

Aerospace Materials, Processes, & Environmental Technology

Session 4: Innovative Materials Applications

TransHab Materials Selection

Michael D. Pedley, Brian Mayeaux

NASA-Johnson Space Center Manufacturing, Materials, and Process Technology Division

TransHab Materials Selection

crew habitation

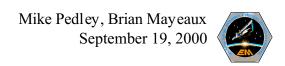
crew support

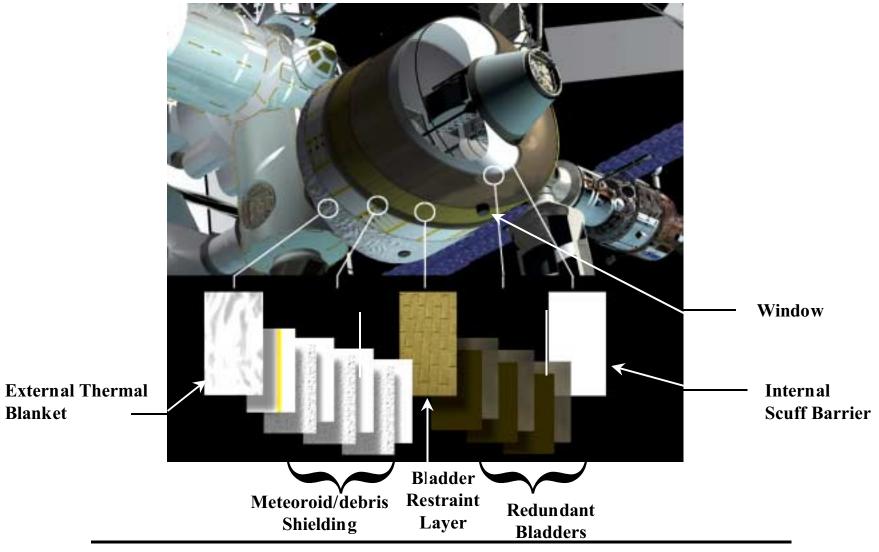
environmental control

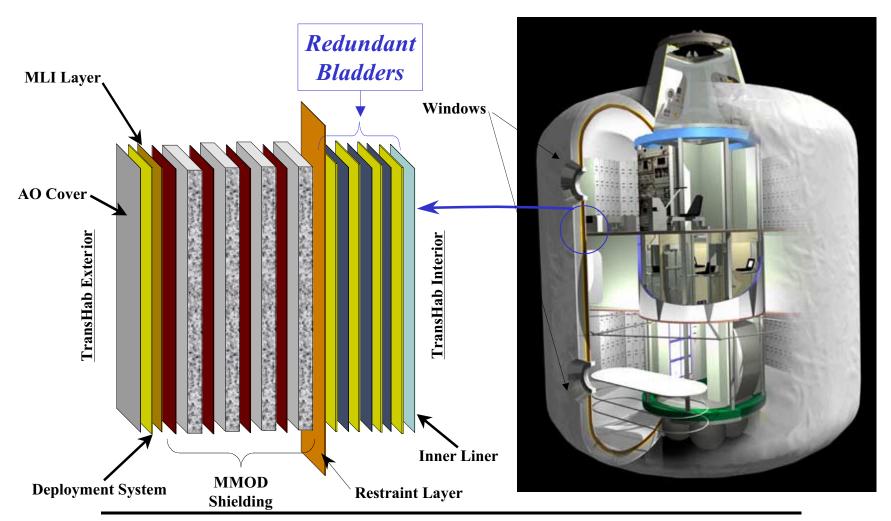
Micrometeroid/orbital debris protection

radiation protection

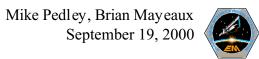
Acknowledgments: Tim Burns, Joe Lovoula, Benny Ewing, Jeremy Jacobs, Rajib Dasgupta


2


Location of TransHab on the ISS



Multi-Layer Inflatable Shell

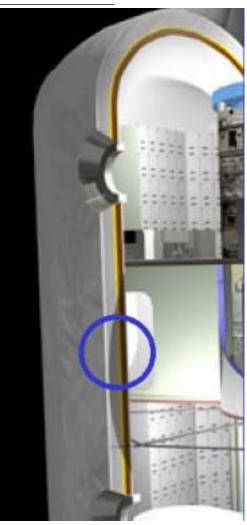


Multi-Layer Inflatable Shell

TransHab Functions

•Crew Habitation Functions:

- –Private SleepingCompartments
- -Food Preparation
- -Food Consumption
- -Food Stowage
- -Full Body Cleansing
- -Earth Viewing
- Stowage (Personal, Food, Water)


•Crew Support Functions:

- -Social Gathering
- -Meeting Area
- -Private Gathering
- -Crew Health Care
- -Exercise
- -Housekeeping
- -Stowage
- -Radiation Protection

TransHab Materials Requirements

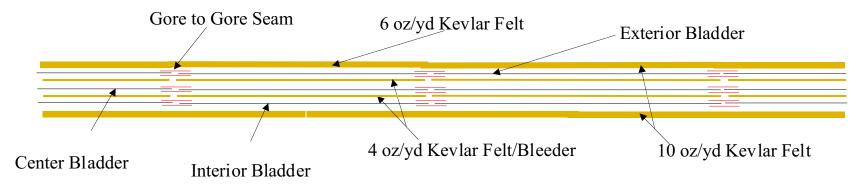
- Structural integrity
 - Hold 1 atm pressure differential
- Deployment in various thermal conditions
- LEO environment compatibility
 - Atomic oxygen
 - Ionizing Radiation
 - Plasma
 - meteoroids and debris
- Material properties/inflatable compartments
 - nonflammable
 - low offgassing
 - resistant to fungus and microbial growth

Expected Thermal Environment

- In Shuttle payload bay:
 - Approximately 20 °F average "bulk" temperature
 - Assuming no internal heat source
 - Based on engineering judgement, thermal analysis not yet performed
- At time of deployment:
 - Approximately 0 °F average "bulk" temperature
 - Assuming no internal heat source
 - Some local temperatures may be as low as -20 °F
 - Based on engineering judgement, thermal analysis not yet performed
- -20 °F expected material temperature spec. (-30 °F cold temperature limit for non-silicone mat'ls)
 - Heaters in seal region and core will be implemented if thermal analysis shows temperatures < -20 °F at deployment

Materials Selection Challenges

- Materials currently baselined or under consideration require further development, and their structural integrity must be sustained in a variety of environments.
- The finished shell, with multiple layered elements and a unique shape, requires the development of unique fabrication techniques for bladder seals and bonding.
- Progressive testing program will develop fabrication techniques and provide correction for currently unforeseen fabrication problems.
- An integral water tank is a new technology that requires further laboratory testing and engineering development.


Bladder Restraint Layer Materials

- Kevlar (Aramid) fibers
 - Bladder reinforcement
 - No degradation/embrittlement at cryogenic temps.
 - Meteoroid/Debris shielding
 - Bumper layer reinforcement
 - Scuff barrier
 - Kevlar felt cloth adds puncture resistance and protection from abrasion with other components
 - Applied early in manufacturing process to prevent handling damage
 - Assembled to bladder material using adhesive

Bladder Assembly

- Three bladders, separated by bleeder cloth and sealed to the interface at the bulkhead
- Each bladder gore cut out from (Polyurethane/Saran film) and heat sealed together
- Bladders indexed to each other; tabs provided for indexing to restraint and inner layers

Bladder Materials Requirements

- Evaluation Criteria
 - Must exhibit cold temperature ductility
 - % elongation @ -50 °F and -30 °F relative to Ambient Temperature.
 - No delamination between gas barrier and polyurethane
 - Must pass toxic offgassing
 - Must pass permeation
 - Leak rate not to exceed 2 cc/100 sq.in./24hr/atm
 - Must exhibit flex cracking resistance
 - Use Permeation testing to verify defect free samples
 - Must pass puncture test

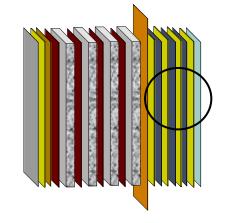
Bladder Materials Testing

- Puncture resistance at -30 °F & 0 °F
- Triple point fold test at -30 °F & 0 °F
- Cut slit method tensile tests
- Permeability testing of 50% elongation at break samples
- Cold temperature bally flex testing
- SEM analysis of cold temperature tensile fracture surfaces and component layers

Bladder Materials Selection

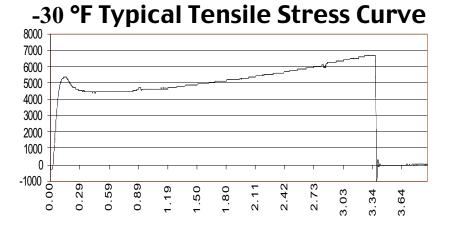
• Polyethylene/ethyl vinyl alcohol/nylon laminate

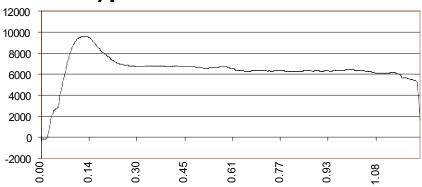
- light weight, low density
- good offgassing/toxicity
- low permeability (0.07cc/100in²*day*atm)*
- very brittle at cold temperatures (flex cycling, puncture tests)


