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Abstract

Additive Runge Kutta (ARK) methods are investigated for application to the spatially discretized

one dimensional convection diffusion reaction (CDR) equations. First, accuracy, stability, conservation,

and dense output are considered for the general case when N different Runge Kutta methods are

grouped into a single composite method. Then, implicit explicit, N = 2, additive Runge Kutta (ARK2)

methods from third to fifth order are presented that allow" for integration of stiff terms by an L stable,

stiffly accurate explicit, singly diagonally implicit Runge Kutta (ESDIRK) method while the nonstiff

terms are integrated with a traditional explicit Runge Kutta method (ERK). Coupling error terms are

of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability

functions for very large values of the stiff scaled eigenvalue, z [z] --+ -oc, and retain high stability

efficiency in the absence of stiffness, z[ I] --+ 0. Extrapolation type stage value predictors are provided

based on dense output formulae. Optimized methods minimize both leading order ARK2 error terms

and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the

new" schemes on a CDR problem show negligible stiffness leakage and near classical order convergence

rates. However, tests on three simple singular perturbation problems reveal generally predictable order

reduction. Error control is best managed with a PID controller. While results for the fifth order

method are disappointing, both the new" third and fourth order methods are at least as efficient as

existing ARK2 methods while offering error control and stage value predictors.



1. Introduction

It is oftentimes useful to consider the compressible Navier Stokes equations (NSE) as evolution

equations with several driving forces, each having somewhat different characteristics. Typically, one

distinguishes among terms such as convection, diffusion, and reaction. As such, one often considers the

more tractable convection diffusion reaction (CDR) equations as a prologue to the full compressible

NSE. 34 In the search for ever more efficient integrators, it is intuitively appealing to seek individual

integration methods that are ideally suited for specific parts of the governing equations. The individual

methods are then rolled into a single composite method that, ideally, would be more efficient than any

individual method applied to the full computation. To accomplish this, one may consider partitioned

methods. Schemes constructed to take advantage of termwise partitioning of the CDR for integra

tion purposes may be called additive methods. 4s Partitioning of the discretized form of the equations

may also be performed on an equationwise or pointwise basis. 24 There are many different partitioning

strategies, r° Runge Kutta methods, with their extensive theoretical foundation, allow" for straightfor

ward design and construction of stable, high order, partitioned methods composed of arbitrary numbers

of elemental Runge Kutta schemes. In addition, they also allow" for the direct control of partitioning

(splitting or coupling) errors. 46 Direct numerical simulation (DNS) and large eddy simulation (LES) of

fluid phenomena, with their relatively strict error tolerances, are prime candidates for such methods.

The need for these strategies is by no means limited to Navier Stokes applications, r' IS, 54, 6r
From a termwise point of view, a linearization of one dimensional CDR equations can provide

insight into the distinguishing characteristics of each term. Upon method oglines discretization using

high order, finite difference techniques, the CDR equations may be written as a system of ordinary

differential equations (ODEs) and analyzed with

dU
d_-_= "_cg + AD_T+ _RU' (1)

where z c = At(At), z D = tD(At), z R = ,_R(z_Xt), and (At) is the time step. The discretized convection
term contributes scaled eigenvalues, z c, that are predominately imaginary while the diffusion terms

have predominately real scaled eigenvalues, z D. Reaction rate eigenvalues are mostly real and may give

rise to relatively large scaled eigenvalues, z R. Based on this knowledge, one might seek to construct a

new" method based on two separate methods: one optimized to smaller eigenvalues of the convection and

diffusion terms and one that is capable of dealing with very large reaction rate eigenvalues. It should
be remarked that because of the high sound speeds introduced by the compressible equations, ISI is

generally larger than Iz"l, e.g., in the DNS of a hypersonic boundary layer resolved down to y+ = 1.

Incompressible flow's, governed by index 2 differential algebraic equations, generally have IzDI > IS I.
If the stability domain of the integrator contains all values of z c, z D, and z R, then stable integration

can be done. For accuracy purposes, the integration must proceed no faster than the fastest relevant

physical processes contained within the governing equations. A situation may arise, however, where

stable integration of the discretized governing equations can only proceed at a time scale substantially
faster than any physically relevant time scale of the continuum based compressible equations. This may

render a numerical method unacceptably inefficient. It may occur in regions of intense grid clustering or
while using stiff chemistry, but may be caused by other issues like interface boundary conditions within

a multidomain formulation. There are two possible strategies to obtaining a solution at a reasonable
cost when this occurs: change the governing equations and hence their characteristic time scales or

change the numerical method. We choose the latter.

Partitioned Runge Kutta methods may be designed to allow for the partitioning of equations by

term, gridpoint, or equation. Implicit explicit (IMEX) partitioned methods developed to date for



first order ODEs have usually considered a partitioning based on terms. They have combined ex

plicit Runge Kutta (ERK) schemes with variations on either the diagonally implicit Runge Kutta

(DIRK)5, 10, 1;, 19, 31, 51, 61, 74, 75, v6, 7; or Rosenbrock family of methods, x2, 39, 52, 5v, 61, v4, 75, 76, _v In

this paper, methods are derived using stiffly accurate, explicit, singly diagonally implicit Runge Kutta

(ESDIRK) schemes for their stability properties and higher stage order. Of the methods currently

available in the literature, some exhibit lower order coupling errors, coupling stability problems, no

error control, and poor ERK or DIRK/Rosenbrock stability properties. The new" schemes endeavor to

address all of these shortcomings without falling prey to new" ones.

A multistep 4' 16, 35 approach to IMEX schemes is also possible. Higher order SBDF methods given

by Aseher et al., 4 based on BDF methods for the implicit portion, are of the form

1_--1 ]_--1 (_ 1)j_.! F (n-j) q- ( A _)/_]c Fimp licit '
W (;_q-1) - _ (tjU (n-2) -- (/_)/3]_ E (];._ j -- X_.l(j q_ 1)1 explicit

j=0 j=0 •

where aj and flk are the values for the k step, order k, BDF methods. 45 These methods may be quite

effective for equations whose stiff terms give rise to predominately real eigenvahes. At third order and

above the BDF methods are only L(c_) stable; they lack A stability but still have a vanishing stability

function for extremely stiff eigenvahes. Transient events like chemical ignition may be less appropriate

for SBDF methods because they lack stepsize adjustment.

The goal of this paper is to provide complete methods for solving CDR equations using additive

Runge Kutta methods. By this, it is meant that beyond having good accuracy and stability properties,

there are high quality embedded methods, error controllers, dense output, stage value predictors and

implementation guidance. This is done in a two fold manner. First, a general overview" is given

of the coupling of N different Runge Kutta methods for first order ODEs whose right hand side is

the summation of N terms: N additive Runge Kutta methods (ARKN). Second, matters are then

specialized to the case of N = 2 : additive Runge Kutta (ARK2) methods using an implicit method

that allows accurate and stable integration of the stiff terms while either integrating the nonstiff terms

at the linear stability of the explicit method or integrating the entire method at some chosen error
tolerance.

We do not consider the topics of storage reduction, contractivity, dispersion and dissipation, reg

ularity, or boundary error. Sections 1 and 2 will provide an introduction to ARKN methods and the

motivation for their application to Navier Stokes type problems. Specialization of additive methods to

ERK ESDIRK combinations will be reviewed in section 3. Third , fourth , and fifth order schemes will

be considered in sections 4, 5, and 6. Testing of the ARK2 schemes on a one dimensional, convection

diffusion reaction test problem and three, two equation, singular perturbation problems is discussed in

section 7. Merits of the additive schemes are discussed in section 8 and comparisons are made with

existing Runge Kutta and multistep IMEX methods. In section 9, conclusions are drawn as to utility

of the various schemes. Appropriate appendices are also included. All new methods presented in this

study were solved completely using Mathematica. 71' 72 Coefficients of the new" schemes are provided to

at least 25 digits of accuracy.

2. N-Additive Runge-Kutta Methods

2.1. General

Following Arafjo et al., 3 ARKN methods are used to solve equations of the form

dU

dt

N

F(u) = Z Fill(u), (2)



where F(U) has been additively composed of N terms. They are applied as

]V 2

u(0 = u (_0+ (At) _' /__uv".,[-]r[-]_uu)_ _ ), (3)
_/=1 j=l

N s N s

_=1 i=1 _=1 i=1

where each of the N terms are integrated by its own s stage Runge Kutta method. Also, U(_0 = U(tO0),

U(O = U (t( _0 + ciAt) is the value of the U vector on the i m stage, and U0_+I) = U(t00 + At). Both

U( _0 and U(_+1) are of classical order q. The U vector associated with the embedded scheme, 1)'0_+1),

, 1,["] i,["] and _E_]is of order p. Each of the respective Butcher coefficients a!_] _ , _ , _i , p = 1, 2,---,N are

constrained, at a minimum, by certain order of accuracy and stability considerations.

2.1.1 Order Conditions

Order of accuracy conditions for ARKN methods may be derived via N trees. 3 These N trees re

semble _he traditional Butcher 1 trees s' 26, 2r but each node may be any one of N varieties or colors.

Expressions for the equations of condition associated with the qth order N trees are of the form

(q) _i (q)
] , where = 2_, , (5)

i

where a)(q) and _(q) .
_b] i,_bl are scalar sums of Butcher coefficient products and 1 _< _ _< N q is used to

distinguish between the many possible color variations of the ]_.th 1 tree of order q. Both c_ and cr are

color dependent; i.e., for a given 1 tree, the many corresponding N trees may have different values of

and cr depending on the details of the node colorings. Tree density, 7, is color independent and

consequently so is the product of g and cr, crg = q!/7 Order conditions ___3) __(4) v(5) r(6)
• , 2,4, 6,7,9, 9,10,16,17,18,20

(q) is made to
given in appendix A, never exhibit color dependence• When an equation of condition, v@_],

vanish, color dependence is immaterial because u%b]_'(q)= 1//. For equations of condition that are not
made to vanish, color dependence must be taken into consideration to accurately assess _he leading

order error terms. Order conditions for partitioned Runge Kutta methods have also been derived by

Jackiewicz and Vermiglio s7 following an approach of Albrecht•

2.1.2. Coupling Conditions

Aside from satisfying the order conditions specific to each of the elemental methods of the ARKN,

one must also satisfy various coupling conditions. One may write the total number of order conditions

for a general ARKN associated with each particular root node coloring, c_[N] using the expression TM 20, 62
Z

OC, CO

O@_?]3;'(i-1) H (1- --NcclN]= . (o)
i=1 i=1

At order i = {1, 2, 3, 4, 5, 6,-- .}, a general ARKN method has a total of 2YogiN] order conditions, where

c_!1] = {1,1,2,4,9,20,---}, c_!2] = {1,2,7,26,107,458,---}, c@] = {1,3,15,82,495,3144,---}, c@] =

{1,4,26,188,1499,12628,.--}, and a[ 5] = {1,5,40,360,3570,37476,.--}. Some of these, ]Va[ 1], are

order conditions of the elemental methods which compose the ARKs,-. This implies that N(c_l N] - _I 1])



of theorderconditionsarecomposedof portionsof differentelementalmethods.Thesearecoupling
conditions.As bothorderof accuracyandN increase, their numbers grow" explosively. Table 1 shows

their numbers for orders up to six and for each 1 tree listed in appendix A with which the coupling

conditions are associated. Also contained in the table is the type of order condition: quadrature(Q),

subquadrature(SQ), extended subquadrature(ESQ), and nonlinear(NL). 6s It should be noted that there

are no more than N * _(s + 1) independent Butcher coefficients to satisfy all of these order conditions.

Obviously, without some type of simplifying assumptions, even fourth order methods appear rather

hopeless. The simplist remedy is to require all root or canopy nodes of the N trees to be the same, or

effectively colorless. In terms of Butcher coemcients, this is done by setting @] = @] (root nodes) or

@] = cl _] (canopy nodes), #, p = 1, 2,--., N. Tables 2 and 3 show" the results of these simplifications.

Since there is always only one root node for any N tree yet there may be many canopy nodes, assuming

c!d= c!"] generally reduces the number of coupling conditions further than b!d= @]. Table 4 shows

that matters become much more tractable when all root and canopy nodes are made equal. It may

also be seen from this that as long as @]= b!_] and @] = c!_], an arbitrary number of independent

third order methods having the same number of stages may be coupled together with no associated

coupling error. Tables 2 and 3 show" that selecting @] = b!"] or c!"] = c!_] allows second order error free

coupling of an arbitrary number of schemes. Choosing neither of these assumptions reduces error free

coupling, as seen from table 1, to first order.

2.1.3. Error

Error in an elemental qth order Runge Kutta scheme contained wdthin an ARKN method may be
41

quantified in a general way by taking the L2 principal error norm,

= i1¢ +1)11 = ,I_ (r (q+1)_2\_. J,
/_=1

(r)

where r}q+l) are the ,,,[1]• _q+l error coefficients associated with order of accuracy q + 1. For embedded
schemes where p = q - 1, additional definitions are useful such as

cr i

-- /_t(p+l) ' C (p+2) - /_l(p+l) ' E (p+2) -

A(p+2)

A(pq-1) '

(is)

(19)

where the superscript circumflex denotes the values with respect to the embedded method. In the case

of ARKN methods, we generalize the traditional expression for A (q+l) to

= 11 -( +l)ll2=
I_[1]

_+_ _N k,(_+_) (t_'r'q+l_" 2E E
_=1 n=l

(10)

where we have used nN,t_,(q+l) to denote the total number of ARK>- order conditions arising from all

variations of the k th 1 tree at order (q + 1). For example, for general N trees with N = 5, q = 5, and

/_' = 15, table 1 gives n5,15,6 = 4370 + 5 = 4375. If root and/or canopy nodes have been set equal, then

nN&(q+l ) is given in table 2, 3, or 4, whichever is appropriate. Since there is generally no reason to

assume any particular order condition is more important than another, it is prudent to consider them



Table 1: General ARKN Coupling Conditions

Eqll. Type Gen Gen. Gen. Gen. ',_en.

of of

cond. Cond. 2-Trees 3-Trees 4-Trees 5-Trees N-Trees

IT I I Q I c, I o I o I o I o I
I I Q I 2 I o 112 12o I N(N-1) I

_(3) Q 4 15 36 70 N2(N q- 1)/2! -- N

'-t3) S_ 6 24 60 120 N 3 -- 2Y
'2

q = 3 1'3 39 90 190 N(_W -- 1)(3N q- 4)/2!

q _ 3 12 45 108 210 N(N -- 1)(3N q- 0)/2!

"1-(4) Q 6 27 70 345 _W2(N q- 1)(X q- 2;,/3! -- N

-9(4), ES_ 14 78 252 020 N 4 -- N

_(4) SQ 1,3 51 156 370 N3(N -I- 1)/2! -- N'3

_(4) SQ 14 78 252 020 N 4 -- N
'4

q = 4 44 234 730 1780 N(N -- 1)(16N 2 -- 22N q- 24)/3!

q _ 4 50 279 884 1990 N(N -- 1)(16N 2 -- 31N q- 42)/3!

