
Veri�cation of plan models using UPPAAL

Lina Khatib1, Nicola Muscettola, and Klaus Havelund2

NASA Ames Research Center, MS 269-2

Mo�ett Field, CA 94035
1 QSS Group, Inc. 2 RECOM Technologies

flina,mus,havelundg@ptolemy.arc.nasa.gov

Keywords: Model Checking, Veri�cation, Autonomy, Planning, Scheduling

This paper describes work on the veri�cation of HSTS, the planner and sched-

uler of the Remote Agent autonomous control system deployed in Deep Space 1

(DS1)[8]. The veri�cation is done using UPPAAL, a real time model checking

tool [6]. We start by motivating our work in the introduction. Then we give a

brief description of HSTS and UPPAAL. After that, we give a mapping of HSTS

models into UPPAAL and we present samples of plan model properties one may

want to verify. Finally, we conclude with a summary.

1 Introduction

AI technologies, and speci�cally AI planning, facilitates the elicitation and

automatic manipulation of system level constraints. However, the models used

by the planner still need to be veri�ed, i.e., it is necessary to guarantee that no

unintended consequences will arise. One question that comes to mind is whether

the most advanced techniques used in software veri�cation, speci�cally model

checking, can help.

The most used model checking formalisms, however, cannot easily represent

constraints that are naturally represented by HSTS, namely continuous time and

other continuous parameters. Also, the goal of HSTS is to provide an expressive

language to facilitate knowledge acquisition by non AI experts (e.g., system

engineers). So, HSTS models cannot be easily translated into a model checking

formalism. To allow model checking algorithms to operate on HSTS models we,

therefore, need a mapping between a subset of the HSTS Domain Description

Language to a model checking formalism. An earlier attempt to analyze HSTS

planner models, where no continuous parameters were considered, is described

in [10].

We choose UPPAAL because it can represent time (section 3), and is com-

parable to HSTS in terms of representation and search since they are both con-

straint based systems. Furthermore, UPPAAL has been successfully applied to

several veri�cation cases of real-time systems of industrial interest [4, 3].

Some of the issues that we are interested in addressing in this research are:

1. Whether model checking techniques can address problems of the size of a

realistic autonomy planning application;

2. Once we have a mapping from a planner model into a model checking for-

malism, what the core di�erences between the search method used in model

checking and that used by a planner are; and

3. Lessons, if any, that planning can take from model checking and vice versa

regarding representation, search control, and other aspects. Related work

can be found in [1, 2].

2 HSTS

HSTS, Heuristic Scheduling Testbed System, is a general constraint-based

planner and scheduler. It is also one of four components that constitutes the

Remote Agent Autonomous system which was used for the Remote Agent Ex-

periment (RAX), in May of 1999, for autonomous control of the Deep Space 1

spacecraft [8].

HSTS consists of a planning engine that takes a plan model, in addition to

a goal, as input and produces a complete plan. A plan model is a description of

the domain given as a set of objects and constraints. The produced plan achieves

the speci�ed goal and satis�es the constraints in the plan model.

An HSTS plan is a complete assignment of tokens for all the state variables

that satisfy all compatibilities. HSTS ensures robustness of schedules by allowing

for exible temporal representations, ranges of durations, and disjunction of

constraints [9, 5].

2.1 HSTS Model

An HSTS plan model is speci�ed in an object-oriented language called DDL

(Domain Description Language). It is based on a collection of objects that belong

to di�erent classes. Each object is a collection of state variables (also known as

timelines). At any time, a state variable is in one, and only, one state that is

identi�ed by a predicate. Tokens are used to represent "spans", or intervals, of

time over which a state variable is in a certain state.

A set of compatibilities between predicates is speci�ed. The compatibilities

are temporal constraints, which may involve durations between end points of

tokens. For example, "token1 meets token2" indicates that the end of token1

should coincide with the start of token2; and "token1 before[3,5] token2" in-

dicates that the distance between the end of token1 and the start of token2 is

between 3 and 5. The compatibilities among tokens are structured in the form of

a master, the constrained token, and servers, the constraining tokens, and stated

in the form of AND/OR trees (see the Rover and Rock example for illustration).

HSTS has a rich language for expressing temporal relation constraints which is

beyond the scope of this paper. Details can be found in [9, 5].

HSTS also allows for natural and e�cient handling of concurrent processes,

and the modeling language is simple in its uniform representation of actions and

states. The following example will be used for illustration throughout the paper.

Example (Rover and Rock) Figure 1 shows an HSTS model, in abstract

syntax, that describes the domain of a Rover that is to collect samples of Rocks.

