
Information Visualization in Virtual Environments

Steve Bryson. NASA Ames Research Center

1. Introduction

Virtual Environments provide a natural setting for a wide range of information visualization applications.

particularly when the information to be visualized is defined on a three-dimensional domain (Bryson,

1996). This chapter provides an overview of the issues that arise when designing and implementing an

information visualization application in a virtual environment. Many design issues that arise, such as, e.g.,

issues of display, user tracking are common to any application of virtual environments. In this chapter we

focus on those issues that are special to information visualization applications, as issues of wider concern

are addressed elsewhere in this book.

1.1. What is the problem?

In this chapter, we take information visualization to be the visual investigation of numeric data. This data

may represent real-world observations or the result of simulation. The data may express tangible, real-

world quantities such as water temperature, or may represent abstract quantities such as stock market

prices. We restrict the data to "information" rather than "objects", in order to avoid having to discuss

representation of conventional real-world objects. Using this restriction we can concentrate on those

aspects of information visualization that are unique to non-realistic, abstract representations of information.

Of course there is considerable overlap between "information" and "object", e.g. we may want to represent

topographic data. If that representation is abstract in order to bring out some feature of the topography, the

discussion in this chapter is relevant. If the topography is to be represented realistically, then the discussion

here may not apply.

Virtual Environments (VEs) provide unique opportunities for information visualization (Bryson, 1996,

Cruz-Neira et. al., 1993, Lin et. al., 2000). The inherent three-dimensional nature of virtual environments



makesVEsnaturalfortheinvestigationofthree(orhigher)-dimensionaldataonthree-dimensional

domains.Thenatural,anthropomorphicinterfacesuggestedinvirtualenvironmentsinspiresnatural,

intuitiveinterfacesfortheinvestigationofdata.Thisintuitiveinterfacemaybeparticularlysuitablefor

visualizinghighlycomplexdatasets.wherephenomenain thedatacannotbeeffectivelydisplayedallat

once.Insuchsituationanintuitivethree-dimensionalinterfacemayallowfortherapidinvestigationof

dataemployinga"what'shappeninghere?"paradigm.

Inthischapterwewillexplorehowvirtualenvironmentscanbeeffectivelyusedforinformation

visualization.Aftercharacterizingtheinformationvisualizationprocess,wewillexaminehowinformation

visualizationenvironmentsdifferfromother,more"real-world"-orientedapplications.Usingthese

observationswewilldevelopimplementationstrategiestailoredforinformationvisualizationinvirtual

environments,includingissuesofrun-timesoftwarearchitectures,distribution,andcontroloftimeflow.

Theseimplementationstrategieswillbedrivenbyconsiderationofthehumanfactorsofinteraction.We

willclosewithadiscussionofthechallengingaspectsofinformationvisualizationinvirtualenvironments.

1.2. The Data Analysis Pipeline

In order to describe the special issues that arise in the implementation of an information visualization

system in virtual reality, we require a conceptual model of an information visualization system. There are

many ways to concep_ information visualization, and we make no claim to the most complete or

optimal conceptualization. We have, however, found the following very informative when considering

implementation issues.

G

We consider the information visualization process as a pipeline, which in its most generic form starts with

the data to be visualized. From this data visualization primitives are extracted. These primitives may

consist of vertices in a polygonal representation, text for a numerical display, or a bitmap resulting from,

for example, a direct volume representation. Primitive extraction typically involves many queries for data



values,Theextractedprimitivesarethenrenderedtoadisplay.Thispipelineallowsusercontrolofall

functions,fromdataselectionthroughprimitiveextractiontorendering.Weshowthispipelineinfigure1

Data Extracted

_ata _ primitives
queries

Rendering User

User control

Figure 1: The Data Analysis Pipeline

As an example of this pipeline in operation, consider streamlines of a vector field (see, e.g., Bryson, 1998)

Given a starting point of a streamline, data (the vectors at that point) are accessed by the streamline

algorithm. The vector value is then added (sometimes with a complex high-accuracy algorithm) to the

starting point, creating a line primitive. This process is iterated _o build up a (typically curved) line with

many vertices. These vertices are the streamline's extracted representation. These vertices are then

rendered in the visualization scene. The extraction of these primitives may involve significant computation

even though the data may exist as a pre-computed file. Computations like those in this example will turn

out to be a significant issue in the implementation of information visualization in virtual environments.

1.3. Why Perform Information Visualization in a Virtual Environment?

Virtual environments o-'1"_ several advantages for many classes of information visualization (Bryson, 1996,

Cruz-Neira et. al., 1993, Lin et. ai., 2000, Song and Norman, 1993). The inherent three-dimensional

interface makes virtual reality a natural setting for information which exists on a three-dimensional domain.

Examples of such data include three-dimensional scientific simulations such as fluid flow, electromagnetic

fields or statistical data indexed by location in three-dimensional space. Three-dimensional interaction

techniques common in virtual environments provide natural ways to control visualization selection and

control in 3D. In addition experience has shown that one of the greatest advantages of information

visualization in virtual environments is the inherent "near-real-time" responsiveness required by a head-



tracked ,.tir__'ct.m:mipt, l:_ti_m ',irtuaJ envmmmcnt. ['hi _, r.._'_,I_on-;I,,,.2ncs',allo_,,s rapid qucrie,_ _| data in

region, ,_t in[crc,,t .M,mmmmlg this rcsponsi',cnc_,,, m ,m init}rmation ,,i_ualization en_ir_mmcnt is the

most challenging aspect of such an application and wilt be one of the Primary fi_ci of this chapter. When

designed well, the c¢_mhination of three-dimensional display, three-dimensional interaction and rapid

response creates an intuitive environment for exploration and demonstration.

Figures 2 and 3 show examples of virtual environments for the visualization of information arising from

scientific computation. Figure 2 shows a system developed at the University of Houston for the exploration

of geophysical flows (Lin et. al., 2000). Figure 3 shows the Virtual Windtunnel, developed at NASA Ames

Research Center, which is used to investigate the results of simulations in Computational Fluid Dynamics

(Bryson and Levit, 1991, Bryson et. al. 1997). Both examples exhibit the use of multiple visualization

extracts in a single environment. All of these extracts are interactive and can be changed under user

control.

