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ABSTRACT

An expanding interest in mission design strategies that exploit libration point regions demands the continued

development of enhanced, efficient, control algorithms for station-keeping and formation maintenance. This paper
discusses the development of a non-linear, station-keeping, control algorithm for trajectories in the vicinity of a

libration point. The control law guarantees exponential convergence, based on a Lyaponov analysis. Controller

performance is evaluated using FreeFlyer® and MATLAB® for a spacecraft stationed near the L2 libration point in

the Earth-Moon system, tracking a pre-defined reference trajectory. Evaluation metrics are fuel usage and tracking
accuracy. Simulation results are compared with a linear-based controller for a spacecraft tracking the same

reference trajectory. Although the analysis is framed in the context of station-keeping, the control algorithm is
equally applicable to a formation flying problem with an appropriate definition of the reference trajectory.

INTRODUCTION

The restricted-three body problem examines the behavior of an infinitesimal mass in the combined gravitational

field of two finite masses rotating in an orbit about their common center of mass. Research on this problem began
prior to 1772, the year Lagrange published a set of particular solutions known as the Lagrange or libration points.

Libration points, defined within a rotating two body system, represent locations within the rotating frame at which
the dynamical forces due to gravity and rotation are neutralized. The equilibrium points are grouped in a set of three

collinear points, referred to as L1, L2 and L3; and a set of two triangular points, L4 and L5. With our emerging
capability to implement space-based missions, a growing research interest is focused on methods for exploiting the

dynamics in the vicinity of these points. In particular, this paper builds on the current research associated with
control strategies for station-keeping in the vicinity of a Libration point. Earlier works (refs. i, 2, 3) have focused

on linear control strategies, based on linearized dynamical equations. This requires assumptions about the motion of
the two primary masses, i.e. either circular or elliptical motion about their common center of mass. Further, the

validity of the control design is confined to some local region about the point of linearization, typically a libration

point.

This study examines the design and performance of a control strategy based on the full non-linear dynamics
associated with the restricted three-body problem. The performance of the control strategy is evaluated using the

example of a halo orbit about the L2 point in the Earth-Moon system. Interestingly, the orbits of the Earth and
Moon about their barycenter are non-planar and non-elliptic. The controller design is based on the Euler-Lagrange

(Hamiltonian) form of the dynamics. This design technique, presented by Slotine and Li (ref. 4), is also explored by
de Queiroz, et.al. (ref.5), for an Earth orbiting spacecraft. However, their results cannot be simply extended to the

restricted three-body problem, since the governing dynamics are significantly different.
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THEORY

The dynamics (1) and kinematics (2) for most physical systems can be expressed in the Hamiltonian (or Euler-

Lagrange) form.

H(q) * _ + C(q, v) * v + E(q, v) = u (1)

¢1= J(q) * v (2)

Where:

q - Configuration Variables

v- Velocity Variables

H(q) = H(q) r > 0, Vq, v

C(q, v) is defined such that H(q)- 2. C(q,v)is skew symmetric for all q, v.

Assuming/1 =v, i.e. J(q) = I, then equations (1) and (2) are combined as

H(q) * it + C(q,/l) */l + E(q, q) = u (3)

The goal is to compute u(t), such that the system tracks a desired trajectory, qd(t). Define the tracking error

as e(t) = q(t) - qd(t), an auxiliary error metric s(t) =/fit) + A * e(t), with A=AT>0, and a reference velocity

_I, (t) = qs (t) - A * e(0.

s(t) = q(t) - q, (t) (4)

Reference (4) proposes the following control law with Ka = Ka>0:

u(t) = H(q) * i_, + C(q,¢l)*/1, + E(q,/1) - Ks * s(t) (5)

Combining equations (3), (4) and (5) yields:

H(q) * k(t) + C(q,/l) * s(t) + K_ * s(t) = 0 (6)

The above closed-loop dynamics drive the tracking error, e(t), to zero. Before proceeding with the proof, it is

beneficial to recall the following corollary to Barbalat's Lemma (ref. 4).

