RESEARCH MEMORANDUM FLIGHT INVESTIGATION TO DETERMINE THE AERODYNAMIC CHARACTERISTICS OF ROCKET-POWERED MODELS REPRESENTATIVE OF A FIGHTER-TYPE AIRPLANE CONFIGURATION INCORPORATING AN INVERSE-TAPER WING AND A VEE TAIL Ву Sidney R. Alexander Langley Aeronautical Laboratory Langley Field, Va. CLASSIFIED DOCUMENT This document contains classified information affecting the National Defense of the United States within the meaning of the Empionage Act, UNC 50:31 and 32. He transmission or the revelation of its confents in any manner to an unauthorized person, its prohibit off by law. Information to classified may be imparted sometimes of the United States, appropriate civilian officers and employees of the Federal Government who have a legitimate Interest therein, and to United States citizens of known leysity and discretion who of pecesisty must be informed thereof. NATIONAL ADVISORY COMMITTEE FOR AFRONAUTICS FOR AERONAUTICS > WASHINGTON November 2, 1948 DATE: OCTOBER 18, H | | _ | |--|---------------------------------------| | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | <u></u> | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | | | i e | | | | | | n Branch and Andrew Comment of the C | • | | | • | | | • | | | • | | ■ The state of th | • | | | | | ■ The state of th | | | ■ The state of th | | | ■ The state of th | | | | | | | • | | | • | | | • | | | | | | • | | | • | | | | | | | | | • | | | • | | | • | | | • | | | • | | | | | | | | | • | | | • | #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM FLIGHT INVESTIGATION TO DETERMINE THE AERODYNAMIC CHARACTERISTICS OF ROCKET-POWERED MODELS REPRESENTATIVE OF A FIGHTER-TYPE AIRPLANE CONFIGURATION INCORPORATING AN INVERSE-TAPER WING AND A VEE TAIL By Sidney R. Alexander #### SUMMARY Two rocket-powered models representative of a fighter-type airplane were investigated in flight at Mach numbers up to 1.01 and 1.07 by the Langley Pilotless Aircraft Research Division at its testing station at Wallops Island, Va. These models incorporated an inverse-taper wing and a vee tail and were flown with controls undeflected and wing and stabilizer set at 0° incidence. Values of lateral acceleration, normal acceleration, velocity, and drag were obtained by use of telemeters and a Doppler velocimeter radar unit. The results of this investigation indicated no unusual variation in the lateral acceleration characteristics. After the cessation of powered flight, the lateral oscillation quickly damped to zero. The data indicated that the airplane, at low lift coefficients, should not experience any abrupt trim changes until it attains a Mach number of 0.97. The change in normal-force coefficient associated with this trim change will amount to about 0.03 with the center of gravity located at 4.48 percent of the mean aerodynamic chord. At higher lift coefficients, on the basis of other data, the Mach number at which this trim change occurs would be expected to be decreased. The neutral point of the model at Mach numbers near 1.05 was estimated to fall at 45 percent of the mean aerodynamic chord, assuming a lift-curve slope of 0.05. A value of the static-directional-stability of approximately -0.002 was estimated for a Mach number parameter of 0.93. The values of drag coefficient obtained from both model flights were in a good comparative agreement. The highest drag coefficient occurred at a Mach number of 1.01 and was equal to 0.044. #### INTRODUCTION The Langley Pilotless Aircraft Research Division has conducted an investigation of rocket-powered models representative of a fighter-type airplane configuration at its testing station, Wallops Island, Va. There are presented herein results obtained from flights of two vee-tail models having a tail length of 1.56 mean aerodynamic chords (measured from the quarter chord of the wing mean aerodynamic chord to the quarter chord of the tail mean aerodynamic chord) and controls undeflected. These results consist of