7_

Figure 2: an information visualization virtual environment for the exploration of geological data sets.

Courtesy of the University of Houston/Bowen Loftin



Figure 3: The Virtual Windtunnel, a virtual environment for the visualization of results of simulations

arising in Computational Fluid Dynamics

Multimodal interfaces, using sound, touch and force displays for virtual environments have been explored

for information visualization in virtual environments (e.g. Taylor et. al., 1993). With the possible exception

of tbrce displays, however, the efficacy of such interfaces has not been demonstrated.

1.4. How Information Visualization Differs from Other VE Applications

The design and development of an infl_rmation visualization application within a VE is different from most

virtual reality application development, Information visualization environments are often abstract and

inw_lve large amounts of data access and computation in response to a query. For time-varying data.

different senses _f time arise, in which the data may evolve more slowly or even backwards relative to user



time.Suchdifferencesbetweeninformationvisualizationenvironmentsandmore c_nventional VR

applications can be generalized into the following areas:

• Greater flexibility in graphical representation: The inherently abstract nature of information

implies opportunities for simpler, faster graphics, such as representing a streamline as a simple

polyline. Conventional applications, such as training or entertainment, are typically more concerned

with realistic graphical environments, and so may have less flexibility in the selection of graphical

representation. Of course this is not a universally applicable rule, as some representations of

information such as direct volume rendering can be very graphically intensive.

• A large amount of numerical computation may be required: While information visualization

typically addresses pre-existing data, visualization extracts may themselves require considerable

computation. Streamlines or isosurfaces in the visualization of continuous vector and scalar fields are

well-known examples that require large amounts of computation. Statistical or data mining techniques

for abstract data may also require computation. As more sophisticated data analysis techniques are

used in virtual environments more computational .demands can be expected.

• A large amount of data access may be required: Visualization extracts require access to data, and

some extracts require more data access than others. Complete isosurfaces, for example, require

traversing an entire data set (at a particular timestep for time-varying data) for the computation of the

data set. Time-varying data sets can be extremely large, requiring access to hundreds of gigabytes of

data in a single analysis session, albeit a single timestep at a time.

• There may be various senses of time: As discussed below in section 4, several senses of time can

arise in an informa"ffi'_onvisualization system, particularly when addressing time-varying data sets.

While some of these senses of time correspond to conventional time in other VE applications,

completely new ways of thinking of time arise from the fact that a user may wish to manipulate time

flow in a time varying environment. This issue and its impact are discussed in much more detail in

section 4.

These differences between an information visualization virtual environment and other applications have

major impacts on the design of the virtual environment system. These impacts are the focus of this chapter.



2. System Architecture Issues Specific to Information

Visualization in VEs

There are several issues that arise in the design and implementation of virtual environments for information

visualization. In this section we examine some of these issues in detail. First, however, we must classify

the types of interaction that may occur, which in turn depends on the time flow of the data.

2.1. Classification of interaction and time flow

There are two design questions that must be answered before considering an appropriate implementation of

an information visualization application in virtual reality:

• Is the user allowed to interaetively query the data at run time, generating new visualization

extracts? If so, the system will likely have user-driven data accesses and computation to support

extraction of new visualization geometry.

• * • Is the data time-varying? If so, there will be at least two senses of time in the virtual environment:_

user time and data time. The flow of data time may be put under user control so that it may be slowed,

stopped, reversed, or times randomly accessed.

These questions are independent, and both must be answered in order to determine which kind of

implementation strategy will be appropriate. There are four combinations that arise from the answers to

these two questions:

Non-interactive, no_-varying data: This is the simplest information visualization envirofiment,

where the visualization geometry can be extracted ahead of time and displayed as static geometry in a head-

tracked virtual environment. No data access or computation issues occur in this case. The user may be able

to rotate or move the static geometry. The design issues that arise in this case are common to all virtual

reality applications and so will not be considered further in this chapter.

Non-interactive, time-varying data: In this case the visualization extract geometry can be pre-computed

as a time series which may be displayed as a three-dimensional animation in the virtual environment. The



usermaybegivencontrolovertheflowof the animation, to slow it down, stop it or reverse direction.

Such user-controlled time flow implies a special interface which may include rate controls to determine the

speed and direction of the data time or a timestep control for the random access of the extracted geometry

at a particular data time. When the extracts are defined for discreet timesteps, interpolation in time may be

desirable to allow for a smooth flow between timesteps. What kind of interpolation is appropriate will be

highly domain and application dependent. Except for these considerations, however, the issues that arise in

this case are common to most virtual reality applications and so will not be considered further in this

chapter.

Interactive, non-time-varying data: In this case the data does not change in time, but the user specifies

the visualization extracts at runtime. In a virtual environment such extracts may be specified via a direct-

manipulation interface where the user either specifies a point or manipulates an object in three-dimensional

space. The visualization extract may require significant computation, which will have an impact on the

responsiveness of the system. This impact is discussed at length in section 2.2. When visualization

extracts are do not change they are typically not recomputed.

Interactive, time-varying data: For this type of environment, the data itself is changing with time so any

existing visualization extracts must be recomputed whenever the data time changes. This can result in a

large amount of computation for each data timestep, the implications of which are discussed below in

section 2.3. In addition, the user may be given control over the flow of data time, allowing data time to run

more quickly or slowly,-7",',',',",'_nreverse.. The user may wish to stop time and explore a particular timestep.

When time is stopped the system should act like an interactive, non-time-varying data environment,

allowing visualization extracts to be computed in response to user commands.

2.2. Interaction vs. Data Time Scales

Responsive interaction plays two important roles in virtual reality:

• Fast graphics is required to permit the head-tracked display required for a strong sense of object

presence and immersion.



• Fastresponse to user commands are required t\)r a direct manipulation interface paradigm, where the

user is allowed to directly "pick up and move" objects in the virtual environment.

