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Abstract

Scalar multiplication is an essential operation in elliptic curve cryptosystems because

its implementation determines the speed and the memory storage requirements. This

paper discusses some improvements on two popular signed window algorithms for

implementing scalar multiplications of an elliptic curve point - Morain-Olivos's algorithm

and Koyama-Tsuruoka's algorithm.
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Public key cryptography based on elliptic curves defined over Galois fields (i.e. finite

fields) was proposed independently by V. Miller and N. Koblitz in 1985. Since then,

elliptic curves over finite fields have been used in many applications of cryptography,

such as digital signatures (e.g. Standard ANSI X9.62-1999 [1]) and key agreement and

transport (e.g., working draft ANSI X9.63-200x [2]).

Scalar multiplication is an essential operation in an elliptic curve cryptosystem

because its implementation determines the speed and the storage requirements of elliptic

curve cryptosystems. Several algorithms on this operation have been described in

cryptography literature. The paper discusses some improvements that were developed for

two popular signed window algorithms for implementing scalar multiplications of an

elliptic curve point - Morain-Olivos's and Koyama-Tsuruoka's algorithms.

The first three sections provide a review of some basic information on the scalar

multiplication operation in an elliptic curve cryptosystem and the signed window

algorithms. Section 4 reviews Morian-Oiivos's algorithm and shows a generalization of

the algorithm for more general patterns of the scalar term involved in the scalar

multiplication. Section 5 provides a review of Koyama-Tsuruoka's algorithm and show

how to improve its applications for a more general binary expansion of the scalar term in

a scalar multiplication operation.

1. Scalar multiplication in elliptic curve cryptosystems.

Given a point P = (x,y) on an elliptic curve E and an integer k, the

multiplication kP is defined by the recursive addition"

kP=P+P+...+P, ifk>O, andkP=(-k)(-P), if k<0.
_.................___

k terms

scalar



Whenk = 0, then 0P = O, the point at infinity. Since the inverse point - P is obtainable

at almost no cost, as is shown in the following table, from now on, k may be assumed to

be positive.

y2 =X 3 +ax+b

y2 +xy =X 3 +ax 2 +b

y2 +cy =x 3 +ax+b

Table 1.

(over Fe where prime p, 2, 3) -P = (x,-y)

(non-supersingular elliptic curve over F2,, ) -P = (x, y + x)

(supersingular elliptic curve over F2,, ) - P = (x, y + c)

Additive inverse of an elliptic curve point P = (x, y)

Scalar multiplication is the analog to raising an element to the k-th power of a

number, modulo n. The research problem is to compute the elliptic curve point kP with

the minimum number of addition operations. The information in Table 1 will be used

when dealing with subtraction. The subtraction by a point P is simply addition with its

additive inverse point - P.

2. Some basic algorithms for implementing scalar multiplications

This section gives a brief review of some basic algorithms available in cryptography

literature and implementations. More detailed information can be found in the referenced

papers.
2.1. The most basic method is the double-and-add method that uses the binary

expansion of the integer k. Let k=(kr_ t ..... ko) in base 2, where r=llog2kJ+l. Let

Pr-2 = P" Compute _-t = 2P, + kiP, for all i, r - 2 > i > 0. This produces

kP = P-t = 219o+ koP. This method requires (r - 1) doublings and, probabilistically, about

(r-1)/2 additions. Observe that the number of arithmetic operations can be reduced

when the number of bits 0 is increased. This is the basic idea for methods that try to

improve on the implementation of scalar multiplications.

2.2. An improved method for implementing scalar multiplication is the addition-

subtraction method. For elliptic curve implementations, the methods that include

subtractions are more attractive than the corresponding methods that include divisions in

calculating powers of an element in finite fields. The reason is that division or inversion

in finite fields is a more costly operation than multiplication, while subtraction is just as

costly as addition in elliptic curve operations.
An addition-subtraction method is recommended in the Standard ANSI X9.62-1999

[1] and the working draft for ANSI X9.63 [2] that uses the binary expansion of k and 3k.

Let l = 3k = (Ir_ t ..... Io) and k = (kr_ _..... ko) such that the leftmost bit Ir_ t must be 1. Let

P___=P. Compute P,-t=2P,+(l,-_-ki- t)P, for all i, r-l_>i>2, resulting in

kP = Pt = 2P2 + (It - kt)P- This method requires (r - 2) doublings and, probabilistically,

about (r- 2)/2 additions/subtractions.

