
as the difficulty of the primary task is increased (“amplitude reciprocity hypothesis”; Isreal et
al., 1977). The results of this study revealed that the P300 did indeed decrease in amplitude and
increase in latency as the workload demands in the task increased. Furthermore, the group X
feedback condition interaction for P300 supports the findings for performance and subjective
workload and demonstrated that the use of adaptive task allocation reduced the workload for
those participants performing the tasks in the negative feedback condition. In addition, the
N100 and P200 waveforms further support these results because they are thought to represent
the early processes of seclective attention and resource allocation (Hackley, Woldoroff, &
Hillyard, 1990; Hillyard, Hink, Schwent, & Picton, 1973).

Applications to Adaptive Automation. Parasuraman, Bahri, Deaton, Morrison, and
Barnes (1992) argued that adaptive automation represents the coupling of levels of automation
to levels of operator workload. Therefore, candidate indices which serve as adaptive
mechanisms must be capable of discriminating between various levels of task load. Although a
number of measures have been proposed, Morrison and Gluckman (1994) suggested the use of
psychophysiological metrics because of their potential to yield real-time estimates of mental
state with little or no impact on operator performance.

There are many psychophysiological measures available to system designers seeking to
use them in adaptive automation design. Such measures include heart rate, heart-rate variability,
EEG, EDA, pupillometry, ERP, and others. However, because of the multidimensional nature of
mental workload and other psychological constructs (e.g., memory, attention, language
processes) that require attention in the design of automated systems, only the ERP has been
found to be sensitive to these different information processing activities (Kramer, 1991;
Kramer, Trejo, & Humphrey, 1996).  Although the biocybernetic system did not predicate
task allocation on the basis of ERP data, the results showed that the ERP was capable of
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discriminating between levels of taskload in an adaptive environment. Therefore, a next step
would require the development of an adaptive algorithm that uses the components of the ERP
waveform as an adaptive mechanism for allocating tasks between the operator and automated
system. The research by Humphrey and Kramer (1994) as well as the present results
demonstrates that such a biopsychometric system is capable of development. Despite the fact
that such a system may be years from fruition, at the very least these results demonstrate that
the ERP can serve in the developmental role (see Byrne & Parasuraman, 1996) of adaptive
automation design. Taken together, then, the results of the ERP data support the conclusion
of many human factors professionals that ERPs possess the adaptive capabilities for determining
optimal human-automation interaction (Byrne & Parasuraman, 1996; Defayolle et al., 1971;
Donchin, 1980; Farwell & Donchin, 1988; Gomer, 1981; Kramer & Humphrey, 1994; Kramer,
Humphrey, Sirevaag, & Mecklinger, 1989; Kramer, Trejo, & Humphrey, 1996; Sem-Jacobsen,
1981; Scerbo, 1996).

CONCLUSIONS

The field of human factors has been traditionally defined as the design and evaluation of
systems and tools for human use. The goal of human factors is directed at how people,
machines, and the environment interact, and what can be done to make certain that
productivity, efficiency, and safety are ensured. The idea that one should account for the human
during the design process often seems too obvious to deserve much attention. Recently,
however, several known disasters, such as Three Mile Island, Challengerspace shuttle, and Ralph
Nader’s consumer product crusades, have challenged such prevailing attitudes towards human
factors research. The idea has certainly relevant for the use of automation especially in light
of several disastrous accidents that have happened in the past few years in aviation
transportation (e.g., Bangalore, India, 2/14/1990; Charlotte, North Carolina, 1994; Nagoya,
Japan, 4/26/1994; Roselawn, Indiana, 10/31/1994). The concern is very relevant for adaptive
automation when one considers that aid-initiated adaptation was a factor in the Charlotte wind
shear accident (1994).