In information visualization environments we have the added requirement that the user be able to move a

data probe displaying a visualization extract, and see that extract update in near-real-time as appropriate to

its new position. If the data probe's extract updates sufficiently quickly, the user will have a sense of

exploring the data in real time.

How fast the graphics and interaction response must be turns out to be both application and domain

dependent. A virtual environment for training manual tasks such as a flight simulator requires response

times of less than 1/30 of a second. Longer response times have been observed to train the subject to

expect delays that may not exist in the real world and lead to incorrect operation (Sheridan and Fen'ill,

1974). Information visualization, however, does not typically require fidelity to any real-world time scales.

In fact it is often desirable that the information being visualized be presented with very different time scales

from the real world, with data time being either slowed down or sped up depending on the user's needs. •

While fidelity to real-world time scales is not a guide to the required responsiveness of an information

visualization environment, human factors considerations will set performance requirements. Three human

factors issues turn out to be important for information visualization in virtual environments:

• Graphics Update Rate: How fast must the graphical display update rate (graphical animation rate)

be to preserve a sense of object presence and/or immersion? By graphical update rate we mean the

rate at which fra4a,mmare drawn to the frame buffer(s), not the display device's refresh rate. "

• Interaction Responsiveness: How quickly must objects in the environment respond to user actions

in order to maintain a sense of presence and direct manipulation? This requirement applies to the

overall head-tracked display as well as ability to interact with objects.

• Data Display Responsiveness: How fast must interactive data display devices, such as a data probe,

update to give the user a sense of exploring the data'?

The relationships and differences between these time scales are subtle. Graphics update rate will limit the

interaction and data display responsiveness because the interactive displays cannot be presented faster than



thegraphicsupdaterate.Updaterateandresponsiveness,however,areverydifferentkindsof measures:

updaterateismeasuredinframes/second,whileresponsivenessisthelatency,measuredinseconds:the

timeintervalbetweenauseractionandwhenthesystem'sresponseisdisplayed.Thislatencyisdetermined

byallprocessestriggeredbytheuser'saction,fromreadingtheusertrackingdevicesthroughprocessing

theuser'scommandsthroughpossiblesubsequentcomputationtothedisplayoftheresult.

4_

Experiencehasshownthatthelimitsonthesetimescalesare(seeBryson,1996andSheridanandFerrill,

1974):

• The graphics update rate must be greater than 10 frames/second. While faster update rates are

desirable, 10 frames/second is sufficient to maintain a sense of object presence even though the

discrete frames of the display are easily perceptible. Slower update rates result in a failure of the

sense of object presence, eliminating the enhanced three-dimensional perception advantages of a

virtual environment. ._ _ ... .

• . i.__ •
• Interaction respouslvenes_ n_ust be less than.0.1 seconds. _ While lower latencies and faster

responsiveness is desirable, a latency of 0:1 seconds Is fast enough to give the user a good sense of

control of objects in the virtual environment. Longer latencies typically cause the user to experience

unacceptable difficulty in selecting and manipulating objects in three-dimensional space.

• Data display responsiveness must be less than about 1/3 of a second. While faster responsiveness

is desirable, a data display latency of 1/3 of a second maintains a sense of "exploring" the

environment, though the user may use slow movements to adapt to this relatively long latency.

Longer latencies in data display require such slow movements on the part of the user as to lose

usability.

The graphics update rate and the interaction responsiveness requirements are similar: one graphics frame

of latency is allowed for to maintain good responsiveness for user interaction. The data display

responsiveness requirement, however, is less restrictive. The difference in latency requirement between

interactivity and data displays is due to the fact that user interaction (selecting, acquiring and moving

objects) is a manual task driven by the human factors of manual control, while observing data display



during movement is an intellectual task, in which the user observes what happens as a data probe is

moved through space.

Interactive time-varying environments potentially present a difficult challenge in meeting the above

requirements: all non-precomputed visualization extracts must be computed whenever the timestep

changes. Furthermore, when the timestep changes, all computations must take place before any of the

extracts can be displayed so that extracts from different data timesteps are not displayed at the same time.

Experience has shown that it is acceptable for the data timestep to change quite slowly, so long as the 10

frames/second graphical update rate and the 1/3 second data responsiveness requirements are met.

These observations suggest that graphical display and user interaction be treated independently of the

visualization. For example, interaction and visualization display may be treated independenttly by having

simple graphical tools in the virtual environment which respond to the user without waiting for data to be

displayed (Herndon and Meyer, 1994 and Bryson et. al., 1997). These tools may trigger associated data -_'

displays, but these data displays should occur asynchronously from the display of the tool, allowing the

tool to respond to the user's input as quickly as possible.

A simple crosshair in three-dimensional space, with an associated streamline of a vector field, is an

example of such a tool. In this example, the user can "pick up and move" the crosshair, which will be

very responsive (within the limits of the graphical update rate) due to its simple graphical nature. When

this crosshair is moved it will trigger the computation of a streamline at its current location. This

streamline may take much longer to compute and display, after which time the tool will trigger a new

streamline from its new location. If the process computing the streamline runs asynchronously from the

process handling user interaction and graphical display, interaction responsiveness will be only slightly

impacted by the computation of the streamline (assuming a pre-emptive multi-tasking operating system).

This example shows that the difference in time scales between the interaction responsiveness and data

display responsiveness has strong implications for the run-time architecture of the information

visualization system. These implications for the overall system architecture are discussed in section 2.3.



Themethodoftriggeringcomputationsoutlinedinthissimplifiedscenariowillbediscussedinmore

depthinsection4 below.

2.3. System Architecture

The observations in the previous section imply that any implementation of an interactive information

visualization virtual environment in which computation of visualization extracts takes place should contain

at least two asynchronous processes: a graphics and interaction process and a visualization extract

computation process. More generally, the graphics and interaction task may be performed by a group of

processes we shall call the interaction (process) group, one or more processes for graphics display and

possibly separate processes for reading and processing user tracking data. Similarly the visualization

extraction task may be performed by several processes, called the computation (process) group, possibly

operating on multiple processors in parallel. We choose these groupings because processes in the

interaction group all have the same 10 frames/second/0.1 second latency requirements, while the

: computation group has the 1/3rd of a secg/nd latency req.uirement. This process structure decouples display

and computation, so that a slow computation does not slow down the display process, and the speed

requirements of the display process do not limit the computation.