In this example, there are two objects, the Rover and the Rock, each of which

consists of a single state variable. The Rover's state variable has a value do-

main of size 4 which includes atS, gotoRock, getRock, and gotoS (where \S"

stands for Spacecraft). The Rock's state variable has a value domain of size 2

which includes atL and withRover (\L" is assumed to be the location of the

Rock). Each predicate is associated with a set of compatibilities (constraints).

We choose to explain the compatibilities on Rover.getRock, for the purpose of

illustration. A token representing the predicate Rover.getRock should have a

duration no less than 3 and no more than 9. It also have to be preceded imme-

diately by Rover.gotoRock and followed immediately by Rock.withRover. The

last compatibility indicates that Rover.getRock should be followed immediately

by either Rover.gotoS or Rover.gotoRock (to pickup another rock).

Figure 2 shows a plan generated by HSTS for a given goal. In this ex-

ample, the initial state is: Rover.atS and Rock.atL and the goal is to have

Rock.withRover. The returned plan for Rover is the sequence atS, gotoRock,

State Variables: Rover, Rock

Rover predicates: atS, gotoRock, getRock, gotoS

Rock predicates: atL, withRover

Compats:

1. Rover.getRock dur[3; 9]

AND

metby Rover.gotoRock

meets Rock.withRover

OR

meets Rover.gotoS

meets Rover.gotoRock

2. Rover.atS dur[0; 10]

AND

metby Rover.gotoS

meets Rover.gotoRock

3. Rover.gotoRock dur[5; 20]

AND

OR

metby Rover.atS

metby Rover.getRock

meets Rover.getRock

4. Rover.gotoS

AND

metby Rover.getRock

meets Rover.atS

5. Rock.atL

meets Rock.withRover

6. Rock.withRover

metby Rover.getRock

Fig. 1: DDL Model for the Rover and Rock Example

Rover

Rock

atS gotoRock getRock gotoS

atL withRover

0 0-10 5-30 8-39

8-390

same time
 compatibility

TIME

Fig. 2: An HSTS plan for the goal of Rock.withRover given the initial state

(Rover.atS,Rock,atL). Dashed lines indicate token boundaries. The numbers

at boundaries indicated ranges of earliest and latest execution times. A con-

straint link is attached between the end of Rover.getRock and the start of

Rock.withRover to insure the satisfaction of their equality constraint.

getRock, and gotoS where the allowed span for each of these tokens is as spec-

i�ed in the duration constraints of their compatibility (e.g., getRock token is

between 3 and 9 time units). As a result, the goal of Rock.withRover may be

satis�ed (executed) in 8 to 39 time units. The quality of generated plans is im-

proved by interleaving planning and scheduling, rather than performing them

separately.

3 UPPAAL

UPPAAL, an acronym based on a combination of UPPsala and AALborg

universities, is a tool box for modeling, simulation, and veri�cation of real-time

systems. The simulator is used for interactive analysis of system behavior dur-

ing early design stages while the veri�er, which is a model-checker, covers the

exhaustive dynamic behavior of the system for proving safety and bounded live-

ness properties. The veri�er, which is a symbolic model checker, is implemented

using sophisticated constraint-solving techniques where e�ciency and optimiza-

tion are emphasized. Space reduction is accomplished by both local and global

reduction. The local reduction involves reducing the amount of space a symbolic

state occupies and is accomplished by the compact representation of Di�erence

Bounded Matrix (DBM) for clock constraints. The global reduction involves re-

ducing the number of states to save during a course of reachability analysis [11,

7].

A UPPAAL model consists of a set of timed automata, a set of clocks, global

variables, and synchronizing channels. A node in an automaton may be associ-

ated with an invariant, which is a set of clock constraints, for enforcing transitions

out of the node. An arc may be associated with a guard for controlling when this

transition can be taken. On any transition, local clocks may get reset and global

variables may get re-assigned. A trace in UPPAAL is a sequence of states, each

of which containing a complete speci�cation of a node from each automata, such

that each state is the result of a valid transition from the previous state.

UPPAAL had been proven to be a useful model checking tool for many do-

mains including distributed multimedia and power controller applications [4, 3].

4 UPPAAL for HSTS

Figure 3 shows the overall structures of UPPAAL (represented as Model

Checking) and HSTS (represented as Planning). There is an apparent similarity

Model Checking Planning

PlanSatisfaction status
and diagnosis trace

TA model

Model Checker Planner

Property Goal

DDL model
1?

2?

3?

