E-2yq|

J. Am. Ceram. Soc., 78 (3] 774-82 (1995)

Effect of Stacking Faults on the X-ray Diffraction Profiles of

B-SiC Powders

Vijay V. Pujar” and James D. Cawley’

Department of Materials Science and Engineering, Case School of Engineering, Case Western Reserve University,

X-ray diffraction patterns of B-SiC (3C or the cubic poly-
type of SiC) powders often exhibit an additional peak atd =
0.266 nm, high background intensity around the (111) peak,
and relative intensities for peaks which differ from those
predicted from the crystal structure. Computer simulations
were used to show that al these features are due to stacking
faults in the powders and not due to the presence of other
polytypes in the powders. Such simulations allow diffrac-
tion patterns to be generated for different types, frequen-
cies, and spatial distribution of faults. Comparison of the
simulation results to the XRD data indicates that the 3-SiC
particles consist either of heavily faulted clusters distrib-
uted irregularly between regions that have only occasional
faults or twins, or the powders consist of two types of parti-
cles with different populations of faults: those with a high
density of faults and those with only twins or occasional
faults. Additional information is necessary to determine
which description is correct. However, the simulation
results can be used to rule out certain fault configurations.

I. Introduction

ILICON CARBIDE exists in a number of different polytypic

forms. The different polytypes have nearly the same densi-
ties, but different crystal symmetries. Although many different
polytypes have been reported in the literature,"* the polytypes
3C (zincblende structure), 4H, 6H, and 15R" are the most com-
mon. In addition, 2H (wurtzite structure) has been frequently
cited as a minor phase. The 3C polytype is often referred to as
B-SiC, and all the other polytypes are collectively referred to
as a-SiC.

Aspects of the relative stability of polytypes and the condi-
tions under which a given polytype transforms to another are
not clear, and this has been a subject of interest for several years
(e.g., see Refs. 4-12). The formation of any particular polytype
is influenced by the presence of specific impurities and heat
treatment.® It is difficult to synthesize single-polytype SiC pow-
der and it is common for commercially available powders
to consist of several polytypes. Also, polytypic transforma-
tions can occur in these powders during sintering, of which the
3C — 6H transformation is the most common and widely
studied.®"*"'® Such transformations have a significant influence,
often detrimental, on the resulting microstructure and proper-
ties, and therefore are of importance in the fabrication of silicon
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‘In the Ramsdell notation,’ used for distinguishing between different polytypes, the
symbol nM refers to a polytype with n number of Si—C layers along the c-axis of the
hexagonal unit cell, and M refers to the cell symmetry, i.e., either cubic (C), hexagonal
(H), or rhombohedral (R).
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carbide for use in engineering applications."*'® Furthermore,
the occurrence of polytypic transformations and the nature of
the resulting polytype have been shown to be closely related to
the presence of stacking faults and the distribution of such
faults in the starting material.>*" It is therefore desirable to
know the type and the relative amounts of different polytypes,
and also the type and distribution of stacking faults, present in
any given starting material and to monitor the progress of the
particular transformations that occur during processing.

The first such studies are those of Jagodzinski (cited in
Ref. 17) and Jagodzinski and Arnold,"” who attempted a quanti-
tative interpretation of XRD data obtained from powders con-
taining a mixture of polytypes. They were unable to completely
describe the patterns assuming any combination of polytypes
and attributed the residual mismatch at that time to “unknown
disorder effects.” They also noted sample-to-sample variations
in the number and relative intensities of XRD peaks in different
single crystals of nominally the same polytype. In the interven-
ing time, several techniques have been reported in the literature
for measuring polytype distributions in SiC specimens, all of
which are essentially variants of a least-squares fit of experi-
mentally observed XRD data to those calculated theoretically
for an arbitrarily chosen set of polytypes. Ruska e al.'® and
Bartram (cited in Ref. 19) calculated the polytype distributions
by employing a least-squares fit of intensities of six major peaks
in the 30°—45° 26 region assuming that only the 3C, 4H, 6H,
and 15R polytypes were present in the powders. Since this
method involves solving six to eight (depending on the number
of peaks used in the 30°-45° 26 range) equations for the
unknowns by multiple regression, the results are highly sensi-
tive to moderate fluctuations in the intensities of these peaks.
Recently, Frevel er al.'” have shown that the accuracy of such
calculations can be improved by considering the characteristic
nonoverlapping reflections of the noncubic polytypes to deter-
mine the concentrations independently (which is essentially an
extension of the method originally proposed by Jagodzinski).
Attempts have also been made to apply the Rietveld refinement
method® for calculating polytype distributions.” Although
these techniques yield reliable results for powder mixtures in
which each particle is single phase with well-defined lattice
parameters, such analyses are generally unreliable in the case
of SiC polytype mixtures for at least two reasons. First, the
diffraction patterns from silicon carbide powders contain peaks
that are often common to two or more polytypes. Second, and
more significant, is the consequence of ubiquitous stacking
faults on the relative diffraction intensities and thereby results
of polytype distribution obtained from these.