lateral-force, normal-force, drag, and velocity data. To avoid confusion, the two models tested will be designated "B" and "C" models. #### SYMBOLS | t | flight time, seconds | |---------------------------------------|---| | М | flight Mach number (V/c) | | ٧ | flight velocity, feet per second | | c | speed of sound, feet per second | | W | weight of model, pounds | | q | free-stream dynamic pressure, pounds per square foot $\left(\frac{\rho}{2}v^2\right)$ | | ρ | air density as determined from radiosonde observations, slugs per cubic foot | | a | resultant acceleration along the flight path, feet per second per second | | | | | ay | lateral acceleration, feet per second per second | | a _y
a _n | lateral acceleration, feet per second per second normal acceleration, feet per second per second | | a _y
a _n
g | | | a_n | normal acceleration, feet per second per second | | a _n
g | normal acceleration, feet per second per second acceleration due to gravity, 32.2 feet per second per second total wing area, square feet drag coefficient $\left(\frac{\text{Drag}}{\text{dS}}\right)$ | | a _n
g
s | normal acceleration, feet per second per second acceleration due to gravity, 32.2 feet per second per second total wing area, square feet | | an
g
S
C _D | normal acceleration, feet per second per second acceleration due to gravity, 32.2 feet per second per second total wing area, square feet drag coefficient $\left(\frac{\text{Drag}}{\text{dS}}\right)$ | I, | $\frac{dC_n}{d\psi}$ | rate of change of yawing-moment coefficient with angle of yaw, per degree | |----------------------|---| | P | period of oscillation, seconds | | Iy | moment of inertia about the Y-axis, slug-feet2 | | • | | moment of inertia about the Z-axis, slug-feet2 c wing mean aerodynamic chord, feet γ flight-path angle, degrees #### MODELS AND APPARATUS The models are of all wooden construction with metal inserts bonded to the upper and lower surfaces of the wing and tail group. A three-view drawing of the model is presented as figure 1. The characterizing features of the design are a sweptback wing having inverse taper, a vectail arrangement set high on the fuselage, and a relatively short tail length. Pertinent areas and dimensions of the model components are given in table I. General views of the model are shown as figure 2. The models are propelled by a standard 3.25-inch Mk. 7 aircraft rocket motor modified to incorporate a straight section at the minimum nozzle diameter. The purpose of this straight section is to move the motor farther forward in the model and thereby provide accommodation for the motor in the existing model geometry. This alteration has little effect on the motor specific impulse which is about 66 pound-second per pound. Both models were launched from a zero-length launcher (fig. 3) set at an elevation angle of 60° for the B model and 75° for the C model. All control deflections and the wing and stabilizer incidences were set at OO. As the B model was the first complete model of this series to be flown, it was considered advisable to secure a center-of-gravity position as far forward as possible to preclude any unforeseen trim changes that might lead to destructive accelerations. The consequent addition of ballast accounts for the comparatively low value of Mach number attained. The take-off weight was 50 pounds, the weight after the propellant was expended was 40.8 pounds, and the corresponding center-of-gravity locations, were, respectively, about 8 and 4 percent ahead of the leading edge of the mean aerodynamic chord. For the C model, the take-off weight was 47 pounds, the weight after propellant was expended was 37.8 pounds, and the centerof-gravity location was 4.48 percent of the mean aerodynamic chord for both conditions. The center of gravity was on the fuselage reference line for both models. The data from the flight were obtained by the use of a two-channel telemeter housed in the nose section (fig. 4) and a Doppler velocimeter