_(5) Q 8 42 130 345 N2(Nq-1)(Nq-2)(N-t-3)/4!--N

ES_ 22 109 O3O 1870 N4(A r q- 1)/2! -- N

NL 18 132 540 1020 N3(N 2 q- 1)/2! -- N

ES_ 22 109 636 1870 N4(dN r q- 1)/2! -- N

SQ 14 87 310 870 -'V3(N -I- 1)(N + 2)/3! -- N

ES_ 3'3 240 1020 3120 N 5 -- N

ES_ 3'3 240 1020 3120 N 5 -- 2Y

, SQ 22 109 636 1870 N4(dN r q- 1)/2! -- N

__5) S_ 3'3 240 1020 3120 N 5 -- 2Y
'9

q = 5 196 1458 5960 17805 N(N -- 1)(125;523 -- 179N 2 q- 210N q- 210)/4!

q __ 5 252 1737 6804 19795 N(N -- 1)(125N 3 -- 243N 2 q- 334N -I- 384)/4!

_(0) Q 10 oo 220 025 N2(N + 1)(N + 2)(N + 3)(N + 4)/5! -- X
'1

v_ 0) ES_ 3,3 267 1276 4870 N4(N q- 1)11;52 + 2)/3! -- N

T (0) NL 38 402 2172 8120 N4(N 2 q- 1)/2! -- N

0) ES_ 34 321 1596 0620 N2(N(N q- 1)/2!) 2 NT

_(0),_ NL 40 483 2556 9870 NS(N q- 1)/2! -- N

0) ssq 30 207 1270 4870 __4(N + 1)(N + 2)/3! _VT

_(0) SQ 18 132 550 1745 N3(Nq-1)(i_rq-2)(Nq-3)/4!--N
'7

T (0) ESQ 40 483 2550 9870 N5(d_ r q- 1)/2! -- X

:0)T NL 62 726 4092 15620 N o -- N

T (0) ES_ 62 726 4092 15620 N o -- N
lO

T_ ) ES_ 40 483 2556 9870 NS(dNr + 1)/2, -- 2V

_) NL 38 402 2172 812o N4(N 2 + 1)/2! - N

T(0)13 ESQ 40 483 2556 9870 N5(d_ r q- 1)/2! -- N

T;: ) ESQ 40 483 2556 9870 N5(N+I)/2,--N

"10-(0) SQ 3'3 267 1276 4870 __4(N q- 1)1:252 q- 2:,/3! -- N

-!_) ssq 62 726 4092 15620 N O -- N

T_ ) ES_ 62 726 4092 15620 N o -- 2Y

_(0) ES_ 62 726 4092 15620 N o -- 2Y

£)
S_ 40 483 2556 9870 NS(A r q- 1)/2! -- N

'#_) _Q 02 72° 4092 15620 No_
' 2,3

q = 6 876 9372 50432 187280 2V(N -- 1)(1296N 4 q- 1936N 3 + 2296N 2 + 2376N q- 2400)/5!

q __ 6 1128 11109 57236 2,37075 N(N -- 1)(1296N 4 q- 2561_ 3 + 3511_V 2 + 4040N q- 4320)/5!



Table 2: ARKN Coupling Conditions with @] = b!"]

Eq .... f Type b! z_] = b! l-t]

•_ _2-Tr ee_

q=3

q=4

q_4

q--5

q_5

67

6)

6)

6)

6)

6)

6)

6)

6)

q=6

q_<O

Q

sQ

Q

ESQ

SQ

SQ

Q

ESQ

NL

ESQ

sQ

ESQ

ESQ

sQ

sQ

Q

ESQ

NL

ESQ

NL

ESQ

sQ

ESQ

NL

ESQ

ESQ

NL

ESQ

ESQ

sQ

ESQ

ESQ

ESQ

sQ

sQ

0 0 0 0

0 0 0 0

1 8 6 10 N(;V + 1)/2! -- ;V

2 6 12 20 N(N - 1)
8 9 18 80 3N(N -- 1)/2!

2 7 16 80 ;v(z,_ + 1)(N + 2)/8! -- N

6 24 60 120 273 -- N

4 18 86 70 N2(dV q- 1)/2: -- N

6 24 60 120 273 -- N

18 70 172 340

7921 190

31

156

132

156

76

252

252

156

252

3

10

8

10

6

14

14

10

14

370

65

370

320

370

170

620

620

370

620

12

51

42

51

27

78

78

51

78

N(_Y -- 1)(162% _ q- 22)/8!

N(_Y -- 1)(162% _ q- 31)/8!

N(N + 1)(N + 2)(N + 8)/4! -- N

N3(N+ 1)/2: - N

N2(N 2 + 1)/2! -- N

N3(_+ 1)/2: - N

N2(N+ 1)(N+ 2)/8! --N

N 4 -- N

N 4 -- N

N3(N+ 1)/2: -- N

N 4 -- N

89 468 1463 3525 N(N--1)(125N 2 + 179N+ 210)/4!

110 547 1658 8895 N(N-- 1)(125N 2 + 248N+ 384)/4!

52

316

540

396

636

316

136

18

87

132

105

159

87

42

121

870

1620

1120

1870

870

345

1870

3120

3120

1870

1620

1870

1870

870

3120

3120

3120

1870

3120

4

14

18

16

22

14

8

22

30

30

22

18

22

22

14

30

30

30

22

30

159

240

240

159

132

159

159

87

240

240

240

159

240

636

1020

1020

636

540

636

636

316

1020

1020

1020

636

1020

N(N q- 1)(N -}- 2)(N -}- 8)(N -}- 4)/5! -- N

dXTg(]v q- 1)(N -}- 2)/8! -- N

N8(N 2 + 1)/2! -- _

2Y(N(N -}- 1)/2!) 2 -- N

;v4(__ + 1)/2_ - N

N3(N -}- 1)(N -}- 2)/3! -- N

N2(N + 1)(__ + 2)(N + 3)/4! - _-

;v4(__ + 1)/2: - N

N 5 -- N

N 5 -- N

N4(__ + 1)/2! -- N

N8(N 2 + 1)/2! -- _

N4(__ + 1)/2_ -- N

N4(__ + 1)/2_ -- N

N8(N + 1)(N + 2)/8! -- N

N 5 -- N

N 5 -- N

N 5 -- N

N4(__ + 1)/2! -- N

N 5 -- N

N(N -- 1)(1296N 3 -}- 19362% _2 -}- 22962N" -}- 2876)/5!418 3084 12548 37376

828 3661 14201 41271 N(N -- 1)(1296N 3 + 2561N 2 + 35112N" + 4046)/5!



ffd M
Table 3: ARKN Coupling Conditions with q = ci

Eq .... f Type c[ _] = c[/_]

• . _2-Tree_s

Idl'l I

( 3 ]
r ' Q

t3 ]

r 2 ' S Q

q=3

(4)
r I q

(4) ssq
r 2

(4) SQ

rq 4 ] S Q
r 4

q=4

q<4 12

(0) q 0

o) ESQ 2

(0) NL 4
r 3

(0) SSQ 2

; ts) sq 2
0

(s) SSQ 6
r6 ,

r (0) ESQ G
7

r(5) sq 6
8 ,/

r_ o ) S Q 14

q:0 42

q<O 04

6) q 0

o) ssq 2

6) NL 4

<_ ssq 2

6) NL 6

<_ ssq 2

s ) s ,% 2

0) ssq 0

611 NL 14

_sq o

ESQ 0

NL 10

_sq c

_sq c

sq c

ESQ 14

ESQ 14

ESQ 14

s q 14

s ,@ 3o

q=6

q_<o

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 6 12 20 ;V(_V -- 1)

2 C 1-_ 20 ;V(_V -- 1)

0 0 0 0 0

2 6 12 20 ;V(_V -- 1)

2 C 1-_ 20 ;V(_V -- 1)

0 24 00 120 _hY3 -- N

10 36 84 160
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ffd b]Table 4: ARKN Coupling Conditions with @] = b!_] and ci = ci

Eqn. Type b! _j = b!/_]

cond. Cond. 12- Tr eeZa

Id2:'l Q I o
_(31 q o

_!31 sq o
q=3 0

T(4) q 0

r t4) ESQ 0

_!4) sq o

v_ 4) SQ 2

q=4 2
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5
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q=5 13
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=j.l
z3_q-reeZs

bP] _ bbl

j-I _ ji.l
Z4_Treel s

vPJ = d "1

: d.l
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o
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8
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o

o

15

o
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N 3 -- N

N 3 -- N

N 4 -- N



all. In certain special cases one may be able to rule out extended subquadrature, or nonlinear order

conditions based on the structure of the ODE at hand. To evaluate the value of the error estimate, one

may evaluate the quality parameters B (;+2), C (p+2), and E (;+2) using each T_q+l) from each elemental

o1" using every v_,_ 1)."method

All embedded schemes considered here are applied in local extrapolation mode. For a given order

of accuracy, one strives to minimize A (q+l). Based on experience with q = p + 1 ERK pairs, B(;+2),

C(p+2), and E(P+2) are ideally kept of order unity. Another term,

D = Max{ [_] [_] ibi^MI cM _ (,_j I,Ib_I, , _ j, 11)

is usually kept less than 20.

Because of the large number of order conditions associated with the embedded scheme of an ARKN

relative to any one of its elemental methods, we allow for the possibility that the order of the main and

embedded methods differ by more than one, as is customary. 66 A priori quality criteria for q = p + 2

pairs does not appear to have been derived in the context of first order ODEs.

2.1.4. Simplifying Assumptions

Butcher s , 27 row and column simplifying assumptions will be helpful in designing methods because

they can reduce and simplify the order conditions. By comparing tables 1 through 4, one quickly

surmises that higher order methods effectively require the use of the assumptions @] = b!jq = b_ and
e[_] [_]

i = c i = ci. Also, without identical root or canopy nodes, application of Butcher simplifying

assumptions would become very awkward; therefore, simplifying assumptions are considered in the

form

L q[_] q-x ci i= 1,...,_, q= 1,...,rl,C[4(r_,i): aq cj = --,
j=l q

_ b.c?- la!_ ] bq (1- cqpI4(_,j): _ _ _ = j), j= 1,...,_, q= 1,...,6
i=1

12)

18)

2.1.5. Stability

The linear stability function for N additive methods is considered using the equation

N

F(v) = _ A[_]v,
//=1

14)

from which it is determined that the stability function is 1°

P(z[1], z[2],..., z[N])
R(Z [1],Z[2],---, Z [N]) =

Q(z[1], z[:],--., z[N]) '

Det[I - _=12v (z[_]A[_]) -H _=IN (z[_]e @ B[_]T) ]

Det [I -- _=IN (z[']A['])]

where AM = "ij_["],b["] = bi[']

method is considered using

]_(2 '[1] ' 2 [2] '

18)

, 16)

, I = _:j, z ['] = A[']/_Xt, and e = {1, 1,--., 1}. Stability for the embedded

Det[I - _=l?q ( Z[l/] A[_]) @ _=IN (2[_]e @ B[_]T) ]

Det [I -- _=IN (z[_]A[l/])]

(17)

10



where1_["]= b["] For nonlinear stability, which we do not pursue, one may consider
z "

N

r(u) = (is)
.=1

Denningze-1 I e-1 e.l !-1}i._l , _2 , " z as the values of -["] at times tOO + ciAt, the Runge Kutta Kz " ' _i

function is given by

Det [I- _,=I;_T {Z["]A["]} + _,=I;_T {Z["]e C' b["]T}]
K(Z[ 1], Z [2], ... zFv]) = (19)

Det [I- Z.zlN {Z["]A["]}]

2.1.6. Conservation

Conservation of certain integrals or invariants may also be of interest in additive Runge Kutta

methods.& 2s Similar to the algebraic stability matrix, one may define

M!],.] 44 b] .hi [d [4 E,] (20)= oi aij + oj aji --b i bj .

ARKN methods conserve linear first integrals, in general, only if b["]_ - b[_] = 0, and conserve certain

quadratic first integrals, in general, only if b["]_- bl_] = 0 and M[] '_] = O, where i, j = 1, 2,--. ,8, p, # =

1, 2, - - -, N, p ¢ ¢. Conservation of cubic invariants with Runge Kutta methods is not possible, v' 2s, 36

2.1.7. Dense Output

The purpose of dense output 26' so has traditionally been to allow" high order interpolation of the

integration variables at any point, tOO + OAt, inside the current integration step where 0 < 0 < 1. It

may also be used, albeit more cautiously, for extrapolating integration variable values to enable better

stage value guesses when one or more of the elementM methods is implicit. 4°, 55 For an ARKN method,

it is accomplished as

N 8

.=1 i=1

p*

bTe"3(o)= Z bTJ"3°j,
j=l

bTe"l(o= 1)= (21)

where p* is the lowest order of the interpolan_ on the interval 0 < 0 < 1. By construction, b_["](0 =

0) = 0. Order conditions, at order m, for the dense output method are given by

.(_,_) 1 £ b.@(._) a0 _ (22)%b] = g i i,@q m!

Setting rn = q and 0 = 1, we retrieve (5). As with _he main and embedded formulae, one may write

terms like A *(p*+I) = A*@*+I)(0) to access the accuracy of the dense output method. When used as

an extrapolation device (0 > 1), the stability function R*(z[ 1], z[2], .-- , z[N], O) must be considered, 6

Det [I- _Y--I (z["]A["])+ _N (z[,]e@b,[,]T(o))]
R,(z[1],_[2],...,_jN],0) = , (23)

Det [I- _.=IN (z["]A["])]

where b*["] = b_ ["]. Throughout this paper, we will assume b*["],a = b_J_] = bij.*

11



3. Implicit-Explicit ARK2 Methods

Although one could consider a triple partitioning of the convection diffusion reaction equations by

using two explicit methods and one implicit method, the increase in coupling conditions from N = 2

to N = 3 as well as the complication to the stability function warrants the former. Simplifying

assumptions might facilitate solving extra order conditions, but at N = 3 more trees of similar error

result in higher principal error norms. Linear stability of the hybrid explicit method using a real axis

optimized method for diffusion and an imaginary axis optimized method for convection will have many

five and six node coupling tall trees with which to contend. The equations are therefore cast in the
form

dU
- Gs + G, (24)

dt

where Fx,s represents the non stiff terms and F_ represents the stiff terms, and we consider implicit
explicit ARK2 methods. ERK methods are used to integrate the non stiff terms. Stiff terms are treated
with ESDIRK methods}' 32, 42, 43 Coefficients for the ERK and ESDIRK methods will be distinguished

by ale ] and a[{ ] respectively. ESDIRKs offer the advantages of allowing L stability, stiff accuracy, and a
zj z3

stage order of two. They differ from the more traditional SDIRK 1' 2r methods by having an explicit first

stage. A consequence of allowing a stage order of two is that algebraic stability becomes impossible. 64

As we will always invoke blEl = blI] = bi: [)IEl = 1)l1] = bi and elEl = el z] = ci in this paper, their

superscripts are henceforth superfluous. In general, an ERK method has s(s + 1)/2 degrees of fl'eedom
(DOE) available to satisfy all order and any other conditions, where _ is the number of stages. An

ESDIRK has (s 2 + s + 2)/2 available DOE. Combining the two into an ARK2 scheme, if each bi and

each ci are made equal, (2s - 1) DOF are lost, leaving (s 2 - s + 2) DOF. A further assumption of

a!I]j = bj, the stiffly accurate assumption, reduces this to (J - 2s + 2) and facilitates L stability as

well as forces the stiff part of U("+1) to be computed implicitly. It is particularly useful in cases of

singular perturbation type problems and, when combined with I stability, generally tolerates stiffness
better than non stiffly accurate L stable methods. Incorporating stiff accuracy and a stage order of 2
into all of the ESDIRKs, 42 the IMEX ARK2 methods then take the form

o
27

C3

C_--1

1

o o 0
2")' 0 0

1 1 o

bl b2 /)3
bl

0 --

0 --

o

'.. ".