II. Background

(1) Polytype Distribution Calculations from XRD Data
Figure 1 shows a calculated XRD pattern for 3C-SiC together
with a pattern obtained from a typical B-SiC powder.* The two

‘Ibiden Company, Tokyo, Japan. The data were obtained from a diffractometer
(Philips model ADP 3250) with a CuKo X-ray generator and Ni filter, using a 0.02°
step scan with 1 s at each step.




March 1995 Effect of Stacking Faults on the X-ray Diffraction Profiles of B-SiC Powders 775

patterns differ in three important ways: the experimental XRD
data show an additional peak not associated with the 3C struc-
ture at 26 ~ 33.75° (d =~ 0.266 nm, a high background intensity
in the region around the (111) peak (d = 0.252 nm,
26 = 35.63°); and the (200) peak (d = 0.217 nm, 26 = 41.62°)
has a lower relative intensity and is also significantly broader.

The apparent relative amounts of different polytypes in the
B-SiC powder were determined from the XRD data using two
different methods.*** In both, it was assumed that the powders
consisted of one or more of the following polytypes: 3C, 2H,
4H, 6H, or 15R. The results, given in Table I, suggest that the
powders contain, in addition to 3C, minor amounts of the other
polytypes, notably 2H. Frevel et al.' have also analyzed XRD
patterns from B-SiC powders from the same manufacturer, and
their results are also included in Table I. Frevel e al." attributed
the high background intensity in the region around the peak at
d = 0.252 nm to stacking faults (but did not analyze it further)
and the occurrence of the non-3C peak (at d = 0.266 nm) to
minor amounts of other phases, mainly 2H, in the powders. The
implication of these analyses is that the powders exist as a
mechanical mixture of two types of particles, faulted-3C and
2H particles. However, such an interpretation is likely incorrect
since calculated XRD patterns based on these analyses (Fig. 2)
predict the presence of other additional peaks that are not
observed in the experimental data; furthermore, they are unable
to account for the more or less uniform high background inten-
sity around the (111) peak or changes in relative intensities
of peaks.

This paper describes computer simulations that were used to
calculate XRD patterns of 3C structures with prescribed types
and distributions of stacking faults. One of the objectives of this
work was to confirm that the high background intensity around
the peak at d = 0.252 nm was indeed due to stacking faults in
the 3C structure, and to investigate whether the stacking faults
were also responsible for the occurrence of the additional peak

d=0.252 nm

d=0.217 nm 4

Intensity

|(b) Calculated 3C

30 35 40 45
26 (deg)

Fig. 1. (a) Experimentally obtained XRD pattern from a commercial
3-SiC powder, and (b) calculated pattern for a perfect 3C polytype.

at d = 0.266 nm, the changes in relative intensities, and the
peak broadening.

(2) Stacking Faults in SiC

Due to their low formation energies, stacking faults are very
common in SiC. Several terminologies are in use to distinguish
between different types of faults. These are based on either the
origin of the faults or on the spatial arrangement of the faulted
sequences relative to the regular sequence, and it is important
to clarify the description used in this paper. An ideal face-
centered cubic structure can be described as an ..ABC.. or
equivalently as an ..ACB... stacking sequence of close-packed
(111) planes, where the B and C layers are situated above one
of the alternate sets of interstices between atoms in the A layers.
Thus a cubic crystal results whenever growth occurs such that
the new layer is stacked differently with respect to either of the
previous two layers. A stacking fault is any error in the regular
sequence of layers (with the restriction that adjacent layers are

Table I.  Apparent Polytype Distribution (in Volume
Percent) in the 3-SiC Powders Obtained Using
Different Analysis Methods

Polytype Ruska er al."® Rietveld method Frevel et al."”
3€ 96 94.0 96 =2
2H 3 2.0

4H 0 0.5

6H 0 0.5

ISR 1 1.5

(a) Ruska et al. L “

Intensity

(b) Rietveld k i

! 1

30 35 40 45
26 (deg.)

