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Abstract

Regarding multiple spacecraft formation

flying, the observation has been made that control

thrust need only be applied coplanar to the local horizon

to achieve complete controllability of a two-satellite

(leader-follower) formation. A formulation of orbital

dynamics using the state of one satellite relative to

another is used. Without the need for thrust along the

radial (zenith-nadir) axis of the relative reference frame,

propulsion system simplifications and weight reduction

may be accomplished. Several linear-quadratic

regulators (LQR) are explored and compared based on

performance measures likely to be important to many

missions, but not directly optimized in the LQR

designs. Maneuver simulations are performed using

commercial ODE solvers to propagate the Keplerian

dynamics of a controlled satellite relative to an

uncontrolled leader. These short maneuver simulations

demonstrate the capacity of the controller to perform

changes from one formation geometry to another. This

work focusses on formations in which the controlled

satellite has a relative trajectory which projects onto the

local horizon of the uncontrolled satellite as a circle.

This formation has potential uses for distributed remote

sensing systems.

Introduction

The desire to minimize the space mission costs

and risks associated with dependence on single, large

spacecraft has contributed to the development of

spacecraft formation flying technology. A considerable

body of research (cf. l-m) has been directed toward the

automatic control of the most basic satellite

formation--two satellites flying in similar, nearly

circular orbits. This formation, is sometimes called a

leader-follower pair, and its dynamics are often

represented by a first-order, nonlinear system of ordinary

differential equations (ODEs) by defining a rotating

flame of reference fixed to the leader satellite.
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Figure 1: Relative coordinate axes used to simulate leader-

follower formation dynamics. Figure courtesy of Mr. H.

Wong.

Dynamical Representations

Let x represent the direction opposite the

leader's orbital velocity (along-track); y, the direction

from the Earth's center out to the leader's position

(radial); and z, the direction parallel to the constant

angular momentum of the leader's orbit (cross-track)

(see Figure 1). Then the relative frame transformation

of the Keplerian dynamics is given by

3_= 209y+r-O2x[1-g(x,y,z, Gt,,)]+ F, (1)

= -2o9x + o9Z(y + r,,m,)[l _ g(x,y,z,rorbi,)]+ 1,_ (2)

= -o92z g(x,y,z,r,,,.j,,,) + F: (3)

where r is the orbital radius of the leader, o9 is the

constant orbital rate, F i {i=x,y,z} denotes relative

accelerations caused by control forces and external

disturbances (including all non-Keplerian effects), and

g(x,y,z,r_b,)_[1 + 2y + l__(x2+y2+z2 ). (4)

L rorbit rorbit

These expressions are very similar to expressions

already available in the literature, cf Kapila. m

The nonlinear system of Eqs. 1-4 may be

linearized using the leader's orbit as the origin. Such a

linearization has the same effect as equating

g(x,y,z,r,,_b.) to unity; if the separation of the satellites

is much less than their orbital radius, the term

g(x.y,z,r,,m,) = 1, so that the nonlinear coupling terms

become so weak that the system is essentially linear in

character. The relative dynamics were first linearized by

Clohessy and Wiltshire: _

3_ = 2co) + E, (5)

5; = -2r.o._ + 30)2x + F_. (6)

g = -o)2z + F:, (7)



It is often noted that this linearization allows

the dynamics parallel to the orbital plane (x- and y-axes)

to be decoupled from the dynamics perpendicular to that

plane (z-axis). Since the so-called out-of-plane

dynamical equations represent simple harmonic motion,

and since the in-plane dynamics are bounded input-

bounded output (BIBO) unstable, the out-of-plane

dynamics are frequently set aside so that full attention

may be given to the in-plane control problem. In this

research the out-of-plane dynamics were included.