radar unit (fig. 5) located near the launching site. The telemeter for the B model was designed to give continuous signals to two ground stations of normal and lateral acceleration to an accuracy of ±2 percent of full-scale deflection. The normal accelerometer failed to operate and the test was repeated using the C model. In this case, to insure satisfactory results, both telemeter channels were used to measure normal accelerations. Because the values of the forces to be measured were uncertain, normal accelerometers having two sensitivity ranges, ±10g and ±20g, were used to insure instrumentation coverage in case of any unpredicted large trim changes. Both models were tracked in flight by the radar unit to obtain the time history of the velocity along the flight path. The drag coefficients obtained from this velocity time history and from radiosonde records are accurate to 15 percent. The values of temperature and static pressure used in calculating density and speed of sound were obtained from radiosonde observations made at the time of firing. The variation of Reynolds number (based on the mean aerodynamic chord of 1.18 ft) with Mach number is presented in figure 6. #### RESULTS AND DISCUSSION Time histories of the flights of the two models are presented in figure 7. For the B model, data were obtained from the lateral accelerometer and the Doppler velocimeter for about 5 seconds of flight from takeoff. For the C model, data were obtained from the normal accelerometers and the radar unit for about 6 seconds of flight from take-off. The maximum Mach numbers attained and the corresponding Reynolds numbers for the two flights are 1.01 and 8,600,000 for the B model and 1.07 and 8,700,000 for the C model. For the airplane, these Reynolds numbers would occur at about 50,000 feet altitude. #### Lateral Force Examination of figure 7(a) reveals an increase in lateral acceleration soon after take-off to a value close to -3g at a Mach number of about 0.10. This acceleration persisted throughout most of the thrusting flight period, becoming 0 at M = 0.99 shortly before the propellant was expended and reaching a value of 0.8 at M = 1.0. As the possibilities of jet-misalinement effects obscuring the true nature of the data are always present during the powered portion of the flight, no attempt has been made herein to analyze any of the results in this region. Beyond the point at which the propellant was expended, the model went into a short-period damped oscillation, the lateral acceleration becoming 0 at M=0.85 (t = 2.8). It should be realized that the acceleration data are applicable only for the model wing loading, center-of-gravity location, and altitude. If a given force coefficient and Mach number are assumed, it can be shown that the acceleration developed becomes less as the wing loading and altitude are increased. The values of lateral acceleration were converted to values of lateral-force coefficient by use of the relationship $$C_{Y} = \frac{2Wa_{y}}{\rho V^{2}Sg}$$ and are shown plotted against Mach number in figure 8 for the coasting part of the flight. The values of the coefficient in the range of Mach numbers covered in the test (M = 0.75 to 1.0) are very small, being 0 from M = 0.75 to M = 0.89 then increasing to about 0.005 at M = 1.0. #### Directional Stability As indicated in reference 1, an approximate determination of the $\frac{dC_n}{dV}$ static-directional-stability parameter $\frac{dC_n}{dV}$ may be arrived at by the use of measured values of the period of the damped oscillation observed in the lateral-acceleration curve (fig. 7(a)) and the moment of inertia; thus, $$\frac{dC_n}{d\psi} = \frac{4\pi^2 I_z}{57.3P^2 qS\bar{c}}$$ Application of this relationship produces a value of $\frac{dC_n}{dV}$ of approximately -0.002 at M = 0.93. #### Normal Force Examination of figure 7(b) reveals an increase in normal acceleration from take-off to a value of 6.7g at a Mach number of about 0.9. At