Fig. 2. Calculated XRD patterns based on quantitative analysis of
polytype distribution using (a) Rietveld method and (b) Ruska’s
method. The experimental pattern from the 3-SiC powder (pattern (c))
is included for comparison. In neither case does the pattern calculated
using the apparent polytype distribution match the experimental data
well.
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always different). In the cubic case, when a fault occurs the new
layer is the same as the second-to-last layer. For example,
ABCABACBACB is a sequence with a fault at the sixth layer.
The stacking sequence changes from an ..ABC.. (positive
sequence) to an ..ACB.. (negative sequence) arrangement, or
vice versa, at the fault boundary. Since such faults occur com-
monly during growth, these are sometimes referred to as growth
faults; due to the twin relationship between the two portions of
the crystal on either side of the fault plane, these are also
referred to as twin faults.

A fault could also occur such that the original sequence
(either ..ABC.. or ..ACB..) is maintained on either side of the
fault plane. For example, ABCABABCABC.. is a sequence
with such a fault at the sixth layer. Since such faults occur
commonly during deformation, they are often called deforma-
tion faults. Alternatively, the sequence ABCABABCABC..
may be described as one with a missing layer (the C layer
after the fifth layer) at the fault boundary, and analogously, the
sequence ABCABACABC... may be described as one with an
extra layer of atoms (an A layer after the fifth layer) at the
fault boundary. These configurations are often referred to as,
respectively, intrinsic faults and extrinsic faults. Both intrinsic
and extrinsic faults fall in the category of deformation faults.
Intrinsic and extrinsic faults may also be visualized as the
juxtaposition of two twin faults (adjacent layers in the case of
intrinsic faults, and alternate layers in the case of extrinsic
faults) at the fault boundary. Some researchers prefer to limit
the term stacking faults (or sometimes, faults) to mean either
intrinsic or extrinsic faults (i.e., deformation faults), while twin
faults are referred to as twins. In this paper, we will use the
term stacking faults (or faults) to imply an error in the regular
sequence. Thus, in this terminology, a single fault results in a
twin, two faults in adjacent layers result in an intrinsic fault, and
two faults spaced two layers apart result in an extrinsic fault.

The pioneering work by Wilson*** showed that the presence
of stacking faults, specifically twins, in hexagonal close-packed
(hep) structures caused broadening and shifting of certain peaks
in XRD data relative to that expected from a material without
such faults. Paterson® later extended the Wilson analysis to
show that stacking faults in face-centered cubic (fcc) structures
also produce peak broadening and lateral shifts in the intensity
maxima. In these models, the structure factors and intensity
distributions of different peaks were determined as a function
of the probability, «, for the occurrence of a fault along the
c-axis of a hexagonal unit cell (in the fcc case, an equivalent
hexagonal cell was defined for the purpose of calculating the
XRD pattern of the faulted structure). In both models, the
procedure for analysis was to define a probability function for
different combinations of stacking sequences as a function of «
and then calculate the average structure factor, intensity and
intensity distribution as a function of this probability. They
were able to derive a correlation by which it was possible to
predict specific ikl planes that would result in broad or dis-
placed XRD peaks in the faulted structures and estimate the
effect of the magnitude of a.

Although the models of Paterson and Wilson can, in princi-
ple, be used to calculate an entire XRD pattern, the lack of
computing machines at the time these models were developed
prevented these researchers from making an exhaustive com-
parison. This limitation, of course, no longer exists. Tateyama
et al.* recently calculated diffraction patterns of faulted B-SiC
structures based on the Paterson and Wilson models. Their
calculation using the Paterson model predicted the presence of
the additional peak at d = 0.266 nm, a high background inten-
sity around the (111) peak (d = 0.252 nm, 260 = 35.63°) and
broadening of the (200) peak (d = 0.217 nm, 26 = 41.62°).
However, the calculated patterns also showed an increasing
lateral shift of the (200) peak toward lower angles with increas-
ing fault densities that did not fit the experimental data. Calcula-
tions of diffraction patterns using the Wilson model did not
show this shift (even though Wilson’s original model does not
rule out peak shifts in faulted hcp structures). However, the
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background intensities around the (111) peak (d = 0.252 nm)
were significantly lower than those in the experimental pattern.
The background intensity increased with increasing fault densi-
ties, but this also resulted in broadening of the (200) peak in
excess of that necessary to match the data.