One useful state-space representation of Eqs.
5-7 is:

x_ = Ax + Bu (8)

where the state and control vectors are

x=[x y Z 2c y i] r (9)

and the state and control matrices are

Am

0_x_ ]3×3

0 0 0 0 20) 0

30)2 0 0 -20) 0 0

0 0 -to 2 0 0 0

L ]3×3 I

(11)

(12)

Strategy for Control of Leader-Follower

Formations

The linearized form of the relative frame

dynamics for the leader-tbllower formation has been

known for some time. Linear-quadratic control of the

leader-follower pair using control inputs along the

along-track (x) and radial (y) axes has been partially
explored. 7'H'_2 The controllability of the in-plane

dynamics has been observed and demonstrated by

simulations. 7 Possible formation geometries have been

explored, and sets of unforced formation trajectories,

i.e., formation trajectories which would be closed and

stable without any control provided there are no

deviations from purely Keplerian mechanics, have been
detailed. 6,8

In a previous paper 9, we noted the complete

controllability of the in-plane dynamics state-space pair

analogous to the full dynamics pair (A,Bx), where A is

given by Eq. 11, and

1 0 . (13)
B_--- 0

0

In the earlier work, maneuvers were simulated which

occurred entirely within the x-y plane. However, this

paper will include the out-of-plane dynamics to provide

a better understanding of a maneuver that involves
movement in all three dimensions.

Controllability inheres even though the

definition of Bx given by Eq. 13 does not allow the

radial input, Uy, to be included in the controller design.
At least one other paper presents a successful design

using only along-track inputs in the form of differential

drag actuated by drag plates. 4 That design uses a

nonlinear algorithm to effect correction maneuvers

using only the input values -a, 0, and +a, where a is

the magnitude of the relative acceleration created by

placing the drag plates of the two spacecraft in different

configurations. In contrast to this nonlinear design, the

goal of our earlier paper was to validate the use of a

linear control algorithm to command a strictly along-

track control trajectory to the follower spacecraft based

only on its position and velocity relative to the leader.

In this paper, we present simulations of linear-

quadratic regulator (LQR) controllers without radial

inputs performing certain maneuvers between initial and

target trajectories. An error regulation scheme is

employed where the origin of the state-space is not the

target trajectory. In calculating controller gains based on

regulation of the state (or the state error) of the follower
satellite relative to the leader, we nondimensionalized

the variables involved to reduce errors in calculation and

to make the result more broadly applicable; Vassar and
Sherwood have also used this nondimensionalization. 7

By also normalizing the orbital radius, the
nondimensionalization had the effect of making the

linear results applicable to all circular, Keplerian orbits.
Note that after these conversions are performed, the

orbital velocity, v = corom,, is also unity.

Since LQR cannot be used directly to optimize

such potentially important performance factors as fuel

efficiency and time required for maneuver completion,

the performance levels available to each type of

controller--the type with and the type without radial

inputs--were characterized over a selected range of gain

matrices. The LQR cost function used to create most of

the gain matrices and associated closed-loop systems

examined is given by
t/

J=_(xrQx+purlu) dt, (14)

lo

where I is the identity of appropriate dimension (2x2

without radial inputs or 3x3 with radial inputs). The

scalar control weighting factor,/9, was varied for both

controller types to produce a suite of control gains for

each type. A similar range of maneuvers was simulated
for each suite of controllers. Then, the results of those

simulations were interpreted according to several

performance criteria that are not directly optimized by



theLQRdesign.

Simulations

Simulations of maneuvers from a constant x-

axis offset (the "in-plane" formation of Sabol et al. 6) to

the origin were presented in earlier research? In this

paper we discuss simulations pertaining to a more

complex formation in which the follower's elliptical

trajectory in relative space projects a circle onto the
local horizon of the leader. Sabol et al. refer to this as a

"projected circular" formation. 6

The projected circular formation is characterized

by movement of the follower satellite about the leader

along all three dimensions of the relative coordinate
frame as defined above. In order to model this

movement in maneuvers, we have included the cross-

track (out-of-plane) dynamics in all simulations. To

understand fully the effects of omitting radial inputs

from leader-follower LQR controllers The simulation of

these controllers was limited to purely Keplerian

dynamics. Since long-term formationkeeping is only a

non-trivial problem in the presence of non-Keplerian

dynamics, these simulations were limited to the

completion of finite maneuvers which placed a
formation into a desired trajectory.