''. 0

a[E]
s,s-1

where 7 = a[/] i
zz '

section 2.1.1.

b2 b3 "-- b_-i

= 2,3,-.-,s and should

o

27

C3

Cs--1

1

o 0 0 0 --- 0

7 7 0 0 --- 0

C] 0
• . . . .

". ". ". 0

bl b_ b3 --- b._-i 7
bl b2 be --- b_-i 7

bl b2 be --- b_-i b_,

not be confused with the density of an N tree, 7, discussed in

To identify the schemes derived in this paper, a nomenclature similar to that originally devised

by Dormand and Prince is followed. 41 Schemes will be named ARKq(p)sS[q_o]X, where q is the order

of the main method, p is the order of the embedded method, s is the number of stages, S is some

stability characterization of the method, q_o is the stage order of the implicit method, and X is used

for any other important characteristic of the method. For S, we use L to denote an L stable ARK2.

Distinguishing between L stable methods that are or are not stiffly accurate is important; hence, we

use X as SA to denote stiffly accurate.

3.1 Design

12



3.1.1 Accuracy

BothERK andESDIRKmethodsaresubjectto the {1, 1,2,4,9,20}orderconditionsfor orders
{1,2,3,4,5,6}. Theseorderconditionsarelistedup to sixthorderfor 1treesandfifth orderfor gen
eral 2trees in appendixA. With the assumptionsb!I] = b!E] = bi and c!z] = c!E] = ci, there are

{0,0,0, 2, 13,63} coupling conditions at the same orders (see section II.1526). At fourth and fifth

order, these coupling order conditions are shown as bicolored trees in figure 1.

4dqqJ 

Figure 1: Fourth and fifth order bicolored coupling conditions for" blI]= blE] and clI]= cl El.

Further reduction of the number and complexity of order conditions is possible by using Butcher

simplifying assumptions. Unfortunately, they may conflict with one another. For instance, applying

assumptions D[E](1,j) and D[I](1,j) gives rise to two inconsistent equations at j = 8,

b_7 = b_(1-c_), 0 = b_(1-c_).

This implies that either b_ = 0, c_ = 1, or % = 1 - V. The first is unacceptable while the remaining

two are contradictory; hence, the column simplifying assumption can only be applied to one of the

methods. In conjunction with the stiffly accurate assumption that forces c_ = 1, it may only be used

on the ERR. We avoid the option of setting both a[_ and a [I]_to zero because of the complication that

will arise in enforcing L stability and the possibility of explicitly computed stage values. Additional

interscheme conflict occurs upon imposition of C[E](3, i) and C[I](3, i). A stage order of two on the

stiffly accurate ESDIRK is imposed by enforcing C[I](2, i) = 0 for i = 2, ..., (8- 1). A stage order of

a[I]c _ - c_/3 = 473/3 ¢ 0. Reducing thethree is impossible because of the second stage where _j=l 2j
truncation error of the second stage is clearly facilitated by smaller values of 7.

3.1.2 Stability

Linear stability for an ERK ESDIRK ARK2 method with b!I] = b!E] = b is analyzed using the

stability function m

/_(z[E] z[i] ) = Det [I-z[E]A [E] -z[I]A [I]+ (z [E] +z[I])e_ b r] _ p(z[E],z[I]) (26)
Det [I- z[I]A[I]] Q(z[z]) ' "

13



where

}
{:0

s-1

i:1 ((8 - 1)-

(27)

(28)

To recover the ERK method only, Pij = Poj and qi = 0. The ESDIRK is retrieved with Pij = Pio.

Both the ARK2 and ESDIRK methods share the same qi coefficients. In all cases P00 = 1. A total of

(8 - 1)(8 - 2)/2 of the p_j coefficients are coupling stability terms. For an ESDIRK to be L stable, it

is required that 7 > 0 so that the stability function remains analytic in the complex left haKplane,

the method must be I stable, and P_,0 = P_-l,0 = 0 so that the stability function vanishes as z [I] tends

toward infinity. I stability of the ESDIRK method is determined using the E polynomial 27 given by

= O(+iy)O(-iy)- =  E29 j,
j=0

(29)

where i = x/7] - and P(--iy) is composed of only the pio terms. Imaginary axis (I )stability requires

that E(y) _> 0 for all real values of y. It is sufficient but not necessary to have all E2j _> 0. An L stable

ESDIRK will have E2_ = 0. An order q ESDIRK will have E2j = 0 for 2j _< q.

Above and beyond L stability of the ESDIRK method, it may be useful to control the damping

of the large scaled eigenvalues, z[I], at intermediate stages. 69 The internal stability function at the

n th stage may be constructed for DIRK type methods by using portions of _he a!9 matrix. Denoting
[I] .

a[(]_3' i,, j = 1, 2,--, -, n as A and a_5,3 = 1., 2,--- , n as Bj, the internal stability function is given by

__ int k* ] (30)

Det [27 - z[I]A[I]] O(_) ( _[I]_ '
"_int k* J

where 27 is the (n × n) identity matrix, and g is the one vector of length _. Our concern will be the
= r)('0value of R}n_t)( -°c)' P(rZ)int is, in general, a polynomial of degree n- 1 in z [z] because A_j gj while "_int

is, in general, of degree n. Consequently, SDIRKs have _mtR!_0(-oc) = 0. ESDIRKs, with O(_)_intreduced

to degree 1 because = 0, do generallysatisfy 0
In terms of step wise stability, choosing the stiffly accurate assumption forces P_,0 = 0. Placing

a_ = 0 forces P_-l,0 = 0 bu_ sacrifices (8 - 1) DOF and the possibility of higher stage order. A

consequence of setting a_ = 0, what effectively distinguishes the ESDIRK from the SDIRK, is that it

forces q_ = 0. Achieving an L acceptable stability function for the ARK2,

1-]-"''-]-{jOs_I,IZ[E]-] - Ps--l,0} (2[I])s--1 + _,_,0 (Z[I]) _

R(zez], z[I]) =
1 +--. + (-7) +-_ (z[I]) +-_ (31)

and not just the ESDIRK, is now" more complicated because of Pa-l,1. In both the ESDIRK and

IMEX ARK2 cases, P_,0 and P_-_,0 must vanish for L stability, but the IMEX scheme must also satisfy

p___,_ = 0. Several of the methods given by Ascher et al. _ and Griepentrog _9 do not account for this

and consequently have R(z [_], -_c) depending linearly on z [_]. Similar comments apply to i6_j and

Pij* = _*=_ PiS_*Oh, the coefficients of the P polynomials for the embedded and dense output formulae.

14



A benefitof a zerocolumnin a[{] i = 1 for an additive method is that on problems such as Kreiss's
*3 '

problem,13, 2r which may act like an index 2 differential algebraic equation, she initial value of the

algebraic variable is not propagated along with the solution, as Ascher et al. 5 and Calvo et al. 1° both

choose a!_ ] = bj as well as zero padded SDIRKs (a_9 = 0) and consequently their methods perform

relatively well on Kreiss's problem.

3.1.3 Conservation

As the scheme weights, hi, for the current ERK and ESDIRK methods are the same, linear first

integrals will be conserved. Certain quadratic first integrals will, however, only be conserved if linear

first integrals are conserved and

M!E 'z] = b.a!{ ] + b.a[ff ] - b;bj = O, (32)
zd z *d d dz

vanishes. We will adopt the point of view" that although none of the methods will make this vanish,

minimizing the magnitude of this matrix,

should enhance conservation characteristics.

3.2 Implementation

3.2.1 Stage Values

Using the definitions Fx!_) = _,_ (u(J),t( _0 q-cjAt) and F (j) = F_ (U(J),t( _0 q-cjz_Xt), one must

Solve

i-1

: + x(O+ (at) F o, 2, x(o : ( t)E I lr(J)n + (34),
j=l

where X(0 is explicitly computed from existing data. Combining this with an appropriate starting

guess, a modified 23' 33, 5s, 6o Newton iteration provides U(0 and F (0. In cases where direct methods

are appropriate, this is accomplished by solving

(I _- _/

where the subscript k denotes the value on the k th iteration, M = [I-7(At)(OF_/OU)I_] is the iteration

and d(0 = (U(0 - U_ ;)) is the displacement. On the k th iteration one hasmatrix,

B/id_i) = T_ i), t_k+lIT(i) = '_k'[(i) @ ]_/-1 .(i)k, (36)

where r.(0 is the residual. The iteration is terminated when either d_ ':) (displacement test) or @)

(residual test) are sufficiently smM1, gin' 65

_) 2 c_ 0.005,Tresidual = C¢ < 7' , or, "/'displacement = C(Y < d i)

where ¢ is the integration error tolerance and c is the tolerance ratio. F_!_) may then be computed using

u(i). inexact14, 15, 30, 40, 47, 53 New'ton methods may be more appropriate for larger systems of coupled

equations.
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3.2.2 Stage-Value Predictors

Stagevalueiterationconvergenceratesmaybe substantiallyimprovedand convergencefailures
maybeminimizedby choosinga goodstartingguess.Themostprimitiveapproachto obtaininga
guessfor the integrationvariablesat thenextstageis to usethemostrecentstagevalues;thetrivial
guess.An oftentimesbetterway to obtainstagevaluestartingguessesis by usinga denseoutput
formula.27,32,49,55Secondandlater stepsmayusethefunctionevaluationsfromthepreviousstepto
extrapolateinto thecurrentstep.Stagevalueguessesfor the i th stage of the step n + 1 are obtained

using function evaluations from step n as

8

0(_)< + 0,/,t) = 0(_)+ (at)E b;(0_)(r2)+ _?)), (37)
j=l

_ (At) (_+1)

0; = 1+ rci, r (At)00 (38)

Shortcomings of this approach include order o_accuracy reduction when an interpolation formula is

used in extrapolation mode and the introduction of instabilities into the extrapolated guess. As is

sometimes done with the implicit error control estimate when substantial stiffness is present, one

may wish to smooth the predicted stage value by multiplying it by the iteration matrix. 32' 59 More

sophisticated predictors have been derived for DIRK methods. 2v, 44, 56 V_Tedo not consider these, in

part, because computer memory management may become a problem. To conserve memory usage

during extrapolation, all s stages may be estimated at the beginning of the step and function values

might then be overwritten by stage value guesses, one equation at a time. For large r', the trivial guess

may be more prudent.

3.2.3. Error and Step-Size Control

Step size control is a means by which accuracy, iteration, and to a lesser extent stability are con

trolled. The choice of the (At) may be chosen from many criteria, among those are the (At) from the

accuracy based step controller, the (At)invi_id and (At),i ..... associated with the inviscid and viscous

stability limits of the ERK, and the (At)itCr associated with iteration convergence. 23 If error control

reliability is sufficient, CFL numbers may be removed as their function would be superfluous. For

q = p + 1 pairs, one could consider timestep control of the IMEX schemes using I , PI , PID , or
PC controllers 2°' 21, 22, 03

(_¢)_+_) = _(_t)(_) i1_(_1)11_' , (39)
0.4

_/PID = t_(/Xt) (n) i i (_(r_q_l) i i co, _ i i_(n_l) i ic_ (41)

I
with t; _ 0.9, ¢ is a user specified tolerance, and p is the order ofaccuracy of the embedded method.

The I , PI , and PID controllers are appropriate to explicit methods. Implicit methods use either I or

16



PC controllers.A PID controllerisconsideredbecausemanystabilityoptimizedERKmethodsareSC
unstablewith aPI controllerfor eigenvaluesontherealaxis.41Its characteristicrootsarethoseofthe
equation_3+(p(__1)_2_pfl£+P7 = 0. Individualcontrollergainsare obtained via h'i = p(ee-/3 + 7),

l;'p = p(fi - 27) , and kD = P7. One may wish to keep controller gains fixed, independent of stepsize

changes. This may be done by preselecting gains, then using c6_ = _(Ae),__I and

pc_ = k1 +/_'p + \ 1 + a&/ ( 2_'2 kD. (43)

In the present context, we have selected k'i = 0.25,/_'p = 0.14, h'D = 0.10, or _ = 0.49/p, fl = 0.34/p,

7 = 0.10/p when a& = 1, giving characteristic roots of {-0.518, 0.247, 0.781}. The controller is SC

stable at all stability boundary points of the ERK in the complex left hal_plane for each of the three

proposed methods. Inclusion of second derivative gain, a PIDD 2 controller, was not found to enhance

control. The term (5(_+1) is given as either

(5(r_q-1) __-- U(r_q-1)_ /_(nq-1), (5(n+l) __- 2],//--1 (W(n--1)_ _(n+l)) , (44)

depending on whether sufficient stiffness is present to require smoothing. 32' 59 Both approaches may not

behave well if substantial order reduction occurs due to extreme stiffness because, at a minimum, p no

longer reflects the actual order of the embedded method. Stability based time step limits involving the

inviscid and viscous CFL numbers are given by (L_t)invisci d _ A(A2_')/(u@a) and (At)vi ..... _ A_(Ax)2/u

where a is the local speed of sound, u is the magnitude of local fluid convection speed, and u is an

appropriate diffusivity of either mass, momentum, or energy. 41 For implicit explicit methods, we select

(/_t) (rzq-1) = Min {(/_t)!;._r+ol)(/_)inviscid, (At)vi ..... , (A_)iteration} • (48)

It remains to be determined which controller(s) are best suited to IMEX methods. In cases where

q = p + 2, we follow Tsitouras and Papakostas °6 and consider a modified I controller, but not the PI ,

PID , and PC controllers. In this case

{ }p+l <4G)(/_/,)_rzq-1) g(/._Xt) (n) f2(At)l]-(>+ll I_ ,

where f2 _ 10 is experimentally optimized.