Fig. 3: Model Checking and Planning Structures. The dotted arrows represent possible

component interchangeability.

between their components. Model checking takes a model and a property as input

and produces the truth value of the property in addition to a diagnosis trace.

Planning takes a model and a goal as input and produces a complete plan that

satis�es the goal. On the other hand, the representation and reasoning techniques

for their components are di�erent. Table 1 summarizes the di�erences.

UPPAAL HSTS

INPUT

Domain Model: Timed Automata DDL

Problem: Check Property Accomplish Goal

OUTPUT

Solution: Property status + Diagnosis trace A Plan

INNER WORK

Database: DBM or CDD + explored states Temporal and Constraint networks

Search Techniques: Forward Reachability + Propagations + Heuristics

Shortest Path Reductions directed backtracking

Table 1: Representation and Reasoning of UPPAAL and HSTS. DBM stands for Dif-

ference Bounded Matrices and CDD stands for Clock Di�erence Diagrams.

Due to structural similarity of UPPAAL and HSTS, a cross fertilization

among their components may be possible. Also, due to the di�erences in their

implemented techniques, this may be fruitful. Our research at this time is to

investigate the bene�t of using the UPPAAL reasoning engine to verify HSTS

models as well as verifying the HSTS reasoning engine. The �rst step is to �nd

a mapping from HSTS models into UPPAAL. Then, a set of properties should

be carefully constructed and checked.

4.1 Mapping HSTS models into UPPAAL

An algorithm for mapping HSTS plan models into UPPAAL models, which

is called ddl2uppaal, is presented in Figure 4. Each state variable is represented

as a UPPAAL automaton where each value of the state variable is represented

as a node. Transitions of an automaton represent value ordering constraints of

the corresponding state variable. Duration constraints are translated into invari-

ants and guards of local clocks. Temporal relation constraints are implemented

through communication channels. In general, constraints on the starting point of

a predicate are mapped into conditional incoming arcs into its node. Similarly,

constraints on the end point of a predicate are mapped into conditional outgoing

arcs from its node. Instead of presenting the lower level details of the mapping

algorithm, we choose to illustrate them through the example. For this purpose,

we apply ddl2uppaal on the Rover and Rock speci�cation and show the results

in Figure 5. Studying Rover.getRock node, we �nd the duration constraint rep-

resented as the c1<=9 invariant and the c1>= 3 guard on the outgoing arc.

DDL2UPPAALmain()

1. Build Init Automata() ;

for each State Variable, add an Automaton with a dedicated local clock

for each predicate, add a node in the corresponding automaton

for each node, reset the local clock on the outgoing arc

2. Add Compatibilities();

for each compatibility on a predicate corresponding to a node P

for max duration constraint, add invariant on P

for min duration constraint, add a guarded outgoing arc from P

Process the AND/OR compatibility tree

if (root = "AND") process AND-subtree(root)

elseif (root = "OR") process OR-subtree(root)

else process simple-Temporal-Relation(root)

Fig. 4: ddl2uppaal: An algorithm for mapping HSTS models into UPPAAL

The constraint of metby Rover.gotoRock is represented by the incoming arc.

The constraint of (meets Rover.gotoSOR meets Rover.gotoRock) is represented

by branching outgoing arc. Finally, the constraint of meets Rock.withRover is

expressed via the label 'ch1?' on its outgoing arc, which indicates a need for syn-

chronization with a transition labeled with 'ch1!'. This transition is the incoming

arc to Rock.withRover.

4.2 Properties for Veri�cation

UPPAAL allows for verifying properties that are useful for ensuring correct-

ness and detecting inconsistencies and aws in HSTS plan models. For example,

UPPAAL is capable of detecting violations of mutual exclusion properties of

predicates, which is useful for detecting an incomplete speci�cation of compat-

ibilities in an HSTS model. Also, from checking the reachability of predicates,

inconsistencies in an HSTS model may be detected.

Goals in HSTS can be mapped into properties in UPPAAL and execution

traces in UPPAAL correspond to plans in HSTS. Figure 6 shows a UPPAAL

property and diagnosis trace that correspond to the HSTS goal and plan of

Figure 2. Note the generated symbolic states in the trace and compare them to

the tokens of the plan.

Rover Rock

atS

gotoRock getRock

gotoS atL

withRover

c1<=9

c1<=10

c1<=20

{c1>=3, ch1?, c1:=0}

c1 := 0 }{

 {c1>=5,c1:=0}

{c1:=0} {ch1!, c2:=0}

Fig. 5: UPPAAL model of the Rover and Rock example. c1 is the local clock of Rover

and c2 is the local clock of Rock.