this point, the acceleration decreases sharply, becoming 0 near M=1.0 and continuing to a maximum negative value of about 6g at a Mach number of about 1.07 which corresponds to cessation of powered flight. Here the model went into a fairly short-period damped oscillation until 1.4 seconds after firing (M=0.98) at which time the model again developed positive accelerations of about 3g. As the speed further decreased, the acceleration also decreased until at a Mach number of 0.79 the acceleration again went through 0, becoming slightly negative at M=0.76. The values of normal acceleration obtained from the flight test (fig. 7(b)) have been converted to values of normal-force coefficient by use of the relationship $$C_{N} = \frac{2Wa_{n}}{\rho V^{2}Sg}$$ and are shown plotted against Mach number in figure 9 for the coasting portion of the flight. No abrupt trim change was experienced by the model until it attained a Mach number of 0.97. The magnitude of this trim change, for a center of gravity located at 4.48 percent mean aerodynamic chord, would amount to a change in normal-force coefficient of about 0.03. It is reasonable to assume (see reference 2) that at higher lift-coefficient values the Mach number at which this trim change occurs may be decreased. #### Longitudinal Stability Applying the general method of reference 1 (described in the section entitled "Directional Stability") to a short-period oscillation which appeared in the normal-acceleration curve of figure 7(b) coincident with the cessation of thrust (t = 0.95), approximate values of the static-longitudinal-stability parameter $\frac{dC_m}{dc}$ have been computed and are presented in figure 10 plotted against Mach number. It can be seen that the model is statically stable. By assuming a lift-curve slope of 0.05, the neutral point can be calculated to fall at 45 percent of the mean aerodynamic chord. #### Drag The values of drag coefficient obtained from the model deceleration along the flight path after the propellant was expended were determined from the relationship $$C_D = \frac{2W(a - g \sin \gamma)}{\rho g SV^2}$$ For the B model, the values of γ were determined from a refined flight-path analysis by assuming zero lift and by utilizing the known values of velocity, deceleration, and drag. As the C model was launched nearly vertically $(\gamma = 75^{\circ})$ no attempt was made to account for the component of gravity due to inclination of the flight path. The drag-coefficient values for this model were obtained over a lift-coefficient range of $^{\ddagger}0.02$. The drag data obtained from tests of both models are presented in figure 11 for comparison. Of general interest is the delayed drag rise which can be attributed to the ability of the sweptback wing to reduce the effects of compressibility. No sharp force break is noted. The values of the drag coefficient, although somewhat lower than was anticipated from examination of other comparable high-speed configurations, are believed to be correct. For example, reference 3 gives a drag coefficient at M = 0.8 of 0.015 for a low-wing D-558 arrangement employing nearly the same wing-leading-edge and 50-percent-chord sweepback as the flight model. By taking into account the fuselage nose shape, the midwing location, and the high test Reynolds number of the flight model, the low value of drag coefficient produced can be readily accounted for. Comparison of the curves reveals very good agreement between the drag data of both flights, the C-model results extending the drag curve beyond M = 1.0. The highest value of the drag coefficient for the range of Mach number tested occurred at M = 1.01 and was equal to 0.044. It is noted that the drag coefficient appears to decrease somewhat for speeds above a Mach number of 1.0. is felt that additional tests to higher speeds would be required to establish this point definitely. #### CONCLUDING REMARKS Data from flight investigations of two rocket-powered