The interaction process group passes user commands to the computation process group, which triggers the

computation of visualization extracts. These resulting extracts are passed back to the interaction process

group for display. This basic architecture is outlined in figure 4

Comp_on Process

Group
//_User Commands

Visualization
Extracts

Interaction Process

Group



Figure 4: Runtime process architecture of an information visualizati,_n system for interactive and/or time-

varying data

3. Distributed Implementation

Distributed data analysis can be highly desirable, particularly in one or more of the following

circumstances:

• The data exists on a remote system and it is inconvenient to move the data to the local visualization

system

• The desired visualization extracts require more computation than the local visualization system can

easily deliver

• The data is the result of a concurrently running computation on a separate high-performance

computational system

• Remote collaboration is desired,where several clients have (effective) access to the same data.

The use of separate, asynchronous computation and interaction process groups communicating via buffers

as described in section 2.3 facilitates a distributed implementation, where the process groups exist on

separate, possibly remote machines communicating over a network.

3.1. Distribution Strategies

There are several stra_ for the distribution of data analysis. These strategies are determined by

selection of where to place which operations in the data analysis pipeline of figure 1. These strategies and

their advantages and disadvantages:

• Remote Data, Local Extraction and Rendering: In this option the data exists on a remote system.

and individual data values are obtained over the network as required by the local visualization

extraction algorithm. This strategy has the advantage of architectural simplicity, with all visualization

activities taking place on the local system as if the data were local• This strategy has the disadvantage

that it requires a network access each time data is required, which can be time consuming. There are



techniquesto _)vercome this disadvantage, such as clever pre-fetching, where data is delivered in

groupings which anticipate expected future queries. For some information types the remote data

distribution strategy may be too slow for a VR interface, for example when analyzing continuous fields

that arise in computational fluid dynamics, where large visualization extracts may require many data

accesses for their computation. For other applications, however, where data accesses are relatively

few, remote data distribution may be a viable strategy.

• Remote Data and Extraction, Local Rendering: With this strategy visualization extraction occurs

on a remote system, typically the same system that contains the data. In an interactive system the

extraction computations are in response to user commands passed from the user's local system. The

results of the extraction, typically geometrical descriptions of three-dimensional visualization objects,

are transmitted to the user's local system for rendering. Architecturally, this strategy maps closely to

the runtime architecture illustrated in Figure 4, with the computation process group on (one or more)

remote machines and the display and interaction process on the local system. This strategy has the

advantage that the extractions algorithms are "close to the.data", so data access is not a bottleneck. It _

also has the advantage of local rendering, which allows head-tracking display for each participant as

required in virtual environments. The disadvantages of this strategy include the fact that response to

user commands requires a round trip over the network, and the requirement that the user's local system

be capable of rendering the extract's geometry.

• Remote Data and Extraction, Distributed Rendering: This strategy is a variation of the above

Remote Data and Extraction, Local Rendering strategy. In this case the rendering commands occur on

the remote system and are passed as distributed rendering calls to the user's local system for actual

rendering. A local client program is still required to read the user's trackers and process and send user

commands. This strategy has advantages and disadvantages similar to the Remote Data and

Extraction, Local Rendering strategy, except that the network round-trip time is now part of the

graphics display loop. This may introduce unacceptable delays into bead-tracking responsiveness.

• Remote Data, Extraction and Rendering: This strategy places all the operations of the data analysis

pipeline on the remote system(s), with the final rendered frames returned to the user's local system

over the network. This strategy has the advantage that very powerful remote systems can be used



when the user has a very low-power local system. The disadvantage is that the rendered frames can be

large, fi)r example for a 1024x1024 24-bit RGB-alpha display requires a 4 megabytes frame buffer,

and two such frame bufferss are required tor stereo display. This implies an 80 megabyte transfer

every second in our example to maintain the frame rate of 10 frames per second. This bandwidth

requirement is beyond most available large-area networks. There are also serious issues of latency

control in this strategy because the network time is part of the display responsiveness loop. There are,

however, situations where the local system is incapable of the kinds of rendering desired and this

strategy may be the only viable option. Direct volume rendering is an example when this strategy may

provide the optimal choice.

The above strategies are not exclusive: one may have remote visualization extraction taking place on one

remote system while the data resides on a third system.

3.2. Remote Collaboration Strategies

Once a system is distributed, the opportunity arises for remote collaboration, where two or more non-co-

located users examine the same data together. Strategies for remote collaboration are related to, but

different from distribution strategies. We briefly summarize the common remote collaboration strategies:

• Distributed data: This collaboration strategy places copies of the data to be examined on all

participants' client systems. Collaboration is implemented by passing either user commands or

computed visualization extract results among each of the participants' systems. The primary

advantage of this strategy is that the software used is similar to stand-alone versions of the same

systems. The ma'i'rr'l_advantages include the difficulty of ensuring synchronization among the

participants, and the requirement that each participant's system be capable of storing the data and

computing the (at least locally generated) visualization extracts. Many distributed collaborative VE

systems, such as military training systems, utilize the distributed data collaboration strategy.

• Data Server: This collaboration strategy builds upon the remote data distribution strategy. The data

typically resides on a single remote system and is accessed by the participant's local system as needed.

The visualization extracts are computed locally, and are communicated in the same manner as in the

distributed data collaboration strategy above.



• Visualization Extract Server: This collaboration strategy builds upon the remote extraction

distribution strategy, in which the visualization extracts are computed on a remote system, which is

typically where the data being examined is stored. The extracts are sent to each participant's system

for local rendering. The advantages of this strategy include:

• As there is only one set of extracts associated with each set of data, synchronization is greatly

simplified

• Local rendering allows each participant to render the visualization extracts from a local point of

view, as required for head-tracked displays

• The extract server system can arbitrate conflicting user commands

The visualization extract server collaboration strategy has the disadvantage of poor scaling to large

numbers of users, though this problem will be alleviated when reliable multicast technologies become

available. The other disadvantages of this strategy are the same as those for the remote extraction

distribution strategy.

