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SUMMARY

The problem of broadband noise generated by turbulence impinging on a downstream

blade row is examined from a theoretical viewpoint. Equations are derived for sound power

spectra in terms of 3 dimensional wavenumber spectra of the turbulence. Particular attention is

given to issues of turbulence inhomogeneity associated with the near field of the rotor and

variations through boundary layers. Both radial and blade-to-blade variations in turbulence

statistics are treated rigorously without adding significant complexity to the final noise

equations. Lean and sweep of the rotor or stator cascade are also handled rigorously with a full

derivation of the relevant geometry and definitions of lean and sweep angles using 2 independent

angle conventions. This report treats noise response of a cascade to turbulence with specified

statistical properties; it is assumed that turbulence properties will be provided from CFD
calculations or measurement.

Derivation of the noise equations is made possible by the appearance of a flat plate,

rectilinear cascade acoustic response theory by Professor Stewart Glegg of Florida Atlantic

University. His theory includes a spanwise flow component (for treatment of the sweep effect)

and a spanwise wavenumber component (in addition to the usual streamwise and gapwise

wavenumber components in 2D theories). Glegg's theory is for waves that are sinusoidal in

space and time. This report provides the statistical analysis required to apply Glegg's theory to

the turbulence interaction problem. The final noise equations give the spectra of upstream and

downstream sound power generated by turbulence interacting with a rotor or stator cascade. A

specific recipe is given for dealing with inhomogeneity in terms of integrals of the turbulence

covariance function (or of the turbulence spectrum function) at the cascade face.

The general theory has been incorporated into the fan noise prediction system BFaNS.

This requires, as a minimum, providing the circumferential and radial distribution of turbulence

over the cascade inlet plane. However, use of the general theory is illustrated herein by 2 simple

theoretical spectra for homogeneous turbulence. One is the Liepmann spectrum (for isotropic

turbulence) and the other is an axi-symmetric turbulence spectrum from the literature. Limited

comparisons are made with data from model fans designed by Pratt & Whitney, Allison, and

Boeing.

Parametric studies for stator noise are presented showing trends with Mach number, vane

count, turbulence scale and intensity, lean, and sweep. Two conventions are presented to define

lean and sweep. In the "cascade system" lean is a rotation out of its plane about the streamwise

coordinate axis and sweep is a rotation of the airfoil in its plane. In the "duct system" lean is the

leading edge angle viewing the fan from the front (along the fan axis) and sweep is the angle

viewing the fan from the side (perpendicular to the axis). It is shown that the governing

parameter is sweep in the plane of the airfoil (which reduces the chordwise component of Mach

number). Lean (out of the plane of the airfoil) has little effect. Rotor noise predictions are

compared with duct turbulence/rotor interaction noise data from Boeing and variations, including

blade tip sweep and turbulence axial and transverse scales are explored.

The report also serves as documentation of the equations in BBCascade and as a

reference for the BFaNS code. BBCascade treats a single geometry and mean flow; BFaNS

integrates the BBCascade equations over geometry and flow as they vary over radius of a fan.
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SECTION 1

INTRODUCTION

Figure 1 represents the side view of a turbofan with an upstream rotor and downstream stator.

Broadband noise is generated when turbulence interacts with leading and trailing edges of stator vanes

and rotor blades. Three of the leading edge interactions can be analyzed with the theory of this report

and for each of these, the turbulence is intrinsically inhomogeneous or anisotropic, or both. For

example, turbulence drawn into the inlet from the atmosphere or from flow over external objects

interacts with the rotor. If the fan is stationary or moving slowly, the turbulent eddies are stretched in

the flow direction so that the inflow turbulence tends to have an axi-symmetric form of anisotropy. In

another mechanism, turbulence in the boundary layer of the duct interacts with the rotor. Since this is

Rotor Exit Streamwlse Turl)urenee Component

Figure 1. Noise generation in a turbofan by
turbulence in rotor wakes impinging on stator. Figure 2. Inhomogeneity of rotor wake at entrance

to stator. Test data from reference 1.

confined to a thin layer, it is highly inhomogeneous in the radial direction. Finally, wakes from the

rotor blades impinge on the stator. The turbulence field behind a rotor is shown in Figure 2. It also is

highly inhomogeneous with turbulence statistics varying periodically in the gapwise direction. A

fundamental prediction theory is needed for these complex mechanisms that is sensitive to turbulence

properties (scales and intensities) and that rigorously addresses the issues of inhomogeneity and

anisotropy. Furthermore, with the current interest in lean and sweep of stator vanes and rotor blades,

the theory should treat those geometries rigorously, also.

In this report, we develop theory for the spectra of upstream and downstream sound power from a

rotor or stator cascade as an integral over the wavenumbers of the incoming turbulence field. The only

simplification regarding representation of the turbulence is use of Taylor's hypothesis (i.e. the frozen

gust assumption). This reduces the turbulence representation from a 4 dimensional wavenumber-

frequency spectrum to a 3D wavenumber spectrum and results in manageable noise equations. The

principal simplification regarding geometry is use of a rectilinear, flat plate cascade model. At low

frequencies, this may be problematical; however, at mid and high frequencies where noise generation

is dominated by small scale eddies, the rectilinear cascade approximation should be acceptable.

NASA/CR--2001-210762 1



Some other aspects of this work have been published previously. Reference 2 examined the

problem of" measuring turbulent inflow to a stator for the purpose of making noise predictions. Two

probe measurements are required and guidance for the required data processing and probe separation

were given. Reference 3 showed in detail how the turbulence spectrum and the acoustic response

spectrum work together in a stator noise calculation. Parametric studies showing trends with Mach

number, vane count, turbulence scale, etc, were also given, Reference 4 is a greatly reduced version of

this report that adds effects of lean and sweep to the previously published results.

Tiais _,t)rk has. ,:n enabled by the appearance of a harmonic cascade theory by Glegg (ref. 5) that

this report adapts to the broadband problem. Glegg, too, has published broadband applications using

his cascade theory. Reference 6 is a recent example. The main additions of the present report are the

focus on lean and sweep plus treatment of turbulence inhomogeneity and anisotropy. It also serves as

documentation for the code BBCascade, which treats rotors and stators in a unified analysis.

Analysis herein is confined to noise from a cascade with constant geometry and flow properties in

the spanwise (or radial) direction. It is a useful analysis tool as is; however, for fan noise diagnosis

and design it has been incorporated in Morin's BFaNS code (ref. 7). In BFaNS, geometry and flow for

the leading edge sources on the rotor and stator are integrated over the fan radius using the theoretical

equations of this report.

In the present report: Section 2 is a review of Glegg's harmonic cascade theory. Section 3

outlines the geometry of lean and sweep and gives the equations for transforming coordinate systems

and wavenumbers from duct coordinates to Glegg's cascade coordinates. Section 4 is the derivation of

the broadband noise theory. Section 5 presents the 2 turbulence spectra currently in use: one for

isotropic turbulence and the other for axi-symmetric turbulence. Section 6 non-dimensionalizes the

working equations and provides documentation for code BBCascade. Section 7 shows how the noise

prediction equations work with illustrations of turbulence spectra and cascade response spectra.

Section 8 shows the capability of the broadband theory via comparisons with test data from Pratt &

Whitney, Allison, and Boeing test fans and by parametric variations to explore effects of turbulence

scale, flow Mach number, stagger, solidity, vane lean & sweep, vane and blade count, and rotor sweep.

Appendices A and B give details of coordinate and wavenumber transformations required for the

analysis. Appendix C provides a list of notation.
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SECTION 2

BACKGROUND ON GLEGG'S HARMONIC CASCADE THEORY

Previous noise models for turbulence/stator interaction have been based on simplifying

assumptions some of which are no longer necessary. Some examples: treatment of the blades or vanes

as isolated airfoils (as opposed to cascades), 2 dimensional theory, incompressible flow for airfoil

loading response, and compact (as opposed to distributed) radiation theory for the acoustic sources. A

recent analysis by Glegg ('cfS) overcomes these limitations but still is tractable enough for calculations

on ordinary computers. Furtlaermore, it can be adapted to leaned and/or swept cascades by virtue of a

spanwise velocity component included with the mean flow.

As shown in Figure 3, geometry is constant in the z direction and the background flow is

uniform: U-(U,0,W). Airfoils are unloaded flat plates. Cascade gap, chord, and stagger angle are s,

c, and 2".

Y

U

>

/

Z

d

_h U

Figure 3. Geometry and flow for
Glegg's cascade acoustic analysis (s), _,j,,._

X

The unsteady flow is harmonic in space and time with upwash given by Equation 1

w(x,t) = w o e i(y°x+cty+vz-y°t) (1)

This represents a plane wave that is harmonic in time with frequency N/2x and upwash complex

amplitude Wo. It is also harmonic in space with x, y, and z wavenumbers equal to Yo, a; and v. By

use of Wiener-Hopf analysis, Glegg derived an equation equivalent to the following for the velocity

potential of acoustic waves scattered by the cascade in response to the input wave of Equation 1
+ ±

;gWoC2 oo (__D(,_,k) ei[_2_(x_yd/h)+(cr_2_rk)y/h+VZ]e_iE x

¢+-(x,t) = + rise k=-oo_-"X_x_e - -_o_fff (2)

where the +/- signs refer to upstream/downstream going waves and
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M = U / a /3= _ - M2 o_ = _ - Wv (3)

se : 7d2--+-¢/}h _- tan Ze = d / f_h 2_ = tom + rl_ (4)

,_+ 2 -1

t¢e =/¢" - (V/j3) 2 t¢ = COg/(aft 2) (5)

=-rk sinZ<,-+cos _.r? •fk = (o" - 2_k + tcMd) / s e (6)

and cr = 7o d + ah is the interblade phase angle. D is the Fourier transform of the discontinuity in

potential across the blade and wakes (in the form of an infinite product) and is the major result of

Glegg's derivation. The velocity, pressure, and density perturbations associated with the acoustic wave

can be obtained from Equation 2 via
,)

u = V_b p ; -poD_b / Dt p' = p / a _ (7)

where Po and a are the ambient density and speed of sound. We adhere to Glegg's notation closely.

However, he used CO' for the radian frequency (our N), co for the shifted frequency (our cog), and

m for the scattering index (our k). Also, the D function of this report (and of Glegg's code) is non-

dimensional; to obtain the D function of Glegg's report, multiply the non-dimensional version by
2

W oC .

The formulation above gives the acoustic waves scattered by a cascade for a single planar wave

input per Equation 1. Scattering index k runs over an infinite range but, as usual in this kind of

fbrmulation, only a finite number of waves are cut on (propagate undiminished); the remaining waves

decay exponentially and, thus, carry no acoustic energy. Cuton is governed by the argument of the

_2- f2 . when the frequency is high enough, the argument is positive and the waves aresquare root e - ,

cut on. The exponential dependence of the space and time variables in Equation 1 permits treatment of

any inflow field via standard Fourier transform methods, as shown in Section 4.

NASA/CR--2001-210762 4



SECTION 3

COORDINATE TRANSFORMATIONS AND

GEOMETRY FOR LEAN AND SWEEP

This report requires several coordinate systems for the different parts of the analysis. One is

aligned with the fan duct for the lean/sweep definition, one is aligned with the mean flow and the fan

radius to define a turbulence symmetry axis, and one is aligned with the cascade geometry to apply

Glegg's theory. Furthermore, rotating coordinates arc needed for the rotor and stationary coordinates

for the stator. The required transformations are treated in detail in Appendix A. In this section, we

define the transformations and lean/sweep conventions and we summarize the most important

geometrical relations between chord, gap, and stagger in the duct system and in the cascade system.