In Wilson’s model for hcp metals, a fault in the regular
..ABAB.. sequence causes a change to either ..ACAC.. or
..BCBC... sequence. Wilson assumed an equal probability for
the continuation of either sequence. For the analogous problem
in a cubic arrangement, the system differs in that the atoms can
be arranged in either of only two equivalent types of arrange-
ment, namely ..ABCABC... (positive) or .. ACBACB... (nega-
tive). The stacking sequence changes from positive to negative,
or vice versa, after each occurrence of a fault. Tateyama et al.*
were unable to produce a calculated pattern that closely resem-
bled the experimental pattern when Wilson’s model was applied
with random faulting. They concluded that it was necessary to
introduce correlation between successive faults and expressed
the correlation as choosing a faulting pattern such that there
were “different continuing probabilities for positive and nega-
tive sequences.” The best fit to the data resulted when the
probability of faults of layers in negative sequences were 3 to 5
times that in the positive sequences. The terms positive and
negative have meaning only when the first (positive) has been
defined as either ..ABC.. or ..ACB... Whether the stacking
sequence of the parent grain is ..ABC... or ..ACB.. is immate-
rial. The physical interpretation of their model then is that the
grains have a number of narrow stripes of twinned regions in
the crystallites.

Such correlation between stacking faults was also proposed
by Jagodzinski® to explain the observation of sharp and diffuse
intensity peaks in diffraction data from partially transformed
3C crystals. He proposed that the transformation occurs by the
propagation of 3-layer twins that are separated by integral units
of three layers, thus yielding either the perfect 6H structure or
3n-layer stacking faults in 6H. HRTEM studies by Jepps and
Page®” on intermediate transformation structures in silicon car-
bide showed that regions giving rise to diffraction patterns of
the type described by Jagodzinski® did indeed show the pres-
ence of 3-layer twins that were separated by 3n-layers.

In contrast to the Wilson and Paterson approach, the simula-
tions in this paper were carried out using supercells of faulted
3C-SiC structures to study the influence of different faults on
the diffraction profiles. Our results complement those of Tate-
yama et al.*® In addition, using supercells allows more direct
investigation of the influence of specific types and frequencies
of stacking faults on the diffraction profiles. Through these
simulations, we investigated the effect of different types and
frequencies of faults. The uniqueness of a stacking sequence
that reproduces the XRD data is also addressed.

III. Generation of Diffraction Patterns by
i Computer Simulation

The simulations were carried out using supercells that were
up to 100 times the volume of a conventional 3C unit cell.
Despite the cubic symmetry of the pure polytype, a hexagonal
unit cell was defined to simplify the calculation of the atomic
positions in the faulted material. The hexagonal unit cell for
perfect 3C (i.e., containing no stacking faults) thus consists of 3
atoms each of Si and C arranged in the ABC sequence along
the z-axis (Fig. 3). Stacking faults were introduced only in the
basal plane of this hexagonal unit cell. This choice is consistent
with electron microscopy results, which show that within a
given crystallite, all faults usually occur in only one set of
parallel close-packed planes (e.g., see Refs. 27 and 28). For
computational purposes, this choice allows the two lattice
parameters, a and b, of the supercell to be held constant while
only the lattice parameter c¢ is varied. Thus, the x- and
y-coordinates defining the position of the atoms are unambigu-
ously defined, depending on whether the atoms belong to the
A-, B-, or C-layer. For all atoms in the A-layer, x = 0 and y =
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Fig. 3. Hexagonal unit cell representation of atoms in fcc arrange-
ment. The c-axis of the unit cell corresponds to a (111) direction in the
cubic unit cell.

0; for all atoms in the B-layers, x = 1/3 and y = 2/3, and for all
atoms in the C-layers, x = 2/3 and y = 1/3, where the coordi-
nates are expressed as a fraction of the corresponding lattice
parameter.

The lattice parameter ¢ can be calculated from the number of
Si-C double-layer planes, N, that are present along the z-axis of
the unit cell using the relation

¢ =dyN (1)

where the constant d,, is the d-spacing of the basal planes. The
z-coordinate defining the position of the silicon atoms in the ith
layer from the bottom of the unit cell is then given by

= (2a)

The corresponding z-coordinate of the carbon atoms in the ith
layer is given by
8=z D (2b)

where 8 = 0.189 nm is the Si—-C bond length. Thus, it is
possible to determine the positions of all atoms in the unit cell
from the stacking sequence using a straightforward algorithm.
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The diffraction patterns were generated using a set of FOR-
TRAN computer programs. The input parameters to the pro-
grams include the stacking sequence (specified using the ABC
notation (e.g., ABCABABC, etc.), the lattice parameters (a and
b), the d-spacing between the basal planes (d,), the 26 range
over which the XRD data are to be generated, the X-ray wave-
length (\), and the standard full-width at half-maximum
(FWHM) for the peaks (I',,). A simple program calculates the
unit cell parameters and the positions of atoms within the cell
from the specified d,, a, b, and the stacking sequence. The
program also allows more than one unit cell (that is unit cells
with different stacking sequences) to be included and is able to
calculate the diffraction pattern of such mixtures, when the
relative amounts (in volume percent) of these different phases
are specified.