The relative state dynamics for a projected

circular trajectory may be parameterized using only one

independent variable. The independent variable may be

time, or it may be the "phase" of the follower position

on the projected circle, which is a linear function of

time. The relative-frame parameterization of projected

circular motion is given by:

x(t) = r/_cle cos0 (15)
1

y(t) = -2 _'ircte sinO (16)

Z(t) = + r,m e sin 0 (17)

where the phase angle is defined by

0 =cot+O o (18)

and rcim, in this case corresponds to the radius of the

projected circle and 0o is the phase angle at time t = 0.

Note that 0 is the angular displacement of the satellite's

position relative to the leader, projected onto the x-z

plane. This phase angle will become a useful descriptor

of formation geometry in the exposition that follows
this section.

As mentioned above, a suite of controller gains

corresponding to each type of controller was obtained by

varying the scalar control weighting factor, p, and

minimizing the cost function in Eq. 14 for each value

of/9. For the linear simulations, p took on 19 values
from 0.1 to 9.1 for each type of controller. To facilitate

the evaluation of many similar controllers, the

simulations were performed entirely within the relative

coordinate frame. A proprietary fourth/fifth order

Runge-Kutta ODE solver was used to propagate both
the nonlinear equations (Eqs. 1--4) and the linearized

equations (Eqs. 5-7) modeling the continuous-time

relative dynamics of the leader-follower pair. For this
part of the research (also presented in a Master's degree

thesis_4), the inertial frame was not used in any part of

the simulations; this practice artificially guaranteed that

the Keplerian dynamics would be unperturbed. Also,
the formation sizes tested here all conform to the

requirement that the separation be much less than the
orbital radius of the lbrmation. Therefore, these results

apply only to the linear regime.

The typical simulation consisted of the

regulation of an initial projected circular trajectory to

the origin of the state space. By strict interpretation,

this regulation would have the effect of bringing the

follower satellite to exactly the same position as the

leader satellite in the relative frame, thereby causing a

collision. In fact, the maneuver also represents one

method of moving from a larger projected circular

trajectory to a smaller one (or from a smaller to a larger,

within limits), wherein a specified moving point oll the

desired projected circle is the target of the tbllower. The

method is, in essence, to postulate an artificial "leader"

which follows the target trajectory, to translbrm the

coordinates to relocate the state-space origin at the
artificial leader's location, and then to use LQR to

"collide" with the new origin. This simplification of

the tracking problem is applicable since, as mentioned

by Carpenter, the state error obeys the same dynamical
equations as the state itself, lz Said another way, the

state-space representations given as Eqs. 8-12 and Eqs.

8-11,13 are applicable no matter what the choice of

origin, so long as the constraint x,y,z<<r,,m, is obeyed.

The appendix to this paper derives expressions which
assist in the transformation of the problem of changing

the size of a projected circular formation to the

regulation problem simulated by the authors.

This maneuver was simulated for projected

circular trajectories of several appropriate initial
nondimensional radii, on the order of 10-s-10 4. By

properly choosing the velocity, maneuver simulations

were also initialized at various phase angles, 0¢j, of a

projected circular trajectory as defined in Eq. 18. Each

maneuver was considered complete when the point-mass

spacecraft had reached a predetermined completion
threshold. This threshold was defined by a separation of

5% of the initial formation radius, ro, and a relative

velocity of 1% of ogro, the product of orbital rate and

initial formation radius. The purpose of the threshold
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Figure 2: Time to maneuver, t.......vs. control weight, p, for controllers with and without radial inputs.

definition is to enable comparison between various

controllers, and not to provide an absolute standard of

maneuvering speed; any reasonably defined settling time
threshold could have been used.

As would be expected from a linear system, the

state and control trajectories resulting from these
different initial radii were geometrically similar. That

is, if the state and control trajectories were normalized

in their length by the initial formation radius, then the
trajectories were identical for all initial radii simulated

using the same initial phase angle. Since this similarity

rule was confirmed for many combinations of radius and

phase angle, it was concluded that the simulation of a

single maneuver with a given initial phase angle, 00,
sufficed to characterize the linear behavior for all

maneuvers with the same 00. Because of the similarity,

all results obtained have been condensed by presenting

here only simulation results for a maneuver with an
initial formation radius of 1.5x10 -5 orbital radii; these

results should be recognized as being applicable to a
range from 10-6-10 -4 orbital radii. For an orbit with

radius 7000 kin, this initial formation radius

corresponds to a separation of 105 meters. This range

of formation sizes yields nearly identical results tbr

analogous linear and nonlinear simulations without

perturbations 9.