• Scene Replication: This collaboration strategy has a privileged user who's view is presented to the

other participants. This collaboration strategy is similar to the remote rendering distribution strategy.

This strategy has the same advantages and disadvantages as the remote data, extraction and rendering

distribution strategy, with the added disadvantage that all participants will see the same view thereby

precluding the use of head tracking for all participants.

4. Time Flow-a Control

When visualizing time-varying data, a user may desire to control the flow of time, e.g. make time speed up,

slow down or reverse. Furthermore, to view a particular phenomenon in more detail at a specific point in

time, the user may stop the time flow. These non-real-world manipulations of the flow of time require

several new ways of describing time in a virtual environment. The discussion in this section closely

follows Bryson and Johan, 1996, where more details can be found.



4.1. Requirements of time-varying interactive visualization

There are several design principles that must be considered before developing time-varying interactive

visualization applications:

• Correct Simultaneity: All visualization extracts displayed at the same time should have been

computed for the same data time, unless explicitly directed otherwise by the user

• Completeness: All visualization extracts requested for a particular data time should be displayed

unless the user directs otherwise.

• Time Flow Control: The user should be able to change the rate and direction of the flow of the data

timesteps

• Interactive exploration should be allowed even when the data timestep does not change: If the

user slows or stops the flow of time, interactive exploration should still be allowed. This implies that

new visualization extracts may be computed even if the data timestep does not change.

• Minimize delay: The system should display the most recently computed visualization extracts, unless

otherwise explicitly directed by the user.

4.2. Types of Time

In time-varying information visualization environments time assumes an unusual and subtle meaning.

There are several senses of time that arise in such environments:

• User time: The time that the user experiences, the "wall-clock" time.

• Data display time: The displayed timestep, defined as the timestep of the data from which the

currently visible visualization objects were extracted.

• Data time: The timestep from which visualization extracts have been computed. Data time may or

may not be equal to data display time.

• Frame time: The number of times a set of visualization extracts have been computed for a given

timestep. Frame time is measured by counting the number of times the computation process has been

called for a given data time.

We distinguish between data display time and data time so that when data time is moving forward

visualization extracts can be computed from the next data time while the current data display time is



presentedtotheuser.Thenextdatatimemaynotberelatedtothecurrentdatadisplaytime:forexample

theusermaychooseaparticulardatatimeforthenextdispla)frameunrelatedtothecurrentdatadisplay

time.

The purpose of the frame time counter is to support the scenario in which the advance of data time is

stopped and the user wishes to interactively explore the current timestep's data. By stamping the

visualization extracts with their frame time in addition to their data time the most recently computed extract

may be displayed, maximizing interaction responsiveness. The use of frame time is discussed in the next

section on buffering strategies.

4.3. Buffering strategies

In the runtime architecture described in section 2.3 the computation process group produces visualization

extracts which are displayed to the user by the interaction process group. The method of communication

between these groups is driven by the principles outlined in section 4.1 and is implemented using the time

parameters defined in section 4.2.

The most difficult case is when the information visualization system supports several independent

visualization objects, such as streamlines and isosurfaces, which can be independently specified and

displayed. We shall therefore assume this is the case. We further assume that the graphics process keep a

list of visualization extracts to be displayed. It is desirable that visualization extracts that do not change be

displayed without recomputation. The buffers that pass the visualization extracts from the computation

process to the graphi_ess should be capable of passing only those extracts that are newly computed,

without destroying those older extracts that should continue to be displayed. This requirement is most

easily met if the buffering takes place at the visualization object level, where each visualization object

manages its own buffer.

There are two approaches to buffering, local time and time-cached buffering. Local-time buffering does

not retain visualization extracts over time, while time-cached buffering saves visualization extracts for

possible reuse when appropriate.



4.3.1. Local Time Buffering

In local time buffering, only the most recently computed ,_isualization extracts are displayed and there is no

attempt to cache visualization objects from previous timesteps. This approach to buffering is appropriate to

non-time-varying data, because new visualization techniques are generated only in response to user

commands.

Local-time buffering should be implemented so that

• The most recently computed extracts are available

• The computation process does not have to wait while a visualization extract is displayed.

Conventional double-buffering techniques, where one has a write buffer into which computed visualization

extracts are stored and a read buffer out of which previously computed extracts are displayed only partially

meet these requirements. Consider the case where the computation process is faster than the graphics

process. This will often happen in non-time-varying environments where perhaps one visualization extract

is being computed in response to a user command, while all current visualization extracts need to be ' '.

displayed. When using a double-buffer approach and the computation process is faster than the graphics

process, the write buffer will be filled before the graphics process' read buffer has been used and released

for writing. This will cause the computation process to wait until the read buffer has been released. Such

waiting will result in a delay if the user is "sweeping" a visualization object in space, producing a

continuous stream of visualization extracts to be computed.

A better approach is to use a triple-buffer strategy, where three buffers are available. During typical

operation, the computation process will fill one or more of these buffers, so (after the buffers have been

filled) there may be two or more buffers marked "read". Each of these buffers will be marked with the time

frame number defined in section 4.2, as well as the data time number if the data is time varying. In order to

minimize delay the graphics process will choose the buffer with the highest time frame number, which will

be the visualization extract most recently computed. In the meantime, if the computation process wants to

proceed it can compute the response to the most recent user commands, overwriting the older of the two



availablereadbuffersthusminimizinglatency.Inthiswayatriple-bufferstrategyallowslocal-time

bufferingtomeettherequirementtominimizedelay.

Inatime-varyingdataenvironment,thebufferswillalsobestampedwiththetimestepinwhichtheextract

wascomputed.Thegraphicsprocessthenselectsbuffersfromthetimestepbeingcurrentlydisplayedin

additiontoselectionofthehighestdataframetime.Thisassuresthattherequirementofcorrect

simultaneityofsection4.1ismet.

4.3.2. Time-Cached Buffering

In a time-varying data environment one may wish to cache previously computed visualization extracts.