We also define lean and sweep in 2 different conventions.

The coodinate systems connecting duct coordinates to Glegg's coordinates are shown in Figure

4. Stagger, lean, and sweep angles are defined via an ordered sequence of rotations about coordinate

axes as follows. The sketch at the top represents the stator'or rotor cut at constant radius and

unwrapped onto the plane of the paper. The Zd and zo axes are coincident with each other and with a

fan radius. Mean flow Uo is aligned with the xo direction and has no radial component. The

following explanation of Figure 4 is in the context of vanes in a stator but it applies to rotors as well.

In the transformations, the reference vane (vane #0, which passes through the origin) and vane #I are

handled differently. To visualize the rotations, think of rotating the reference vane and then rotating

the coordinate system to re-align the z axis with the leading edge of the reference vane. For the other

vanes, think of them as having hooks on their leading edges attaching them to the ya axis with a

separation g that does not change. Thus, throughout the lean and sweep rotations, the vanes always

penetrate the constant radius plane (Zo = 0) at the location and orientation given by the gap g and the

stagger 0 at the top right of Figure 4.

Lean is an out of plane of the vane rotation about the Xo axis through angle g,'t • Note that lean

does not change the component of inflow mean velocity normal to the leading edge. Sweep is then an

in plane rotation about the y' axis through angle IF,. This does reduce the flow component normal to

the leading edge by the factor cos IFs. Thus, transformation from duct coordinates (Xd, Yd, za) to

Glegg's cascade coordinates (x, y, z) requires an ordered sequence of rotations (stagger, lean, sweep)

about the zd, xo, and y' axes. The net transformation, derived in Appendix A, is represented by

I=[0]× yd
Zd

(8)

where

[O] =

cos 0cos _/s + sin tgsin _ul sin IFs

- sin 0cos _'/

cos 0sin _Us - sin 0sin IFI cos gs

sin 0cos IFs - cos Osin IF/sin IFs

cos Ocos g/l

sin 0sin Vs + cos 0sin gl cos _'s

- COS IF/sin Vs-

-sin g/l

cos VI cos _'s

(9)
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;TAGGER ANGLE 0
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' Yd

YO
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systems lbllow the reference
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ef. vane (hooked at Ya = g).

_EAN ANGLE _/
,ean the ret_rence vane about
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xis follows leading edge, x'

xis coincides with xo axis.

_ecause of the "hook", the gap
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',weep the vane in its own plane
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ector does not change. Cd is
ne chord measured at constant

adius in the fan.

C _ Cd COS _

"he x, y, z coordinates are now

)legg's cascade coordinate

ystem.

YO
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Z !
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x

XO

X"

Zo

tL

J

Uo

_)0

Xd

ml,,

)Co

--7122

Zo

I

U

z

W

Figure 4. Sequence of rotations to relate cascade coordiates (x,y,z) to duct coordinates (xa, yd, Zd) and

intermediate systems.
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Relationships between the velocity components in cascade-fixed coordinates are easy to deduce

from the figure

U = U o cos g/._ (10)
W = U o sin Ws

where Uo is the total mean inflow velocity (in cascade-fixed coordinates).

[f we say that the geometry descriptors in the duct system are chord cd, stagger 0, gap g, lean

angle NI, and sweep angle _us and in the cascade system are chord c, gap s, stagger angle 2', and

sweep angle N_ = arctan(W/U), then the connection between the 2 systems is given by the following

equations. The relation between the chords c and cu is simply

c = Cd cos e"s ( 1 1)

where ca is chord measured at constant radius (along the flow direction). Appendix A shows that

Glegg's stagger dimensions in Figure 3 are given by

d = Q12 g = (sin 0cos P's - cos 0sin p'l sin P's)g

h = Q22 g = (cos 0cos N! )g
(12)

From these, his gap and stagger angle are

(13)

tan Z = d/_h = QI_Q22 (14)

We can also define lean and sweep angles via a convention more suitable to viewing from the

point of view of mechanical design. Consider the sketch below where the cascade is viewed along the

fan axis for lean (on the left) and from the side for sweep (on the right).

Figure 5.

LEAN Zd z,_
SWEEP

Yd

^

Xd

Lean and sweep angles defined via front and side views of stator
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Here the lean and sweep angles have hats to distinguish them ti"om thc angles used in Figure 4. The

relationship between the 2 systems is derived in Appendix A and is repeated below.

tan p'! = cos 0 tan _'! - sin 0 tan _, s

tan _'/s = cos _ul(sin Otan _'z + cos Otan Os)
(15)

Equations 13 must be solved sequentially. Thus, given lean and sweep angles in the "duct system"

above, they can be converted to the "no hat" system for use with Equations 9 - 12. The inverse of

Equations 15 giving _,! and _s as functions of _'z and _Us can also be tbund in Appendix A.

NASA/CR--2001-210762 8



SECTION 4

DERIVATION OF EQUATIONS FOR SOUND POWER SPECTRUM

In developing the theory of this report, the derivation was made as general as possible. The result is a

single analysis that applies to noise from rotors and stators with lean and sweep. Turbulence is

represented by a 3D wavenumber spectrum defined in a manner to include inhomogcneity and

anisotropy. It will be seen that the general expression for acoustic intensity is too cumbersome for

numerical work. Intensity varies with radial and gapwise position of the field point in the duct.

However, when intensity is integrated (or averaged) over the duct area to compute sound power, the

tbrmutas simplify dramatically and tractable equations are found that treat inhomogeneity rigorously.

It turns out that averaging in the field coordinates permits an averaging over the turbulence properties

in the gapwise direction and an integration of the turbulence in the radial direction. Thus, the

turbulence spectrum needed for input to the theory must represent the gapwise average of the field; for

stator inflow, this is what would be measured by probes at the stator inlet with time averages over

many rotor revolutions automatically giving the correct gapwise averaging of the turbulence field.

The sketches below show the general case analyzed and how it can be applied to rotor and stator

problems. Rotors can be analyzed with axial inflow or swirling outflow, but not both.

Yd

mTotStat MT
\

'\

Xd

-121 _
t'_ jt
0 4

Xd
M_

Yd

General Stator

Case Application

Rotor

Application

Figure 6. Mean flow viewed in constant radius "plane". General case with swirl and rotor rotation plus 2
specialized applications: stator with swirling inflow and rotor with axial inflow.

\

4.1 Generalization for Random Inflow

Glegg's formulation described in Section 2 was written for 3D planar, harmonic waves. His theory can

be extended to an input upwash _(_, t) with any waveform and spatial distribution via the Fourier

transform

(16)

where here, and throughout this paper, integration limits are from -oo to oo unless otherwise specified.

We placed a tilde (~) on the oJ to denote frequency in the cascade frame. Most of the derivation

below uses this source frequency; at the end this is shifted to observer frequency in the stator frame to

obtain the desired acoustic spectrum. Vector wavenumber K is shorthand for (To, o_, v) and

NASA/CR--2001-210762 9



denotesposition in a coordinatesystemfixed to the cascadebeing analyzed(rotor or stator)and
replacesGlegg'scoordinates.Forlateruse,theinverseof Equation16is

W(K,_)-1 SJ" w(g,t)e-i(Ki-C))dxdt (17)
(2¢r) 4

With the application of Equation 17 to Equation 2, we can generalize Glegg's potential immediately to

pshaw(K, °) Z "+
k=-oe _/t¢e - Jk

?+-wherethe tilde on means that the expression for potential applies in the cascade-fixed frame.

(18)

,,.,. Trensf_rmation to Stationary Coordinate System

We are interested in computing the spectrum of sound power scattered by the cascade. The starting

point is the expression for the acoustic energy flux vector applicable to waves in a uniformly moving

medium with mean properties given by the density Po, speed of sound a, and velocity U (ref. 8)

I =/_oo + U. u)(PoU + Up') (19)

This is the time dependent power per unit area ill terms of the acoustic pressure, density, and velocity,

p, p', and u. Since it depends on the mean velocity U , it must be computed in the stationary

reference frame (fixed with respect to the duct and observer) whereas Glegg's expressions for the

scattered acoustic field apply in a frame fixed to the cascade. The coordinate shift, expressed in duct

coordinates (with subscript d in Figure 4), is yj = Ya - f2Rt. Parameter R is the effective radius of

the source and is also used for scaling later in the derivation. The transformation matrix Q defined in

Section 3 rotates this to Glegg's system so that the coordinate increments for the transtbrmation,

= x + Ai, to the stator ti'an_e are

: o ×- e,
LQ32J

(20)

Adding these deltas in the exponent of Equation 18 results in the frequency shift

+ _r-2nk
(21)

However, by use of Equation 12, the first 2 terms cancel, leaving

cr-2n'k
(_o/_= -[(_----)+ Q32v]_R (22)

An alternative expression for o)k can be obtained by inserting a-yod+ah for interblade phase angle

and by noting that 2_R/g = B is the blade count in the rotor (or vane count in the stator) and by again

using Equation 12.

Ok = -[Q127o + Q22 a + Q32v] _R + kBf_ (23)

NASA/CR--2001-210762 10



In the stationary frame, the acoustic potential is now

"_ + 4

q_+ = + _c--_--J'_ W(K'_) Z e'l-_kx÷('_ "]dKd_ (24)- --2== 2
pSe k=-oo _tc2- f_

expressed as an integral over the turbulence wavenumber vector K and the turbulence frequency _.

Recall that _, is turbulence frequency in the rotor/rame; this form is convenient for now but will

eventually be replaced by one with integration over observer fi'equency to obtain the desired spectrum.

Coordinates x, y, and z are the same as Glegg's for stator problems and are parallel to Glegg's (but

moving) for rotor problems.

4.3 Acoustic Intensity

The expression for power flux in Equation 19 can be written in terms of potential using Equations 7 as
follows

Ol k a 2 -DI (25)

For convenience in the ensuing manipulations, we can rewrite this as

a#* vo u
I =-po _ a 2 Dt (26)

where * denotes complex conjugate. This is permitted because the potential expressed in Equation 24

is pure real as a result of using a double sided summation and double sided integrals. (The imaginary

parts in the upper and lower halves of the summation and integration ranges cancel.) There is no need

to imply "real part of" with the notation. Thus, since _ is pure real, it follows that 0 = _b*.

To find the acoustic power leaving the cascade, we will compute the component of intensity normal to

the cascade

I + = fi+. I (27)
^+

and then later integrate it over the frontal area of the blade row. Here, n- are upstream/downstream

unit vectors normal to planes containing the cascade leading edges or trailing edges

=

Formally, Equations 26 and 27 must be evaluated in the coordinate system fixed relative to the

observer (or stator) and it is helpful to establish the role of blade row motion in the required dot

products and derivatives. For example, Oqb*/Ot yields i(_-09k) , which explicitly contains the

^+
frequency shift due to the relative motion of the rotor, n-. V is the same in the rotor and stator

frames, fie. U can be evaluated in the rotor frame since the relative motion is perpendicular to fi+.