The stacking sequence was specified either manually or using
the procedure illustrated in the form of a flowchart in Fig. 4.
The variables XRAN, YRAN, and ZRAN indicated in the Fig-
ure are random uniform deviates between 0.0 and 1.0 generated
using a standard subroutine based on three linear congruential
generators.”” In the sequence generation scheme described in
Fig. 3, P, is the probability for the initiation of a fault occur-
rence in the regular cubic sequence (either twins, or by a small
change in the above routine, only intrinsic faults can be speci-
fied), P, is the probability that a fault once initiated will be
continued, while P, determines the disorder in this faulted
region. By selecting appropriate values for P, P,, and P, it is
possible to generate a variety of faulted structures ranging from
those with a random distribution of single faults (either twins,
or intrinsic faults) to those that consisted of clusters of faulted
regions. Thus, if P, and P; are zero, then the procedure reverts
to the model of Wilson or Paterson, depending on whether
twins or intrinsic faults are specified, respectively. With finite
P, and P,, but P; = 0, the procedure is equivalent to that
employed by Tateyama et al.*® Output from the sequence-gener-
ating program is illustrated graphically in Fig. 5.

The simulation program first calculates the structure factors,
F ., the d-spacing, d,,,, and the corresponding scattering angle,
26, for hkl indices in the 2 #region of interest using a preexisting
program.’® The corresponding intensity, /, of the diffracted
beam for these hk/ planes is then calculated using the simpli-
fied relation

|

[ XRAN <P, j

Yes 1 No

|

!

Ti=Tia

Ti # Ti-l (Ti# Ti-2

l

=3

Yes | No
|
( ZRAN <P, J
Yes l No
| }
Ti = Ti_z Ti # Ti-l s Ti # Ti—2
{ ]
}

Fig. 4. Flowchart showing the procedure used for generating stacking sequences in the computer simulations. T, refers to the type of a new layer
(i.e., either A, B, or C; thus, 7, = T,_, is a formal way of saying that the new layer is identical to the layer that is two layers previous to it).
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T2l planes in certain representative cases, and results were com-

Il ‘LPm (3) pared in order to confirm that the multiplicities were correctly
assigned. The latter method of calculating structure factors

where m is the multiplicity factor, and LP is the Lorentz-
Polarization factor,’ given by

o 1 + cos®*26
~ \ sin @-cos 6 “)

The intensity, /, in Eq. (3) is in intensity units per unit volume
of the polytype. This normalization makes / independent of the
unit cell volume. Thus, for a given stacking sequence, the
program returns identical intensities independent of the size of
the supercell.

The multiplicity, m, is determined by assuming the lowest
symmetry conditions, i.e., trigonal symmetry, that is exhibited
by all the polytypes and accounting for all the families of Akl
planes accordingly (the procedure is outlined clearly in Ref.
32). Structure factors were calculated for all the possible hkl

(a) Py = 0.05 (T); P, = 0.0; P3=0.0 |

=0.0

m il

(c) Py = 0.05 (T); P, =0.90; P3 =0.50

Fig. 5. Graphical illustration of the effect of the three probabilities,
P,, P,, and P, on the resulting stacking sequences. The dark regions
represent stacking in the positive (..ABC..) while the light regions
represent stacking in the negative (..CBA..) directions. When only P,
is nonzero, there is a broad distribution in the width of the twinned
regions. When P, is also nonzero, a narrower distribution in twin width
occurs. The effect of nonzero P, is to form clustered regions of high
disorder, i.e., a bimodal fault population results.

and thereby intensities, while foolproof, increases computation
times unnecessarily.

It was assumed further that the intensity distribution for
each peak can be expressed as a Lorentzian function. The
total intensity at any given scattering angle, 26, can then be
determined by summation of the individual contributions of
each family of 4kl planes that give nonzero intensities within
each unit cell for all the ; different unit cells, i.e.,

m n

b= 17 y y L )
2= 2 ), ), 16— 20,7 + T2}

j=1 =l

1, is the intensity of the Akl family of planes in the jth unit cell
and the corresponding scattering angle is (26), ;. ¢, is the vol-
ume fraction of the polytype whose structure is represented by
the jth unit cell and I, is the standard FWHM for the peaks.
The diffraction pattern is generated by plotting the intensi-
ties, /,,, as a function of the scattering angle, 26. Although not
a limitation of the program itself, the diffraction patterns were
usually restricted to the 26 range from 30° to 45° to minimize
computation times. All the major intensity peaks for SiC lie in
this region. Also, for all the simulations, d, = 0.2517 nm and
[, = 0.13° (the value of T, was based on the results of the
Lorentzian curve-fit to XRD data from the powders).

