
1999 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

A VISUAL EDITOR IN JAVA FOR JVIEW

Ryan Stansifer
Associate Professor
Computer Science

Florida Institute of Technology

KSC Colleague: Steve Beltz (Dynacs)

ABSTRACT

In this project we continued the development of a visual editor in the Java programming
language to create screens on which to display real-time data. The data comes from the
numerous systems monitoring the operation of the space shuttle while on the ground and in
space, and from the many tests of subsystems. The data can be displayed on any computer
platform running a Java-enabled World Wide Web (WWW) browser and connected to the
Internet. Previously a special-purpose program had been written to display data on emula-
tions of character-based display screens used for many years at NASA. The goal now is to
display bit-mapped screens created by a visual editor. We report here on the visual editor
that creates the display screens.

This project continues the work we had done previously. Previously we had followed
the design of the "beanbox," a prototype visual editor created by Sun Microsystems. We
abandoned this approach and implemented a prototype using a more direct approach. In
addition, our prototype is based on newly released Java 2 graphical user interface (GUI)
libraries. The result has been a visually more appealing appearance and a more robust
application.

189



I Introduction

During the operation of the space shuttle, sensors are monitoring many of the subsystems.
This data goes to special hardware at the Launch Control Center (LCC) known as the Com-
mon Data Buffer (CDBF). Lots of data is collected, approximately 30,000 measurements.
These measurements are continually changing—some of them can change rapidly at certain
times. The data is used in monitoring the operation of the shuttle and in analyzing subsys-
tems for safety, performance, technological improvements, etc. Each individual measurement
is given a short tag called a function designator (FD) to identify it.

This Real-time data is monitored on system engineering consoles of then the Control
Checkout and Monitor System (CCMS) in the Launch Control Center (LCC). The PC GOAL
system presents the same data to a wider audience in a format closely resembling the consoles
of the CCMS. The CCP (CDBF Communications Processor) scans the memory of the CDMF
every 2 seconds and broadcasts the data on the LPS Operations Net (LON). This data (and
other data, e.g., FIFO) is relayed to the PC GOAL stations. The PC GOAL stations are
PCs with network hardware running DOS and the PC GOAL software.

The PC GOAL system presents shuttle data on schematic-like screens described by
character-oriented files known as DSP files. Figure 1 shows one of the hundreds of PC
GOAL display screens (no data is been displayed, the character 'X' is filling the character
positions that would be occupied by numerals). Each shuttle mission requires substantial
effort to organize the CDBF, distribute the DSP files, etc.

2 Jview
The Jview project is motivated by the PC GOAL system to display real-time shuttle data as
conveniently and efficiently as possible. The programming language Java was chosen because
of the easy of writing both graphical user interface (GUI) code and distributed programs.
The Internet is the obvious mechanism to transport the data. The wide-spread availability
of browsers for the World Wide Web suggests an obvious user interface for any information
system large or small.

Java code can be transmitted as part of the WWW protocol, just like pictures, sound
and other data. The extreme interest in Java is caused by the ability of browsers to execute
the Java. code. These Java programs transported across the Internet and executed locally
by a WWW browser are called applets. Applets add interaction to otherwise static WWW
documents. The Jview project uses applets to form a connection to a Java data manager
that relays the real-time data to the applet.

190



Figure 1: One of PC GOAL'S display- screen

191



2.1 Java applets
The key advantage of using Java applets is that after the applet makes a connection to a
data server only the data is transmitted across the network. This is superior to constantly
transmitting updated pictures (bit maps) as would be required in other approaches, e.g.,
common gateway interface (CGI), server push, etc.

The advantages in using Java are even greater than the technical merits suggest. Ad-
ministratively, the operation of a real-time data service using Java is much better. The Java
applet is written once and executed remotely; no porting has to be done. Also, the latest
version of the applet is always distributed to the user; there is no version control problem.
Finally, the operation of the service is easy as browsers are ubiquitous; no training is required.

2.2 Java Programming Language
The Java programming language introduced by Sun Microsystems a mere five years ago
also provides technological advantages. The good network library has been important to
to Jview, as has the good GUI library. This latest version of this GUI library, known as
Swing, was used in the visual editor. This has made it easy to produce an application with a
pleasing appearance and great functionality. On the other hand, the performance of Swing
is noticeably worse than the less sophisticated AWT library used in the previous version of
the visual editor.