4. Third-Order Methods

A third order, 3(2) pair, ARK2 scheme is designed in four stages using b!I]= b(E]_, c!I]= c!E], and

simplifying assumption C[_](2, i). Stiff accuracy and a stage order of two are incorporated into the

four stage ESDIRK method. The main method is obtained by solving for the s2 _ 2_ + 2 = 10 DOF

(s = 4) using

r_ _)=0, h'= 1,2,3, P30=P31 =0, c3=3/5, (47)
= c /2, i= 2,3,[E]7-_8) = 0, [E]_I)_4) 1/35, 2j=1 z3 3

with c3 and [E]_4) being used for optimization. Total fourth order principal error is A (4) = 0.07217.

Linear stability of the ERK is given by (A, A,) = (1.24, 0.92). Solving p30 for 7 results in a cubic
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equation,673- 1872+ 97 - 1 = O,havingthreeroots.
0.435866521508458999416019.An embeddedmethodis foundbyenforcing

Onlyoneof thesegivesI stability,_/

= o, = 1,2, 240= o, P30= -3q3/40. (48)

, 2 , j
Second order dense output is achieved by solving for b i = _j=l bijO using

2

T; (/Q = 0, /;' = 1,2, E b_j = 64, i)40" = /)312" = 0. (49)

j=l

Its properties are summarized in table 5. Coefficients of the scheme, ARK3(2)4L[2]SA, are given in

Table 5: ARKa(2)4L[2]SA Dense Output Method

Property

A*(3)(O)
A*(4)(0)

R*(z[E],-oc, 0)

0=1 0=2 0=3 0=4 0=5

0 1.098 4.809 12.87 27.02

0.07217 2.280 14.18 48.23 121.9

0 5.789 18.37 37.74 63.89

appendix D. Characteristics of the method are listed in appendices B and C.

5. Fourth-Order Methods

A five stage ARK2 method using a stiffly accurate, L stable, stage order 2, ESDIRK method must

satisfy 2474- 9673 + 7272 - 167 + 1 = O. Of the four roots to this equation, only one leads to an L stable

method resulting in c2 = 27 _ 1.14563212496426971081600277. Further, the minimum principal error

associated with the two free parameter family of five stage, fourth order, stage order 2, stiffly accurate,

L stable ESDIRKs is A(5) = 0.03855, approximately 15 times greater than SDIRK4. 2r In spite of these

shortcomings, one may construct a fourth order, 4(2), ARK2 pair using identical root and canopy nodes

as well as row simplifying assumption C{I](2, i). With 17 main and 5 embedded available DOE, one

may solve

r_)=0, k=1,2,3,4, E;=la!Slcj=cy/2, i=2,3,4,

. 1/4!,/)40 = /)41 = [E]T' 3) = [E]7-(4)2,3,4 = [I] 4) = 0, _i,j=l °iaij aij ck =

c3=50/100, c4=95/100, ÷_)=0, k= 1,2, ÷_3)=p50=0, P40=-q4/10,

(50)

and obtain a leading order principal error norm of A(5) = 0.07664. Linear stability limits for the explicit

method, in terms of the inviscid and viscous CFL numbers, are (),,)'v) = (1.38, 0.67).

For the design of a fourth order, 4(3), ARK2 pair, we again use the simplifying assumptions blq =

blE] and cl I] = cl f]. Only stiffly accurate, stage order 2, ESDIRK methods are employed. Using six

stages permits _2 _ 2_ + 2 = 26 DOF (_ = 6). The value of "_ must be

0.2479946362127474551679910 _ 7_ 0.6760423932262813288723863, (51)

for I stability. 2r Besides facilitating better iterative convergence of the modified Newton method, smaller

values of 7 tend to result in lower truncation error in the implicit method. For simplicity, we use
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7 = 1/4. With assumptionsC[I](2, i) and C[E](2, i), ARK4(3)6L[2]SA satisfies

=0, k=1,2,3,4, 23:la!_]cj=c_/2, i=2,3,4,5, E;:la!_]cj=c_/2, i=3,4,5,6

= r(3 = r_ = _ b.a [I] _ b.a[E]=O,b 2 z P5o = P51 [E] 4) [/] 4) Zi=I _ i2 = Zi=I z i2

c 3 = 332/1000, c 4 z 62/100, c 5 = 85/100, 7---- 1/4,

E_I_I_)=1/sooo, E_I_/= 1/135, E_1_/= 1/1250,

(52)

where A(5) = 0.01224 and ()_,)_) = (2.01, 1.06). The embedded method for this scheme is found by

solving

_) = o, _.= 1,2,3, _ = P_0= o, P_o= -3_/20. (53)

Dense output may be approached by either maximizing accuracy or stability. If the method is to be

used for interpolation, _hen a third order method is appropriate. For extrapolation, stability is more

important and a second order method is constructed. Third order dense, or continuous, output is
, 3 , j

achieved by solving for b i = _j=l bijO with

r[ (_) ......0, k 1,2,3, b_ P;0 0, P513" -3q5, P5o2" -3q5, _j=13 b*6j = b6. (54)

Second order dense output is achieved with p* = 2 by solving

_-_(_) 0,/_. 1, 2, b_ p;0 p;_ p;o2 0, 2 , (55)...... _5=1 b6j = b6.

Properties of these two methods are given in table 6. Characteristics and coefficients of _he scheme

Table 6: ARK4(3)6L[2]SA Dense Output Method

Property
2 nd - Order

A*(_)(O)
A*(4)(0)

R*(z[E], -_c, 0)
_rd __ Order

_4"(4) (O)

A*(_)(0)
R*(z[E], -_c, 0)

0=1 0=2 0=3 0=4 0=5

0

0.01224

0

1.106

2.459

1

2.206

3.852

5.049

14.79

2

12.86

30.61

13.56

49.52

3

42.48

132.1

21.2 10.4 z[E] 92.6 49.1 z[ E] 242 134 z[E]

28.38

124.1

4

106.5

410.2

499 284 z[ E]

ARK4(3)6L[2]SA are given in appendices B, C, and D.

6. Fifth-Order Methods

In principle, one may construct a fifth order ARK2 method in seven stages using simplifying as

sumptions bl '] = b[E]_, el '] = c[E]_, C[_](2, i), D[_](1,j), and C['](2, i). L stable methods require _hat

0.1839146536751751632321436 _< q' _< 0.3341423670680504359540301. (56)
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With the 37DOFavailable,minimally,thefollowing33equationsmustbesolved

7-}_)= o, a.= 1,2,... 5, E_=l b_a!_1= %(1- _j), j = 2, 3,..., 6,
' U

2;=_!5]_;= 4/2, _= 2,3,...,6, 2;=_a!_]_;= 4/2, _= 3,4,...,6,
b2= >o = >_ E_]7-}_)[,]7-_4)[117-(5)_ 1E_ __['UG2_ _/5!= o,

= = = 4,5,8- 2 i,j=l * ij jk k

ba [1] _ bca [E] _ bca [z] _ ba[Z]a [E] _ ba[1]a [1]Ei=l _ 2:2 =Z_:=1 _ , i2 =Zi=I _ _ i2 =Ei,;=l _ i; ;2 =E_:,;=I _ ij ;2 =0'

(5r)

To solve this system of equations, one must solve for at least one abscissa directly. Given the size of
_ . [1] [1]

the system, it is more fruitful to temporarily ignore Zi=_ bicia!Z2] = 0 and Zi,j=l °iaij aj2 = 0, include

[Qr_06) = 0, specify c3, c4, c5, and c6, and investigate if the scheme merits further effort. With these

changes, both implicit and explicit methods are fifth order but the coupling method is only fourth order.

We have been unable _o find any promising solutions to this method.

Adding a stage, we now consider an eight stage 5(4) pair. Eight stages permit s 2 -2s + 2 = 50 DOF

in the main method and 8 in the embedded method. The primary difficulty in designing a 5(4) pair is

reducing the number of embedded order conditions while simultaneously keeping _he implicit portion L

stable and keeping the tall trees of the explicit method well placed. We select simplifying assumptions

b!I] = b!Q, c!I] = c!El, C[1](3, i), D[Q(1,j), and C[Q(2, i). In addition, we set the lower elenxents

within the second column of each a_j matrix to zero. ARK5(4)SL[2]SA is constructed according to the

following conditions

2;=_41_;=4/2, _= 2,3,...,r, 2;=_!_1_;=4/2, ,_=3,4,...,7,
2;=_-_;_I'1_2= 4/3, i =3,4,...,r,,; _!_1= o, i=4,5,...,r, _!fl=0, i=4,5,...,s,

b_. = b3 = PTo = P71 = [E]7-(5) = [117-(5)5= _i=ls bia[I]i3= 7_i,j=lla ba[I]a[E]c2zij jk k -- 1/5! = 0,

÷}_)= 0, _.= _,2,..., 4, [,2= _ = _so= _4) = o, _0/q_ = _/5,
%=92/100, cB=24/100, cv= 60/100, 7=41/200, a_ ] =-1/8, a [_]rB=-1/8,

(5s)

where A(6) = 0.006988 but (A, A_) = (0.43, 0.96). Better 5(4) pairs probably require nine stages.

A fourth order dense output formula is not possible. Third order continuous output, however, is
, 3 , j

achieved by solving for b i = _j=l bijO with

b,c/y-1 , , , 3 ,
_i=1 * z ........ 1/k!, k 1,2,3, b_ b; Ps0 Pw P}03 Pr02 O, _j=_ bsj = bs. (59)

For ARK5(4)aL[2]SA, the dense output method is characterized in table 7. Coefficients of the scheme

Table 7: ARK5(4)SL[2]SA Dense Output Method

Property 0= 1 0= 2 0=3 0=4 0=5

A*(4)(0) 0 0.295 4.434 21.01 63.59

A*(5)(O) 0 1.581 21.03 107.8 361.2

R*(z[_],-oc, 0) 0 1 2 3 4

ARKS(4)aL[2]SA are given in appendix D while method properties are given in appendices B and C.

7. Test Problems
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TotesttheIMEXARK2methodsthat havejust beenpresented,fourseparatetestproblemshaving
adjustablestiffnessareconsidered.Ultimately,all equationsaresingularperturbationproblems25'73
andeachmaybeevaluatedwitheitherunperturbedor themoretroublesomeperturbedinitial conditions.27

7.1. Kap's Problem

DekkerandVerwer13investigatea nonlinearproblem(experiment7.5.2)originallygivenby Kaps,

, =- c -1 2'tx '_l(t) (C -1 -H 2) yl(t)-H - Y2( ) Y2(t) ---- Yl(t) -- Y2(_) -- y2(t), (Go)

where 0 < t < 1 and whose exact solution is yl(t) = yg(t), y2(t) = exp(-t). Equilibrium (unper

turbed) initial conditions are given by yl(0) = y2(0) = 1. The equations exhibit increasing stiffness as

e --+ 0 and, in the limit of c = 0, the system becomes an index 1 differential algebraic equation system.

This may be easily seen by multiplying the first equation by c to obtain c_h (t) = - (1 - 2£)Yl (t)q-y2 2 (t).

Upon setting e = 0, it reduces to the algebraic equation yl(t) = y_(t). In an IMEX formulation, terms

multiplied by G-1 are integrated implicitly while all other terms are integrated explicitly.

7.2. Van der Pol's Equation

Van der Pol's (vdP) equation is an equation describing nonlinear oscillations where the solutions are

damped (amplified) for large (small) values of $1,26' 2r

_)l(t) ---- l/2(t), ])2(t) ---- C -1 ((1- yl(/_)2)y2(t)- yl(t)) . (G1)

Unperturbed initial conditions are given by yl(0) = 2, y2(0) = -0.6666654321121172. For partitioned

integration, the first equation is integrated explicitly while the second is integrated implicitly. Van der

Pol's equation develops a very challenging boundary layer at time T _ 0.8 based on these initial

conditions. Two test cases are chosen involving different time intervals: 1) 0 _< t _< 0.5 and 2)

0 _< t _< 1.5. The first is used to study order reduction while the second tests the error prediction

capabilities of the schemes and of the robustness of the error controllers.

7.3. Pareschi and Russo's Problem

Pareshi and Russo 51 have constructed a simple test equation which contains both stiff and nonstiff

terms,

yl(t) ---- --y2(t), y2(_) ---- yl(t) q-£-1 (sin(_]l(t)) -- y2(t)) • (G2)

Partitioning for an IMEX scheme, terms multiplied by s -1 are integrated with the implicit method

while other terms are integrated explicitly. Initial conditions may be considered in two different forms.

Equilibrium initial conditions remove any contribution of the stiff term in the initial conditions. This

is accomplished with yl(0) = 7r/2, y2(0) = 1. Nonequilibrium, or perturbed data is specified by

replacing the condition on Y2 with y2(0) = 1/2.

7.4. One-Dimensional Convection-Diffusion-Reaction Problem

A simplified one dimensional version of the gas phase, multicomponent, compressible Navier Stokes
equations with chemical reaction is _ested. The simplification assumes no bulk viscosity, no thermM
diffusion or its cross effect, no spatial gradients of _he transport coefficients (p, ;_, pDi), no barodiffusion,
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ordinary diffusion is representable by an effective Fickian diffusion coefficient, and no body forces are
present. With these assumptions, one nmst solve the system

[]Ot pc0 Oz (pco + p) u
pY_ pu }q

+

0

41_ 02u
g Oz 2

O2T 4_'O2_ (57) + 570(_i=1 Dh o_q_
D °25q

[0]0

+ 0

&i

(6a)

where the three righthand side terms are Fc, FD, and FI_ with the subscripts C, D, and R denoting

convection, diffusion, and reaction, respectively. Also, u is the fluid velocity, T is the temperature,

]q are the species mass fraction, i is the species index that runs fi'om 1 to ncs (number of chemicM

species), p is the fluid density, p is the pressure, t is time, x is the spatial direction, e0 is the total

specific internal energy, # is the molecular viscosity, A is the thermM conductivity, Di is the effective

Fickian diffusion coefficient, hi is the partial specific enthalpy of species i, and &i is the reaction rate

of species i. We consider the reaction rate only in modified Arrhenius form without pressure correction

terms. Supplementary relations that are needed to solve this system are given by

-1ncs

_ p= .RT = pR°T/W, , (65)
i=1

kfk = A_:Tflk exp _d_ ,

ncs /_7 ncs
_o= _/2 - p/. + Z h;_, h; = h° + %/T, _; = t_;- R°r/W. % = Z %;_, (G4)

i=1 Cf i=1

ne_ _/W;)=1, W= (____1} cp-c_=R=R°/W,

( nc/___ /gY/

nc8 //prod 1
j=l k ]¢rj ] 95/_ , (67)

];'rk = ]g'fk //;'eqk,

a_ = 14%_t_,_ -'_,_ ) /_'f_

where //prod react
i,_ are the stoichiometric coefficients for the products,//,:,_ are the stoichiometric coefficients

for the reactants, _ll,a, are the third body efficiencies for the reactants, c_ is the third body efficiency

exponent, W is the average molecular weight, 14;; is the average molecular weight of species i, A_ is the

temperature prefactor for reaction h',/3_ is the temperature exponent for reaction h', E_ is the activation

energy for reaction _', R is the gas constant, R ° is the universal gas constant, c>i is the partial specific

heat capacity at constant pressure, ei is the partial specific internal energy, /% is the forward specific

reaction rate constant of reaction/% _'1._ is the reverse specific reaction rate constant of reaction/% /_'eq_

is the equilibrium constant of reaction/% h ° is the reference partial specific enthalpy of species i, and

ncr is the number of chemicM reaction steps.