2.3. Another improved version is called the m-ary (or 2a-ary) method. In this method,

the m-ary expansion is used instead of the binary form, where m = 2 _, and d > 1. The



binaryexpansionof thescalark = (k,_ I ..... ko) is padded with an extra number of bits 0 to

the left side of the bit string, if necessary, to make s = dr for some integer r. This

produces the m-ary expansion of k of the form k = (Kr_ _..... Ko), where each K i is a d-bit

string, and Kr_ t _ (0...0). Pre-compute all points 2P, 3P ..... (2 d - 1)P. These points will

include all possible points of the form K_P. The algorithm is similar to the basic binary

algorithm. This method requires (2 d -2) pre-computations (and hence memory storage),

(r- l)d = s-d doublings and, probabilistically, about (r-l)(1- 2 -d) additions.

Observe that the larger d is, the more pre-computations are needed. With a little calculus,

the optimal value of d can be found that will minimize the total number of additions.

2.4. Another algorithm is the addition-subtraction method using non-adjacent form

(NAF). The canonical non-adjacent form of the scalar k employs a signed binary

expansion (using 0 and + 1) that has the property that no two consecutive coefficients are

nonzero. The NAF of an integer is unique and has the fewest nonzero digits of any

signed binary expansions. There are a few ways to construct the NAF. The addition-

subtraction method requires (r-l) doublings and, probabilistically, about (r-l)/3

additions.

It is possible that the addition-subtraction method can be combined with the 2 a-ary

method. In particular, the addition-subtraction method using the 2 a-ary NAF form is a

binary form with the property that there is at most one non-zero term in d consecutive

coefficients. This form always uniquely exists and is easy to compute. The computing

method is similar to that for the NAF form, except that the corresponding quotient

corresponding to the non-zero remainder must be divisible by 2 d-l. The pre-computation

process must store the values of all points: +_P, +3P ..... + (2 d-I - I)P.

3. Signed window algorithms

More advanced methods for implementing scalar multiplications are referred to as

window methods. The basic one is called the Sliding window method. (Refer to [6]).

This method's purpose is to separate zero words so that an addition in the m-ary method

discussed above can be skipped. (A zero word is defined as a bit string of only O's.)

Instead of decomposing k=(k___ ..... ko) into d-bit length words of fixed d,

decompose k into zero and nonzero words, or windows _ of varying lengths l,. Let d be

the maximum length of all nonzero windows. Then pre-compute only the points of odd

scalar multiples: 3P, 5P ..... (2a-I)P. Letk =(Wr__ ..... Wo), where Wr__ is a non-zero

window (or window number). There are two strategies to partition a binary expansion

into windows: constant length nonzero windows and variable length nonzero windows.

• Constant length nonzero windows: This strategy tries to produce zero windows of

arbitrary length and nonzero windows of a fixed length d. A nonzero window

will start when a bit 1 is encountered as the bits are scanned from the rightmost bit

to the leftmost bit.

• Variable length nonzero windows: This strategy tries to produce nonzero

windows whose right-end and left-end bits are both 1. Two parameters are to be

chosen optimally in order to decrease the average number of nonzero windows:



the maximum length d of nonzero windows and the maximum number r of

adjacent O's allowed inside any nonzero window.

Signed binary window algorithms are more advanced. Their strategy is to transform a

binary expansion into a signed binary expansion. The algorithms using "signed"

expansion are much more efficient in implementing elliptic curve operations than in

implementing the modular exponentiation operations, since subtraction is just as costly as

addition. The purpose of these algorithms is to skip a bit string of all l's to reduce the

number of additions. Two popular algorithms mentioned in cryptography literature are

reviewed in the following sections - Morain-Olivos's and Koyama-Tsuruoka's

algorithms. Improvements are developed for these two algorithms.

4. Morain-Olivos's algorithm and its improvement

4.1. Basic technique (Refer to [8])

This algorithm reduces the weight of the signed binary expansion, i.e., the number of

non-zero digits in the expansion. The idea is that a block of n bits I can be replaced by a

bit string that is a block consisting of a bit 1 followed by n bits 0 and then minus 1. That

is, 11...1 = 100..-0-1. This observation is extracted from an arithmetic equality, that can
n bits n bits

be easily verified: 2 _+l - 1 = (2" + 2 "-I +...+2 t + 2°).

As a result, (n- 1) doublings and (n- 1) additions (i.e., 2(n-1) total additions) can

be replaced by n doublings and 1 subtraction (i.e., (n +1) total additions). In other words,

this method tries to construct two positive integers k+ and k such that k+ - k = k. The

total computation for (k÷-k )P is less than that for kP. Note that there are not two

separate computations of k÷P and k_P, but actually the computations merge together:

k P only shows up in a few subtractions corresponding to the positions of its bits 1 in the

scalar k.

