Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

Dorothy K. Hall*, Vincent V. Salomonson*, George A. Riggs**, and Janet Y.L. Chien**

*NASA Goddard Space Flight Center, Code 974
Greenbelt, MD 20771
dhall@godss.gsfc.nasa.gov
**Science Systems and Applications, Inc.,
Lanham, MD 20706
- NASA Goddard Space Flight Center, Code 900
Greenbelt, MD 20771
--General Sciences Corporation, Laurel, MD 20707

ABSTRACT

Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

INTRODUCTION

Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps at 500-m spatial resolution are produced from automated algorithms, and have been available since September 13, 2000. The National Oceanic and Atmospheric Administration (NOAA) has operational snow maps that provide snow-cover information on a daily basis, but these maps, are not global and they rely on analysts to fine-tune the maps. For operational use, this is an advantage because both ground and satellite data can be used as available. But for long-term climate studies, a data set must be developed using an objective technique for snow mapping.

BACKGROUND

MODIS is an imaging spectroradiometer that provides imagery of the Earth's surface and clouds in 36 discrete spectral bands from approximately 0.4 to 14.0 μm [1]. The spatial resolution of the MODIS instrument varies with spectral band, and ranges from 250 m to 1 km at nadir.

Snow Maps. Operational snow maps are available from NOAA from the National Operational Remote Sensing Center (NOHRC) and the National Environmental Satellite, Data, and Information Service (NESDIS). NOHRC snow-cover maps are distributed electronically in near real time, to local, state and federal users at a spatial resolution of up to 1 km [2]. Since 1997, NESDIS has operated an Interactive Multi-Sensor Snow and Ice Mapping System (IMS) that produces daily snow products at a spatial resolution of about 25 km, and utilizes a variety of satellite data to produce the maps [3].

There are six MODIS snow products. The products are archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, CO [4].

Because cloudcover often precludes the acquisition of snow-cover information from visible and near-infrared sensors, the daily maps are composited into eight-day composite products. In the near future, 5-km resolution snow maps, gridded to a climate modeling grid (CMG), will be available. The CMG will provide a global view of the Earth's snow cover. Currently, to provide a global view, we use a 1/4° x 1/4° lat/long grid to produce special products of North America as seen in Figure 1.

The automated MODIS snow-mapping algorithm uses at-satellite reflectances in MODIS bands 4 (0.545-0.565 μm) and 6 (1.628-1.652 μm) to calculate the normalized difference snow index (NDSI), and MODIS bands 1 (0.620-0.670 μm)
and 2 (0.841-0.876 μm) to calculate the normalized difference vegetation index (NDVI).

Used together, the NDVI and NDSI provide a strong signal that can be exploited to map snow cover even in forests [5]. Other tests are also employed to map snow and are discussed elsewhere [6].

Swath product. The snow data-product sequence begins as a swath (scene) at a nominal pixel spatial resolution of 500 m and a nominal swath coverage of 1354 km (cross track) by 2030 km (along track). Inputs to the swath snow-cover product are: the MODIS (Level 1B) radiance data [7] and the MODIS cloud mask [8], and a land/water mask.

Daily and eight-day composite tile products. The second product is created by mapping pixels from the swath product to their Earth locations on the integerized sinusoidal projection [9]. This daily product is an intermediate product in which all the observations (pixels) in the snow swath product are geolocated onto the projection. An eight-day composite maximum snow-cover product is produced for each tile by compositing eight days of the daily 500-m resolution products. If snow were present on any day in any location on the daily tile product, it will show up as snow covered on the eight-day composite. For a more complete description of the individual products, see [10].

Daily and 8-day composite climate-modeling grid products. The daily global snow-cover CMG product is planned be provided in a geographic projection, by assembling MODIS daily data tiles of the land areas at 500-m resolution, and binning the 500-m cell observations into 5-km spatial resolution cells. The compositing scheme for the CMG product will utilize the 8-day composite products at 500-m resolution. Those pixels will be binned into the coarser-resolution 5-km grid. Percentages of snow, cloud and other (non-snow) will be calculated thereby deriving sub-pixel snow cover at the 5-km resolution.

Quality assurance (QA) information is stored in each pixel of the products.

RESULTS AND DISCUSSION

Daily snow maps, while useful for local and regional purposes, are usually so cloud contaminated that it makes them difficult to use on a hemispheric or global scale. We use 8-day composite maps - only clouds that persisted for the entire 8-day period remain on the 8-day composite maps. We focus on the build-up of snow cover during the fall of 2000. The average monthly snowline (derived from the NOAA NESDIS snow maps) has been placed on the 7- or 8-day composite maps shown in Figure 1.

The snow cover was measured for the period November 1-7 and 8-15. These measurements are not an accurate depiction of the total snow cover for North America because the cloudcover is excluded, as is the area that is in darkness. However, the remaining areas show a 1.8 million km² increase from the first period (9.0 million km²), to the second period (10.8 million km²).

By mid-November 2000-01, the snow cover in the mid-western and western United States was much...
more extensive than normal, while the snow cover on the East Coast was not unusual. The snow cover, particularly in the mid-west, remained more extensive than average through the month of December. A video clip showing the changing snow conditions in the 2000-01 winter may be viewed on the MODIS snow and ice Web site: http://snowmelt.gsfc.nasa.gov/MODIS_Snow/modis.html

Spurious snow cover is detected along some coastlines (e.g., the west coast of Florida and the California coast and the northeastern coast of South America). These areas consist of a few pixels that are mapped as snow cover, however no snow exists there on the ground. Initial analysis indicates a mismatch between the 1-km resolution land/water mask, and the MODIS snow map. False detection of snow on perimeters of some may also be seen. Additional work is needed in order to characterize the misidentified snow and then to eradicate it in an objective way.

The snow-cover maps will be reprocessed in the future, using improved spectral tests for the MODIS cloud mask, and consistent Level 1B radiance data, and an improved land/water mask.

In conclusion, the MODIS snow maps are available, and special products have been made in order to make hemispheric-scale and global maps of the 2000-01 winter. A CMG at 5-km resolution will be available by the 2001-02 winter which should be useful for displaying the data as global products, and as input to climate models. These products, developed from automated algorithms, represent a consistent snow product, suitable for use in climate modeling.

ACKNOWLEDGMENT

The authors would like to acknowledge Nick DiGirolamo of Science Systems and Applications, Inc., for programming support.

REFERENCES