Finally, since DO/Dt is the convective derivative, it must give the same result regardless of coordinate

system used for its evaluation. Hence, fi-+. (V0_--) might as well be evaluated in the rotor
a 2

frame since the process is easier. The result is

NASA/CR--2001-210762 11



[+- = +po,T2C4 , +_ ,+_ * 5 ,±

• + _+ _ , t
4-(&, -,t,, )x+[(._ 4_'_-o--2_./,i;_._,,_,._,±_+e'-__: )]y+( v- v')z-l(_b-(_,_, ._-((o -(ok, )]i}xe

xdK dK'dbd_o'

where now the sums and integrals are over the limited ranges of k and k' and wavenumbers

corresponding to cut on (energy carrying) modes. Glegg's lbund that the term in curly brackets { } is

equal to . k , which simplifies Equation 29 considerably. Since we are dealing with
S

turbulence statistics, we take the expected value of both sides, bringing Equation 29 to

I -) - po_2C 4 , . ._.+ F,+ r¢l.+ ,+

• + d+cr-2,-rk ,: d+o"--2_' ":,, ,-i{-(A_k-A'k +)x+[('_-k h h )-(2k' h -- fi )]Y_(v-v')z--I(_o-cok )-(_" -_Ok')]l}

x dK dK 'd_ d_'

(30)

Equation 30 represents power per unit area of cascade face. It is still a function of the space variables

x. y, z and time. For further simplification, we will analyze the upwash spectrum

W* ', _')) we show that the expected value operation produces(K, _)W(K in the next section where

delta functions that enable some of the integrals in Equation 30.

4.4 Reduce Upwash Spectrum to Standard Form for Turbulence Spectrum

In this section we examine the flows typical of fans and develop an expression for

I'- )W (K, oa)W(K',_') in terms of a 3D turbulence spectrum while retaining as much generality as

possible with respect to inhomogeneity and anisotropy. We will address the most difficult type of

inhomogeneity, namely the rotor wake entering the stator, and the other applications (duct boundary

layer/rotor interaction, etc.) will lbllow. Figure 7 (at the left) is a view looking radially in the fan

indicating the discrete nature of the wakes and the stator vanes. At the right is an axial view indicating

a band of turbulence, so that we must deal with inhomogeneity in the radial direction.

Xd

Zd

Figure 7. Sketches showing types of inhomogeneity in wakes of rotor entering the stator. Left: view along
radius. Right: view along fan axis.
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The procedure for evaluating (W'W) is to substitute the inverse transforms from Equation 17 and

perform some of the integrals using generalized function theory. Thus,

At this point we adopt Taylor's hypothesis, treating the turbulence as a frozen gust pattern convccted

past the cascade. We use the notation _ for the frozen turbulence field, which is time-independent in

the fluid-fixed frame. Its convection in the Xo direction (see Figure 4) would normally be expressed as

w(_,t)= _(x o -Uot, yo,Zo). However, at this point we employ a device for the treatment of

inhomogeneity. We insert a random time offset T representing the fact that we do not know what

point in the wake passing cycle corresponds to t = 0. Thus, we write (noting that Zo - zd)

= ff,[Xo- Uo(t - T), yo,Zd] (32)

Random variable T eventually disappears from the equations. Now we display the coordinates Xo, yo,

zd explicitly in the integrals

W'W)
_ [ r i

xei(kxxo+kyYo+kzZd-_)t)e-i(k'_x'o+k'yyo _k'.z'a-go't')__ . .• . axoaYoaZddXodYodZ'ddtdt'

(33)

To proceed, we first shift back to fluid-fixed coordinates via x o = _ + Uot and x o + Uot'

Then we change from using 2 independent points to represent the function (e.g. Yo and y o, etc.) to an

"anchor" point and a spacing (e.g. yo and s), ) via the following coordinate shifts.

_' = _ + s x

y,o = Yo + Sy
?

Z d = Z d + Sz

t'=t+r

(34)

In Equation 33, kx, ky, k, are associated with the Xo, Yo, zd axes. With these substitutions,

(27r)8

• _ t I . t ,r ' t '

×e-t(k_s_ +k),sy+k_s_ ) et(k_ -k_ )-a e_(k_ -k_ )_ eZ(ky -k'y )Yo (35)

×ei[(kxUo-b)-(kjU o-_')]t e-i(k'xUo--_o')r a_ dy o dzddS x dsydszdt dr

There follows now a critical step regarding inhomogeneity of the turbulence. The expected value

of the velocity product on the right side of Equation 35 is expressed as a function of the fluid-fixed

position variables Y and Yo, as if we knew the t = 0 point for the velocity pattern. However, recall

that we inserted the random variable T to represent the fact that we do not know this point. Hence, if

the expected value symbol ( ) denotes an ensemble average, then the ensemble is all values of T in a

blade passing period. Since these are equally probable, the average is independent of _'. Once we

have averaged out this Y dependence, it is easy to see that the expected value {_) is also
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I
TURBULENT

TURBULENT | ,

Figure 8. Sketch showing degenerate case not

covered by analysis.

(_) as the velocity covariance function

independent of yo (but still dependent on the radial

coordinate Zd ). Note that, if the 2 blade rows were

not in relative motion, then the left side of ]:igurc 7

would look like the sketch in Figure 8. In this case,

the ensemble average would not be independent of

the transverse coordinate and the ensuing analysis
would have to be modified.

In light of the above discussion, we recognize

zd) : (+(x)+(x + s)) (36)

where the overbar on 91 denotes the averaging just discussed. It is explicitly shown to be dependent

on z_ and, by implication, independent of E and Yo. With this notation

1 - e-i(k;s_+k'YsY +kjs. ]

(2=) 5 J

(37)

The expression in square brackets [ ] is an extension for radial-dependence of the standard 3D Fourier

transform (Ref. 9) defining the turbulence spectrum function

I IfI_(s, zd)e-iK"Sds (38)_22(K', Zd)- (2x) 3

The integrals on the bottom line of Equation 37 are all delta functions so that we arrive at

W*W 2_r k x )d( ky ky )8( o) _ ' ' E)')I_22(K',Zd)ei(k:-k; )Za dz a= _ _ co )6(kxU o - : (39)

Because the _, Yo, z d and x d, Yd, Zd systems share an axis, 8( kx - k'x )5( ky - k'y )specifies a point in

the k_, ky plane that can just as well be denoted by 5(kxd - kxd)6(kv d - k'yd). Hence, Equation 39

can be written alternatively

(W'W) = .-_cS(kxd- kxd)8(kyd-k'yd)8(_o-_o')5(kxUo-_O,)_22(K,,Zd)ei(*:-k;)Zddzd (40)

To simplify notation, we have left the argument of the last delta function unchanged but note that

¢ t

k'x = kxd cos 0 + ky d sin 0 (41)
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4.5 Integral of Intensity for Sound Power
We can now insert the expression, just derived, for the generalized upwash spectrum (W'W) into

Equation 30 for intensity and then integrate over planes parallel to the face of the cascade according to

I-I-+=f(ff) dA to get sound power upstream and downstream.

Combining Equations 30 and 40 and performing the 2b' integral give

po;,r2 c 4

(l--k) - 2_]SS e [. SJ 5(kxd-kxd)_'(kyd-kyd)_(k'VU°-_)_22(K"Zd)ei(kz-k:'Zddzd

+ t +- * ± r+

x_-'_--' (_-cak) (_g>'k'D (2k) D(27c)

• + ,+ + a+,, 2_ _+'_+_-:--'2-A_')]v+(v-v')z+(c°k-r°'*' )t}dK dK'd_-_{-(2k-;tkZ)x+[(2) _, - h -)-(2_, ,, ,, _
xe

(42)

Integration over the face of the cascade is best done in the "hat"

coordinates of Figure 9 in which the ._, 2 plane contains the leading

edges of the cascade and _ is the tangential coordinate (at constant

radius) coincident with the ya axis. Appendix B shows that rotation

of the x, y, z system into the "hat" system changes the long

exponential in Equation 42 to the following (in which we have used

the fact that ky d = f_yd )

z d

Xd

Figure 9. Coordinate rotation
for intensity integration,

L

(43)

It will be seen below that the form of the axial wavenumber of the response waves /_xak need not be

known for the derivation; we only need know that it depends on k and the excitation wavenumber.

Recognizing that the primed wavenumber vector differential can be expanded as

dK'= dk'xddk'yddkzd, we can replace the long exponential in Equation 42 with Equation 43 and

perform the ky d integration via the delta function _kvd - k _vd)

,0o_2 C 4

/..+ /..r+ r_*t. _4- t+

D(X )

-i{(/_-/7 a':'_')_-2x (k-k')Y+l([_:a-[_:a" t7 I¢-k')]_.-(k-k')BfU}
dkxddkzddCOxe g NK ' '

(44)
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Now, we can do the first step in tile area integration, namcly the integration over tile _, coordinate.

To obtaine the desired sound power, we integrate in this direction over B blades (or vanes), or for a

distance of Bg where g is the gap between blades. This integral involves

Bg _i2_ (k_k,).f,

S e d.P= Bgdca,,
0

Kroneker delta &a' enables the k' summation, leaving

(451)

f(l+-}d_d_poBgrc2c4-- - - , ;(a--],+')za
2_rflss e IIII 5(kx't-k'xd)5(k'xUo-°')Ic_22(K'Zd)e + " dzd

(46)

cok)_4FD (2i)D(2_ -+) i,,ia _,,' _ . +,x Z - - e-/t .+a,- xk )_ +(Gj -&+a )_]dK dk.,vddk,zdd_ o

k _ -./)c 2

Note that the time dependence has disappeared. We want to do the k xa integration next via the delta

function @k_d - k S_u). However, the wavenumbers in the exponential are in a different coordinate

system. The rotation for the wavenumbers is the same as for the coordinates shown in Figure 9 from
which we determine

k_d - £'d = ( kxd - kxa)Sin _'+ + ( kzd - k'd)cos _'s (47)

since ky d = kyd is common to both systems. Now we can do the k'xd integration with the result

+ ^ PoBgrc2c 4 __

I(I-) d'_'d- 2_/JSS e III (_(kxS°-_°)I(_22(K"2d)ei(kz-k''Zcldzd

e"+ n*t _-+ '-+ " ]_,a' , _+
x Z (_o - o k) (-_'_ '-" t'_k ) D(Zk ) e-i[(h_k - :,k _x (h_d-k; d)cos#+_]dK dk.dd_O

, q',<7

(48)

And we complete the area integration of intensity to get sound power via

'-'-+:.r{i?->}+ <++<>>
We interpret the outer integral as running from -m to +co so as to capture all of the radiated energy.