This constitutes (ncs+2)*(nx) equations that must be solved where nx is the number of grid points.

In this work both convection and diffusion are deemed non stiff, G_ = Fc. + FD, and are integrated

using the ERK method while reaction terms are treated as stiff, F_ = Fa and are integrated using the

ESDIRK method. To solve this system, a Jacobian of the stiff function with respect to the integration

variables is needed. This may be done numerically or analytically. It is useful to recast the Jacobian

OF_ OF_ _)V

OU OV OU '

as

(0s)

, . y_ Twhere U = {p,_, _o, p_5,p_ ", pY(.c_-_t}T, V = {_,u, T, _, _%,-- , (nc_-_/}'
F s = {0,0,0,&l,&2,--",&(ncs-1)} T.
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Forthepurposesof this testproblem,five speciesareincluded:H2,02, OH,H20, andN2. U T

is then {p, pu, peO, p}_H_,p_,p}_OH_,pYH_O}. Wherever possible, an attempt is made to match the

thermophysical properties of these molecules. A two step reaction mechanism is employed having one

reversible and one irreversible step

;_1 21H --+H2 + 02 - 2OH, 2 + OH _.3H20, (69)
,_2

where kl = ]_'2>> ]_'3. Values of specific reaction rate constants, /_'i, used in this test problem are not

those of the supplementary relations above but have fixed A_T _k and activation energy. In this way, one

may simply adjust stiffness via the ratio L'2//_'3, yet retain temperature dependence for the purposes

of ignition. A parametric study identified the maximum stiffness (/_'2//;'3) for which the convection

diffusion reaction system is stable with explicit time advancement. This value of/_'2/h3 is defined as a

stiffness of G = 10 °. A stiffness of 10 _: implies that G-1 = _'2//_'3 is 10 _ times larger than its baseline

stiffness value. Two levels of heat release were used in the study. The isoenthalpic case assumed that

the enthalpy of formation of all the species was identical. The exothermic case assumed H2, 02, N2

and OH to be identical, but H20 was adjusted to yield approximately realistic flame temperatures for

a hydrogen air system. Derivatives are evaluated using sixth order explicit stencils on a grid having

401 points. Approximately 20 grid points are contained within one shock thickness. Spatial boundary

conditions for the integration variables were specified using supersonic Euler conditions at the inflow"

and extrapolation conditions at the outflow. As gradients of flow" variables were extremely small at the

boundaries, specification error of conditions was deemed negligible.

Initial condition for the hydrodynamic variables, {p, _t,T}, are specified by using a precompnted

normal shock profile of air travelling at Mach 5. Each variable is nondimensionalized by its upstream

value and integration is performed on the vector U = {p, pu, peo, p}q}. The nonequilibrium aspect of

the initial condition consists of specifying a constant spatial distribution for species mass fractions.

Stoichiometric reactant mass fractions are used. Initial values for reaction products are zero. Upon

starting the simulation, isoenthalpic or exothermic chemical reactions are abruptly activated. Inte

grating the reacting shock wave through the spatial domain ten times with this species profile rapidly

results in a consumption of 02 and H2 behind the shock wave, an increase in H20 behind the shock

wave, and a small region of high OH concentration just behind the shock wave. This new profile for

all integration variables is the equilibrium profile. Although testing integration methods with nonequi

librium initial conditions may seem somewhat contrived, fluid dynamicists rarely know" their initial

condition exactly. Oftentimes, the initial condition amounts to an educated guess, particularly inside

a flanle.

8. Discussion

Implicit explicit, additive Runge Kutta methods from third to fiRh order are presented that allow"

for integration of stiff terms by an L stable, stiffly accurate, stage order two, ESDIRK method while

the nonstiff terms are integrated with a traditional ERK. Satisfied order conditions expressing splitting

error are of equal order to those of the two elemental methods. Both the ESDIRK and ARK2 methods

have vanishing stability functions for very large values of the stiff scaled eigenvalue, z [I] _ -oc. Error

control using a PID controller and dense output for interpolation and extrapolation are also provided

for the new methods, unlike most existing methods. All constructed methods retain high stability

efficiency in the absence of stiffness, z{I] --+ 0. Each has been optimized to minimize the leading order

ARK2 error terms, minimize the size of the Butcher coefficients, maximize the stability envelope of the

ERK, and maximize the conservation properties with respect to first integrals. The methods permit
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partitioningoftheODEsystembyterm,gridpoint,orequation.Numericaltestsofthenew"schemesare
conductedona chemicalreactioninducingpropagatingshockwaveandthreetwoequationsingularly
perturbedinitial valueproblems.Theperformanceof thesemethodsarecomparedto manyexisting
ARK2methods:the (1,2,1),(2,2,2),(2,3,2),(2,3,31), (3,4,3),and (4,4,3)methodsof Ascheret al.,5
LIRK3 and LIRK4 due to Calvo et al., 1° a five stage, 3(2) pair of Fritzen and Wittekindt (FW53), _7

ASIRK 3A from Shen and Zhong, 61 the LSSIRK 3A and LSSIRK 4A methods of Yoh and Zhong, 75 and

ASIRK 3A by Zhong _7 as well as the SBDF methods of Ascher et al. 4 Tests are conducted to determine

stiffness leakage, efficiency, order reduction, error control quality, and dense output performance. No

attempt is made to assess conservation properties. Characteristics of the various ARK2 are listed in

appendices B and C.

8.1 Stiffness Leakage

An essential requirement for the viability of stiff/nonstiffIMEX schemes is that the stiffness remains

truely separable. If this were not the case then stiffness would leak out of the stiff terms and stiffen

the nonstiff terms. It would manifest itself as a loss in stability or a forced reduction in stepsize of the

nonstiff terms. A more expensive fully implicit approach might then be required, and hence, methods

that leak substantial stiffness might best be avoided. We test for leakage on the reacting shock wave

problem. There are two primary affronts that can be made to the integrator on this problem. The first

is simply a very stiff reaction rate describing isoenthalpic or exothermic reactions. Secondly, one could

provide an initial condition to the flowfield that is substantially different from the quasi steady state

solution. This nonequilibrium initial condition is accompanied by a strong equilibration process of the

flowfield during the initial time steps. Ideally, this initial perturbation is damped during subsequent

time steps.

Thirty seven existing and new" IMEX ARK2 and three SBDF schemes are considered for testing.

A mild test for stiffness leakage is to provide the integrator with an equilibrium initial condition and

an exothermic reaction rate. Time steps are specified as CFL numbers where CFL = u(At)/(Az)

and the velocity is Mach 5. Leakage generally falls into three catagories: insignificant, moderate, and

catastrophic. Table 8 show's that for several methods the decrease in stepsize for the nonstiff method

is in direct proportion to the increase in reaction rate stiffness. This constitutes, in our opinion,

Method c = 10 ° c = 102 c = 104 c = 106

Zhong, ASIRK 3A

Yoh, SIRK 3A

Shen, ASIRK 3A
Yoh LSSIRK 3A

Yoh LSSIRK 4A

0.51

0.51

0.57

0.52

0.36

0.01

0.01

0.05

0.05

0.06

0.0001

0.0001

0.0005

0.0005

0.0006

0.0

0.0

0.0

0.0

0.0

Table 8: Examples of catastrophic leakage. Maximum CFL as a function of reaction rate stiffness using

equilibrium initial conditions.

catastrophic leakage and a failure of the methods. They do not possess sufficient stability to be useful

in the contexts that they might reasonably be expected to apply. We do not consider these methods
further.

A more severe test of leakage is a nonequilibrium initial condition with isoenthalpic reactions. In

this case, table 9 show's that the two methods of Griepentrog 19 can be broken in this rather severe

environment. Although much less severe than the leakage displayed in table 8, both methods of

Griepentrog may be inappropriate for stiff computations. More reluctantly than above, we do not

further consider these methods. It is interesting to ask why these methods have failed while other
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Method c = 100 c = 10-2 c = 10 -4 _ = 10-6 c = 10-8

Griepentrog (3 stage) 0.37 0.37 0.37 0.0007 0.0

Griepentrog (4 stage) 0.44 0.44 0.05 0.001 0.0

Table 9: Maximum CFL as a function of reaction rate stiffness using nonequilibrium initial conditions
and a nonexothermic reaction rate.

methods have not. One may inspect the internal stability function magnitude of the implicit method
_ (i) (i) ocat stage i for ,[I] -oc; Rint(-oc). Unlike SDIRK methods for which Rint(- ) = 0, ESDIRK

(i) ocmethods generally have nonzero vahes of l_int(-- ). Table 10 shows that the final stages of both

Griepentrog's methods are noticably unstable. The IMEX Rnnge Kntta methods of Ascher et al., 5

Stage 1

Griepentrog (3 stage) +1.00 +0.366

Griepentrog (4 stage) +1.00 +0.235

2 3 4 Step
-2.464

+1.068

- -0.732

-4.909 +0.000

(i) ocTable 10: /_int(-- ) for the implicit methods of Griepentrog.

Calvo et al., 1° Fritzen and Wittekindt, 17 and the present methods exhibited little to no leakage on

either of these problems. If internal stability of the implicit method is a principal contributor to the

breakdown of these methods, it is not surprising that the zero padded A matrices found in the methods
(i) ocof Ascher et al. 5 and Calvo et al. 1° do not leak stiffness badly because l_int(-- ) = 0 for all stages.

The primary concession of this approach is that the implicit method cannot have a stage order of two

because a21 ¢ a22.

Our most severe leakage test for the reacting shock wave problem is to use a nonequilibrium initial

condition and exothermic chemistry. This initial condition is severe enough to cause stiffness leakage

for all of the Runge Kutta methods when used in a fixed stepsize mode. Table 11 documents the

progressive failure of several methods as stiffness is increased. Comparing this to the internal stability

Method c = 100 G = 10-1 c = 10 -2 c = 10-3 C = 10-4 C = 10-5 __ ----10-6 G = 10 .7

Ascher (2,3,3) 0.38 0.22 0.17 0.16 0.12 0.07 0.01 0.001

ARK3(2)4L[2]SA 0.57 0.28 0.20 0.19 0.14 0.07 0.06 0.001
Calvo LIRK4 0.44 0.44 0.44 0.44 0.40 0.15 0.03 0.008

ARK4(3)6L[2]SA 0.67 0.49 0.36 0.34 0.33 0.16 0.01 0.001

ARKS(4)SL[2]SA 0.43 0.41 0.10 0.05 0.03 0.001 0.00 0.000

Table 11: Maximum CFL as a function of reaction rate stiffness using nonequilibrium initial conditions

and exothermic chemistry.

characteristics of the implicit methods in table 12, one may surmise that the ARK5(4)8L[2]SA is failing,

in part, because of marginal damping at each stage. It is also interesting that ARK3(2)4L[2]SA and

Ascher (2,3,3) wither similarly. One has strong damping at each stage while the other has strong

damping at the end of the step. LIRK4, with strong damping at each stage and the step, arguably,
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Stage 1 2 3 4 5 6 7 Step

Ascher (2,3,3) +0.000 +0.000 ...... 0.732

ARK3(2)4L[2]SA +1.000 -1.000 -0.806 .... +0.000

Calvo LIRK4 +0.000 +0.000 +0.000 +0.000 +0.000 - - +0.000

ARK4(3)6L[2]SA +1.000 -1.000 -0.774 -0.083 -0.157 - - +0.000

ARKS(4)SL[2]SA +1.000 -1.000 -0.732 -0.649 +0.856 -0.967 -0.353 +0.000

Table 12: R!_(-oc) for IMEX implicit methods.

appears to endure the best. The only IMEX methods that we are aware of that can integrate this

problem in constant stepsize mode are the SBDF methods of Ascher et al. 5 In table 13, they show"

insignificant stiffness leakage on our most severe case. Notice that as the order of accuracy increases,

Method c = 100 G = 10 -2 c = 10 -4 c = 10 -6

SBDF2 0.20 0.17 0.10 0.09

SBDF3 0.14 0.13 0.10 0.09

SBDF4 0.11 0.10 0.10 0.09

Table 13: Maximum CFL of SBDF methods as a function of reaction rate stiffness using nonequilibrium

initial conditions and exothermic chemistry.

the relative leakage decreases. If ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and ARKS(4)SL[2]SA are used

in conjunction with stepsize control, they are able to navigate through the strong initial transient of

this problem. Although we cannot say conclusively why the SBDF methods remain stable while all of

the IMEX ARK2 did not, it seems that both the order and stability matter. Runge Kutta schemes

may be able to satisfy (i)Rint(--OC) = 0 at each stage but always have an overall stage order of one. The

SBDF methods are L(c_) stable to stiff eigenvalues but each step value is of design order.

In practice, simulations of chemical systems often use exothermic reaction mechanisms and rood

erately nonequilibrium initial conditions. Once the computation is under way, each step would likely

begin with nearly unperturbed initial conditions. For DNS of hydrocarbon flames using a compress

ible NSE formulation, spatial grid spacings may be of order ten microns at atmospheric pressure. 11

Corresponding convective time step limits based on z [El _ 1 are of order ten nanoseconds. Under

these conditions, detailed methane air chemical mechanisms do not introduce time scales appreciably

faster than those dictated by convective stability, implying G _ 10 °. Larger hydrocarbon mechanisms

such as heptane air may introduce timescales of order one femtosecond. Choosing to integrate at the

convective limit, the stiffness would be approximately c _ 10 -7.

8.2 Aeeuraey and Efficiency

Beyond avoiding stiffness leakage, one would like accurate and efficient methods. Although our

focus is principally on methods of third order accuracy and higher, we will occasionally use a first order

method, Ascher (1, 2, 1), and a second order method, Ascher (2, 3, 2), for comparison purposes. These

are chosen because their explicit methods have both non vanishing CFL and viscous CFL numbers. At

third order, the first matter is to verify the accuracy of the methods: ARK3(2)4L[2]SA, Ascher (2, 3, 3),

Ascher (3, 4, 3), Ascher (4, 4, 3), Calvo LIRK3, and Fritzen FW53. From appendix B, all methods are

formally third order. Ascher (4, 4, 3) and Fritzen FW53 use five stages overall, four of them implicit,
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whileothersuseoneor twoless;hence,theymightbeexpectedto berelativelylessemcient.Using
only twoimplicit stages,Ascher(2,3,3)mightbeexpectedto bequiteemcient.Ascher(2,3,3)and
Ascher(3,4,3)haveARK2stabilityfunctionsthat dependon z [El. All schemes of Calvo et al. and

Ascher et al. have vanishing internal stability functions for the implicit method when z [z] _ -oc.