models representative of a fighter-type airplane configuration incorporating an inverse-taper wing and a vee tail gave the following indications concerning the variation of stability and drag for Mach numbers up to 1.07. - 1. No unusual variation was exhibited in the lateral acceleration, the lateral oscillation quickly damping to zero. - 2. The model experienced no abrupt trim change at low lift coefficients until it attained a Mach number of 0.97. At higher lift coefficients the Mach number at which this trim change occurs may be decreased. - 3. The model was statically stable with the center of gravity located at 4.48 percent mean aerodynamic chord. By assuming a lift-curve slope of 0.05, the neutral point of the model at slightly supersonic Mach numbers was estimated to fall at approximately 45 percent of the mean aerodynamic chord. - 4. An approximate analysis of oscillation data revealed a value of the static-directional-stability parameter $\frac{dC_n}{d\psi}$ = -0.002 for the model at a Mach number of about 0.93. 5. The highest value of drag coefficient was equal to 0.044 and occurred at a Mach number of 1.01. Langley Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va. #### REFERENCES - Bishop, Robert C., and Lomax, Harvard: A Simplified Method for Determining from Flight Data the Rate of Change of Yawing-Moment Coefficient with Sideslip. NACA TN No. 1076, 1946. - 2. Mattson, Axel T., and Loving, Donald L.: Force, Static Longitudinal Stability, and Control Characteristics of a $\frac{1}{16}$ -Scale Model of the Bell XS-1 Transonic Research Airplane at High Mach Numbers. NACA RM No. L8A12, 1948. - 3. Wright, John B., and Loving, Donald L.: High-Speed Wind-Tunnel Tests of a 1/16-Scale Model of the D-558 Research Airplane. Lift and Drag Characteristics of the D-558-1 and Various Wing and Tail Configurations. NACA RM No. 16J09, 1946. CONFIDENTIAL TABLE I | ICS | Ветагка | At station 24.33 At station 24.33 Fuselage alone Including canopy (Station 15.54) Including cenopy Based on maximum width | Republic R-4, 40-1, 10-1.0 (normal to plan reference line) reduced leading edge Republic R-4, 40-10-1.0 (normal to plan reference line) normal leading edge | Parallel to plane of symmetry Parallel to plane of symmetry Parallel to plane of symmetry Located at station 27.84 Measured normal to model center line In reference to model center line Measured normal to model center line | | |--------------------------------------|-----------------|---|--|---|--| | ROCKET-POWERED MODEL CHARACTERISTICS | True dimensions | 62.00
6.00
8.20
10.70
10.34 | 0
0
0
0
40
3.07
1:1.63 | 7.56
10.56
11.50
14.12
0.11
568
66.4 | | | | Item | Fuselage: Over-all length, in. Maximum width, in. Maximum fuselage height, in. Frontal area, sq in. Maximum height, in. Maximum frontal area, sq in. Fineness ratio | Wing: Theoretical root airfoil Theoretical tip airfoil Angle of incidence, deg Dihedral angle, deg Wing twist, deg Sweepback at 50 percent chord, deg Aspect ratio Taper ratio (inverse) Airfoil thechose ratio. | percent Theoretical root chord, in. Theoretical tip chord, in. Chord at wing-fuselage. Intersection, in. Mean aerodynamic chord, in. Spanwise location of mean sero- dynamic chord, in. Vertical location of mean sero- dynamic chord, in. Total span, in. Total span, in. Total wing area enclosed by fuselage, sq in. | | ### CONFIDENTIAL TABLE I - Concluded #### ROCKET-POWERED MODEL CHARACTERISTICS - Concluded | Item | | True dimens | ions | Remarks | |--|----------------------|--------------------------------|-------------|---| | Propulsion type: Rocket Approximate thrust, lb | | 3.25 in. Mk. | 7 · | Solid fuel propellant | | Approximate duration, sec | | 0.85 | _1 _1 _1 | ٦ | | Center-of-gravity location | | r: 8.00 perce | | | | | | eading edge of
nic chord | mean acro- | | | _ | | ant expended: | 4.00 per- | B model | | | | ahead of lead | | | | T . | | he mean aerody | | | | | | f: 4.48 perce | | | | | | aerodynamic c