When this is done, if the timestep from which those visualization extracts were computed is encountered

again those extracts can be displayed without recomputation.

Time-cached buffering requires!ocal-time buffering within each time step. When the timestep advances

the most recent visualization extracts for that timestep can be stored. Then, when that timestep is

reselected, either by user command or because the time flow is periodic, those extracts can be displayed

without recomputation if their specifying data (e.g. seed positions for streamlines or values for isosurfaces)

is still valid.

5. Time-Critical Techniques

One of the prime requi._m_nts of virtual environments is responsiveness. In section 2.2 we discussed the

performance requirements for various aspects of an information visualization application within a virtual

environment. These requirements can be difficult to meet in light of the possibly complex graphics and

extensive computation required for the computation of visualization extractions. One is often faced with a

conflict between the requirements of a complete or accurate visualization and the requirements for

responsiveness and fast graphical display rates. While accuracy is often critical in an information

visualization environment, users often prefer fast response with a known degradation in accuracy for

purposes of exploration. When a phenomenon of interest is found in the more responsive but less accurate



mode,theusercanrequestthatthisphenomenonberecomputedanddisplayedmoreslowlywithhigher

accuracyTheautomaticresolutionoftheconflictbetweenaccuracyandresponsiveness,findingthe

appropriatebalance,isknownas'time-criticaldesign",thetopicofthissection.

5.1. The Time-Critical Philosophy

Time-critical design attempts to automate the process of finding a balance between required accuracy and

responsiveness. This approach is very different from real-time programming, which guarantees a particular

result in a specified time. Real-time programming typically operates in a fixed, highly constrained

environment while time-critical programs are typically highly variable. This variability is particularly

evident in an information visualization environment, where the data and extracts computed and displayed

may vary widely within a single user session. Time-critical design does not guarantee a particular result,

instead delivering the "best" result possible within a given time constraint. A successfully designed time-

critical system will provide a graceful degradation of quality or accuracy as the time constraint becomes

more difficult to meet.

Time critical design for a particular aspect of a program begins with defining a cost and benefit metric for

the task to be completed. The task is then parameterized in a way that controls both costs and benefits.

When the cost and benefit of a task is known as a function of the task' s parameters before that task is

performed, the appropriate choice of parameters is selected to maximize the benefit/cost ratio. There are

often many tasks to be performed in an environment, and the benefit of a particular task can be a function

of the state of that en_ent. The solution of this problem is often approached as a high-dimensional

constrained optimization problem, maximizing the total benefit/cost ratio for the sum of the tasks to be

performed given the constraint of the total time allowed for all tasks.

As we shall see below, however, it is often very difficult to know the benefit and cost of a task before that

task is performed. In such situations, hints provided by the user or simple principles such as assuming

equal benefit within a set of tasks are often used.



5.2. Time-Critical Graphics

Time-critical techniques were pioneered in computer graphics (Funkhouser and Sequin. lq03), where

objects were drawn with higher or lower quality depending on such benefit metrics as position in the field

of view and distance from the user. Such implementations often used multiple representations of an object

at varying levels of detail. In information visualization, however, many visualization extracts are already in

a minimal form such as streamlines defined as a set of points. There are opportunities for graphical

simplification in information visualization, however. For example, It may be the case that many more

primitive elements are used to define a surface than is necessary for its display. An isosurface may have

regions that are close to flat but the algorithm used to derive the isosurface may create many surface

elements in that flat region. Display of that surface would be faster if that flat region were represented by

fewer surface elements (see, e.g., Chert et. al., 1999 and subsequent papers in that volume). A surface may

also be represented in simplified form until it became the focus of attention so that small variations from

flatness may be important. Unfortunately, algorithms that identify such opportunities for surface

simplification are computationally intensive and may therefore be unsuited to re-computation in every

_ame.

From similar considerations we conclude that unlike general computer graphics based on pre-computed

polygonal models, the use of time-critical graphics in information visualization will be highly dependent on

the domain-dependent specifics of the visualization extracts. It may be very difficult, for example, to

assign a benefit to a pa_ar extract, especially when that extract may extend to many regions of the

user's view. While simple benefit metrics such as the location of the extract on the screen may be helpful,

one should keep in mind that the user's head may be pointed in one direction while the user's eyes may be

scanning the entire view. Such scanning is to be expected in an information visualization environment

where the scene may contain many related, extended objects.

From these considerations there are few generalizations that can be drawn about the use of time-critical

graphics techniques in information visualization. Opportunities do arise, however. Simple examples of

time-critical graphics techniques that may be useful in information visualization include:



• Simplifiedrepresentations,suchaswireframe rather than polygonal rendering

* Surfaces represented as two-dimensional arrays, where simplified versions of the surface may be

obtained by rendering every n points in the array

• Techniques that have been developed for time-critical direct volume rendering (e.g. Wan et. al. 1999)

A more general approach to time-critical graphics is to use multi-resolution representations of the data or

the resulting visualization extracts. This is a new area of research, however, with relatively few results at

the time of this writing.

5.3. Time-Critical Computation

Computation of visualization extracts can provide several opportunities for time-critical design (Bryson and

Johan, 1996) because such computation is often the most time-consuming aspect of a visualization system.

As in the case of time-critical graphics, the specifics of time-critical computational design will be highly

dependent on the nature of the extract computed. We can, however, make several general observations:

• Both the cost and benefit of a visualization extract can be very difficult to estimate a priori based on its

specification and control parameters, especially since the extent of an extract is difficult to predict

based on its specification alone

• The cost of an extract can be roughly defined as the time required for its computation. Experience has

shown that this cost does not vary widely between successive computations

• The cost of a visualization extract may be most easily controlled by parameterizing the extent or

resolution of the e_m_tation. Techniques that begin their computation at a particular Iocatibn in

space, such as a streamline emanating from a point in space, lend themselves well to controlling their

extent in space, which controls the time required by their computation. The cose of visualization

techniques which rely on abstract or indirect specification is more effectively controlled by varying

resolution.