Polyurethane/Saran laminate

- higher permeability (0.32cc/100in²*day*atm)*
- adequate mechanical integrity at cold temperatures (flex cycling, puncture tests)

Tedlar-Mylar-Polyurethane-Polyester Scrim


- higher permeability (barely meets requirement)*
- poor mechanical integrity at ambient temperature(flex cycling, puncture tests)
- * 2.0cc/100in²*day*atm requirement



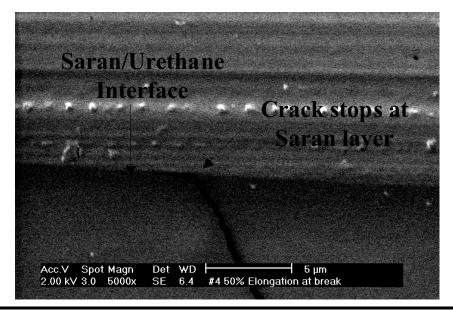
Bladder Materials Selection

- -30 °F & -50 °F testing to characterize mechanical properties
 - Material Properties at Room Temperature after 100% Elongation of Peak Load
 - Material Properties at Room Temperature after 50% Elongation of Break

-50 °F Typical Tensile Stress Curve

Stress(PSI) vs. Elongation(in)

Stress(PSI) vs. Elongation(in)

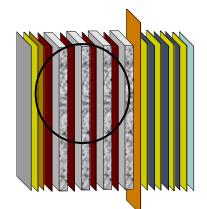

Bladder Materials Selection (Polyurethane/Saran)

50% Loading of Break Elongation at -50 °F

- Cracking in the polyurethane only
- Verified that these cracks are not thermally induced by examining unloaded samples

• Cracks in the polyurethane suppressed by thin saran

layer



Bladder Materials – Future Testing

- Polyurethane/Saran
 - Thickness (4.75mil, 6.75mil, 12.75mil)
 - Seam Testing of Heat Seals
 - Tensile, Permeation and Bally Flex Testing
 - Adhesive Testing and Evaluation
 - S-Flex Testing of Bladder Layup
 - Testing to Determine Elongation Properties of Two Individual Components Saran and Polyurethane
 - Bally Flex Testing will continue past the 3000 cycles currently completed
 - Cold Temperature Laminate Failure Without Loading

Meteoroid/Debris (MMOD) Shielding

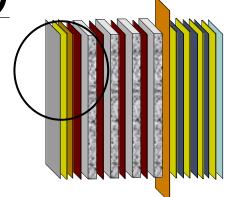
- Shield Requirements
 - meet or exceed ISS requirement for probability of no penetration
- Design
 - based on ISS multishock shield (Kevlar/Nextel)
 - shield layers separated by foam spacers
 - manufactured in gores similar to bladder
 - gaps in foam allow MMOD to fold
 - vacuum-packed to minimize folded volume, foam expands during deployment/inflation
 - all fabric system
 - state of the art in hypervelocity impact protection

Meteroid/Debris Protection Materials

• Test Matrix

- Large historical data base on ceramic based bumper shields
- Over 50 shots completed by TransHab Program at JSC/WSTF (6.5 km/sec.)
 - Sub Scale
 - Full Scale
 - Variety of Configurations
- Current design viable solution to meet ISS requirements
- 12 Full scale shots underway to determine ballistic limit curve

Multilayer Insulation (MLI)


Requirements

- Provide Thermal Insulation
- Atomic oxygen protection
- Electrically grounded
- Foldable for launch packaging
- Vented
- Not load bearing

Design

- Based on ISS standard MLI design
- Beta Cloth outer layer protects against atomic oxygen attack (aluminized on inside to block light transmission)
- 20 layers of reinforced double aluminized Mylar with inner and outer cover of reinforced double aluminized Kapton
- Atomic oxygen protection and MLI split into two separate layers
- Deployment system on separate load bearing layer between MLI and Beta Cloth

Manufacturing Processes

Key Special Processes

- Adhesive bonding to bladder materials
- Sewing, weaving
- Folding, packing
- Control of foreign materials in-and-around shell and bladder
 - bladder damage (sewing equipment, fasteners, sharp objects)
 - contamination control

Key Controlled Materials

- Bladder material
- Adhesives
- Kevlar restraint layer material

Project Status

- Remains candidate for ISS Habitation Module
- In competition with aluminum Habitation Module (shell fabricated at MSFC several years ago, not outfitted)
 - Transhab provides higher potential for long-term applications,
 higher volume
 - Aluminum Hab provides lower risk, lower cost