ant expended: | | C model | | | | of the mean a | | | | | chor | 1 | - | 14 | | Weight, 1b | Take-of | | 1 - 0 | B model | | | Propella
Take-of: | ant expended: | 40.0 | = | | | | ant expended: | 37.8 | C model | | Wing loading, 1b/sq ft | | f: 12.63 | 51 | B model | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | ant expended: | 10.32 | H morest | | | | r: 11.9 | | C model | | Y | Propelli | ant expended: | 9.6 | J | | Moment of inertia | m.) | a. o Ql. | , | Ι η _ | | Iz, glug-ft ² | | f: 2.84
ant expended: | 2. B). | B model | | I _v , slug-ft ² | | r: 2.64 | 2.0. | C model | | 1 y) 5146/15 | Propell | ant expended: | 2.06 | I c moder | | Tail: | | | | | | Type | | | | Sweptback vee | | Airfoil designation | | | | Republic R-4, 40-010X | | Angle of incidence, deg | | . 0 | | 1 | | Dihedral angle, deg | | 38 | | | | Sweepback angle: | | 40 | | | | Plan view, deg
True view, deg | | 33.47 | | | | Side view, deg | 1 | 47.04 | | | | Aspect ratio | | 4.2 | | Projected in horizontal plane | | | | Dimensions | | 1 | | | | Horizontal | Vertical | | | | True | HOFIZORGAL | - TOT CICAL | 4 | | Chord, in. | 5.24 | | | Also mean aerodynamic chord;
measured parallel to plane
of symmetry | | Chord, in. | 4.38 | 4.02 | 3.58 | Measured normal to leading edge | | Span, in. | | 21.72 | | Measured normal to model center | | Location of mean aero- | | | | | | dynamic chord, in. | | 5.43 | 6.02 | Horizontal location measured | | | | | | perpendicular to model cente
line; vertical location meas | | | - | | 1 | ured above model center line | | Distance from $\frac{1}{h}$ -chord wing | l | | | | | mean aerodynamic chord | I | | 1 | | | _ | - | | • | | | to $\frac{1}{4}$ -chord tail mean | | | 1 . | * | | aerodynamic chord, in. | 22.28 | 110.00 | 87 50 | Measured along model center lin | | Total area, sq in. | 142.00 | 112.20 | 87.50 | | | Area enclosed by fuselage, | 7.60 | 5.98 | 4.66 | | | sq in. | 1.50 | /-/- | 1 | | (a) Three-quarter front view. (b) Side view. Figure 2.- General views of the model. CONFIDENTIAL | - | • | | | - · | |---|----|--|---|-----| | - | | | r | * | | - | Ç. | | | • | | | | | | | | | | | | | | | | | | ī | | | | | | Ŧ | | | | | ı | | | ı | | | | | #### ÇONFIDEŅTIAL (c) Three-quarter rear view. (d) Three-quarter top view. Figure 2.- Concluded. CONFIDENTIAL #### CONFIDENTIAL (a) Three-quarter top view. (b) Side view. Figure 3.- Views of model on launcher. CONFIDENTIAL | | | | | • | |--|---|---|---|---| | | | | | | | | • | | | ٠ | • | | | | | | | | - | - | | | | | | | | • | | | | | | | | | | | | 7 | • | | | | | | | | | | | | • | | | | | | | | | • | | | | #### CONFIDENTIAL NACA L-52812 Figure 4.- Two-channel telemeter installation for rocket-powered models. CONFIDENTIAL | | - | ٠ | | | | | |-----|---|---|---|--|---|-----| | | | | | | | , | | | | | | | | | | | | | | | | - | • | , | | | | | | | | | | | | | | | | | | | ₹ . | *** | | | | | | • | | | | | | | | ī | | | - | | | | | | | | | | | | | | | • | | | | | , | . 🛥 | | | | | | | | | (a) Three-quarter top rear view. (b) Three-quarter front view. Figure 5.- The Doppler velocimeter radar unit. CONFIDENTIAL | | | | | | *. | |-------|------|---|--|---|----| | |
 | | | | • | - | | | | | | | | | | | | | | | * | | | | | | | 7 | ** 18 | | | | | - | | | | - | | | • | | | | | | | | | | | | | | | Figure 6.- Variation of Reynolds rumber with Mach number during coasting portion of flight. Lateral-force coefficient, CY Figure 9.— Normal-force coefficient during coasti. Flight, Rocket-powered "C" model. W/S = Mach number, M confidential Figure 10. - Static longitudinal stability during coasting portion of flight. Rocket-powered "C" model. Figure 11.-Drag coefficients during coasting portion of flight. | · | | | | | | |-----|---|---|--|--|--------| | | | | | | • | | | | | | | ٠ | * . | • | | | | | | | | , | | | | | | | | | | | | | | | | | ·