Scerbo (1996) noted that automation is neither inherently good nor bad. He stated that
automation does, however, change the nature of work; it solves some problems while it creates
others. Adaptive automation represents the next phase in the development of automated
systems. To date, it is not known how this type of technology will impact work performance
(Billings, 1997; Scerbo, 1996; Woods, 1996). However, it is clear that automation will continue
to impact our lives requiring humans to co-evolve with the technology; this is what Hancock
(1996) calls “techneology.” Therefore, professionals involved with adaptive automation are
incumbent to investigate the issues surrounding the use of adaptive automation technology. As
Weiner and Curry (1980) conclude:

The rapid pace of automation is outstripping one’s ability to comprehend all the
implications for crew performance. It is unrealistic to call for a halt to cockpit
automation until the manifestations are completely understood. We do,
however, call for those designing, analyzing, and installing automatic systems in
the cockpit to do so carefully;to recognize the behavioral effects of automation;
to avail themselves of present and future guidelines; and to be watchful for
symptoms that might appear in training and operational settings (p.7)

The concerns they raised are as valid today as they were 18 years ago. Fortunately, at present,
adaptive automation represents only a conceptual view of how automation can be advanced to
improve the human-automation interaction. We now have an opportunity to research the
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technology before large-scaleimplementation of adaptive automation becomes available (Scerbo,
1996).

There are a number of issues that must be addressed before adaptive automation can
move forward in the design of automated systems. To do otherwise, would be to risk repeating
the fatal lessons of the past. As Billings and Woods (1994) noted,

In high-risk, dynamic environments... technology-centered automation has
tended to decrease human involvement in system tasks, and has thus impaired
human situational awareness;both are unwanted consequences of today’s system
designs, but both are dangerous in high-risk systems. [At it’s present state of
development,] adaptive (“self-adapting”) automation represents a potentially
serious threat... to the authority that the human pilot must have to fulfill his or
her responsibility for flight safety (p. 265).

Such a strong cautionary voice points to the need for more research in this area. The present
study examined but a small share of these issues. These issues included the use of
psychophysiological measures in adaptive automation design as well asa comparison of adaptive
task allocation to static task allocation.

Byrne and Parasuraman (1996) stated that psychophysiology is an integral component
of adaptive automation as a non-invasive method used to assess operator state. They suggested
that such measures could be usednot only as an input signal for the regulation of automation, but
also to assess underlying changes accompanying performance changes during development of
adaptive automation systems. The results support such a conclusion. The ERP and EEG were
found to discriminate between positive and negative feedback contmwls and these were associated
with other workload measures. Byrne and Parasuraman noted that any psychophysiological
measure must be used in conjunction with other metrics of operator state and any candidate
indices must be capable of such an association. Indeed, the EEG and ERP measures accorded well
with the performance and subjective workload measures and, therefore, support Byrne and
Parasuraman’s assessment that biopsychometrics will play an important role in advanced
automation.

Furthermore, this study represents on of the first experiments to demonstrate
conclusively the advantages of the adaptive automation paradigm using a real-time approach.
Parasuraman, Mouloua, & Molloy (1996) also examined the effects of adaptive task allocation,
but they used model-based and performance-based approaches. These adaptive methods do not
represent an adaptive aiding mechanism based on real-time measurements of operator workload.
Furthermore, these researchers used only performance measures (i.e., reaction time, false alarms,
hit rate, omissions). Kramer, Trejo, and Humphrey (1996) also examined the use of adaptive
automation and provided both performance and psychophysiological measures. However, their
study was a de facto assessment of how much ERP data is needed to discriminate different levels
of mental workload and, therefore, was not adaptive automation in the truest sense. Therefore,
the present study provides one of the first controlled, empirical studies to evaluate the
conjunctive effects of adaptive task allocation on behavioral, subjective, and
psychophysiological correlates of workload.

Future Directions

Although the findings presented here give strong support for the benefits of adaptive
automation and the use of psychophysiology in the design of this technology, the study only
examined some of the many issues that need consideration. Parasuraman and his colleagues
(Byrne & Parasuraman, 1996; Parasuraman, 1993; Parasuraman, Bahri, & Molloy, 1991;
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Parasuraman et al., 1992; Parasuraman, Mustapha, & Molloy, 1996) have noted a number of
variables and factors that should be researched in adaptive automation design. These include the
frequency of adaptive changes, adaptive algorithms, automation reliability and consistency, the
type of interface, and contextual factors that are unique to specific systems. Scerbo (1996) also
added system responsiveness, timing, and authority and invocation to this list. He further stated
that research should branch out to other arcas that are likely to be of concern for adaptive
automation technology, such as mental models, teams, training, and communication. Moreover,
if one considers the concerns of Woods (1996) that automation represents what he calls,
“apparent simplicity, real complexity,” one cannot leave without an impression that there is a
considerable amount of work that is needed. However, research must begin somewhere and our
work here and the works of others in the field are hoped to stimulate additional research in this
new but exciting area of automation technology.
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