IV. Simulation Results

Figure 6 shows the diffraction patterns for several perfect
polytypes generated using the simulation program. The peak
intensities in these patterns are in excellent agreement with the
reported intensities for these polytypes in the JCPDS.” These
results, which are included here for reference, also validate the
computer programs.

Figure 7 shows the diffraction patterns calculated for a manu-
ally assembled stacking sequence with a single intrinsic stack-
ing fault (AB) occurring at a fixed periodicity of (ABCQ), layers.
Diffraction patterns were obtained for different values of n,
namely n = 5, 10, 20, 40, and 60. The patterns for the pure
polytypes, 2H (i.e.,n = 0) and 3C (i.e., n = =) are also included
in the figure for comparison. In all the cases, the introduction of
a stacking fault results in a decrease in the absolute intensities
(since only relative intensities are shown, this is not evident
from the patterns in Fig. 6) for the peaks associated with perfect
3C. This is due to loss in symmetry and, therefore, a reduced
number of equivalent planes (i.e., planes with the same
d-spacing) contributing to scattering. At the same time, there
will be other planes with slightly different d-spacing that now
result in nonzero intensities. Thus, additional peaks are seen in
the diffraction patterns.

As an example, consider the diffraction peak from the {111}
planes (in the cubic unit cell, d = 0.252 nm) in 3C. The
equivalent planes on the basis of the hexagonal unit cell are the
two {0003} basal and half of the twelve {1011} non-basal
planes (since the structure exhibits trigonal symmetry, the other
half do not result in diffraction peaks). By introducing an intrin-
sic stacking fault on the basal plane, the atoms within any
basal plane are not disturbed relative to each other. They are,
however, displaced in the nonbasal planes. The contribution to
the intensity of this peak then, is reduced to that from the basal
planes only, and therefore the total intensity is reduced. In the
particular case of structures with periodic faults, the original
nonbasal planes can result in distinct diffraction peaks, but
these will have a different d-spacing. The position of these
peaks relative to that of the peak at d = 0.252 nm is dependent
on the periodicity of faults. As the periodicity decreases, 1.
increases, the d-spacing between the nonbasal planes converges
with the original position. In real powders, the stacking faults
are likely to be spaced irregularly and therefore, on an average,
yield a weak but more or less uniform intensity in the region
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Fig. 6. Calculated patterns for perfect structures of some of the com-
monly occurring polytypes of SiC.

around the peak at d = 0.252 nm. The patterns in Fig. 6
thus illustrate the physical basis of the enhanced background
observed at the base of the (111) peak in the data, although it
does not delineate a precise stacking sequence necessary to
match the data.

Figure 8 shows diffraction patterns calculated using manu-
ally assembled stacking sequences with 2H-type faulted
domains present at intervals of 180 layers in cubic arrangement.
That is, the stacking sequence in the unit cell can be represented
as (ABC).(AB),. The patterns in the figure correspond to
different values of m, namely 5, 10, and 20. Again, patterns
from perfect 3C (i.e., m = 0) and 2H (i.e., m =~ %) are also
included for comparison. The height of the peak at d =
0.266 nm increases with increasing m, that is, with increasing
thickness of the 2H domain. Also, a broad peak centered around
d = 0.235 nm is seen, particularly at higher values of m.
Referring to Fig. 1, it can be seen that both the peak at d
=(0.266 nm and the diffuse peak at d = 0.235 nm are evident in
XRD data from the commercial powder. It is interesting to note
in the patterns of Fig. 8 that the peak at d = 0.266 nm is sharp
and relatively strong compared to the peak at d = 0.235 nm in
these patterns, although the latter peak is the strongest for the
perfect 2H polytype.

The above result is consistent with a particle broadening
model.*" If the 2H domain is considered as a thin crystallite of
2H within 3C, then the thickness of the crystallite perpendicular
to the planes of interest can be used to estimate the peak
broadening expected for each peak,
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Fig. 7. Diffraction patterns for structures with stacking sequences of
the form (ABC),AB.