2.3 Jview Operation
The Jview system has been in operation for about two years. Since it emulates the existing
PC GOAL display screens it has been easy for users to use the new system. All the display
screens have the same appearance as the PC GOAL display screens, for example Figure 1.
But advances in computer systems makes it reasonable to expect more sophisticated displays.
It is possible to display the data more realistically with dynamic, bitmapped components:
tanks can appear to be filling, analog gauges can be simulated, sound can incorporated, etc.
Schematic diagrams can be more detailed.

To create these more sophisticated displays we have designed a visual editor. From an
extensible palette of components the user composes a new graphical display for the data.
Pictures and schematics (perhaps made from other tools like Adobe's PhotoShop) can be
imported. Once a screen has been created, the data viewer displays it as well as updates the
components with the individual data values as the data comes in.

It is important to emphasize that the visual editor puts the components together and
does not create the components. At the moment, we have few entertaining components

192



Figure 2: View of the editor

to use with the editor. It is likewise important to emphasize that the components can be
created at anytime and the editor can use them without any change to the editor.

3 Visual Editor
The screen shot of the visual editor is shown in Figure 2. The list of available components
appears on the left side of the workspace. In the workspace are five components. One
is a TextLabel component for a. label. Another is the specially created HiewWindMeter
component. A third is the JviewDouble component for numbers; it is currently selected. It
has the solid border around it. The current component always has a property editor in a
separate little window called "property sheet." In this window the individual values for each
property of the component can be set. No real data is reaching the component in the editor.
But the display designer may want to see how the component reacts to some particular data

193



z	
a

.......	 ...

^.

Figure 3: Two layered approach

value. The component may round the value to the nearest degree. Other components might
turn a different color for some values, etc.

Good use was made of the Java Swing component LayeredPane. Using LayeredPane
allowed the workspace to be composed of exactly the components that would be used in the
display of the finished display screen. The extra effects and functionality of the editor were
confined to a second layer that was placed in front. Figure 3 suggests the logical placement
of the GUI components in the Jview editor. Displaying borders or capturing mouse events
is accomplished by the front-most layer. In it a component (usually invisible) is placed in
front of the actually display component.

Components can be widgets from either the AWT library or the new Java Swing library.
These components are both "Java Beans." This means they follow certain programming
conventions. For instance, get and set methods. For each property, say, wind speed, there
is a method, say, getWindSpeed that returns the value of the private variable, and a method
setWind5peed that sets the value. My using this naming scheme, it is possible for the
editor to manipulate a completely unknown component. The component does not have to
be compiled with the editor at all and can be created long after the editor is deployed.

There is a limit to the type of components suitable for use with Jview. All Jview com-

194



ponents access the data through FD's and implement an update method that responds
appropriately to new data values for the FD's.

4 Acknowledgments
I gratefully acknowledge the support of the DAP group of CLCS headed by Coleman bug-
ger (NASA) especially the Jview team: Steve Beltz (Dynacs), and Mark Long (Dynacs).
Also, deserving thanks are Brad Neal (University of Central Florida) and Tom Beever, pres-
ident of Netlander. A special thanks is due to Ray Hosler (University of Central Florida),
Jane Hodges (NASA), and Greg Buckingham (NASA), who ran the NASA/ASEE Summer
Faculty Fellowship Program at the Kennedy Space Center, for being friendly, efficient, and
enthusiastic.

The original impetus of this project in 1996 grew out of collaboration with Peter Engrand
(NASA) and Charlie Goodrich (Dynacs).

References
[1] Patrick Chan and Rosanna Lee. The Java Class Libraries: Second Edition, Volume 2.

Addison-Wesley, Reading, Massachusetts, 1998.

[2] Patrick Chan, Rosanna Lee, and Doublas Kramer. The Java Class Libraries: Second
Edition, Volume 1. Addison-Wesley, Reading, Massachusetts, 1998.

[3] Robert Eckstein, Marc Loy, and Dave Wood. Java Swing. O'Reilly, Sebastopol, Califor-
nia, 1998.

[4] Henri Jubin. JavaBeans by Example. Prentice Hall, Upper Saddle River, New Jersey,
1997.

[5] NASA, Kennedy Space Center, Checkout and Launch Control System. CLCS project
home page. WWW site at http://cics.ksc.nasa.gov/.

[6] NASA, Kennedy Space Center, Launch Processing System. LPS system software PC
GOAL home page. WWW site at http://1psweb.ksc.nasa.gov /SDC/PCGOAL/.

[7] Sun Microsystems, Inc. Javabeans. WWW site at http : // j ava. sun. com/beans.

195/196