Example: 183zo = 1 011 01112 = 1100 1000 - 0 0010001 = k÷ - k = 1101 1001. Then by a

binary method, 183P = 23(212Z(2P + P)- P]+ P)- P, where the two subtractions

correspond exactly to the two bits 1 in the expansion of k = 00010001, or two bits 1.

Using a sliding window method, the following can be written:

18310 =10110111 z = 11001000 - 00010001 = 11011001 and 183P = 24(12P - P) + 8P - P.

The same idea can deal with a special string that has isolated O's. Observe that:

k = 1..-101...1 = 10..-010..-01= I0 ...... 0-00-.-010 ...... 01, where ] denotes -1, and

n bits m bits n bits (m-l) bits n+m+l bits n bits (m-l) bits

m is assumed to be greater than or equal to 2. This observation is extracted from the same

equality described above and applied twice. Then the following formula can be obtained:

kP= 2m(2_÷IP-P)-P.

That is, an isolated 0 inside a block of bits 1 will contribute only two

subtractions/additions and one extra doubling, instead of (n + m- 1) additions.

Refer to [8] for detailed estimations of the implementation cost. In summary, the

algorithm reduces the number of operations (additions and doublings) by about 3% for



100-digit numbersand by 2.7% for 300-digit numbers. Refer to the work of [4] for
similarapproaches.

4.2. Improvement: A generalization of Morain-Olivos's algorithm

In this section, I will generalize the Morain-Olivos's algorithm to show that it can be

applied in additional cases of scalar multiplication operations. The above approach

applies only to the case where the scalar k = 1...101...1. I will show that a more general

n bits m bits

pattern of k is also applicable.

Indeed, for k being a string of (b- 1) isolated bits 0 sandwiched among b blocks of

bits 1, where b is larger than 2, the following can be written:

k =1 ...... 10--.1 ...... I01 ...... 1 = 10 ............... 0-00...01..-0 ...... 010 ...... 01,

N l bits Nb_ I bits N b bits Nt+...+Nb+(b-l)bit s N I bits Nb_ I bits (N_,-I) bits

assumingN b >2. This observation is also derived from the above equality:

2 n÷t - 1 = (2 n + 2 _-1+...+2 t + 20). Then the following formula can be obtained:

kP = 2 N_(2s'-'÷_[ .- "(2N'÷l P - P)" "] - P) - P.

This formula generalized dramatically the application of Morain-Olivos's algorithm

for the case where b = 2 only to the case where b is any positive number that is greater
than 2.

By applying this algorithm, (NI+--.+Nb-I) additions were replaced by only b

subtractions/additions and one extra doubling. The savings in the number of arithmetic

operations are significant when the sum (N 1 +-.. + No) is much larger than b, which

should be obtainable for those cases of k.

Example: 183_o = 1 0 11 0 111 z = 100000000 - 001 001 001 = 10i00i00i. Then

183P = 23123(22P - P) - P] - P.

146710 =10110111011, = 100000000000 -001001000101 = 10i00i000i0i. Then

1467P = 22 (24123(22 P - P) - P] - P) - P.

This improvement expands the domain of applicable patterns in the binary expansion

of the scalar k in the Morain-Olivos's algorithm. This generalized algorithm can be

improved dramatically if the direct multiplication formulae (refer to [3]) can be employed

to calculate the points 2aP, where d is up to the maximum number N, needed in the

above formula for kP.

5. Koyama-Tsuruoka's algorithm and its improvement

5.1. Basic technique (Refer to [7])

The Koyama-Tsuruoka's algorithm attempts to increase the average length of zeros

and decrease the weight in the signed binary expansion using {i,0,1}, where i denotes

-1. Denote the number of bits 0 (and, respectively, bits 1) in a bit string B bY#0(B)

(and, respectively, #_ (B)).

A binary string of a non-zero window B = (l,b ..... bl,1) in k will be transformed to a

signed binary string of the form T = (l,0,t n ..... t_,i), where t, = b_ - 1, for all 1 < i < n.
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This transformationis effective(i.e. actuallydecreasesthe weight of the bit string)only
when the difference between the numbers of bits 1 and bits 0 in B is:

Diff(B) =#t (B)-#0 (B)> 2. However, keep in mind that the transformation also costs

one extra doubling because of the extra bit. This transformation is extracted from an

arithmetic equality that is also easily verified:

2"*2-2"÷'= 2"*' =(2" +2 "-t +-..+21 +1+1).