Only ARK3(2)4L[2]SA and Fritzen FW53 have embedded methods, only Ascher (2, 3, 3) is not stiffly

accurate, and only ARK3(2)4L[2]SA uses a stage order two implicit method. Fritzen FW53 may not

conserve linear first integrals well. Finally, values of ? range from approximately 0.4359 to 1.0.

Accuracy and efficiency tests are conducted using equilibrium initial conditions and exothermic

chemistry on the CDR problem. All methods exhibit third order accuracy in the absence of stiffness

where error is given by the L2 norm, over all grid points, of the difference between the computed and

"exact" solution at some final time. The final time corresponds to the movement of the shockwave

approximately 100 shock thicknesses. A quasi exact solution is found by running ARK4(3)6L[2]SA

at an order of magnitude finer time step than any used in the grid refinement study. At c = 10 -6,

error increases but the order of accuracy remains nearly three. Two seperate measures of efficiency

may be considered: accuracy and stability efficiency. Accuracy efficiency determines the work required

to obtain some chosen error tolerance. We define work as the number of implicit solves required for

the integration without regard to Newton iteration count. On error versus work plots, the five stage

methods of Ascher (4, 4, 3) and Fritzen FW53 are least effcient. LIRK3 is the least accurate of the four

remaining methods on this particular problem, followed by Ascher (3, 4, 3). The most accuracy efficient

methods are ARK3(2)4L[2]SA and Ascher (2, 3, 3), as shown in figure 2. There was no evidence of the

coupling stability term causing a problem with Ascher (2, 3, 3). When accuracy is suffcient, one simply
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Figure 2: Error versus work for ARKa(2)4L[2]SA and Ascher (2, 3, 3)in the presence and absence of
stiffness.

seeks the largest stable time step. The limiting time step might be due to ERK linear stability boundary

or iterative convergence problems with the Newton's method. In the absence of any stiffness leakage

or convergence difficulties, one may compute a theoretical stability based effciency of the methods by

considering the inviscid and viscous CFL numbers normalized by the number of implicit stages. This

minimum work point would correspond to the upper right limit of the lines on an error versus work

plot. Table 14 compares the maximum time step per unit work for the first and second order schemes
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of Ascheret al.,'5six third orderschemes,twofourthorderschemes,andthe onefifth ordermethod.
ARKS(4)8L[2]SAhasmarginalstabilityefficiencyforbothrealandimaginarynonstiffeigenvalues.Both
LIRK3 and LIRK4 may not be efficient for relatively stiffer convective eigenvalues. In compressible

Method

Ascher (1, 2, 1)

Ascher (2, 3, 2)

Ascher (2, 3, 3)

Ascher (3, 4, 3)

Ascher (4, 4, 3)
Calvo LIRK3

Fritzen FW53

ARK3(2)4L[2]SA
Calvo LIRK4

ARK4(3)6L[2]SA

ARK5(4)SL[2]SA

Table 14: Idealized stability based efficiencies of

stiffness leakage.

CFLinviscid/_I CFLvi ..... /61
0.435 0.315

0.500 0.250

0.435

0.473

0.195

0.023

0.218

0.413

0.315

0.233

0.135

0.183

0.158

0.307

0.032 0.176

0.402 0.212

0.061 0.096

first through fifth order methods in the absence of

flows, it is likely that the inviscid limit is more relevant to observed stability efficiency. Which of these

two limits is more important during stiffness leakage is not clear. Comparing tables 11 and 14 at

c = 10 o suggests that the when stiff real eigenvalues leak, the real axis (viscous) stability efficiency may

be more important. Using equilibrium initial conditions and exothermic chemistry, Ascher (2, 3, 3) was

found to be more stability efficient than ARK3(2)4L[2]SA at c = 10-6; however, ARK3(2)4L[2]SA may

possess some intrinsic efficiency advantage over Ascher (2, 3, 3) in having a smaller value of 7:0.4359

versus 0.7887. Modified Newton iteration would presumably converge faster.

At fourth order and above, for DIRK based IMEX methods, we are only aware of the LIRK4 method

attributed to Calvo et al. 1° and the methods that we have generated. Calvo LIRK4 was constructed

by adding an ERK to the zero padded SDIRK4. 27 Both the implicit and additive methods fully damp

stiff scaled eigenvalues. Large leading order error of the ERK dominates the leading order error of the

IMEX method, as shown in appendix B. The method may conserve quadratic first integrals poorly and

has a relatively small convective stability limit for the ERK. ARK4(3)6L[2]SA results from an extensive

examination of possible approaches to fourth order methods and is described in section 5.

Two particular methods used C(2, i)[E], C(2, i)[_], and 7 = 1/4. One had A(5) = 0.01224 and the

other A(5) = 0.01284, but used simplifying assumption C(3, i)[q also. With nearly identical overall

error and slightly worse internal stability values, both methods behaved nearly identically. The next

test was to compare use of simplifying assumption C(2, i)[E] with no assumption for the ERK. Leading

order error for the methods were A(5) = 0.01224 and A(5) = 0.01461, respectively. Without C(2, i)[E],

the method becomes progressively less accurate relative to the other method as stiffness increased. To

test the effect of coupling stabilty, two methods were constructed employing C(2, i)[E], C(2, i)[_], and

7 = 1/4. Each satisfied P60 = Ps0 = P.51 = 0, but the second additionally satisfied p41 = p42 = 0. The

second method has a much smaller linear stability domain for its ERK and a principal error norm of

A(5) = 0.03542, three times that of the first. It appeared to be slightly less prone to stiffness leakage

than the first scheme. Possibly the more highly optimized linear stability domain of the first method

was more susceptable to degradation. Interestingly, in the presence of stiffness, several fourth order

methods retain a smooth reduction in error as work is increased while others do not. Methods using
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C(2, i)[E] appear smooth while those using no simplifying assumption on their explicit method appear

rather jagged, e.g., LIRK4 and the five stage, 4(2) pair that was constructed. One may also compare the

degree of error increase with the addition of stiffness. LIRK4 has A(5) = 0.03919 and uses no simplifying

assumptions whereas one of the test methods has A(5) = 0.03542 but makes use of C(2, i)[E], C(2, i)[_q.

Their nonstiff accuracy efficiencies are quite similar but in the presence of stiffness, LIRK4 shows not

only a more dramatic increase in error but more order reduction. Since LIRK4 does not use C(2, i)[E]

and C(2, i)[I], it is not unreasonable to attribute this difference to the stage order of the implicit method.

Finally, results of various methods on this test problem often correlated with the leading order error

term of the entire method, A('5). Figure 3 compares Calvo LIRK4 and ARK4(3)6L[2]SA at stiffness
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Figure 3: Error versus work for ARK4(3)6L[2]SA and Calvo LIRK4 in the presence and absence of
stiffness.

extremes showing that ARK4(3)6L[2]SA is not only more accurate but increasingly so as the stiffness
is increased.

The only fifth order method that we are aware of, ARKS(4)SL[2]SA, offered few" design options.

Assumptions 6'(2, i)[E] and 6'(2, i)[z] were essential. To reduce embedded order conditions, one column

each of both Butcher arrays was replaced with zeros. Doing this made it only reasonable to include

one C(3, i) assumption; hence, C(3, i) [_] was used along with D(1,j) [E] to reduce the number and

complexity of the remaining order conditions. Selection of/ was problematic. Schemes were designed

using 7 = 0.145, 0.1725, 0.185, and 0.205. Larger values appeared to work better. The resulting

method, ARK5(4)SL[2]SA, has a relatively small linear stability region for its ERK. In the absence of

stiffness it is found to be fifth order, but in the presence of strong stiffness it order reduces in the same

manner as ARK4(3)6L[2]SA. Given the behavior of ARK5(4)SL[2]SA on these tests, it is probably the

best choice for situations where both mild stiffness and tight error tolerances are present. Otherwise,

ARK4(3)6L[2]SA might best be employed. Finally, comparing efficiency of methods of all orders at

s = 100 in figure 4 and at c = 10 -6 in figure 5, one may conclude that first order methods are ill

advised. Ascher (2, 3, 2) can provide a much more accurate solution for an identical cost. At any level of

stiffness, Ascher (2, 3, 2) is very stability efficient. At tighter error tolerances, ARK4(3)6L[2]SA would

appear to be the most efficient high order IMEX additive Runge Kutta method of which we are aware

for this problem.
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Figure 4: Error versus work for first through
fifth order methods in the nonstiff case.

Figure ,5: Error versus work for first through
fifth order methods in the stiff case.

A limited attempt is made here to quantify the behavior and efficiency of the multistep SBDF

schemes as they are the chief alternative to the IMEX Runge Kutta schemes. Multistep schemes

solve only one nonlinear set of equations per time step. As a result, they can potentially achieve

great efficiency compared with multistep Runge Kutta formulations. Like most ARK2 methods in

this study, the SBDF methods lack error control. Additionally, SBDF methods are not self starting,

require fixed time steps, and the implicit formulations do not possess A stability beyond second order

accuracy. Second , third and fourth order SBDF schemes of Ascher et al. 5 achieve design accuracy on

the reacting shock wave problem independent of the stiffness level, although the leading order constant

appears to depend on stiffness. One may compare the various Runge Kutta and SBDF methods in

terms of either accuracy or stability efficiency. In terms of accuracy, Ascher (2, 3, 2) is substantially

more efficient than SBDF2; however, at higher order, the SBDF methods are more efficient on this

problem. Figures 6 and 7 compare third and fourth order multistep and Runge Kutta methods with

and without stiffness. It should be remembered that chemical reaction rate terms generally give rise

to real eigenvalues. The maximum time step for the SBDF formulations is strongly dependent on the

location of the scaled stiff eigenvalues, and in particular, whether they fall in the unstable lobes of

the implicit BDF3 and BDF4 operators. Scaled eigenvalues on or near the negative real axis are well

suited for implicit BDF operators, while eigenvalues near the imaginary axis are not. Conversely, RK

schemes degrade in accuracy wi_h increased stiffness due to their lower s_age order.
8.3 Order-Reduction

Each of the four _est problems in this paper are examples of singular perturbation problems. 25, _

They are ODEs characterized by a stiffness parameter, _. As _ decreases, the ODE problems gradually

transition in behavior toward index 1 DAEs. For Runge Kutta methods, accompanying this transition

is an order reduction phenomena where the observed convergence rates of _he methods fall below" the

classical order of accuracy. Some differential variables transition to algebraic variables, displaying

different convergence rates. Hairer et al. _5' _ determine the convergence rates of SDIRK methods with

and without the stiffly accurate assumption. Global error for both differential and algebraic variables

are of _he form %_ob_] = q(At) _ + c_s(At) _ for _ _< Const. (At). Independent of stiff accuracy, SDIRK
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Figure 6: Efficiency comparison of third and
fourth order methods with G = 10 °.

Figure 7: Efficiency comparison of third and
fourth order methods with s = 10 -6.

methods have g = q and fl = q_o + 1 for the differential variable, where q and q_o are the classical and

stage orders of the method. In the case of algebraic variables, g = %o + 1 and e2 = 0 for non stiffly

accurate methods but g = q and/3 = %o in the stiffly accurate case. Practical experience shows that

the order reduction is problem dependent and may not be as severe as the theoretical estimate.

Although theoretical bounds exist for many implicit Runge Kutta methods applied to singular

perturbation problems, little exists for IMEX methods, r3 No attempt is made to theoretically predict

the form of the global error of IMEX ARK2 methods, rather we shall use the values and form articulated

above for SDIRK methods as guidance in empirically estimating the values of the respective exponents.

The ultimate goal of this order reduction study is to establish its severity for CDR problems using stiff

chemical kinetic mechanisms. Both the vdP and CDR problems will be used to this end. A cursory

examination of the findings from the previous section might lead one _o the incorrect conclusion that

no order reduction exists in the CDR problem. Order reduction is easily identified in simple model

problems. Thus, we begin our study with three stiff singular perturbation model problems. We establish

the accuracy of _he new methods on these problems and compare them to existing SDIRK schemes in

the literature. Attention is then focused on the reacting shock wave problem where its order reduction
characteristics are demonstrated.

8.3a Order-Reduction on Model Problems

All previously mentioned numerical schemes were run on Kap's problem, van der Pol's equation,

and Pareschi and Russo's problem. In each case, fully implicit and IMEX formulations were compared

to assess the effects of partitioning. Order reduction is observed for all ARK2 schemes whose classical

order is greater than two, bu_ is not observed for the SBDF formulations. The general nature of

the order reduction is similar for all three problems although _he degree of reduction varies between

problems. Since van der Pol's equation exhibits the greatest order reduction, it is chosen as the testbed

to compare _he accuracy of all schemes. The time interval chosen for these studies is 0 _< t _< 0.5.

Figures 8 and 9 show representative results of a temporM refinement study at various levels of the

stiffness parameter _ for van der Pol's equation obtained using ARK4(3)6L[2]SA. From equation (61),

Yl is the differential variable, while Y2 transitions from a differential variable to an algebraic variable
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van der Pol equation as calculated with the

ARK4(3)6L[2]SA scheme.

Figure 9: Stiff (algebraic) error in the van

der Pol equation as calculated with the

ARK4(a)6L[2]SA scheme.

as the stiffness is increased. The convergence rate of the differential variable is nearly fourth order, its

classical order, and is reasonably smooth. Convergence behavior of the algebraic variable, however, is

jagged and departs significantly from the expected design accuracy. This departure from the design

accuracy occurs most dramatically for intermediate values of the stiffness parameter c.

In figures 10, 11, and 12, the convergence rates of the ARK3(2)4L[2]SA, ARK4(a)6L[2]SA, and

ARK5(4)8L[2]SA methods on van der Pol's equation are plotted versus the stiffness parameter c.

Convergence rates are calculated by a least squares fit of the data at each c presented in figure 8. This

procedure is at some variance with the fact that error versus stepsize lines are generally composed of

two lines of differing slopes. It is adopted, nonetheless, because the dual slope lines are not discernable

from the jagged data. ESDIRK method results, for which theoretical estimates of order reduction exist,

are included for comparison purposes along with the IMEX values. Certain general trends appeared

across each test problem. At values of G _ 10 °, the observed convergence rate was equal to the classical

order of each method.