This integral involves only an exponential and thus produces another delta function

_ e_i( kad _k.d )i COS _Ss d 2 _ 2st
cos a'C/+ d- Gd) (50)

The term cos _'s in the denominator is in the direction of sweep increasing noise. It appears here

because sweep increases the length of leading edge exposed to a band of turbulent flow. I,ater, it will

be seen that this undesired tendency will be overcome by the reduction in effective Mach number due

to sweep. Equation 50 enables the k'_a integration leading to
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n+ = poB  2.4 2

^171 ^hi t ^

Note that the exponential has disappeared entirely, including the term (kxk -kxk,)x . This occurs

because we have arrived at the point where K=K ' and k--k" so that /_x_ --/cxa£' •

Equation 51 has gap g in the duct system and gap s in the cascade system. This can be

eliminated by using the result from Appendix A which shows that

g 1
- (52)

scos_' s cos_u l cos_, s

so that, with a change in order of integration,

I-I+- = BP')Tr2c4 [ ; ;-_22(K'zd)dZdZ_'(ktU°-°))(_-o)k)_fWe--];fls e cos q/1 cos _s" k " --r--_5---:3 d_ dK (53)

The integration order can be shifted without concern for integration limits if we take all the ranges to

be -oo to +m and consider the integrand to be zero whenever the square root in the denominator

becomes imaginary (i.e. for cut off waves). Equation 53 represents the upstream and downstream

sound power integrated over all frequencies rather than the sound power spectrum. Recall that the

frequency integration variable _ is source frequency rather than observer frequency. This can be

shifted to an integral over observer frequency co via

g, : m + (o k (54)

which is now permitted with the o) integral inside the K integral. But, then, with the infinite limits,

the integration order can be changed back again so that the power is in the form

I] +- = ]+_ +-00 1-17,_,do) (55)

where

+ = Bp°_2c4c° I []_22(K'zd)dZd]26(kxU°-o)-o)k) --2 :=2 dK (56)Fig

ris e cos _1 cos _t s ' k _ - fi

Recall that the Doppler frequency shift from Equation 22 is

o--2N
= -[(--_--) + Q32 v]f_R (57)o)k

Equation 56 is the spectrum of sound power distributed over observer frequency, as desired. It is

expressed as an integral over the wavenumber vector K of the turbulence. The final delta function
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still needs to be dealt with to reduce the wavenumber integration from 3 wavenumber components to 2,
but that step is postponed.

Our current form for the spectrum is not efficient for computation because Glegg's D fimction is

inside the integration and summation. Another shift in integration variable can be used to move D

out ti'om under the sum at the expense of moving the turbulence spectrum under the sum. This is

advantageous because _22 will normally be computed fi'om a simple algebraic expression whereas D

requires considerable computational effort. Note that dK can be expressed in various wavenumber

coordinate systems but, for the present purposes, it is considered to be dK=dN, d_ d v. Also, note in all

of the expressions for the acoustic response functions and in the frequency shill cok that a always

appears with the scattering index k in the combination _h - 2zk . Thus, if we shift the _z
wavenumber variable to c_' via

ah - 2zk = a'h (58)

we achieve the desired result

+ + 2
4"oD(, o )

IHTo

fls_ cos ¢//cos _'s " _ -./o /,

where the scattering index k has disappeared from the freqency shift:

(°o = -(Q12Yo + (222 a'+ Q32v) _R (60)

The delta function cannot be used tbr integration until the wavenumber kx is expressed in the 7"o.or', v
system. Appendix B shows that

kx = ,r o cos 9t._.+ vsin _s (61)

Substitution of this and Equation 60 into the argument of the delta function gives, with some re-
arrangement

(5 --) 6[(U + QI2QR)), o

This is functionally equivalent to

- (co - Wv) + (Q22tz ' + Q32 v)_)R] (62)

i5 -+ l I(c°-Wv)-(Q22a'+Q32v)_R ]g5)'o - (63)U + QI2.QR U + Q12_]R

This enables the _ integration, so that finally

j + t2l-[ + = BPolr2c4 o9 £+ D( t_o )
fls e (U + Q12C2R) cos N/cos _a' II _/tr2e _ f 2 _ [I-_22(K,za)dzdlk da' dv (64)
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and, in evaluation of Glegg's acoustic response function, the values used for yo and _ are

(co - Wv)- (Q22 a' + 032v)f2R
Yo = ~- ..... (65)

U + Q12f2R

and

---co- (Qt2?'o + Q22 a'+ Q32v) _)R (66)

Finally, recall that in evaluation of the turbulence spectrum that the a wavenumber must be shi[ied

according to

et = a' + 2_k/h (67)

The equations just derived provide the transfer function from the turbulence spectrum as input to the

output spectrum of sound power. In the following sections, we establish forms for the turbulence

spectrum and non-dimensionalize the equations for coding.
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SECTION 5
TURBULENCE SPECTRA FOR BBCASCADE

The theoretical acoustic spectra derived above, when applied to inhomogeneous, anisotropic

turbulence, require that the turbulence spectrum be averaged properly ill the gapwise direction.

If this kind of test data is available, then it should be used. However, for predictions based on

theory, turbulence spectra are not yet available for this general kind of flow. Out of necessity

BBCascade uses spectra for homogeneous turbulence available from the literature. Thus, the

_22 of Section 4 will be replaced simply by _2 , as given in this section. Two options are

provided: one for isotropic turbulence and one for axi-symmetric turbulence. For the isotropic

case, we use Leipmann's spectrum (ref. 10). For axi-symmetric turbulence, we use theory given

in a paper by Kerschen and Gliebe (ref. 11). This section presents the algebraic forms of the

spectra, shows how to rotate wavenumber coordinates to make the functional dependence of the

spectra compatible with the noise equations, and normalizes the spectra for use in the computer

code. Both spectra are coded in normalized form 022 based on the local radius R and the

mean flow velocity in the stationary frame Ustat. The normalization is defined by

3 2
422 = R UstatO22 (68)

Wavenumbers will also be normalized based on R so that K1 =kiR, etc.

5.1 Liepmann Spectrum

This is one of the standard 3D spectra often used for acoustic and unsteady air loading analysis

_b22_ 2w2AS t_+k_ (69)
,_2 [1+A2_#+k_+k2)13

It applies the velocity component in the "2" direction whose mean square value is W 2 . A is

the integral scale of the turbulence. Because this is a spectrum for isotropic turbulence, it does

not matter how the coordinates are oriented in space except that the "2" direction must be

normal to the airfoil surfaces (Glegg's y direction). Since we are free to select the orientation of

the other axes, we make the most convenient choice and align the turbulence coordinates with

Glegg's x. y, z. Thus, in application of Liepmann's spectrum, we set

kl =7o

k 2 =a

k3 = v

(70)

and recall that we have shifted the a integration in Equation 56 according to a =a'+2a-k/h.

The normalized form for the Liepmann spectrum is

14,2 2L 3 Z2(K? +K 2)

{I}22 = Uslat2 a "2 [1 + L2(K 2 + K 2 + K2)] 3
(71)
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where L--A/R. In the Glegg routines, wavenumbers are normalized by chord c so that the

parameter C = c/R appears in the formulas connecting the cascade wavenumbers and the
turbulence wavenumbers:

K! = _'o / c_

K 2 =_/C=c_'/?+kB/Q22

K 3 = -_/L;

(72)

where for K:, we have used 21rR/g-= B and h/g=Q2: Glegg's wavenumbers are normalized

by chord, i.e. go = 7o c , etc.

5.2 Axi-symmetric Spectrum

When external turbulence is drawn into an engine inlet, it is distorted in the axial direction,

producing elongated eddies at low forward speed and flattened eddies at high flight speed. For

this kind of flow, Kerschen and Gliebe developed a model for axi-symmetric turbulence (rer _J)

l'hey gave the following general form for the axi-symmetric turbulence spectrum

2 o

_b_j(k) = [k 6ij - kikj]F + [( k2 - (k. 2)- ),60. - kik j - k22iAj + k. 2(Aik j + ki2 j )]G (73)

where 2 is a unit vector in the direction of symmetry mad F and G are given below in terms of

the wavenumber component k a aligned with the symmetry direction and the polar transverse

_/_--2 k 2wavenumber component k t = kty + _z •

and

F = 2ua gag4 (74)

re- 1 + gaka + g2k

(75)

The axial and transverse length scales fa and ft are independent as are the axial and transverse

2 and u2 . tlowever, they are subject to the restrictionintensities u a

2- 2
Ua ga

(76)

We assume the turbulence symmetry coordinates to have their x axis aligned with the flow in

stationary coordinates and their z axis radial. To apply Equation 73 directly in Glegg's cascade

coordinates, we must establish the relation between symmetry coordinates of the turbulence and

Glegg's cascade coordinates. Transformation from one system to the other involves a sequence

of rotations just like those shown in Figure 4 except that the starting coordinates are already

rotated about the zcl axis to the Os direction. Thus, the rotation matrix Q is the same as Q in
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Equation9 but with 0 replaced by A0 ,- -(0_ - 61) . Then, the transformation of wavenumber

components is given by the inverse, i.e.

ka = 31170 + (Q21cr + Q31V

kO, = 0)270 + 022a + 032 v

ktz = Q_3y o + _)23 ct + 033 v

(77)

where

011 = c°sAOc°sq/s + sinAOsin g/sin Ms

_)_2 = sin AOcos gC_.-cosAOsinqll sin qZs

013 = -COSgel sin Us

021 = -sin AOcos_l

Q22 = cosA0cosMl

_)32 = -sin _,/

(78)

(Q31 = cosA0sin qJs - sin A0sin _l cos Ms

Q32 = sin A0sin Ms + cosA0sin V/cosgts

_)33 = coslff/COSMs

k.)_ in Equation 73 is most easily computed in the turbulence symmetry coordinates where

2=(1, 0, 0 ). Then k.)_ = ka. Otherwise in Equation 73, we need 2 in cascade coordinates, i. e.

I x][ Ili]I ll
Lo ,J

(79)

Now, we apply Equation 73 directly in Glegg's coordinates, where kl =70, kF-a, and k3 = v

_b22 = (k 2 - _2)F +[(k 2 - k_)- ot 2 - k2A 2 + ka(22ya)]G (80)

where k 2 = 7/2 + a 2 + I '2 . Substituting 2y = 021 and re-arranging, we find

_22 =(7 '2 + v2) F + [(1- 021) k2 -k2 -a2 + 2kaO21°t)]G (81)

The non-dimensional forms for programming the axi-symmetric spectrum are

_,_2)K2 2 d2 _-2 2Ka_)21_ _)]_-_22 =(y2+v2)F/c2+[( 1 2421 -Ka- / + (82)
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mad

with the requirement that

2
2 ua L a L4t

K- U_tat I + L-uK S + L7 K

c_: 2 /uL, Li

2 U2 /Us2a' > L2

2 2 - 2
Ua / Ustat ka

The normalized wavenumbers are

Kty : (012Yo +Q22 a + 032v) / {?

Ktz = (0137' o + Q23 _- + 033v) / e

(83)

(84)

(85)

(86)

and finally,

and

K2: K 2 +Kt =(_2 +_,2 +v2)/_2

(87)

(88)
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SECTION 6
APPLICATION OF THEORY & FORMULAS FOR CODE BBCASCADE

To prepare the theoretical equations fi'om Sections 4 and 5 for programming, we first write them

in non-dimensional form and then modify them for spectrum level in decibels. Also, we address

the radial integral over the turbulence field and limits for the wavenumber integral corresponding

to cut on waves.

6.1 Non-dimensional Forms

To obtain power in any band of frequency, we should integrate the spectral density of

Equation 64 over a range of a). For small enough bandwidth, however, we will simply multiply

by Ao) and then multiply by 2 to account for negative frequencies. We call this integrated

quantity PWR -+ which, with the above definitions applied to Equation 64, becomes

2 2
PWR + = 2re BMstat Poa2Ra

flYe( M + QI2 Mr )Q33 l¢

where MT=.OR/a is tip (or local radius) rotational Mach number, and where the cascade power

response function (in non-dimensional tbrm and without the constants leading Equation 64) is

F +-(_z,P) = (90)

We will do the radial integration over the turbulence (the inside integral) in a strip sense so that

that integral can be approximated by q_22 AR . The result for one strip of width zlR is

flse(M+QI2MT)Q33 Poa2RARa F± (_, _)Z (i)22 d-ff'd-v (91)
k

where _ = (oR / a . The quantity in square brackets has the dimensions of power; the remainder

of the expression is dimensionless.