• | | | | | | | • | | | | | | | | | | | | | | · | • | | · | | | | | • | | | | | | | | | | | | | | - | | | | | | | | | Stability, Longitudinal - 1.8.1.1.1 Static | Flight Investigation to Determine the Aerodynamic Characteristics of Rocket-Powered Models Representative of a Fighter-Type Airplane Configuration Incorporating an Inverse-Taper Wing and a Vee Tail. | By Sidney R. Alexander | NACA RM No. 1.8G29
November 1948 | CONFIDENTIAL | Alexander, Sidney R. S | Flight Investigation to Determine the Aerodynamic Characteristics of Rocket-Powered Models Representative of a Fighter-Type Airplane Configuration Incorporating an Inverse-Taper Wing and a Vee Tail. | By Sidney R. Alexander | NACA RM No. L8G29
November 1948 | CONFIDENTIAL | |--|--|------------------------|-------------------------------------|--------------|--|--|------------------------|------------------------------------|---------------| | CONFIDENTIAL 1.2.2.2.4 Taper - Complete Wings | Flight Investigation to Determine the Aerodynamic Characteristics of Rocket-Powered Models Representative of a Fighter-Type Airplane Configuration Incorporating an Inverse-Taper Wing and a Vee Tail. | By Sidney R. Alexander | NACA RM No. 18G29
November 1948 | CONFIDENTIAL | Stability, Directional - 1.8.1.1.3 Static NACA | Flight Investigation to Determine the Aerodynamic Characteristics of Rocket-Powered Models Representative of a Fighter-Type Airplane Configuration Incorporating an Inverse-Taper Wing and a Vee Tail. | By Sidney R. Alexander | NACA RM No. L8G29
November 1948 | CONFIDENTIAL. | . • • . # CONFIDENTIAL Two rocket-powered models representative of a fighter-type airplane configuration having an inverse-taper wing and a vee tail were investigated in flight at Mach numbers up to 1.01 and 1.07 by the Langley Pilotless Aircraft Research Division at its testing station at Wallops Island, Va. These models incorporated a tail length of 1.56 mean aerodynamic chords and were flown with controls undeflected and wing and stabilizers set at 0° incidence. Values of lateral acceleration, normal acceleration, velocity, and drag were obtained by use of a telemeter and a Doppler velocimeter radar unit. ## CONFIDENTIAL ### CONFIDENTIAL Abstract Two rocket-powered models representative of a fighter-type airplane configuration having an inverse-taper wing and a vee tail were investigated in flight at Mach numbers up to 1.01 and 1.07 by the Langley Pilotless Aircraft Research Division at its testing station at Wallops Island, Va. These models incorporated a tail length of 1.56 mean aerodynamic chords and were flown with controls undeflected and wing and stabilizers set at 0° incidence. Values of lateral acceleration, normal acceleration, velocity, and drag were obtained by use of a telemeter and a Doppler velocimeter radar unit. CONFIDENTIAL ### CONFIDENTIAL Abstract Two rocket-powered models representative of a fighter-type airplane configuration having an inverse-taper wing and a vee tail were investigated in flight at Mach numbers up to 1.01 and 1.07 by the Langley Pilotless Aircraft Research Division at its testing station at Wallops Island, Va. These models incorporated a tail length of 1.56 mean aerodynamic chords and were flown with controls undeflected and wing and stabilizers set at 0° incidence. Values of lateral acceleration, normal acceleration, velocity, and drag were obtained by use of a telemeter and a Doppler velocimeter radar unit. ### CONFIDENTIAL # CONFIDENTIAL Abstract Two rocket-powered models representative of a fighter-type airplane configuration having an inverse-taper wing and a vee tail were investigated in flight at Mach numbers up to 1.01 and 1.07 by the Langley Pilotless Aircraft Research Division at its testing station at Wallops Island, Va. These models incorporated a tail length of 1.56 mean aerodynamic chords and were flown with controls undeflected and wing and stabilizers set at 0° incidence. Values of lateral acceleration, normal acceleration, velocity, and drag were obtained by use of a telemeter and a Doppler velocimeter radar unit. # CONFIDENTIAL NACA RM No. L&G29