Results

This section presents the results of simulations

of maneuvers beginning at various states, denoted by

phase angles, on a given projected circular trajectory and
ending at the origin of the state-space. These

simulations consisted of numerical propagation of the
Clohessy-Wiltshire equations, Eqs. 5-7. All closed-

loop systems tested were asymptotically stable within

the limits of the linearization, as would be expected

from the controllability of the pair (A,Bx).

The state and control trajectories for the
various simulation runs were used to determine several

performance factors that were not directly optimized by

the LQR design method. Performance factors for each

of the 38 control gain sets tested (19 values of/9 used

with and without radial inputs) were calculated for a

range of initial phase angles, 0 ° < 00 < 180 ° . The

performance factors discussed here are: t,..... the time

required to reach the maneuver completion threshold
described above; u ...... the maximum control acceleration

commanded by the LQR law; and mt,,_ t, the total fuel
consumed during the maneuver. The fuel consumed was

calculated by summing the time integrals of the
absolute values of the accelerations ordered along each
axis: i.e.

4
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Figure 3: Maximum acceleration commanded, u ...... vs. control weight, p. Units are |br a
formation flying at an altitude of approx. 700 km (R,,r,,, = 7000 kin). No pulse quantization was
included in these simulations.
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This fuel use calculation is consistent with a propulsion

system that has pairs of thrusters aligned with each of

the controlled axes; the constant K is proportional to

the ratio of spacecraft mass to specific impulse. By
contrast the integral of the control effort, _ u_Tu dt,

which is included in the cost function defined in Eq. 14,

would be consistent with a single thruster pair that is
vectored by the controller.

The factor tma n depends very little on control

weight, p, as illustrated in Figure 2. The figure shows

results for an initial phase angle of 0o = 90 °, but since

the eft_cts of Oo on t,.,. are small overall, this figure is

representative of all values of 00 tested. The stairstep

shape of the plot is a result of time quantization in the
simulation. Most notable in these results is that those

results corresponding to the controllers without radial

inputs follow exactly those corresponding to the use of

radial inputs for all p > 1. Thus, there is no appreciable
difference in the maneuvering speed of the two types of

controllers at values of p which favor control effort

optimization over state optimization (signified by p >

1). However, if p < 1, indicating that adherence to the

state trajectory is favored over optimization of control

effort, the optimal trajectory in the absence of radial

inputs is somewhat slower than that obtained from the

inclusion of radial inputs.

The maximum acceleration, u ....... required fbr

the optimal trajectory was more dependent upon the use
of radial inputs. The absence of radial inputs resulted in

a higher u,_,_ for a given value of p and starting at 0o =

0 ° (Figure 3). So, for the controller without radial

inputs to have the same value of u ..... as with radial

inputs, a higher value of p is required. The dependence

of u,,_ upon phase angle is different for each type of

controller, as can be seen in Figure 4, which plots the

average value ofu ..... over all values of p tested ti)r each

combination of inputs and 0o. For maneuvers with

0o -< 120 ° , the values of u,,,,,, commanded by
controllers with radial inputs show little dependence

upon 0o, whereas the behavior of controllers without

radial inputs shows a sinusoidal dependence over all

values of 0o simulated.

Fuel consumption, represented by the

performance factor mr,_, showed a similar dependence
on 0o to that of u,,,,._; i.e., having radial inputs available

caused the fuel consumption of the optimal control

trajectory to be less dependent on 0o (Figure 5).

However, the comparison of values in the case of mf,¢t
is more favorable to the controller without radial inputs

than was the comparison for u ....... The controller with

radial inputs requires somewhat larger m/,_¢ near
00 = 90 ° than for other initial phase angles, and

increasing 0o beyond 30 ° reduces the value of m_,_

consumed by the controllers without radial inputs.