Based on the above, UPPAAL is able to verify the existence of complete

plans that satisfy given constraints. This can be used to verify HSTS models as

well as verifying the HSTS engine.

5 Summary

Our work tackles the problem of using Model Checking for the purpose of

verifying planning systems.

Initial state: (Rover.atS, Rock.atL)

Property: E<>Rock.withRover

OUTPUT: PROPERTY IS SATISFIED

Diagnosis Trace:

(Rover.atS, Rock.atL)

(Rover.gotoRock, Rock.atL)

(Rover.getRock, Rock.atL)

(Rover.gotoS, Rock.withRover)

Fig. 6: Verifying Property in UPPAAL (Example).

We presented an algorithm that maps plan models into timed automata.

The algorithm works well for translating models of limited size and complexity.

Since complete constraint planning models are much too complex for a complete

translation into a model checking formalism, there is a need for building rep-

resentative \abstract" models. We will investigate such abstraction in the near

future.

After translating a plan model, properties can be checked for detecting in-

consistencies and incompleteness in the model. In addition, the model checking

search engine can be used as an independent problem solving mechanism for

verifying the planning engine. This is possible because goals can be mapped into

properties and traces correspond to plans. We have illustrated such correspon-

dence through an example.

We are currently working on identifying a set of veri�cation properties that

guarantee a certain degree of coverage for HSTS models and the Planning engine.

We are also analyzing the bene�ts, and limitations, of using a model checker for

HSTS veri�cation. In addition, we are extending the ddl2uppaal algorithm to

handle a larger subset of DDL.

Acknowledgment

The authors would like to thank the UPPAAL team, especially Paul Petters-

son, for their helpful correspondences.

References

1. A. Cimatti, M. Roveri, and P. Traverso. 1998. Strong planning in non-deterministic

domains via model checking. In the Proceedings of the 4th International Conference

on Arti�cial Intelligence Planning System (AIPS98), pp. 36-43. AAAI Press.

2. M. Di Manzo, E. Giunchiglia, and S. Ru�no. 1998. Planning via model checking

in deterministic domains: Preliminary report. In the Proceedings of the 8th Inter-

national Conference on Arti�cial Intelligence: Methodology, Systems, and Appli-

cations (AIMSA98), pp. 221-229. Springer-Verlag.

3. K. Havelund, K. G. Larsen, and A. Skou. 1999. Formal Veri�cation of a Power

Controller Using the Real-Time Model Checker UPPAAL. In the Proceedings of

the 5th International AMAST Workshop on Real-Time and Probabilistic Systems.

4. K. Havelund, A. Skou, K. G. Larsen, and K. Lund. 1997. Formal Modeling and

Analysis of an Audio/Video Protocol: An Industrial Case Study Using UPPAAL.

In the Proceedings of the 18th IEEE Real-Time Systems Symposium, pages 14-24.

San Francisco, California.

5. A. K. Jonsson, P. H. Morris, N. Muscettola, and K. Rajan. 1999. Planning in

Interplanetary Space: Theory and Practice. American Association for Arti�cial

Intelligence (AAAI-99)

6. K. G. Larsen, P. Pettersson, and W. Yi. 1997. UPPAAL in a Nutshell In Springer

International Journal of Software Tools for Technology Transfer 1(1+2).

7. K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. 1997. E�cient Veri�cation of

Real-Time Systems: Compact Data Structures and State-Space Reduction. In the

Proceedings of the 18th IEEE Real-Time Systems Symposium, pages 14-24. IEEE

Computer Society Press.

8. Muscettola, P. P. Nayak, B. Pell, and B. William. 1998 Remote Agent: To boldly

go where no AI system has gone before. Arti�cial Intelligence 103(1-2):5-48

9. N. Muscettola. 1994. HSTS: Integrated planning and scheduling. In M. Zweben

and M. Fox, eds., Intelligent Scheduling. Morgan Kaufman. 169-212

10. J. Penix, C. Pecheur, K. Havelund. 1998. Using Model Checking to Validate AI

Planner Domain Models. In the Proceedings of the 23rd Annual Software Engi-

neering Workshop, NASA Goddard.

11. W. Yi, P. Pettersson, and M. Daniels. 1994. Automatic Veri�cation of Real-Time

Communicating Systems by Constraint-Solving. In Dieter Hogrefe and Stefan Leue,

editors, Proceedings of the 7th International Conference on Formal Description

Techniques, pages 223-238. North-Holland.