o 0.9\
" T, cos 6

(6)

where ¢ is the effective thickness of the crystallite, \ is the
X-ray wavelength, I',, represents the particle size contribution
to the FWHM, and 6 is the Bragg angle. The FWHM values for
the peaks can be obtained easily, e.g., by fitting Lorentzian
curves in the calculated patterns. Since the (1010) planes
(which give the peak at d = 0.266 nm ) are perpendicular to the
basal plane, the thickness of the crystallite perpendicular to
these planes is of the order of the particle size. Since the
simulations assume large particle size, this peak should not
experience any particle-size broadening, i.e., I'y, = 0. The I',
value of 0.15° obtained by fitting the calculated pattern using a
Lorentzian is close to the value of 0.13° assumed for I'y, and
therefore consistent with this argument. Using simple geomet-
ric relationships, it can be shown that the thickness, 7, of the 2H
crystallite perpendicular to the (1011) planes (which give the
peak at d = 0.235 nm) is 5.54 nm for the stacking sequence
(ABC)4(AB);. The predicted value of I'y, obtained from Eg.
(6) is then 1.53°. The total broadening I', can be estimated using
the relation’

B o Fﬁb (7)

I, represents the net FWHM that would be observed in the
pattern. The resultant value of the predicted value for I',, 1.54°,
compares very well with the value of 1.5° deduced for the
Lorentzian peak fitted in the calculated pattern. Similarly, the
structures with stacking sequences (ABC)4(AB),, and
(ABC)(AB),, give ', = 0.80° and 0.18°, respectively, using
Egs. (6) and (7). These also compare well with the values of
0.73° and 0.19° deduced from the calculated pattern.
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Fig. 8. Diffraction patterns for structures with stacking sequences of
the form (ABC)4,(AB),,.

Simulation runs were also made on large unit cells with
500 layers, the stacking sequences of which were computer
generated using the scheme outlined in Fig. 4. By choosing
different values for the three probabilities, it was possible to
determine the effect of different types of errors in the regular
stacking sequence. When both P, and P; were set to zero, the
structures were effectively constrained to consist of only twins.
For P, = 0.05, the diffraction pattern exhibited peak broadening
and reduction in intensity of the peak at d = 0.217 nm, but did
not show the high background intensity around the peak at d =
0.252 observed for the powder patterns (Fig. 9). Increasing the
density of twins to P, = 0.20 resulted in a modest background
around the (111), but not sufficient to match the experimental
data. It also resulted in such broadening of the (200) peak (at
d = 0.217 nm) that it is nearly indistinguishable from the
background. On the other hand, when the structure contained
only intrinsic faults (this was accomplished in the same pro-
gram by making a small change such that intrinsic faults were
always generated, instead of twins), this resulted in a high
background intensity, but also resulted in a lateral shift of the
peak at d = 0.217 nm, which is not observed in the diffraction
pattern from the powder (pattern (c), Fig. 9). Similar to the case
of twins, as P, is increased (=0.2), the peak at d = 0.217 nm
diminishes to a broad diffuse peak. Furthermore, the pattern
also exhibits a high background intensity around the peak at d
= (.252 nm. All the observed features in the diffraction pattern
from the powder are present when both the types of faulted
structures are assumed to be present. That is, the simulations
suggest that the powders could consist of two kinds of particles
which have different fault densities and types: some particles
with only 5% twins and others with a high density (20%)
of intrinsic stacking faults. Figure 11 (pattern (a)) shows the
diffraction pattern obtained by averaging results from eight
different unit cells; four of them have 5% twins while the other
four have 20% intrinsic stacking faults, all with independently

generated stacking sequences. It can be seen that the pattern is
able to reproduce all the features observed in the experimental
XRD data.

There are, however, other possible interpretations. As dis-
cussed earlier, when the structures have large 2H-type faulted
domains, there is no lateral shift in the peak at 4 = 0.217 nm.
These structures can be interpreted as having a low probability
of an error occurrence, but are characterized by large faulted
domains whenever an error occurs. By generating stacking
sequences with a low P, but a relatively high P,, and with P; =
1.0, it is possible to generate sequences with only a small
number of thick 2H-type regions within the 3C crystallite. The
diffraction patterns from such structures show a distinct peak at
d = 0.266 nm, but the background intensity around the peak at
d = 0.252 nm (Fig. 10(a)) is very low. If we continue to have
clustered faults but relax the constraint that these be only of the
2H type (i.e., letting Py < 1), the observed high background
intensity around the peak at d = 0.252 nm is reproduced. As
shown in Fig. 10(b) for a structure with P, = 0.04, P, = 0.95,
and P, = 0.5, the pattern exhibits all the observed features in
the pattern. The pattern is characterized, however, by certain
additional peaks or shoulders. This is due to an inherent limita-
tion of the simulation in that the pattern represents only a
particular type of faulted structure that is periodic after 500
layers. By defining several unit cells with the same values of
P,, P,, and P,, but independently generated random stacking
sequences, these will be averaged out as seen in Fig. 11, pattern
(b), which represents a composite pattern from five different
unit cells with the same values of P, P,, and P;. Since a real
powder pattern is effectively an average of the patterns of many
particles, pattern (b) in Fig. 11 approaches real conditions. The

Intensity

5 40 45
= . 26 (deg.)