• Other ways to control the cost of the visualization extract include choice of computational algorithm

and error metrics for adaptive algorithms. These control parameters have a more discrete nature and

may be set by the user or set automatically via specific trigger criteria.



Giventhatthebenefitofavisualizationextractishardtopredict,onemaytreatallextractsashavingequal

benefitunlessspecifiedbytheuser.Incombinationwiththeobservationthatcostsdonotchange

dramaticallyinsuccessivecomputations,thisallowsthefollowingsimplesolutiontotheproblemof

choosingthecontrolparameters•Forsimplicityweconsiderthesituationinwhichallof thevisualization

extract'scostsarecontrolledbylimitingtheirextent.Here,eachextractcomputationisassignedatime

budget,andeachextract'scomputationproceedsuntilitstimebudgetisusedup.Thenthetimetakento

computeallextractsiscomparedtotheoveralltimeconstraint.Eachextract'stimebudgetisdividedbya

scalefactordeterminedbythetotalactualtimedividedbythetotaltimeconstraint.Thisscalefactormay

havetotakeintoaccountanyparallelexecutionof theextractcomputations..If thetimerequiredto

computealltheextractsisgreaterthanthetimeconstraint,thiswill resultinsmallervisualizationextracts

whichwill takelesstimetocompute.If theextractsbecometoosmall,afasterbutlessaccurate

computationalalgorithmmaybechosen.If thetimerequired.tocomputeallextractsissmallerthanthe

timeconstraint,thetimebudgetofeachextractisincreased,resultinginlargervisualizationextracts.A

similarapproachmaybeusedtochoosetheresolutionwithwhichvisualizationextractsmaybecomputed.

Itmaybeevidentfromthethisdiscussionthatthetypesofcontrolparametersonemayuseintimecritical

designwillbehighlydependentonthenatureof theextractandhowit iscomputed.Cleverapproachescan

significantlyenhancethetime-criticalaspectsofavisualizationtechnique.Asanexample,consider

isosurfacesofathree-dimensionalscalarfield:theseisosurfacesaretraditionallyspecifiedbyselectinga

value,resultinginasu--r_aceshowingwherethatvalueisattainedinthescalarfield.Controllingthecostof

atraditionalisosurfacebylimitingthetimeofthecomputationwillhaveunpredictableresults:inthe

conventionalmarchingcubesalgorithmforcomputingisosurfacestheentiredatasetistraversed.If the

marchingcubesalgorithmisstoppedbeforecompletionandbeforeregionsofthefieldwheretheisovalue

isattainedaretraversed,noisosurfacewillappearatall.Controllingthecostofthemarchingcubes

algorithmbycontrollingtheresolutionwithwhichthedatasetistraversedispossible,butthisstrategydoes

notprovidefinecontrolandmayresultinasignificantdegradationinquality.Adifferentapproachto

isosurfaces,local isosurfaces (Meyer and Globus, 1993), directly addresses this problem. Rather than



choosingan isovalue, t_)r a local isosurt'ace the user chooses a point in the dataset, from ,,_,hich the isovalue

is determined as the value of the scalar field at that point. The tsosufface is then computed (via a variation

on the marching cubes algorithm) so that it eminates from that point in space, and is spatially local to the

user's selection. The cost of a local isosurface in controlled by computing the isosurface until that

isosurface's time budget has been used up. Two examples of local isosurfaes can be seen in figure 3.

6. Case Study: The Virtual Windtunnel

The Virtual Windtunnel (VWT) (Bryson and Levit 1991. Bryson et. al. 1997) is a virtual environment for

the analysis of time-varying fluid flow data sets that are the results of computational fluid dynamics

computations. VWT supports distributed collaborative operation, as well as several types of data analysis

tools (see figure 3). In this section we shall outline the implementation strategy of VWT.

VWT is designed to address the case of interactive, time-varying data from section 2.1, and therefore uses

the system architecture described in section 2.3. There are several processes in the display and interaction

process group, including a graphics process, and multiple processes to read user tracking. The computation

process group uses multiple processes to perform computations in parallel when multiple processors are

available. VWT represents the visualizations as object classes, and maintains lists of object instantiations

for both computation and display. For distributed operation the remote data and extraction, local rendering

strategy of section 3.1 is used, in combination with the visualization extract server collaboration strategy of

section 3.2.

Time flow control fully implements the discussion in section 4 using time-local buffering with the triple-

buffering technique (Bryson and Johan, 1996). Each visualization object contains the triple buffer structure

in the object definition, and each object manages its own buffer. Time critical computation is implemented

for several of the visualization techniques using the simple scaling strategy described in section 5.3. When

the data is not time varying, the computation of streamlines and local isosurface extracts is reentrant, so in

subsequent time frames these extracts may be enlarged if their defining data has not changed. Time-

critical computation of the streamline extracts implements a choice of several computational algorithms,



listedhereinorderof increasingaccuracyanddecreasingspeed:one-stepeulerintegration.2 nd -order

Runge Kutta, and adaptive 4'h-order Runge-Kutta. Which algorithm is used is automatically chosen based

on the size of the streamline relative to a user-controlled preferred size. When the streamline falls

significantly below the preferred size a faster but less accurate streamline computation algorithm is chosen.

Details can be found in Bryson, 1998.

VWT has been tested in distributed collaborative mode with as many as four participants, two in

Washington, DC and two in California (a distance of 3900 kin), with the data and visualization extract

server in California. Communications in this test were over a conventional network. When examining a

non-time-varying data set the performance requirements of 0.1 second latency were maintained. Time-

varying data sets also maintained the latency performance requirement for a small number of visualization

extracts, however as more and larger extracts were used (e.g. large isosurfaces) network bandwidth

constraints became significant.

7. Challenges

While several information visualization systems have been implemented in a virtual environment setting,

there are several challenges that have been encountered which at the time of this writing (2000) do not have

satisfactory solutions:

• Large data sets: Many information visualization applications involve very large data sets. Examples

from computational fluid dynamics include time-varying datasets hundreds of gigabytes in size.

Examples from the-'_SA Earth Observing System are expected to generate a terabyte of data a day.