Using the relationship 1 = bi - ti, for all 1< i < n, then

2 "*a + (t, 2" + t,_,2 °-' +'"+tt2' + 1)= 2"*' + (b, 2" + b,_,2"-' +...+b, 2' + 1).

Using this method, one needs to pre-compute only +3P,+5P ..... +(2 a -3)P, since

the algorithm never allows terms of the form -+(2 a - 1)P to appear.

Example: 183 m = 1 011 0 111 z = 1 0 11 100i. Then 183P = 16(11P) + 7P.

743t0 = 10111 00111 z = 101001 0100i. Then by a sliding window method with d = 5,

743P = 25 (2 SP - 9P) + 7P.

A similar idea to Koyama-Tsuruoka's algorithm was also discussed in [5]. Refer to

[7] for a detailed performance evaluation and comparison.

5.2. An Improvement of Koyama-Tsuruoka's algorithm

The Koyama-Tsuruoka's algorithm is applied for the non-zero window (1,b, ..... b_,l)

only. This limits its application. In this section, I will show how to significantly improve

this algorithm for any binary expansion.

Instead of working only on a non-zero window, consider an arbitrary bit string

k = (b. ..... bt,b0), where, without loss of generality, b, = 1 can be assumed. For all 0 < i <

n, let t,_=b,-l, then insert the relation l=t, +b, into the arithmetic identity:

2 "*_ = (:2" + 2 "-_ +--. + 21 + 20)+ 1, to obtain the following identity:

2"+_ + (t,2 _ + t,__2 °-' + ... + tt2' )+ t0_° -,= (< 2" + <_, 2"-' +... + b,2' + _o _°)-

When b0 =1, then t o = 0. This approach will transform k into the string of digits

T = (1,t ...... q,T), where the last digit T = -1. This is Koyama-Tsuruoka's algorithm for a

non-zero window B = (b, ..... hi,l).

When b 0 =0, then t o =-1. This approach will transform k =(b, ..... bt,0 ) into the

string of digits T = (1,to ..... tt,2 ), where the last digit 2 =-2. This last digit does not

affect the scalar multiplication (kP) at all. In the very last step of a given scalar

multiplication algorithm, subtract a double of a point 2P instead of the point P itself. The

point 2P is available for free since it is always computed during the process. If other m-

ary methods or window methods are used, the digit 2 is obviously not a concern anyway.

Only some minor changes are needed in the pre-computations.

Example: 742 m = 10111001102 = 101-000 1 1002,. Then by a sliding window method,

743P = 25(25P- 8P) - 26P.

The number of non-zero digits in T is



/1 n

#.o._o(T)= 2 + _-]_lt,l= 2 + _-_ b, -ll= 2 + _--]1 =2+#o(k' ), where k'=(b. ..... bl).
i=1 i=1 I_;i<n,b i =0

Hence, this transformation is effective if the condition 2+# 0 (k') <#_ (k) is satisfied. The

transformation costs one extra doubling because of the extra bit. Since #0 (k') =#0 (k) - 1,

the condition can be rewritten as: Diff(k) =#1 (k)-#0 (k) > 1.

Therefore, Koyama-Tsuroka's algorithm can now be applied to any binary bit strings

that satisfy the previous condition on Diff(k). The improved algorithm dramatically

expands the application of the original algorithm by removing the limit of applying only

on non-zero window pattern.

6. Conclusions

The intention is to modify or to develop methods using some digits other than just

bits 0 and 1 in the standard binary expansion of the scalar k of the scalar multiplication.

The benefit of using the 2 digit in the expansion is because of the availability of the point

2P in the (pre-)computation processes. Using "negative" digits (e.g., 1 =-1 or 2 =-2 )

has great benefits since the cost of subtraction is the same as that of addition in elliptic

curve implementations. This is a considerable improvement to the approaches for

developing new algorithms to improve the efficiency of implementations of scalar

multiplication operations in elliptic curve cryptosystems.

This paper presented two improvements on two popular signed window algorithms

for scalar multiplications implemented in elliptic curve cryptosystems. The first

improvement on Morain-Olivos's algorithm helped to expand its domain of applicable

patterns in the binary expansion of the scalar k. The improvement on Koyama-

Tsuruoka's algorithm expands the application domain from non-zero windows to any

binary expansion of k satisfying the condition on the difference on the numbers of bits 0

and I. These two improvements facilitate the efficiency of implementation of scalar

multiplication in elliptic curve cryptosystems.
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