Advanced Space Flight and Environmental Concerns

Dr. Ann Whitaker NASA/MSFC Deputy Director, Science Directorate

Environmental Challenges for Aerospace Industry

- Clean Air Act Amendments of 1990 (CAAA) presented new challenges for Aerospace Industry
 - Regulation of Ozone Depleting Chemicals (ODCs), Hazardous Air Pollutants, Volatile Organic Compounds (VOCs)
 - Acceleration of U.S. production ban of ODCs from 1/2000 to 1/1996
- Overwhelming environmental impact on traditional methodologies for manufacturing aerospace systems and vehicles

NASA Accepted the Challenge

- NASA Administrator, Mr. Daniel Goldin, established the NASA Operational Environment Team (NOET) in September 1992
 - Emphasis on development, test, production, and use of NASA's aerospace flight hardware

NASA

- NOET executed numerous technical forums
 - NASA Programs, Industry, Academia and Federal Agencies exchanged "lessons learned" on environmentally - driven materials replacement technology
- NOET continues to proactively serve as a champion of the "operational environment"

Examples of previous replacement activities

MARSHALL SPACE FLIGHT CENTER

Space Shuttle Environmental Replacement Technology

Examples of Previous Activities

Activity Targeted Chemicals	NASA	Contractor					Legend	
		Boeing- MDA	Lockheed Martin	Rocketdyne	Thiokol	UTC	A AD	Anodizing Adhesives
Asbestos	IC				IC		BA	Elowing Age
Aliphatic Glycidyl Ether (AGE)	17					T	88	Blazing Alky
Cadmium Compounds		PL		BR		í	DG	Cleaning Age
Carbon Tetrachloride				LA*			DW	Dewaking
Chlorofluorocarbons	LL, NVR	R', DG	BA", FC	BA", NVR	DG', FC'	BA", PC"	F	Floating
Chromium Lead Compounds			PR	A*. P*	S	A.P.S	FC	Firm Cleaning
Cyanides	0					AD	FS	Fuel Source
Dichloromethane (Methylene Chloride)	PS, T*		CA", PS"			IC	10	Insulation Constituent
Halons		F/S*	1				LA	Lab Analysia
Hydrazine	I					FS	LL	Long-Lile Be
Methylene Chloride							NVR	Nonvolatile Fi
Methylene Dinniline	AD		1			AD	PO .	Precision Cla
Methyl Ethyl Ketone (MEK)			CA.			FCT, P	P	Paints
Perch loroethylene	Τ.			DW*	CA	IC, P	PL.	Plating
Toluene						FC, P	PR	Primers
Trichloroethane (Methyl Chloroform, TCA)	DG.			DG*, NVR*	DG*, P*	FC*, P*	RS	Refrigerant Sealants
Trichloroethylese			DG, NVR	E.			Т	TPS
Xylenes						P, AD	H	Hybrids
Alternate Propulsion	H		H	18	н	н	SHGS	Solid Rocket
Cleaner Propulsion	SRCS		1000		SRCS	SRCS		Simulator

* Completed Tasks

NASA Assessed the Impact

- NASA's ODC usage in 1992 was 3 million pounds
 - Primarily Chlorofluorocarbons (CFCs) and Trichloroethane (TCA) for manufacture of programmatic hardware
 - NASA's ODC usage decreased 87% by 1996

ODC usage in 1996 was 400,000 pounds

- **Decrease accomplished with implementation of environmentally- driven materials and processes**
- NASA currently utilizes less than 75,000

pounds/year for the manufacture of aerospace hardware and systems

Critical requirements on the Space Shuttle Transportation System

NASA's Teaming Successes

- Environmental challenges provided impetus for NASA to team with other Federal Agencies
 - Environmental Protection Agency (EPA)
 - Department of Defense (DoD)
- Interagency teaming resulted in collaborative working relationships that benefited the aerospace community
 - Cost Savings, Data Sharing and Technology Transfer
 - Rulemaking Process: Technically sound, Economically
 - feasible and Environmentally friendly
- Teaming within NASA Centers and NASA programs resulted in resource savings and increasingly robust, advanced aerospace systems

Resulting Efforts and Studies

- NASA/EPA/DoD Interagency Depainting Study
- Non-ODC Surface Cleaning of Advanced Aerospace Systems
- Non-ODC Instrumentation for Cleanliness Verification
- 2nd Generation Blowing Agent for Thermal Protection System on External Tank
- Wire Arc Sprayed Aluminum Coatings
- Hot Oil Dewaxing
- Ultrasonic Cleaning
- Aerospace Manufacturing and Rework: National Emission Standards for Hazardous Air Pollutants (NESHAP)

Manifestation of Environmental Challenges

Manifestation of environmental challenges Materials, Processes & Manufacturing Materials subtleties have surfaced in some environmentally - driven materials replacement technology **Decreased strength of materials Post-flight** anomalies **Consideration of synergistic effects of materials** replacement **Performance of materials**

Current Challenges

 Environmental challenges of new millennium for the manufacture of advanced aerospace flight systems

 Development of 3rd Generation Blowing Agent
Elimination of TCA Rubber Activation & Cleaning
Reduction of Chromium in Primers & Conversion Coatings
Search for Better Cleaning Verification Solvents
Development of Low VOC Coatings

Future Environmental Concerns

advanced aerospace light systems

 Approximately 35 out of 150 NESHAPs potentially impact the materials, processes and manufacture of

- Rocket E
- Paint Stripping Operations
- Miscellaneous Organic Chemical Production & Process Usages
- Increasing environmentally driven materials obsolescence as suppliers comply with regulations
 - Materials unavailability for advanced aerospace systems Different performance characteristics of reformulated materials Unexpected formulation change of material

01/24/2001

Conclusions

- Aerospace industry has conquered numerous environmental challenges during the last decade
- Aerospace industry of today has evolved due in part to the environmental challenges
 - stronger
 - more robust
 - pushing limits of technology materials and manufacturing
 - performing "cutting edge" engineering
- Aerospace Industry is viable and successful because of your commitment and contributions