Accessing this data within the performance constraints of virtual reality is beyond the reach of current

technology as of 2000. Higher bandwidth and lower latency access to mass storage devices will help.

but the tendency in the data-generating community is to use higher computational power to generate

higher resolution and therefore lager data sets. Techniques to pre-extract interesting features from

such data sets hold the greatest promise as a solution to this problem.

• Representation of abstract data: Most information visualization systems that have been successfully

implemented in virtual environments are in domains which map closely to the real world, such as fluid



flowsorgeophysics.Otherdomainsinvolvetheuseofmoreabstractdata.Appropriatemappingsof

abstractdataintoathree-dimensionalvirtualenvironmentisanareaofongoingresearch.

• High-dimensional data: Most information visualization systems that have been successfully

implemented in virtual environments have data that is defined in three-dimensional space. Many

information domains have data defined on a higher dimensional domain. Visualizing this data in two

dimensions has been an ongoing area of research. We expect that visualizing this data in the inherently

three-dimensional environment of virtual reality would be of benefit. Mapping these higher dimensions

into the three dimensions of virtual reality is a problem that has yet to be thoroughly explored.

• Time-critical distributed design for distributed environments: Time-critical design for distributed

virtual environments, where the network traffic and latency times must be considered, is an unexplored

area. This challenge becomes more complex in the context of distributed computation, where different

extracts are computed on separate systems.

8. Conclusions

Information visualization is an active and fruitful area of virtual environment research and development.

The advantages of information visualization in virtual environments include:

• Three-dimensional display

• Three-dimensional user interaction

• An intuitive interface that facilitates the exploration of complex data

In order to implement an effective information visualization application in a virtual environment, however,

issues of responsiveness-g'g'_d fast updates must be addressed. These issues may be resolved via use of

appropriate system architectures, design based on human factors issues, appropriate time control for time-

varying data, implementation of time-critical techniques whenever possible, and appropriate choices for

distributed implementations. The details of how these solutions are implemented will be highly dependent

on the target domain and the specifics of the visualization techniques used.

9. References

Bryson, S. (1996). Virtual Environments in Scientific Visualization CQmmunications of the



ACM, 39(5) 62-71

Bryson, S. (1998). Time-Critical Computational Algorithms for Particle Advection in Flow Visualization in

Late Breaking Hot Topics Proceedings. IEEE Vi_;ualization '98 (pp. 21-24) Research Triangle Park, NC

Bryson, S. and Levit, C. (1991). The Virtual Wind Tunnel: An Environment for the Exploration of Three

Dimensional Unsteady Flows in Proceedings of IEEE Visualization '91 (pp 17-24). San Diego, CA: IEEE

Press.

Bryson, S. and Johan, S. (1996). Time Management, Simultaneity and Time-Critical Computation in

Interactive Unsteady Visualization Environments in Proceedings of IEEE Visualization '96 (pp. 255-261).

San Francisco, CA: IEEE Press.

,_ Bryson, S., Johan, S. and Schlechti L.' (1997). An Extensible Interactive Framework for theVirtual

Windtunnel in Proceedings of the Virtual Reali _tyAnnual International Symposium '97 (pp 106-I 13).

Albuquerque, NM: IEEE Press

Chen, B., Swan, J. E. III, Kuo, E., and Kaufman, A. (1999) LOD-Sprite Techniques for Accelerated Terrain

Rendering in Proceedings of IEEE Visualization '99 (pp. 291-298) San Francisco, CA: ACM Press.

Cruz-Neira, C., Leigh,--,l_arnes, C., Cohen, S., Das, S., Englemann, R., Hudson, R., Papka, M., Siegel, L.,

Vasilakis, C., Sandin, D. J., and DeFanti T. A. (1993). Scientists in Wonderland: A Report on Visualization

Applications in the CAVE Virtual Reality Environment in Proceedings of IEEE Symposium on Research

Frontiers in Virtual Reality (pp 59-66). San Jose, CA: IEEE Press

Funkhouser, T. A. and Sequin, C. H. (1993). Adaptive Display Algorithm for Interactive Frame Rates

During Visualization of Complex Virtual Environments in Computer Graphics: Proceedings of

SIGGRAPH 93 (pp. 247-254), Anaheim, CA: ACM Press



Herndon, K.P. and Meyer, T. (1904). 3D Widgets for Exploratory Scientific Visualization in

of User Interface Software Technology '94 (pp 69-70). Marina del Rey, CA: ACM press

Lin, C-R., Loftin, R. B., and Nelson, H. R. Jr. (2000) Interaction with Geoscience Data in an Immersive

Environment in Proceedings of IEEE Virtual Reality 2000, New Brunswick, NJ: IEEE Press

Meyer, T. and Globus, A. (1993). Dir¢ct Manipulation of Isosurfaces and Cutting Planes in Virtual

_, (RNR Technical Report RNR-93-019). Moffett Field, CA: NASA Ames Research Center

Sheridan, T. B. and Ferrill, W. R. (1974). Man Machine Systems Cambridge, MA: MIT Press

Song, D. and Norman, M. L. (1993) Cosmic Explorer: A Virtual Real.ity Environment for Exploring

Cosmic Data in proceedings of IEEE Symposium on Research Frontiers in Virtual Reality, San Jose; CA:

IEEE Press

Taylor, R. M., Robinett, W., Chi, V. L., Brooks, F. P. Jr., and Wright, W. (1993), The Nanomanipulator: A

Virtual Reality Interface for a Scanning Tunnelling Microscope, in Computer Graphics: Proceedings of

(pp 127-134), Anaheim, CA: ACM Press

Wan, M., Kaufman, .,A-7_andBryson, S. (1999). High-Performance Presence-Accelerated Ray-Casting in

Proceedings of IEEE Visualization '99 (pp. 379-386) San Francisco, CA: ACM Press.

Keywords: Virtual Reality, Virtual Environments, Information Visualization, Scientific Visualization,

Visual Data Analysis, Interactive Data Analysis, Time-Critical techniques, Time-Critical Computation,

Distributed Virtual Environments, Collaborative Virtual Environments, Time Control, Interactive Analysis

of Time-Varying Data Sets