Fig. 9. Diffraction patterns, from 500-layer unit cells with different
probabilities, of randomly distributed uncorrelated faults (i.e., P, # 0,
P, = P, = 0): (a) P, = 0.05 (twins), (b) P, = 0.20 (twins), (c) P,
= 0.05 (intrinsic faults), and (d) P, = 0.20 (intrinsic faults). The
experimental pattern from the 3-SiC powder (pattern (e)) is included
in the figure for comparison.
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powder particles that result in this pattern are characterized by
regions of regular cubic sequences with only occasional single
faults or twins, interspersed with heavily faulted regions that
have no particular pattern of faulting. This then represents a
second possible scheme of faults in the powders.

This structure with clustered faults is qualitatively similar to
the structure deduced by Tateyama e al.,*® but differs in detail.
Their work provides a third independent stacking sequence that
also reproduces all the features in the experimental patterns.
The calculated pattern based on their scheme of faults is able to
reproduce the features observed in that from our 3-SiC powders
when the powders are assumed to have 0.075 probability of
faults in the positive sequence and 0.30 probability for faults in
negative sequence (Fig. 11, pattern (c)).

The spatial distribution of faults in the three possible
schemes that are able to independently reproduce the experi-
mental data are schematically illustrated in Fig. 12. These fig-
ures illustrate the qualitative differences between the various
types of faults and also illustrate the fact that information from
the XRD data alone will be inadequate in uniquely describing
the type of faults in the powders.

Also, based on these simulations, the sample-to-sample vari-
ation in the position and relative intensities of peaks observed
by Jagodzinski and Arnold'” in XRD data from different single
crystals of nominally the same polytype can be attributed to
different stacking fault distributions in the individual crystals,
thereby resulting in distinctly different patterns.

V. Summary and Conclusions

The simulation results show that the presence of stacking
faults has a significant influence on the relative intensities of

Intensity

L 1

30 35 40 45
20 (deg.)

Fig. 10. Diffraction patterns from 3C structures with fault distribu-
tions that were obtained by using P, = 0.04, P, = 0.95, and (a) P, =
1.0 and (b) P; = 0.5. The experimental pattern from the 3-SiC powder
(pattern (c)) is again included for comparison.
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Fig. 11. Diffraction patterns obtained for different types of fault
populations. Average patterns (a) from eight unit cells half of which
have 5% twins (P, = 0.05, P, = 0, and P, = 0), and the other half have
20% intrinsic faults (P, = 0.20, P, = 0, and P, = 0), (b) from five unit
cells all with faulted clusters (P, = 0.04, P, = 0.95, and P; = 0.5), and
(c) from five unit cells all with 0.075 probability of faults in positive
sequence and 0.30 probability of faults in negative sequence. XRD
pattern from the B-SiC powder (pattern (d)) is included in the figure
for comparison.

peaks. It has also been shown that all the features observed in
the diffraction pattern from B-SiC powders, namely the pres-
ence of an additional peak at d = 0.266 nm, a high background
intensity around the peak at d = 0.252 nm, and the broadening
of the 3C peaks, can be explained by the presence of faults in
the regular cubic stacking sequences. In the past, the presence
of these features has sometimes been attributed to the presence
of minor amounts of other polytypes of SiC. First, the peak
broadening in the patterns is not at all consistent with the
presence of equiaxed 2H particles. Secondly, the presence of
faults changes the relative intensities of the various peaks asso-
ciated with a given polytype; thus conventional techniques of
calculating polytype distributions, which rely entirely on rela-
tive intensities of XRD peaks, are unreliable.

The simulations do show that the distribution of faults is not
uniformly random. However, they do not provide a unique
description of fault population. In addition to the description of
faults suggested by Tateyama et al.*® (narrow stripes of twins in
the crystallites), there are at least two other plausible situations.
The B-SiC powders could either consist of two types of parti-
cles with different populations of faults and twins, or could
consist of a single type of particle that is characterized by
clusters of faulted regions.
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Fig. 12. Graphical illustration of the different stacking arrangements
that are able to independently reproduce all the features observed in the
actual pattern: (a) unit cell with (i) 20% intrinsic faults and (ii) 5%
twins. (b) unit cell with clustered faults (P, = 0.04, P, = 0.95, and
P, = 0.5), and (c) unit cell with 0.075 probability of faults in positive
sequence and 0.30 probability of faults in negative sequence.
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