All curves show" order reduction to some degree for intermediate values of the parameter G. The

c --+ 0 limit is again characterized by a uniform convergence rate, although it is not generally the design

rate of the method. Both formulations, the ESDIRK and the IMEX, order reduce for the algebraic

variables considerably more than for the differential variables. The general trends presented in figures

10, 11, and 12 are summarized in table 1,5 along with the Ascher (2, 3, 3) scheme, Fritzen FW53, and

Calvo L IRK3 and LIRK4. Based on results from the three model test problems, we determine the

leading order truncation terms for each method for the cases where G _< Const. (At). In practice, this

is an awkward and inexact procedure due to the extreme jaggedness of the convergence plots. With

this in mind, some methods showed problem dependent convergence behavior. The exact nature of a

method's order reduction depends on the relative size of the parameters G and At. The G << At limit

yields the G(AI) _ contribution to the convergence rate for the method (see figure 10 where c = 10-s).

The c >> At limit gives the classical order for all methods as G is not a small parameter in this case.

Onset of order reduction is observed for the cases where c _ At. By fixing c and varying At in the

32



Differential Variable ARK2 II _ Differential Variable - ES DIRK

(_5 = =,A_ _ AlgebraicVanable - ESDIRK

- _w. AlgebraicVanable. ARK 2

1.8.... .; .... .:_.... .i ....
Log_o(_)

Figure 10: Convergence rgtes

of ARK3(2)4L[2]SA on the

vdP equation _s a function of

5

84
¢
O

_a

2

_ Differential Variable - E S DIRK

= = = AlgebraieVanable- ESDIRK

Differential Variable - ARK,

Algebraic Variable - ARK 2

t8 .... .; .... .; .... .i
Log_o(_)

Figure 11: Convergence rates

of aRI<4(3)6q2]sa on the

vdP equation as a function of

£.

r_

8
¢
O

=.A-Z-_==-_.== Differential Variable - ESDIRK
= = - AlgebmieVafiable-ESDIRK

Differential Vanable - ARK2

,_ - AlgebmicVafiableARK,

-6 -4 -2
Log_o(_)

Figure 12: Convergence rates

of ARKS(4)SL[2]SA on the

vdP equation as a function of

c.

Method ESDIRK ESDIRK IMEX IMEX

Differential Algebraic Differential Algebraic

Ascher (2,3,3) (At) _ + _(At) _ (At) _ +_(A0_ (A03 + _(At) _ (At) _ + _(/,t) _

Calvo LIRK3 (At) 8 + £(z_._t) 2 (At) 3 + cc(/kt) 1 (At) 3 -- g(/kt) 2 (At) 2 + g(/kt) 1

Fritzen (At) 3 + s(At) e (At) 3 + e(At) 1 (At) 3 + s(At) _ (At) _ + s(At) 1

ARK3(2)4L[2]SA (At) 3 + e(At) 3 (At) 3 + e(At) e (At) 3 + e(At) e (At) _ + e(At) _

Calvo LIRK4 (At) 4 + g(_t) 2 (At) 4 + _(At) _ (At) 4 -- g(/kt) 2 (z__t)2 + g(At) _

ARK4(3)6L[2]SA (At)4 + _(_1)3 (At)4 + e(At)2 (At)4 __ g(/kt)2 (z__/)3 + g(At)_

ARK5(4)SL[2]SA (At)4 + _(_1)3 (At)4 + e(At)2 (At)4 __ g(/kt)2 (z__/)3 + g(At)_

Table 1,5: Estimated convergence rates of differential and algebraic variables in %]ob_ = c_(At) _ +

c_s(At) _ form for severgl ESDIRK and IMEX ARK_ methods for _ _< Const. (At).
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c _ At limit, a careful study of order reduction may be conducted. Typically the convergence rate for

these studies has a slope discontinuity, that can be used to identify the leading order error terms. For

the IMEX operators, convergence behavior is erratic in this limit, often not monitonically decreasing

with time step. Convergence behavior for the third and fourth order implicit schemes, presented in

table 15, agrees with the theoretical estimates for SDIRK schemes given above. Incorporating a stage

order of two in the implicit scheme does not translate into higher order of accuracy for the differential

variables for any of the IMEX schemes, but it increases the convergence rate for the ESDIRK alone.

Also, the increased stage order increases the accuracy of the algebraic variable in the fourth and fifth

order cases. The 4th order asymptotic convergence of scheme ARKS(4)SL[2]SA and its ESDIRK makes

the overall behavior of the fifth order scheme very similar to that of the 4th order scheme. 'Are offer no

explanation for this behavior.

8.3b Order-Reduction on CDR problems

We now extend the previous study on order reduction to CDR problems using the reaction inducing,

propagating shock wave problem. Computations use exothermic chemistry and equilibrium initial

conditions. As the reaction rate is introducing the stiffness and only the species continuity equations

explicitly contain the reaction rate, we focus on these equations. From Eq. (63), the species equations

are given by

0(pE:) 0(p_4) 02_
ot - Ox +PD_0_75-_2+ _ = Gs,_ + &, (70)

where 1_) = {YH_, :t)_, !_i4_o, !_OH, YN_ } and Fi,_,i denotes the sum of convective and diffusive terms for

species i. Because of overall continuity, it is not necessary to solve a differential equation for YN_.

Nonstiff convective and diffusive terms are integrated with the ERK while all reaction rate terms are

integrated by the ESDIRK. Using concentrations, Ci = p_r)/l£i, and our simplified reaction mechanism,

the full species equations appear as

0

Ot

pYH_

PYo_

pYH_o

pYoH

_ns,H2

_ns,O2

_ns,H2

Fns,OH

+

l/VH2ozexp( -T°/T)2 [1(-CH2C, o2 q-C_)H)- CH2C_)H]

l¥o2ozexp(-T°/T)2 [1(--CH2CO2 q-C(_H) ]

2WH_oa exp (-%/T)_ [CH_C_H ]

2HJOHo_exp (-T°/T)2 [1(--CH2CO2 q- C(_H)- CH_C(_H]

where G = k3/h2 and c_ is some real constant. Fast reactions involve the term ! and are present in

the reaction terms for the species H2, 02 and OH. Variable 02 is purely a fast reaction. The other

two variables, H2 and OH, involve both fast and slow" reactions, while the variable H20 is entirely

a slow" variable. In general, it is difficult to identify slow" (differential) and fast (algebraic) variables

and hence treat each appropriately. For this simplified reaction system, however, the differential and

algebraic variables car readily be identified. Defining the new variables _1 = H@_}_4_ - l/VH_}_ and

_2 = Id7o2 YOH Jr 2l/VoH}zO2 , the system may now" be written as

0

g)t
p!_o_

PYH_o

P&

Fns,O2

Fn_,H_

I/Vo_ G,s,OH -- 2WOHG,s,O_

+

I/IZH_ 1/1/702 ce expt-T0/T)_ [--CH_ C(_H]

+CtHt]
2117H_OC_exp(-%/T) _ [CH2C_)H]

21/VOH}VO_ ct exp( -%/T)_ [-CH_ C_H ]

With this new" system, it is more clearly seen that at high levels of stiffness, ]/o_ will be an algebraic

variable while _1, YH_O, _2, and YN_ } are the differential variables.
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ARK3(2)4L[2]SA ; Differential Variable

E_- _ ARK3(2)4L[2]SA ; AlgebraicVariable

ARK4(3)6L[2]SA ; Differential Variable

_- - ARK4(3)6L[2]SA;AlgebraicVariable

ARK5(4)8L[2]SA ; Differential Variable

_. = ARK5(4)8L[2]SA;AlgebraicVariable

Figure 13: Convergence rates of differential and algebraic variables on CDR problem using the new"

ARK2 methods.

Figure 13 compares the convergence behavior of the three new" IMEX ARK2 schemes on the reacting

shock wave problem. A representative differential variable, H20, and the algebraic variable, 02, are

presented for ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and ARKS(4)8L[2]SA. Convergence rates are again

determined from a least squares fit of a convergence study at each value of the parameter e. Interme

diate values of the parameter e, again, produce the most order reduction in both the differential and

algebraic variables.

The algebraic variable order reduction in this CDR problem is remarkably similar to that observed

in all three singular perturbation model problems. This degradation in accuracy for the algebraic

variable, however, does not dramatically degrade the overall accuracy of the CDR problem when error

is considered as the L2 norm of the difference between the computed and exact solutions over all grid

points. Temperature, which is a combination of differential and algebraic variables, converged at a rate

slightly lower than the differential variables. As stiff modes are unnecessary to resolve for accuracy

purposes and algebraic variables arise from high stiffness, it may not be surprising that the lower

convergence rates of algebraic variables appear to weakly affect temporal error. Another explanation

for the benign role of order reduction in the present CDR problem is that the one algebraic variable

is only weakly coupled to the rest of the system and does not greatly influence the solution accuracy

of the other six variables. It is not clear if this may be generalized to all or most reacting flow's,

however, ARK2 schemes are likely to experience significant order reduction on problems where the

algebraic component of the error plays a dominant role. In this scenerio, the SBDF schemes, which do

not experience order reduction, are likely to have a clear efficiency advantage over the IMEX Runge

Kutta schemes provided the stiff eigenvalues are predominately real. A case by case study is probably

necessary to definitively answer whether order reduction is an important issue.
8.4 Error Control

Choosing a practical error controller for the current IMEX methods is problematic. Advanced

controllers designed for explicit and implicit methods are constructed based on different criteria. IMEX

schemes, being combinations of each, represent a New challenge for error controllers. Beyond this,

with increasing stiffness, controllers additionally confront order reduction as well as emerging algebraic

variables. With this in mind, we test four general appoaches: the I , PI , PC, and PID controllers, e3

The I controller is appropriate for either implicit or explicit methods. PI and PID controllers are

advances over I controllers for explicit methods. PC controllers have been designed for the unique

dynamics of an implicit method.
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Van der Pol's equation provides a challenging test for the error control capabilities of the new"

additive schemes. Over one period, the vdP solution has two temporal boundary layers having thickness
related to ¢-1. To maintain accuracy, the embedded method and controller must sense the layers and

adjust the time step accordingly. Significant variations were observed between different controllers. For

example, the PC controller is ineffective. It produced a strong step change instability characterized
by large time step changes in portions of the temporal cycle where no adjustments were necessary.

Controllers designed for implicit methods appear inappropriate. Performance of the simple I controller

is better, yet marginal. Both the PI and PID controllers are able to guide the integration through the

temporM boundary layer with reasonable efficiency. With better SC stability properties and similar

characteristic roots, the PID controller behaved best. As the PI and PID controllers are designed for

the dynamics of explicit methods, it appears that controlling the IMEX method on these problems
is largely a function of controlling the explicit method. Further, it appears that the behavior of the

controller at the stability boundary is most important. That these controllers worked well is surprising

considering that in the presence of large stiffness, the algebraic variables dominate solution accuracy in

the three model problems and order reduction is present. The generality of these findings is not clear.

In a second test of the error controllers, the propagating reacting shock wave problem is computed.

Testing methods on this problem is rather difficult because the flow" contains no transients, yet if one
specifies an exothermic reaction system, a nonequilibrium initial condition, and c = 10-6, a highly

transient problem ensues. This same problem is severe enough to break all ARK2 schemes when used

in fixed stepsize mode and large stiffness. Conclusions are similar to those drawn from van der Pol's

equation. The only controllers capable of guiding the integration out of the flow equilibration phase

at all stiffnesses are the PI and PID controllers. At low" and high stiffness, requested and resultant

error are well correlated. Stiffness affects the relation of predicted and actual error but the controller

remains useful and is remarkably insensitive to the stiffness even in the case of order reduction. It

is less surprising that the explicit based controllers perform adequately on the CDR problem as the

algebraic variables are of secondary importance to solution accuracy.

We do not offer any theoretical explanation why the PI and PID controllers work fairly well on

these problems. To maintain constant controller gain during order reduction, p should presumably be

reduced. It is not reduced in these tests. Perhaps the essential feature of controlling IMEX methods is

coping with scaled eigenvalues at the stability boundary of the explicit method, a task best suited to
the PID controller.

8.5 Dense Output

The dense output for the three new schemes is tested on the reacting shockwave problem. An

equilibrated solution is established at a time, t = trCf at C = 10°, and is used as the initial condition for

the study. The initial condition is then advanced one time step to fill all function registers. Interpolation

and extrapolation are done at points preceding and following trer + At. The dense output is then

compared to an "exact" solution obtained with a separate run beginning with the initial condition

using &t/lO stepsizes and run to the dense output times. A refinement study is performed using one

timestep in the variable At to determine the local order of accuracy of the dense output. Note that

the nature of the refinement study in the variable &t returns the local error of the dense output or

the global error plus one. Table 16 summarizes the observed local errors, _x_, and convergence rates

from a study using the third order (p* = 3) formula associated with the ARK4(3)6L[2]SA scheme. The

interpolated and extrapolation values are at l(&t) and _(At), respectively.

Design order is asymptotically achieved in both modes. Note that the extrapolated data are one and

one half orders less accurate than the interpolated data although their respective orders of accuracy

are similar. The efficacy of extrapolation decays rapidly with distance. Similar results showing design

order dense output were obtained for the ARK3(2)4L[2]SA and ARKS(4)SL[2]SA schemes. A final test

of the dense output was performed on both van der Pol's and the CDR equations. Extrapolation mode
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was used to predict the starting values of the newton iteration from data at the previous timestep.

A uniform speedup of the iteration was observed at all levels of stiffness, c = 10 o through c = 10 -6,

indicating the efficacy of the extrapolation.

Table 16: Convergence rate and local error of the p* = 3 dense output for interpolation and extrapo

lation as calculated with the ARK4(3)6L[2]SA scheme.

At 8(Z_t),Int Order _(At),Ext Order

0.9 5.218 3.599

0.6 5.790 3.241 4.229 3.579

0.5 6.070 3.541 4.525 3.745

0.4 6.426 3.079 4.806 3.823

0.3 6.900 3.791 5.382 3.891

0.2 7.583 3.879 6.077 3.945

0.1 8.770 3.944 7.275 3.981

9. Conclusions

Additive Runge Kutta (ARK) methods are investigated for application to the spatially discretized

one dimensional convection diffusion reaction (CDR) equations. First, accuracy, stability, conserva

tion, and dense output are considered for the general case when N different Runge Kutta methods

are grouped into a single composite method. Comparing the N = 3 and N = 2 cases for CDR ap

plications, N = 2 methods are chosen. Then, implicit explicit, N = 2, additive Runge Kutta (ARK2)

methods from third to fifth order are presented. Each allows for integration of stiff reactive terms

by an L stable, stiffly accurate ESDIRK method while the nonstiff convection and diffusion terms are

integrated with a traditional ERK method. Coupling error terms are minimized by selecting identical

abscissae and scheme weights for each method and are of equal order to those of the elemental methods.

Both ARK2 and ESDIRK methods have vanishing stability functions for very large values of the stiff

scaled eigenvalue, z [z] --+ -oc, and retain high stability efficiency in the absence of stiffness, z [z] --+ 0.

Extrapolation type stage value predictors are provided based on dense output formulae. Dense output

stability functions have minimized values for 0 > 1 and z [I] --+ -oc. Optimized methods minimize

both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize con

servation properties. Numerical tests of the new" schemes on a CDR problem show negligible stiffness

leakage and near classical order convergence rates. Third and fourth order SBDF methods are slightly

more efficient than the IMEX ARK2 schemes but do not include error estimation and stepsize control.