5
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Figure 5: Average fuel consumption vs. initial phase angle, 0o. Fuel consumption, m,_,_, averaged

over range of control weights, 9, for controllers with and without radial inputs. Appropriate units

were calculated from the dimensionless results based on the following specifications: spacecraft

mass = 100 kg; l,p of hydrazine = 230 s; R,,rb, = 7000 km.
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Discussion

Figure 6 illustrates the optimal trajectory

(projected onto the x-z plane) taken by a controller

without radial inputs, with 0o = 90 ° and p = 4.

Figure 7 shows the same maneuver with the same

control weight p = 4, but performed through the

additional use of radial inputs. At 00 = 90 °, the x-

position variable is zero, the y- and z-position variables

are at their maximum magnitudes, and the relative

velocity is directed in the positive x-direction (i.e. the
follower is slower than the leader in the inertial frame).

Since the leader is in a circular trajectory, it can be said

that the follower at 0o = 90 ° is at apoapse in its
slightly elliptical orbit, since the altitude is at a

maximum and the orbital velocity is at a minimum.

Between the two trajectories shown in Figures

6 and 7 there is no great variation. The chief difference

between the two trajectories is something that proves

true in most such comparisons made in this study: The

use of radial inputs allows the follower to move more

directly to the origin. In fact, the spacecraft without

radial thrust can be seen to move initially further from
the origin. This movement is the result of an initial

strong thrust along the x-direction, which has the effect

of changing the semi-major axis. The availability of
radial thrust allows the follower sometimes to avoid

this initial large thrust requirement; however,

sometimes a greater fuel cost is incurred in using radial

thrust for a maneuver of approximately the same t .......as
can be obtained without radial thrust.

The improvements in fuel efficiency gained by

removing radial inputs indicate an unexpected benefit to

be gained by treating the radial inputs differently from
the along-track and cross-track inputs. This observation
is consistent with the results of the simulations of in-

plane maneuvers in our earlier research. 9 The benefit

may be interpreted to indicate the inclusion of

astrodynamical principles in the LQR design. Often,
the most fuel-efficient orbital maneuver thrusts are

those which are most confined to the local horizontal

plane-- the plane spanned by the velocity vector of the

leader (relative frame x-axis) and the vector perpendicular

to the orbital plane (relative frame z-axis). This general

principle may be applied to the majority of simple

orbital maneuvers which follow Keplerian dynamics,

including Hohmann transfers, low-thrust altitude

changes, inclination changes, rotations of the

eccentricity vector, etc. The orbital maneuvers which

do not follow this principle, e.g. fast-transfers and

rendezvous, are those maneuvers for which exact timing

or swiftness of the maneuver is of greater importance
than fuel efficiency.

By eliminating the y-axis inputs, which would

be perpendicular to both of the efficient thrust

directions, the controller without radial inputs decreases

the probability of commanding inefficient thrust inputs.

In the case of projected circular maneuvers presented

here, the importance of phase angle discussed earlier

provides more support for this astrodynamical

interpretation, since the choice of 0o is effectively a
choice of when to enact the strongest control thrust. If

this strongest thrust is enacted at periapsis or apoapsis,
the lack of radial thrust does not cause the controller to

make greater demands on the propulsion system; u .......

and my,,e_remain relatively low. But when the controller
is required to begin at phase angles of 00 = 0 ° or 180 °,
the lack of radial thrust becomes more troublesome.
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Figure 6: LQR maneuver trajectory from a projected

circular trajectory to the origin using only horizontal

thrust (i.e. no radial inputs). The maneuver started at 00=

90 ° , which is the point in the trajectory where the x-

position is zero and the velocity is wholly in the +x

direction. The movement along the y-direction (i.e.

altitude change) is not pictured.