Power level in decibels is given by

PWL ± = 10 logt0

where the power reference is 10 "12 watts or

PWR ±

P WR REF

PWRRE F = 0.73756 x 10 -12 fl Ib / sec

The result is that our working formula for the computer code is

(92)

(93)
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Z
PWRRE F ,B_-e (M+ Q12 Mr)Q33 PW&e_f: k I

(94)

We have used flo a2 = 1.4 Po where 1.4 is the ratio of specific heats fbr air and Po is the

ambient pressure.

For use in the Glegg algorithms representing his D function, the non-dimensional

chordwise wavenumber from Equation 65

(co- Mz-i')-(Q22-ff' + Q32-v) MTo M + Q12 MT
(95)

,ere _ = ox:/a is a non-dimensional fi'equency in the observer flame. The non-dimensional

frequency (in cascade-fixed coordinates) from Equation 66 is

_C

" = _- (Q127o +Q22-d'+Q32_')MT
a

and for Glegg's shifted Helmholtz frequency COg

(96)

where M__- W/a.

_ gfc = (__ Wv)c
- (Co - M z i_) - (QI2Yo + Q22 _' + Q32-V)MT

a (2

Glegg's reduced fi'equency _ (normalized by chord c) is

(97)

_ COgC _ [o- M._',_ (Q12)'o + Q22a + Q32 _)-- MT (98)
a/_ 2 ,G 2 ,8 2

The remaining items to be dealt with for programming are the limits on the integrals and

sum in Equation 94. These are treated in the following sections.

6.2 Integration and Summation Limits

The double integral in Equation 94 is over the d',_ wavenumber plane. There is an

ellipse in that plane such that wavenumbers inside it correspond to cut on waves and

wavenumbers outside correspond to cut off waves. In this section we find the equation for the

ellipse and provide a scheme for determining loop limits (do-loops in the code) for the 2

wavenumber integration variables.

Cuton is governed by the square root in Equation 90. When the argument of the square root

E=_:_- f 2 (99)

is positive, the waves are cut on and thus the cuton boundary is given by E = 0. We only need to

treat k = 0, in which case Equations 5 and 6 from the Introduction give
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K '2 -- v2 (°_+-hZ'v-/-d)2= 0

/32 2Se

(100)

This is the ellipse in the or, v wavenumber plane shown below in Figure 10.

VI

V2

V

V

J

O"

Figure 10. Sketch for discussion of wavenumber integration limits

Solution for the cr and v limits for the general rotor case involves algebra too tedious to

present here. Instead, we present the derivation for the stator case, which is much simpler, and

illustrates the concept. Then, the formulas for the general case are simply presented as

documentation for BBCascade.

Limits on Wavenumber Integral for Stator Analysis

Equation 100 can be solved for cr as tbllows

where, from Equations 3 and 5

cy=_tcMd+se_t¢2 v_fl-- -- 2 (101)

_ co-vW (102)
aft 2

We will use the outside loop for v and integrate over the range of a corresponding to o'l < cr

< o'2 where

as shown in the sketch.

i.e. for

o'] -tcMd Se_l¢ 2 v_fl= -- -- 2

(103)

= -tcMd + s e 1/t¢2 v2/CY2 - /l_2
|

The extremes of v occur when the square roots above are equal to 0,

co/a (104)
Vl, 2 -- W/a++_fl
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or in non-dimensional foma

-vl = F: -;4,,;:m_,,

_'2- do
fl+ M o sin _us

_,el'e ,:; = mc/a and Mo = Uo/a. Finally, since o- = yod+ezh

to Equation 103 is given by
..... _..-__

al =-(Yo +KM) d s_ _-_2 _ v-//
t, _,_!" /_

7.a-_ = -(Yo +a'M) d Se 2 v 2 /
- %+T - _p2

This can be re-arranged and non-dimensionalized as follows:

(1o5)

the range of a corresponding

(IO6)

I! /
g'l = -(_/M)tail Z - _/fl2_2 _ _2/cos Ze

(107)

_2 = --(_/ M)tan 2' + r_//_2_:2 __V2-/cOs` Ze

where _ = _-c . These are the equations used for the stator analyses in Refs. 2 and 3 before the

rotor theory had been completed.

Limits on Wavenumber Integral for General Case

Tile limits for the rotor case were derived in separate notes and the results are presented here.

Limits for vare given by

(5
v1,2 = (lo8)

(M e + MTQ32)__ - #2 _ 2MMT,QI 2 _(022 + Q:_2)MT2 2

and the a limits for any v in the above range are

{ l )_Zl,2- _ MQ221 - (_'7°012 + MQ32 re)+ g__22A2 _ M2 x

g

[£ g__ )2(72 A1A2 -_M'F) + [(-_AI - MTA 2 -f12-p2A2]+ f12 M2-_2 }
(109)

where

and

,41 = f12 _ MMTQ 12

2 _ (OgC
A2 = fl 032 v- -- MQI 2

a

(llo)

(111)
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These equations for the wavenumber limits are coded in BBCascade. They can be shown to

reduce to the stator results above for MT = 0. Also, they have been tested numerically for

correct behavior by one step in _ or i_ and verifying that the argument of the square root in

Equation 90 was negative.

Summation Limits

In the code the sum is initialized by the k = 0 term, Then, the k loop runs from 1 to a large

number (30). The positive and negative k terms are added in pairs until a convergence criterion
is satisfied.

6.3 Sample Calculation - Comparison with ADP Test Data

Figure 11 shows comparisons with scaled sound power spectral data from a model test in a
wind tunnel at NASA-Lewis. Note that the noise below 300 Hertz has been traced to sources

other than the fan. The stator was modeled with a single geometry and mean flow appropriate

for the tip stator station. Turbulence scale and intensity were back-figured to provide a good

match between the noise prediction and test data. The scale, A, was taken at 3.5% of the radius

and the intensity was 2% of the mean flow velocity. Although the turbulence properties are

represented simply by the Liepmann spectrum with a single intensity and length scale, the fit is

satisfactory. (Issues of turbulence inhomogeneity were discussed above where it was shown that

the theoretical equations for sound power presented herein apply equally well to the case of

inhomogeneous flow, provided that the turbulence specrum is formally averaged in the gapwise

direction.) The overall spectrum shape in Figure 11 is good and the high frequency slope

matches that of the data. Furthermore, the split between the upstream and downstream power is
excellent.
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Figure 11. Comparison of theoretical and test noise spectra for scaled model data,
Turbulence intensity and scale were chosen for a match to the noise data.
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SECTION 7

INTERPRETATION OF THE NOISE EQUATION -
SPECTRA OF TURBULENCE AND CASCADE RESPONSE

In the preceeding sections we derived equations giving sound power spectra (typified by Figure

11) in terms of the turbulence and cascade response spectra. In this section, before proceeding

with the series of noise calculations in Section 8, we examine the behavior of the turbulence and

cascade response spectra and how they work together to produce sound. To simplify this as

much as possible, we consider the case for a stator with radial vanes. Under these conditions,

Equation 56 becomes

_.+ + 2

+ VPorC2c4o) AR D(2-k )

" "_-2_-_.2 dy°dadv (112)

where we have assumed that the turbulence is constant over a band of radius AR and we are

using V for vane count rather than /3. The Yo integral can be performed via the delta function
with the result

, 1+ +)2
Fifo : VPo;,r"c4oAR - o) (-kD(2-k dadv (113)

The points below are best made in the context of circumferential duct modes. To simulate the

duct, note that the kinematics of the excitation waves (at constant radius) would be expressed by

e i(kxdxd+_ya) rather than the form actually used in the above analysis: e i(r°x+ay) since the

input field must be periodic on the interval 0 < ya < 2re R. From the first exponential, we can

see that the interblade phase angle (phase at yj = 2JrR/V ) is

2_n
_=_ (114)

V

for the excitation waves. Then we can deduce, say from Equations B-6 and B-9 in Appendix B

that the interblade phase angle of the response waves is

or- 2zck = 2--_-_(n - kV)
V

(115)

This is reminiscent of periodic rotor/stator interaction (Tyler-Sofrin) theory where wakes from

the rotor with circumferential mode order nB scatter into circumferential order m=nB-kV at the

stator. Since Glegg's response potential depends on yo, a, and k only in the combination cr-

2irk, we can write

2/rm
cr - 2nk - where m = n - kV (116)

V
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Then, in simplified form, the noise equation becomes

oO

H_°= _-_ S_ dKzO22 _-_ (PWR)m (117)
/'? = --00 _ = --00

where we have defined Kz -- vR ( the same definition as 1£3). Actual computed turbulence and

acoustic response spectra at a mid frequency for Figure 1 1 (¢o R/a -- 50) are shown in Figure 12

for k = 0. This shows that the sound spectrum is obtained as the "integral" in the transverse

wavenumber (n and K=) plane of the product of the turbulence spectrum and the acoustic

response spectrum. The turbulence spectrum is smooth and non-zero everywhere; the acoustic

power response spectrum has a great deal of fine structure and is zero outside the cutoff ellipse.

Sound
Power

Spectrum

Turbulence Circumferential
Wavenumbers Mode order

m=n-kV

1-[(03)= Z f:oo dKz "22(k) 2 (PWR)m /

Turbulence Spectrum

(Dee

J
Acoustic Power Response Spectrum

(PWR),.
x lO 4

Figure 12. Examples of the turbulence spectum and the acoustic power response spectrum (at k=0)
for a mid-range sound frequency (o)R/a = 50)
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Figure 13showsturbulencespectraat thetop andacousticresponsespectraat the bottom
for higherand lower frequencies. It can be seen that both spectra broaden in the wavenumber

plane with increasing frequency and that the acoustic response spectrum maintains its fine

structure independent of frequency.
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Figure 13. Turbulence spectra (top row) and acoustic spectra (bottom row) at 3 sound frequencies:
coR/a = 10 (left), 50 (center), and 100 ('riclht).
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Figure 14 at the bottom shows the cascade respnse spectrum with several values of scattering

index included. It can be seen that the acoustic response for each k is identical but shifted by

the vane count V ( 30 in this example) through the mode formula m- n - kV. At low frequency

= 10, the sections of the response spectrum do not overlap. Comparison with the turbulence

spectrum above in the figure shows that only small portions of the wavenumber plane contribute

to the sound. Specifically, response to radial wavenumbers is limited by cutoff approximately to

the range +12 where the turbulence spectrum is near its peak. However, the response to

circumferential wavenumbers is not limited by the acoustic response spectrum but by the rolloff

of the turbulence spectrum.