Tests on three simple singular perturbation problems reveal similar and predictable order reduction

for the Runge Kutta methods but no order reduction for the SBDF methods. Order reduction of

ARK2 schemes is worst at intermediate stiffness levels. Estimated convergence rates for differential

and algebraic variables generally coincide with that predicted by theory. A reinspection of differential

and algebraic variables on the CDR problem show's similar behavior. Error control is best managed

with a PID controller, indicating that ERK stability is the overriding issue in controlling error. Dense

output is useful both in interpolation and extrapolation. While results for the fifth order method are

disappointing, both the new" third and fourth order methods are at least as efficient as existing ARK2

methods while offering error control and stage value predictors.
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Appendix A - Runge-Kutta Order Conditions

Equations of conditions for 1 trees up to sixth order accuracy are given by
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7-_) = E%,_,_:1b_._ 13

= l s biaijc2ajkck 67-_) 2 2i,j,k=l 6!

7-_) 1 _ 5- _ _;,j,_=lb;C;a_jaj_c_ _!
' 8

1 Ei,j,k=l biaijaj_'c3_ 1!

= l s biaijajkaklc_ -- --7-_) 2 2i,j,k,l=l

4

6_

1

6_

General equations of condition for 2 trees up to fifth order for one root node type are provided below'.

Coefficients of the two me_hods are distinguished by case; (a;j, b;, c;) and (A;j, B;, C;). Only half of the

actual order conditions are given. The o_her half may be obtained by taking each condition below and

replacing each bi with Bi.

I _ I Ig2:]_ I _ I _ I _ I _ I
2 _ bic i

3 E'::I biciCi

3 _],j--1 biAijcj

3 _i',j--1 biAi2Cj

'* b i c2 C i4 _{=i

" biciC24 _Z=I

4 _i,3:1 biciai3C3

4 _:,3:1 biciAi3c3

4 2i,_:1 biciAi3C3

4
3 1 2 3

3 2 1 3 4

3 1 2 3 4

3 1 1 6 4

3 1 1 6 4

3 1 1 6 4

3 1 1 6 4

4 1 6 4 4

4 3 2 4 4

4 3 2 4 4

4 1 6 4 4

4 3 1 8 4

4 3 1 8 4

4 3 1 8 4

4 3 1 8 4

O_de_ bcb t p t 2 t G t (I I E:=,_<) I <)1'<)1 <)1_<)1
4 _i I 1 biCiai3c3 4 3 1 8

4 _i 3 1 bi Cirri3 C3

_i*,j_l bi CiAijcj

" biai3 C 2

" biAi C 2
_i,?=1 3 3

_',_,___ vi_i_s_

_i,j,k=l biAi2a2 kck

2i*,3,k=1 bi Ai 3 A3k ch

2;,3,k=1 bi Ai 3 a3k Ch

2;,3,h=1 bi Ai 3 A3k C k

4 3 1 8

4 3 1 8

4 3 1 8

4 1 2 12

4 2 1 12

4 1 2 12

4 1 2 12

4 2 1 12

4 1 2 12

4 1 1 24

4 1 1 24

4 1 1 24

4 1 1 24

4 1 1 24

4 1 1 24

4 1 1 24

4 1 1 24
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O_d_ '_ _,(t) _(t) _(t) _(t)

5 E_=I _ 5 1 24 5

EL1

_i,3=1 _iqCiAis _3

Z_,j_I v_c_aijcj
Zig,j_1 v_c_jcj

5 _i,3,k=l bice{3c3Ai]_c]_

5 _i,3,k=l bia_3c3aikC k

_i 3 k 1_i%_3 Aikc_

5 _i_,j,k--1 biAijcj Aikck

5 _illlk 1 bidQC')AikCk

s biCia_]c2

s bici_QC 25 _i,j=l 3

5 E _,_=1 bi Ci Ai3 c2

5 E ,2=1 biCiai2 C2

5 E ,3=1 bi ci Ai_ C2

_i_,__1 _c,_c_

2;'_1 4

" biAi c2C i5 _i=1 3

5 _':=1 biAijciC'2

5 _i',J,k= 1 biciAQa2 hck

5 _ 3,k=1 biciAigAjhCk
5 :,3,k= 1 biciai3a3hck

5 _:,3,k=lbiCiai3a2kCk

5 _ _bk= 1 biciai3A2hck

5 4 6 5

5 6 4 5

5 4 6 5

5 1 24 5

5 6 2 10

5 6 2 10

5 6 2 10

5 6 2 10

5 12 1 10

5 12 1 10

5 12 1 10

5 12 1 10

5 6 2 10

5 6 2 10

5 6 2 10

5 6 2 10

5 3 2 20

5 6 1 20

5 6 1 20

5 6 1 20

5 3 2 20

5 3 2 20

5 6 1 20

5 6 1 20

5 6 1 20

5 3 2 20

5 4 2 15

5 4 2 15

5 4 2 15

5 4 2 15

5 4 2 15

5 4 2 15

5 4 2 15

5 4 2 15

5 8 1 15

5 8 1 15

5 8 1 15

5 8 1 15

5 1 6 20

5 3 2 20

5 3 2 20

5 1 6 20

5 1 6 20

5 3 2 20

5 3 2 20

5 1 6 20

5 4 6 30

5 4 6 30

5 4 6 30

5 4 6 30

5 4 6 30

5 4 6 30

5 4 6 30

Order _--1 bi¢i(t) p(t) c_(t) or(t) _?(t)

5 _ _,j,h--1 biCiAi3agkch 5 4 6 30

5 _ ,j,k--1 biCiAijAj kck 5 4 6 30

5 El 2,k= 1 biCiAi_A3kC k 5 4 6 30

5 _i,j,k= 1 biCiaQag kck 5 4 6 30

5 _ 3 k 1 biC'iaQa3kCh 5 4 6 30

5 _ ,),h=l biCiai_A3kch 5 4 6 30

5 2,,1,k=1 biC'iaijA3kCk 5 4 6 30

5 _i k 1 5iai3c_3kCk 5 3 6 40

5 _i,3,k=l biai3c3A3kc h 5 3 6 40

_,_,_-1 _ _ _ c_ _ _ _ _o
E;5 _ k 1 b_ai3csA3kC'h 5 3 6 40

dj, --

5 _i,],k= 1 biai3C3a2kCk 5 3 6 40

5 _,3,_ = 1 b_ai3C3A3kcl_ 5 3 6 40

5 _lk 1 biai2C_kCk 5 3 6 40

5 _'_ . _ biai3C_A3kC k 5 3 6 40

5 _i,3,k=l biAQc3a3kc k 5 3 6 40

_,_ 1 v_:_i_A_c_ _ _ o _o

5 _i2 k 1 b_Ai3c_a2kCh 5 3 6 40

5 _i,3,k=l biAi3c_A3k C k 5 3 6 40

_i_,_,__1 _,_c_ _ _ _ _o
5 _i_,3,k_l biAi3C3Ajkc k 5 3 6 40

_i',_,_-1 _i_i_c_c'_ _ _ _ _o

5 E" ba a 2 5 1 2 60
i,3,k=l _ _3 2 kck

5 _;,3,k=1 biai3 A3k c 2 5 1 2 60

5 2;,3,k=1 biAi3 ask c 2 5 1 2 60

5 _ biAi A hc 2 5 1 2 60

5 _s I 2 5 1 2 60i,3,k= 1 _a_3a3kCk

5 _s b ia i A k C2 5 1 2 60
i,3,k= 1 3 3 k

5 _s biAi a kC 2 5 1 2 60
i,3,k= 1 3 3 k

5 _i_ h 1 biai3a_hckCh 5 2 1 60

5 _],,],k=l biAQA2 kckCk 5 2 1 60

5 _i,3,k,l=l biaiju3kaklC1 5 1 1 120

5 _i2 k 1 1 biai) a3]_AklC1 5 1 1 120

5 _i_]k 1 1 biai.]A.] kahlcl 5 1 1 120

5 _i,2,k,l=l biai3A2kAklCl 5 1 1 120

5 _i¢,j,k,l_l biaijAjkAklC 1 5 1 1 120

5 _i_,j,k,l__l biAijajkAklC 1 5 1 1 120

E;5 k I 1 biAija3kAklC1 5 1 1 120
.J, b =

5 _,_,k,/= 1 ViAi_A3kaklcl 5 1 1 120

5 _i,j,k,/= 1 biAQA3kaklC 1 5 1 1 120

5 _i,],]%1=1 biAi) A3kA]_lCl 5 1 1 120
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Appendix C - ERK/IRK Additive Runge-Kutta Embedded

Methods

E E EAIpE+I)
q p

AuthoffSd ...... Year q± y IA(/+I)

c c CAipC+l)
q g

q p A (p+I)

5 4 0.00193,3

ARKS(4)SL[2] SA 2001 5 4 0.00004887
4 0.001468

5 4 0.002425

4 3 0.001540

ARK4(3)OL[2] SA 2001 4 3 0.0008243
4 3 0.003145

4 3 0.003598

3 2 0.01602

ARK3(2)4L[2] SA 2001 3 2 0.008783

3 2 0

3 2 0.01827

EB(FE+2)

±B(S+2)

C B(FC +2)

BO'+2)

1.600

36.80

4.453

3.072

4.100

5.479

4.459

4.455

1.182

3.058

0.01827

EC(PE+2)

±C(Y+2)

CC@C+2)

C@+2)

1.043

2.887

1.376

1.177

1.358

1.381

1.386

1.381

0.821

1.641

1.068

EE(pE+2)

IE(Y+2)

C EO, C +2)

EO,+2)

1.826

34 37

4.163

2.881

2.902

4.126

3.456

3.401

1.396

4.171

3.951

A -- Stable

yes

11o

yes

11o

yes
11o

+0.200 + o.280_[ E]
(o.22,1.o7)

-o.158 - o.o4o_[ E]
(1.94,1.1o)

-o.o75 - o.o87z[ E]
(1.12, 0.87)

_[E]=/_[±1

I_;±[E,±] i

yes
14,209

yes
0.7341

yes
0.8741
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Appendix D - Additive Runge-Kutta Scheme Coefficients

ARK3(2)4L[2]SA - ERK

0

1767732205903

2027836641118

5

1

0 0 0

1767732205903 0 0
2027836641118

5525828885825 788022342437 0
10492691773637 10882634858940

6485989280629 --4246266847089 10755448449292

16251701735622 9704473918619 10357097424841

1471266399579

7840856788654

--4482444167858 11266239266428 1767732205903

7529759066697 11593286722821 4055673282236

ukl 2796255671227 --10771552573575 9247589265047 2193209047091
12835298489170 22201958757719 10649013368117 5459859503100

ARK3(2)4L[2]SA - ESDIRK

0

1767732205903

2027836641118

5

1

0

1767732205903

4095673282236

2746238789719

10658868560708

1471266399579

7840856788654

0 0 0

1767732205903 0 0
4055673282236

--640167445237 1767782205903 0
6845629431997 4055673282236

--4482444167858 11266239266428 1767732205903

7529759066697 11593286722821 4055673282236

1471266399579

7840856788654

--4482444167858 11266239266428 1767732205903

7529759066697 11593286722821 4055673282236

2796255671227 --10771552573575 9247589265047 2193209047091
12835298489170 22201958757719 10649013368117 5459859503100

ARK3(2)4L[2]SA - Second-Order Dense Output

b*I  ,,11 i=1

+4659552711362
j = 1

j= 2 22874653954995
--215264564351

13552729205753

ARK4(3)6L[2]SA - ERK

i=2 i=3 i=4

-18682724506714

9892148508045

17870216137069

13817060693119

34259539580243

13192909600954

-28141676662227

17317692491221

584795268549

6622622206610

2508943948391
7218656332882

83

250

0 0 0 0

1_ 0
2

13861 6889

62500 62500

31 -116923316275 -2731218467317 9408046702089

50 2393684061468 15368042101831 11113171139209

17 -451086348788 -2682348792572 12662868779082 3355817975965

20

1

0 0

0 0

0 0

0 0

0 0
2902428689909

647845179188

3216320057751

7519795681897 11960479115383 11060851509271

73281519250 592539513391 3354512671639

8382629484533 3454668386223 8306763924573
404o 0
17871

82889 0 15625 69875
524892 83664 102672

-2260 L
8211 4

4586570599 0 178811875 814220225
29645900160 945068544 1159782912

--3700627 61727

11593932 225920
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ARK4(3)6L[2]SA - ESDIRK

83

200

31

50

17

20

1

bi

0 0 0

L L 0
4 4

8611 --1743 !
62500 31250 4

0012029 --654441 174375

34652500 2922500 388108

15267082809 --71443401 730878875

155376265800 120774400 902184768

82880 0 15625
524892 83664

0 0 0

0 0 0

0 0 0

k 0 0
4

2285390 L 0
8070912 4

69875 --2260
102672 8211 4

82889 0 15625 69875 --2260
524892 83664 102672 8211 4

4586570599

29645900160

178811875 814220225 --3700637 61727

945068544 1159782912 11593932 225920

ARK4(3)6L[2]SA - Third-Order Dense Output

b* = li=2l i 3I _/ II i 1 =

j = 1 6943876665148 0 76401043743787220017795957 9702883013639

j z 2 --54480133 1 --11436875

20881148 14766696

j z3 6818779370841 21735420907927100303317025 12501825683035

i=4 i=5 i=6

--20649996744609

7521556579894

174696575

18121808

--31592104683404

8854892464081

2390941311038

--12120380

966161

61146701046299

--11397109930349

6675773540249

3843

706

--17219254887155

5083833661969 7138195549469 4939391667607

ARK4(3)6L[2]SA - Second-Order Dense Output

_* li=21 i 3I *,, II i=1 =

j = 1 5701579834848 0 13131138058924616486304,3925 17779730471019

j _ 2 -7364507999481 0 -6350522249597
9002213853517 11518083130086

i=4 i=5 i=6

-28096677048929

11161768229540

29755736407445

42062433452849
11720557422164

-38886896333129

--25841894007917

14894670528776

22142945905077

9305094404071 10063858340160 11155272088250

ARK5(4)SL[2]SA - Third-Order Dense Output

_* = li=21i=31 i 4I _,, II i 1 =

10670229744614 7868540260826

j = 2 43486358583215 0 0 --9147823392726012773830924787 11067650908493

j = 3 --9257016797708 260964225761315021505005439 11239449200142

i=5 i=6 i=7 i=8

10494834004392

5936557850923

--79368083304911

10890268929026

92396832806987

20302823103730

--99329723586156

26959484932159

--12239297817655

9152339842473

30020262896817

10175596800299

--19024464361622

5461577185407

115839755401235

10719374521269

--26136350490073

3983972220547

--6511271360970

6095937251113

5843115559534

2180450260947

--5289405421727

3760307252460
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