Figure 7: LOR maneuver trajectory from a projected

circular trajectory to the origin using both horizontal

and vertical, or radial, thrust. The maneuver started at 0u=

90 ° . The movement along the y-direction (i.e. altitude

change) is not pictured.
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APPENDIX

Theorem: Let two satellites be moving along

coplanar, concentric projected circular trajectories: xt(t)

with projected radius r_. and x2(t) with projected radius

r2. Let these two trajectories share a common formation

origin with a common coordinate system defined by the

formation orbit (i.e. the orbit of the leader satellite). If
one of these two satellites is defined as a new formation

origin, then the trajectory, x*(t), of the other satellite

about the first origin is also a projected circular

trajectory inasmuch as the size of the tormation fits
within the constraints of linearization, x,y,z << Rorbi t.

Proof." The parametric equations, as adapted from Yeh

and Sparks 8, for the linearized trajectory of a satellite
following a projected circular path relative to a leader

satellite are provided as Eqs. 12-15 in the body of this

paper. Note that y(t) = _z(t) in these parametric

equations. Furthermore, a positive sign on z(t)
indicates counterclockwise movement as perceived from

above the formation, and a negative sign indicates

clockwise movement; the sign of z(t), once determined,

will not change without considerable maneuvering.

Therefore, the underlined x(t) will denote the projected

position vector, x(t)= [x(t) z(t)] x, since y(t) is

implicit in this vector once the sign of z(t) is
determined.

The linearized representation of the formation

dynamics does not change with a change in formation

origin for a formation in a nearly circular orbit.

Consequently, the directions of the coordinate axes and
the orbital angular momentum (vector 03) may all

remain constant despite a change in origin. If _x_(t)

denotes the projected trajectory of satellite #1, and _x2(t)

the trajectory of satellite #2, then the trajectory of #2

with respect to #1 is obtained from differencing the two:

_x*(t) = x_2(t) - x_(t). By taking the dot product of each

side of this equation with itself (i.e. the norm squared),

and observing that the norms of x_(t) and x2(t ) are the

constant radii of their respective projected circles, the

following result is obtained:

Ilx'M=llx2<t)ll+llx,¢t)l1-2(xz(t).x,(t)) (A.1)

This relation is reminiscent of the law of

cosines, since

x_(t).x_(t) = x2(t) • Xl(t) cos(_0(t)) (A.2)

where q0(t) is the angle between the vectors. For this

particular case, the angle between the vectors may be

obtained by differencing the two phase angles, tp(t) =

02( 0 -0_(t). Recalling the definition provided in Eq.
15, note that

qg(t) = 02(t) - 01(t)

=(Cot+Oo2)_(Ogt+Ool ) (A.3)

= 002- 0o,
where 0o2 and 0m are the phase angles of the respective
satellites at some initial time, to.

Because 0o2and 0o_ are defined as constants, q0 is also a

constant in time.
Since the normed terms in Eq. A.I are the

constant formation radii and the left-hand side of Eq.

A.2 is equal to a constant, then the norm of _x*(t) is

constant. This means that the projection of this

trajectory onto the local horizontal plane of satellite #1

(which is parallel to the local horizon of the original

leader) is a circle. Furthermore, since the functions y(t)

are all implicit in the representations of z(t), it follows

that the trajectory x*(t) is a projected circular trajectory.

Q.E.D.
A bit more algebra provides expressions for the

new projected circular trajectory in terms of the two old

trajectories. Through use of the law of cosines, the

radius of the new projected circle is given by

r* = X/rl2 + r_ - 2rlr 2 Cos(O 2 (A.4)

With some geometry combined with the law of sines,

the phase angle, 0", of satellite #2 in its new projected

circle may be derived as

r, /0 * (t) = O.(t) - sin-' _sin0,(t) (A.5)
rl 2

The variables r'and 0* may be transformed to

x*, y*, and z* via the Eqs. 15-18 presented in the text.
Then, the state vector used to calculate thrusts need only

be redefined by subtracting the current desired state

vector, i.e. xa_,i_a-[x* y* z* 2" _'* _*]r,

from the current actual state. Thus the problem of

changing the radius of a given projected circular

trajectory to any other radius (within the limits of the
linearization: rL.z << Rorbit) may be reduced to a

regulation problem which uses the same state-space
representation, (A,B), as is used to regulate a projected

circular trajectory to the origin.