The right hand part of Figure 14 applies to the mid-frequency point of Figure 11. In

accordance _,'+h Emmtion 100, the "radius" of the cuton ellipse increases but the sections of the

acoustic response shirt only by V (independent of frequency), so that they overlap. Thus, some

turbulence wavenumbers produce noise in multiple circumferential modes.
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Figure 14. Contour plots of the turbulence and acoustic spectra for a several values of the scattering
index k.
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SECTION 8
COMPARISONS WITH TEST DATA & RELATED PARAMETRIC STUDIES

In this section we explore the capabilities of BBCascade in prediction of broadband noise of

stators and rotors and establish sensitivity to design and flow parameters. Fans are represented

via a single representative radius calculation rather than making any attempt to integrate over fan

radius as is done in the BFaNS code. Thus, we do not expect perfect agreement but look for

correct spectrum shapes and correct trends and approximate absolute levels. Three data sets are
used:

ADP Fan 1 (Section 8.1)

22" low speed, adjustable pitch fan
Tested in the NASA-Glenn 9xl 5 tunnel

Allison Fan (Section 8.2)

22" fan with combinations of stator lean and sweep
Tested in the NASA-Glenn 9x15 tunnel

Boeing Fan (Section 8.3)

18" fan with variable geometry for noise source separation

Tested in the Boeing LSAF (Low Speed Aeroacoustic Facility)

In each of the subsections below (Sections 8.1, 8.2, 8.3), the format is to check predictions for a

few data points to verify correct behavior of the theory and to establish base cases for further

studies. Then we present parametric variations on the base cases to provide an understanding of

the noise generation process.

8.1 Variations on ADP Fan 1 - Turbulence Scale, Mach Number,

Stagger and Chord

Since noise predicted by Equation 94 depends on only a small number of input variables, it was

straightforward to compute the variation of noise with turbulence properties (intensity and scale),

mean flow (Mach number), and geometry (stagger, vane count, and gap). The base case for the

variations was essentially the same as that for Figure 11 except that the vane count was changed

to 30. Stagger was 30 °, gap/chord was 0.8, Mach number was 0.5, turbulence level (upwash

component) was 2% of the mean flow velocity and the integral scale was 3.5% of the fan radius.

First, recall how the curve fit in Figure 11 was obtained. Mach number, stagger, chord,

solidity, radius, and area were fixed leaving only turbulence instensity and scale as free

parameters. From Equation 94 it is evident that spectra simply move up and down with

turbulence intensity (3 dB per doubling of turbulence energy). Turbulence scale, however, is

more interesting, as shown in Figure 15. (In this and succeeding plots, the solid curve is the

base, or reference case.) At high frequencies, the level varies as I/A, which could be deduced

from the form of the turbulence spectrum in Equation 69. At high frequency, the 1 in the

denominator becomes insignificant and all but one of the A's cancel. At low frequencies, the

effect reverses and scale has a powerful effect. Thus, to achieve the match in Figure 11, intensity

was varied to move the theory curves up and down and scale was varied to change the balance

between low and high frequencies.
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Figure 16 shows the variation of noise with Mach number at constant percent turbulence, i.e.

for constant --_/U_a t in Equation 7 I. On the upstream side, the curves generally move up in

level and frequency with increasing Mach number. Behavior on the downstream side is similar

except that the spectrum tends to flatten at the higher Mach numbers. Peak levels of these curves

were cross plotted against Mach number in Figure 17 to find if a simple power law ( M" ) would

describe the behavior. All curves were referenced to the M=0.5 values. On the downstream side,

M 5 fits reasonably well. On the upstream side, no exponent works perfectly but 4.5 fits the

points between M= 0.5 and 0.7.

Figure 18 shows variations with cascade stagger angle. The effect is weak on the

downstream side and almost zero on the upstream side.

Finally, we look at variations with vane count and gap/chord ratio. Vane count is a major

consideration for harmonic noise; large numbers lead to cutoff (exponential decay in the axial

5irection) of the lower harmonics. In designing stators, there is usually a preferred solidity

(inverse gap/chord ratio) for performance purposes but some latitude for vane count at constant

solidity. Figure 19 shows broadband noise variation with vane count at constant solidity. At the

mid and high frequencies the noise is roughly proportional to vane number (PWL_ 10 log V). At

lower frequencies there is little effect. Thus, we are driven in different directions for tone and

broadband noise. Figure 20 shows that variations in gap/chord ratio have almost no effect for

constant vane count. This was a surprise since acoustic response for individual input waves is

very sensitive to gap/chord; however, when the turbulence is integrated over a broad range of

wavenumbers, the sensitivity to gap/chord is much weaker.
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8.2 Allison Fan and the Effects of Lean and Sweep on Stator Noise
For another check of the theory, we compared calculations with the lean and sweep data

from the Allison fan '_r t2 shown in Figure 21. The stator at the top in the figure has its tips swept

axially; i.e. per the nomenclature of this report, it is swept 30 ° in the "duct system" ( _s = 30° )-

At the bottom Figure 21 shows another stator with both lean and sweep in the duct system

(_'s = 30° and _,/= 30 °). Allison and NASA tested both of these stators plus radial stators at

2 axial positions. One axial position was at the root position of the swept stator and the other

was at the tip position of the swept stator.

Figure 22 shows sound pressure spectra in the aft quadrant for the 4 stator configurations.

Although the figure is difficult to decipher, it can be seen that sweep eliminates the tones.

Furthermore, sweep provides broadband noise reduction over a wide range of frequency and lean

added to sweep provides a further improvement. Reference 12 gives the vane count and the

sweep and lean angles; however educated guesses had to made for the other parameters needed

for spectrum calculations. We used the same non-dimensional parameters as for Figure 11

except that the Mach number was reduced to 0.3 (based on Allison's 50% design tip speed).

Figure 22 at the bottom shows that the theory follows the Allison data very well. The spectrum

shapes are good and the reductions for sweep and sweep+lean match the data as well as can be
determined from the curves.

The remainder of this section explores theoretical trends with lean and sweep and explains
the Allison results.

Lean and Sweep Parametric Studies
In this section we examine trends in noise reduction with various combinations of lean and

sweep. This is done in the context of the 2 conventions for defining lean and sweep: the

"cascade system" of Figure 4 and the "duct system" of Figure 5.

The following spectra were all computed using the same geometry, mean flow, and

turbulence properties used for Figure 11. Only the downstream sound power spectra are shown

since they are higher and look similar to the upstream spectra. Figure 23 shows the effect of lean

and sweep for angles defined in the duct system. Lean has almost no effect except to move the

dip in the spectrum. (In reference 3 it is shown that the frequency at this dip corresponds to a

half wavelength fitting between 2 vanes. Leaning the vanes changes the normal gap - Glegg's

h.) Sweep is more effective; the slight increase at low frequency would not be seen in fan test

data because of other sources. Figure 24 shows lean and sweep effects for angles defined in the

cascade system. Here, again, lean is very weak but the sweep effect is stronger than in the duct

system.

The previous curves were for lean alone or sweep alone. Since it is important to know how

the 2 effects work together, combinations of lean and sweep were run and the peak values from

the downstream spectra were plotted in Figure 25. The top of Figure 25 applies to the cascade

system (sweep in the plane of the vane). It shows noise reduction versus sweep for lean angles

of 0 ° , 15 °, 30 °, and 45 °. The curves show that sweep is the dominant effect. In this system

sweep reduces the component of Mach number normal to the leading edge; lean does not. The

solid curve shown in the figure

AdB = -30 log I0 (cos _s) (118)

provides a reasonable fit to the theory. (Recall that the lengthening of the leading edge is

included in the theory. Without this, the factor would be 40 rather than 30.) Negative lean
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angles are not shown. However, the curves apply to negative lean if the signs of the sweep

angles are reversed.

The bottom of Figure 25 applies to the duct system, i.e. lean and sweep angles defined via

the front and side views of the fan. Here the picture is complicated due to a strong interaction

between lean and sweep. However, -30 logl0(cosgts) is still valid (no hat on _Zs). We need only

apply Equations I5, which relate angles in the duct and cascade systems, to convert the solid

curve from the top of Figure 25 to the multiple curves at the bottom. The curves track the

theoretical peaks reasonably well and can be used for design guidance.

really, refer again to the Allison data in Figure 22. Sweep and lean were both 30 °.

Calculated results shown in Figure 25 predict that 30 ° sweep by itself produces about 1.1 dB

benefit and that 30 ° lean added to the sweep brings the total reduction to 3.9dB. This is in

approximate agreement with the Allison data. If they had leaned in the opposite direction, the

_ _ e. _ect _v,,.,ld hace been near 0 dB. The curve-fit plots in Figure 25(the solid curves) indicate

slightly different results: 1.5 dB for sweep and a total of 3.0 dB. Note that is was not luck that

caused Allison to lean in the more favorable direction; this is the direction preferred for tone
noise reduction.

The curve fit without the BBCascade calculations is shown in Figure 26 with sketches

defining the lean and sweep conventions. Note that this is simply a plot of -30 logl0(cos_us) in

the duct (or "hat" ) system for 30 ° stagger. Details will be different for different stagger.
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Photograph of the partially-assembled fan
stage showing the swept-only stator.

Downstream view of the swept + leaned stator.

Figure 21. Allison fan disassembled to show swept stator (top) and swept and leaned stator (bottom).

Reproduced from Woodward, eta/, ref. 12.
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8.3 Boeing Fan Analysis and Variations

This section checks BBCascade against Boeing's data for inlet turbulence/rotor noise, rotor wake

/stator interaction noise, and mode order/frequency plots.

Inlet Turbulence I Rotor Noise

The Boeing 18" noise research fan was designed for source separation by experiment. It can be

run without stators and with the duct boundary layer upstream of the rotor removed. By

comparing rotor noise with and without the boundary layer, the contribution of boundary layer

turbulence/rotor noise can be determined. Then by comparing noise without the boundary layer

with and without stator, the contribution of the stator can be determined. The results of this

source separation are shown in Figure 27 (reproduced from ref. 1) for inlet sound power spectra

at 70% rpm and aft sound power at 55% rpm. (100% rpm was equivalent to 1300 fl/sec

rotational tip speed.) The boundary layer source is not dominant but it can be seen to affect the

total level in both cases over a broad range of frequency. The bold curves in Figure 28 are a test

of BBCascade' s rotor noise capability. These were computed using the geometry and mean flow

conditions at the rotor tip. For turbulence intensities, we used the values at a distance 50% of the

boundary layer thickness (5) from the wall were used (4% / 3% for the axial / transverse

components). For turbulence axial and transverse scales, we simply adjusted them to produce a

good fit to the noise spectrum as shown at the bottom in Figure 28. The values that worked best

were axial / transverse scale = 7% / 2% of fan radius. This is not very satisfactory since the axial

scale of the streamwise component that would be deduced from ref. 1 at 50% of 8 is roughly

3.5% of fan radius. We do not have an explanation for this discrepancy. Since the transverse

scale was not measured, we simply comment that 2% of fan radius seems reasonable.

For the aft noise, at the bottom of Figure 28, the fit is very satisfactory. The spectrum peaks

are centered at multiples of blade passing frequency. Agreement for the inlet noise is not as

good; however, the Boeing report points out that there is a rotating instability that influences the

spectrum. Of course, this is not accounted for in the theory.

The theoretical curve from the top of Figure 28 was used as a base case to study effects of

changing turbulence length scales. Axial scale was 7% of fan tip radius and transverse scale was

2% of tip radius. Figure 29 shows variation with transverse scale in 2:1 steps. Note that this

parameter is a very strong driver and must be known with some accuracy for acceptable noise

estimates. Figure 30 shows variations with axial turbulence scale again in 2:1 steps. Axial scale

does not change overall level strongly but instead controls the localization of energy around the

blade passing frequency peaks. It can be seen that the 3.5% axial scale that would be deduced

from the Boeing hot wire data produces a spectrum with peak-to-valley ratios that are too small.

Usually, we think of fan noise spectra containing pure harmonics (peaks with zero

bandwidth at multiples of blade passing frequency) and a smooth broadband component.

However, the results just shown are in between harmonic and broadband. The peaks are

centered at the BPF harmonics but have finite bandwidth. This is caused by the rotor interfering

with turbulent eddies that are long enough to chopped by more than one rotor blade. A pure tone

would be produced by an infinite number of chops but narrow band peaks are produced by finite

numbers of chops. The first good model for this effect was due to Mani (ref. 13) based on

isotropic turbulence. The present author brought in the essential effect of anisotropy in 1974

(ref. 14) based on a cruder model of turbulence interaction. It is interesting to see how long the

axial scale must be to produce the spectrum peakiness. The sketch on the next page shows an

eddy interfering with a rotor with blade gap g and stagger O. The axial distance between

chops is 3. = g cot 0 and the gap is g= 2n'R/B. Combining these formulas with the axial scale-

on-radius used for Figure 28, A/R = 0.07 and a stagger of 60 ° leads to the ratio of axial scale to

NASA/CR--2001-210762 51



axial distance A/2 = 0.4. This is surprising since it indicates spectrum peaking occurs when the

axial scale is shorter than the axial gap. Since Boeing obtained both noise and turbulence

spectrum data supporting this result, we must conclude that it is not the mean eddies that are

dominating the noise but the eddies that are larger than average.

Figure 31 shows the effect of changing blade count on turbulence/rotor interaction noise. It

can be seen that doubling blade number cuts the number of peaks in half and raises their level.

Also, the peak to valley ratio increases. Finally,

Fis'._re 32 shows the effect of sweeping the rotor

tip 45" (in cascade system, i.e. sweep in the plane

of the rotor blade). There is a significant benefit

but only at the higher frequencies.

Rotor Wake / Stator Interaction Noise

For the Boeing tan Uata, we also look briefly at

trends in stator noise with rotor tip speed and with

vane count. Figure 33, copied from the Boeing

report, shows inlet and aft spectra for 3 rotor

speeds and 3 vane counts (15, 30, & 60). Noise

mcrc,_.cs with tip speed, as expected. Noise also

increases with vane count; in fact, for the lower

speeds, sound power is proportional to vane count

(3 dB per doubling of vane count). At the higher
speeds, the inlet noise results are more difficult to

characterize, perhaps due to rotor transmission

effects. Note that the solidity for the 15 and 30

vane stator were the same but that the solidity for
the 60 vane stator doubled.

The corresponding theoretical curves are

/ / / /

iII IIII IIII

/
/ g

iI

iI iI

II ii

ii i I

l I

0

v

Sketch showing turbulent eddy moving to the
right interfering with rotor blades.

shown in Figure 34. To produce this figure, the geometry and mean flow from the 85% radius

were matched for the 3 rpms and then turbulence intensity and scale were adjusted to fit the

middle noise spectrum in the aft quadrant (78% rpm, 30 vanes). The other vane counts were

computed assuming that the flow properties were unchanged. Considering that the fan is

represented by a single representative radius, the trends with rpm and vane count are predicted

very well. In particular, over most of the spectrum, broadband noise is proportional to vane
count, an important result for design considerations.

Mode Order Frequency Plots

Finally for the Boeing data, we examine mode order/frequency
plots to be sure that BBCascade has the correct behavior at that

level of detail. Boeing used rings of Kulite pressure transducers

in their 18 inch research fan to determine the distribution over

circumferential mode order (of pressure at the outer wall) as a

function of frequency. Examples are shown in Figures 35 and 37,

which were copied from the Boeing report (ref. 1). Figure 35 is
from a ring of Kulites between rotor and stator and is believed to

be dominated by stator noise. The V-shaped pattern is the cuton

limit, although there are pressure modes outside this limit because

of the near field location of the transducers. Co-rotating modes

J

upstream going J

wave stator

(m > 0 ) are dominant upstream of the stator. This is expected, based on the sketch at the right,
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since waves propagating normal to the airfoil surfaces should couple most efficiently. The

"cuton V" is skewed because the swirl between rotor and stator cuts on counter rotating modes

at lower frequency than co-rotating modes. Figure 36 shows predicted mode order/frequency

plots for sound power both up and downstream of a stator. On the upstream side (top portion of

figure), the co-rotating modes clearly dominate and the cuton V is correctly skewed since the

case was run with swirling input. We don't expect exact agreement with data since the

experimental plots are for pressure modes and the theory is for sound power; however the correct

qualitative behavior has been verified for the stator. Figure 36 also predicts downstream of the

stator that the counter-rotating modes will dominate, although Boeing made no measurements at
this location. Note that the cuton V is not skewed because the case was run without swirl.

What behavior do we expect upstream of the rotor? Based on a sketch analogous to the one

above, we might expect that counter-rotating modes would dominate since rotor stagger has the

opposite sign. However, the experimental results from Boeing indicate that again the dominant

modes are co-rotating. (This issue is clouded somewhat since the data include noise from

trailing edge noise as well as duct turbulence interaction.) However, the theory, shown in

Figure 38 predicts dominant energy in the co-rotating modes also. Apparently, the motion of the

rotor biases the energy distribution in this direction. The theory must account for this correctly

via the frequency scattering, which is different for each mode order.
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Figure 27. Boeing's source separation results (ref. 1) showing experimentally derived rotor alone
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SECTION 9
CONCLUDING REMARKS

A theoretical formulation was developed for broadband noise generated by turbulence

convected into a cascade. The theory was derived by applying Glegg's harmonic recitlinear

cascade theory to the problem of random inflow with resulting equations giving upstream and

dowstream sound power spectra as integrals over the 3D turbulence spectrum. Within the

limitations of the rectilinear cascade model, the analysis was made as general as possible. In

particular, it treats noise from rotors as well as stators; the blades or vanes can be leaned and/or

swept; and turbulence that can be inhomogeneous and can have a limited form of anisotropy.

Two spectra for turbulence are provided: one is the Liepmann spectrum for homogeneous,

isotropic flow; the other for axisymmetric turbulence with stretching in the direction of the mean

flow. Operation of the theory was explained in some detail with actual plots of turbulence

spectra and cascade power response spectra.

The theory is embodied in code BBCascade. This was developed for application to turbofan

noise but does not truly provide a fan prediction method since the mean flow and geometry are

independent of spanwise position. For the fan application, BBCascade has been incorporated in

code BFaNS (described in a reference) with integration over varying geometry and flow

properties in the spanwise direction. BFaNS also accounts for trailing edge sources at the rotor
and stator.

With the constant geometry and mean flow it was instructive to perform a series of

parametric studies to explore the fundamental behavior of predicted noise. The format for these

studies was to first compare predictions with data from a model fan, then find flow parameters

that give a convincing prediction of the noise, and finally perform parametric variation on the

geometry, mean flow, and turbulence. This provides a basic understanding of the methodology

and of the sensitivity of noise to various design and flow parameters. Fan models included a

Pratt & Whitney 22 inch model fan, an Allison 22 inch model fan with swept and leaned stators,

and a Boeing 18 inch fan designed to separate the various broadbmld noise sources.

Agreement with data is very convincing and explains several observed phenomena. Of most

interest today perhaps, the reduction of broadband noise by leaning and sweeping stators is

thoroughly investigated and the critical parameters are identified. Predicted noise is reduced by

sweeping the vane in its own plane according to AdB = -301og|0(cos_'5), where _u, is the

sweep angle. Rotor noise also can benefit from sweep.

Other items studied include sensitivity to geometry variations such as solidity, vane count,

and stagger as well as sensitivity to mean flow Mach number. Predicted noise is roughly

proportional to vane count in the important frequency ranges, i.e. PWL oc 10 log I0 V where V is

vane count. Accurate prediction of broadband noise obviously requires accurate specification of

the turbulence properties. Noise increases uniformly at all frequencies with turbulence intensity,

i.e. 3 dB per doubling of turbulence intensity, w2/U 2 . However, it is also shown that

knowledge of turbulence scale can be even a more important driver: doubling or halving

transverse scale can cause noise changes greater that 3 dB.
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APPENDIX A

CASCADE GEOMETRY FOR LEAN AND SWEEP ANALYSIS

This appendix derives geometrical relations between duct coordinates (where chord, gap, and

stagger angle are ca, g, 0) and Glegg's cascade coordinates coordinates (where chord, gap, and

stagger angle are c, s, Z ). In the process, we develop the coordinate transformation equations

and also define lean and sweep according to 2 differem conventions. Geometry for tbe

derivation is presented in Figure 4 of the main text.

Stagger, lean, and sweep are defined by 3 successive rotations about coordinate axes as described

in Section 3. The rotations are non-commutative so that the order of the rotations must be part of

the convention.

Coordinate Rotations

Stagger is the rotation from the duct

system (xa, Ya, za) to the (Xo, yo, zo)

coordinates. The latter system is used in

the main text for analysis of the
turbulence Fourier transforms. The

sketch at the right represents a

cylindrical cut of the stator unwrapped

onto a plane. Gap and stagger angle are

g and 0.

YO

Y6

Xd

The transformation can be written in matrix form as

Yo =[Qo] x Yd

z o z d

(A-l)

where

[00]= - sin 0 cos0

0 0

(A-2)
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1,ean is a rotation through angle _'/about the common Xo, Xd

axes into the primed system as shown at the right. Consider

the vanes to have "hooks'" on their leading edges attaching

them to the ya axis. Thus, the cascade does not rotate as a

unit. Rather, each vane rotates on its hook, maintaining the

original gap g at constant radius. However, the normal

gap, used in the cascade theory varies with lean per formulas

given later in this appendix.

The transformation is

36

Z I

Zo

[x,][xojy' =[0,]× yo
Z _ Z o

(A-3)

where

0lcos_l -sing/

sin _/ cos_/

(a-4)

Sweep is a rotation of the vane (in its own plane) about the y'

axis through angle gts . This establishes the chord at constant

radius in duct coordinates as Cd and the chord, measured

normal to the leading edge as c with the relation c = cd cos _,.

The transformation is

where

[xl_-[Q]×y,
Z r

'cos Vs 0
[Os]-- o 1

.sin _s 0

Uo

Z t

z

_d
\

_x

X r

(A-S)

(A-6)
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Thenetresultof the3 rotationsis

or

[Q]--
-cosOcos Us + sin Osin _1 sin Us

- sin 0 cos _l

cos0sin q/s - sin 0sin _1 cos_, s

sin Ocos gt s - cosOsin Vl sin gt s

cosOcosgtl

sin Osin p' s + cosOsin gtl cosgt s

- cos P'I sin tys-

- sin _l

cos P'I cos gt s

(A-7)

(A-S)

giving the desired transformation of the duct coordinates into the cascade coordinates:

=[01×ya
zd

(A-9)

The inverse transformation is also useful and is just the transpose of [Q]. Define the inverse as

[q] = [Q]-! (A-10)

so that

where

[q] :

(A-I I)

-cosOcosVs + sin Osin _1 sin q/s

sin Ocos g/s - cosOsin gt/sin _us

- cosgQ sin_s

- sin Ocos q/l

cosOcos_l

- sin gl

cos0 sin Vs - sin Osin _"l c°S_s

sin Osin gt s + cosOsin _1 cos _s

COS g/l cos _s

(A-12)

Lean and Sweep as Viewed Parallel and Perpendicular to Fan Axis

Another scheme to define lean and sweep is according to the front and side views of the

unwrapped blade row, as sketched in Figure 5. From the front (looking along the xd axis) the

lean angle is _'l and looking from the side the sweep angle is _'s. In cascade coordinates, the

leading edge of the reference blade is located at x=0, y=0. Equation A-11 transforms this to the

duct system:

x d = q13 z

Yd = q23 z (A-13)

z d = q33 z
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From the front, the slope

tan i"s = x///zza: = '113//q33 or

,, / /

is tan _7,_t= Yd/_ = q23/ and from
/zd-_ / q33

the side, the slope is

tan _'1 - Q32 _ sin 0 sin p's + cos 0 sin _/COS gZs
Q33 cos _/cos iFs

tan _s = Q31 = cosOsin _s - sin Osin _ul cosq/s
Q33 cos qz l cos Us

(A-14)

These equations can be inverted to give

tan _/l = cos 0 tan _,! - sin 0 tan _, s

tan _/s = cos _l (sin Otan _/t + cos Otan _'s)
(A-15)

which must be solved sequentially.

Other expressions required in the text can be obtained from sin 2 _/s + cOS2 _¢s = 1"

Q31 cos_ s _ Q33 (A-16)
sink's = _3 if- 2 3f1 + Q33 Q321+ Qj2

Finally. for Equation 51, we need an expression for g/(scOS_s ). For this, first note that the

square root in the expression for cos_, s above can be written

Q_I + Q23 = a/Q31ql3 + Q33q33 (A-17)

where q is the inverse (and therefore transponse) of Q. And since Qxq = 1, it can be seen that

Q31q13 + Q32q23 + Q33q33 = 1. Therefore

Similarly, from Equation A-23 (below)

-= +Q222= 4q2,Q,2 +q22Q22 = 41-q23Q32
g

Then, combining, Equations 16, 18, and 19, we find the desired result for Equation 51

g I 1

sc°s_s Q33 cosp'tcosp's

(A-18)

(A-19)

(A-20)
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Relations Between Definitions of Chord, Gap, and Stagger

Given the geometry in the duct system in terms of chord ca, gap g, and stagger angle 0, we

can now find the corresponding quantities in the cascade (Glegg's) system. To do this, we note

that the coordinates of one point on vane #1 in duct coordinates are xa = O, ya = g, zd = 0. From

Equations B-1 1 and B-12, the corresponding point on vane #1 in the cascade coordinates is at

x = QI2 g = (sin 0cosT/s -cos0sin N/sin P's)g

y = 0-22 g = (c°sOc°sgtl)g

z = Q32 g = (sin 0sin _Us + cos0sin NI c°SNs)g

(A-21)

Since the leading edge is normal to the x, y plane in cascade coordinates, x and y are Glegg's d

and h in the sketch below.

Y

Thus, we have

III

hl
X

Z

U
C

d = Q12 g = (sin 0 cos N s - cos 0 sin p'/sin _ s) g

h = Q22 g = (c°sOc°sv/l)g

X

(A-22)

And, from these, we immediately write down the expressions for Glegg's gap and stagger angle:

s=_] -_2 +h2 =g_/Q22 +Q_2 (A-23)

We have already noted that Glegg's chord is

(A-24)

c = cd cOSts (A-25)

Also, note from the sketch above that the velocity components are

U = Uo coSP's

W = U o sin _s
(A-26)

where Uo is the full velocity into the cascade (assumed to have no radial component in the duct

system).
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Thus, for a typical application, we might be given chord cd, gap g, stagger O, lean and sweep

angles, _b/ and _zs in the duct system. I,ean and sweep would be converted to the "no hat"

system via Equations A-15. Then the chord c, gap s, and stagger 2" for Glegg's geometry

would be obtained from Equations A-25, A-23, and A-24 and his velocity components from

Equations A-26. lnterbtade phase angle and spanwise wavenumber are discussed in the main
text.

Rotation from the "Duct" System to the "Hat" Coordinate System

One more coordinate system is needed in the main body of the report for integration of intensity

over the cascade face to obtain sound power. This is the "hat" system reached by rotating about

the transverse duct axis Yd through the angle _'s per the sketch below. The transformation

Zd
A

7
"'4

Xd

from the duct system to the "hat" system is

I1., s°l
za, J L-sin_s 0 cOSts j L:_]

(A-27)

and hence the net transformation from the "hat" system to

Glegg's cascade system, namely

is given by the matrix

0

(A-28)

or

F(Qil COSts -

l(O31

] IcOS_s 0 sin_,s]

Q j×[ 0 O /
(A-29)

-sin_, s 0 cos_,sj

(QI1 sin_s + Q13 c°S_ts)

(Q21 sin _ s + Q23 cos _' s)

(Q31 sin _/s + Q33 cos _ts)

QI3 sin _s) Q12

Q23 sin _s) Q22

Q33 sin_'s) Q32

and, by use of Equations A-16 and Qxq = 1, an alternate form can be found

(A-30)
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QI 1Q33-Q|3Q3t Q12

0 Q32

-Q32QI2

+023
-Q32Q22

I+Q33

1-022

(A-31)

This is used in Section 4 of the main text and in Appendix B.
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APPENDIX B
WAVENUMBERS IN VARIOUS COORDINATE SYSTEMS

In the main body of this report, wavenumber vectors must be expressed in a variety of coordinate

systems. This appendix addresses that issue in general and also derives a relation involving

wavenumbers that is needed for Equation 42 in derivation of the acoustic equations.

The first issue is easily addressed. In Appendix A several coordinate system were defined by

rotations about coordinate axes. Matrices representing these rotations were derived and given

names of Q with various subscripts, tildes, and hats. A basic theorem of tensor analysis is that

the matrix that rotates position vectors also rotates other vectors. Hence, if

then

0

0
Lk dJ

(B-I)

(B-2)

The other topic of this appendix is to re-express the exponential in Equation 42 in a form more

suitable for integration. We extract the term

ER d
h

cr-2nk)y +• vz + COkt (B-3)
h

from Equation 42. This expresses the kinematics of the cascade response waves. We will

express this in the ,_,)3,,_ system, identify the wavenumbers of the excitation waves in this

system, and then re-write the exponential in the desired form. If we use Equation B-1 to

transform the x,y,z coordinates, ER becomes

ER= [-2_),,+(2_d+cr-2n'k ^
h _ )Q21 + vQ31lx

+ ^ + d cr-2n-k)
+[-)]'kQl2 + (/]7_ -- + _ 022 + V032133h (B-4)

+ ^

+[_2__Q13+(2 ] d o--2erk ^ ^ ^
--+h _-)Q23 + eO33]z

The terms involving the A's on the 2 nd and 3 ra lines cancel, leaving

E R = [-,_kQll+̂ k k--q )021 +V03119_+_,>+a o--2,rk
h h

+[(a-an-k) 2nk)023• + vQ32 ]o) + [( 0"- +1/03312
g h

(B-s)
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where we have used (_12 = QI2,

expression for the excitation wave

022 = Q22, 032 = Q32. Now, we

EL. = r oX+ ay + vz = [_xd_+ kya_' + k_d_

examine a similar

(B-6)

The inverse of Equation B-2 leads to

kyd_ = Ol2Yo + 022 _ + 032 V

= QI2Yo + Q22ct + Q32v

(7-
.... +0.32 V

g

,d

(B-7)

h

(B-8)

Now, we can identify the excitation terms in Equation B-5 and re-write it as follows

where

^a ^ 2_'k)3 3 2,_/¢ Q: )£
.... +([Czd _-- 23 (B-9)E R kxk ,2 + (ky d g

/¢xak + ^ +(2_ d cr-2nk)= 02,+v03,
-2_ Ql t h h

(B-10)

is the response wavenumber in the )? direction. If we use Equations 23 and B-7 and note that
^

ky d = ky d , then

o k = -kydf)R + kBf)

and Equation 43 of the main text follows immediately.

(B-11)
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APPENDIX C

SYMBOLS AND SUMMARY OF COORDINATES AND WAVENUMBERS

a

C

Cd

d

A
g
h

i

k

kA" i..

m

P
s

Symbols
speed of sound

airfoil chord, measured normal to leading edge, see Figure 3

airfoil chord, measured at constant radius, see Figure 4

= c/R

stagger distance, see Figure 3

see Equation 6

blade gap measured at constant radius

normal distance between airfoils, see Figure 3

imaginary unit

scattering index

see end of this appendix for summary of various wav enumber coordinate systems

circumferential mode order

acoustic pressure

blade gap in Glegg's coordinates, see Figure 3

s_ see Equation 4
t time

w upwash velocity component, see Equation 1

Wo complex amplitude of upwash, see Equation 1

x,y,z see end of this appendix for summary of various spatial coordinate systems
B blade count in rotor or vane count in stator

D Glegg's potential function, described in Section 2, derived in ref. 5

Fe see Equation 90

ff acoustic intensity component normal to cascade face, + upstream, - downstream

KI, K2,K3 yoR, aR, vR . Also, klR, k2R. k3R

L normalized turbulence integral scale, A/R

M chordwise Mach number of mean flow, U/a

Mx Mach number in axial direction

My Mach number in tangential direction (stator frame)

MT rotor rotational Mach number, J2R/a

Po Ambient pressure

Q matrix of transformation from duet coordinates to Glegg's coordinates

R an equivalent radius used for scaling, effective radius for noise generation

AR radial extent of band of turbulence causing noise

T a random starting time used in derivation

U mean flow velocity in chordwise direction, see Figure 3

Uo resultant of U and W. Total mean flow velocity

V vane count

W mean flow velocity in spanwise direction, see Figure 3

W(K, co) Fourier transform of gust field, see Equation 17

I

K

U

Acoustic power flux vector
wavenumber vector

mean flow vector in stator frame
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Ot

6_

Or'

,±
_b22

K"

4
+

v

0

0s

Po

p'

_k

co

&

X

Ze

A

(I)22

FI---

Glegg's transverse wavenumber

ac

a shifted for integration, see Equation 58

x/_- M 2

Glegg's chordwise wavenumber

acoustic velocity potential, + upstream, - downstream

3D turbulence spectrum

see Equation 5

see Equation 5

axial distance between chops of a turbulent eddy by a rotor

see Equation 4

see Equation 6

Glegg's spanwise wavenumber

vc

stagger (and flow) angle at constant radius

flow angle in stator coordinates, see Figure 6

density of mean flow

acoustic density perturbation

interblade phase angle in Glegg's system

radian frequency in stator frame

Glegg's shifted frequency, see Equation 3

Doppler frequency, see Equations 22 and 23

radian frequency in rotating frame. (same as co for stator analysis)
coR/a

ogc/a

see Equation 5

Glegg's cascade stagger angle, see Figure 3

see Equation 4

used with subscripts for lean and sweep angles, see discussion in Section 3

rotor angular speed

integral scale of turbulence

non-dimensional form of 3D turbulence spectrum, see Equation 68

sound power upstream (+) and downstream (-), integrated over all frequency

sound power spectrum upstream (+) and downstream (-), see Equation 55
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