If a scalar function V(x,t) satisfies the following conditions, then l/(x,t) --->0, as t _ _.

• V(x,t) is lower bounded

• l)(x,t) is negative semi-definite

• r_(x,t) is uniformly continuous in time

Note: The third condition is met if V (x,t) is bounded.

The proof that e(t) --->0, is based on a Lyapunov analysis. Consider the following candidate Lyapunov function,

and it's derivative (ref. 4).

V(s,t) = Ks(0* H(t)* s(0 > 0 (7)

1/(s, t) = s(0* H(t) * s(0 + _ s(0 * IiI(0 * s(0

=s(t) * [-C(q, q) - K s ] * s(0 + _ s(t) * H(t) * s(0

= -s(t) * K s * s(t) + g s(t) * [H(t) - 2 * C(q,/1)] * s(t)

= -s(t)* K d * s(t) < 0

(8)
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(Recall[H(t)- 2*C(q,cl)]isskewsymmetric,K_=K,r >0 )

Since H(t) is positive definite, V(s,t) is non-negative (lower bounded). From equation (8), I;'(s,t) is negative semi-

definite. It is assumed q(t) and qd(t) are at least twice differentiable. Therefore, I;'(s,t) is uniformly continuous in

time. Thus, Barbalat's Lemma guarantees, I?(s,t) _ 0, (and s(t) _ 0 ) as t --_ _o. Consider e(t) as the output of a

stable linear system, s(t) = 6(0 + A *e(t), with s(t) as the input. It follows that s(t) _ 0, implies e(t) _ 0. In

fact, the system is globally stable, and the tracking error converges to zero exponentially.

This analysis ignores disturbance forces, Fa. Consequently, the control strategy will not yield perfect tracking under
a disturbance. However, an adaptive control strategy guarantees the desired tracking, provided the disturbed
dynamics assume the linear form:

H(q) * q + C(q, q) * q + E(q, q) = Y(q, q, qd, qa ) * a

where Y(q'q'qd 'qd ) is known, and here, a is a constant, unknown, vector.

Global stability and convergence of the tracking error to zero are guaranteed by the following control law and
adaptive rule. The proof is provided in reference [4].

u = Y(q,_l,q_,4)* _-K d *s,

a=-F*Y(q, cl, q_,cl)*s, F=F T >0
(9)

THE RESTRICTED-THREE BODY PROBLEM

Under the assumptions of the restricted-three body problem, the gravitational influence of two primary masses
(rotating about their common, inertially-fixed, center of mass) govern the dynamics of a small mass (spacecraft).

The spacecraft (S/C) dynamics (per unit mass) in inertial coordinates are given by:

= -GM *R ,/IIR2,I13+ (I0)

where:

GMi = Gravitational Parameter of Mass i

Ris = Position of S/C with respect to Mass i

Rsc = Position of S/C
Fd = Disturbance Force

Although (10) fits the Hamiltonian form, it is not expressed in a convenient coordinate frame for defining our
desired trajectory. Recalling the stated goal is to follow a trajectory in the vicinity of a Libration point, it is more

convenient to express the dynamics in the rotating coordinate flame defined by the motion of the smaller primary.

i = R 2/IIR_II=, = (R2 x v 2)/II(R2 x V 2 = ×i
Hence:

R =A,, *r ; A,r =[l,],l_] (11)

Where r represents the coordinates in the rotating flame.

Differentiating (11) and combining the result with (10), yields:

U =A T,,*U = H*i_ + C*f + E(r) + AS *F d (12)

where:
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H=I 3

C=2 A_,*_i,_ 2*A_*A_*_ 2*f_

E(r) = A r * (.&,_ *r +GM_* R,,/IIRJI_ +GM *R s/llR sll  )
£ = Skew{(rxv)/l[rll_}

Note: [H(t) - 2 * C(q, tl)] = 2" £, which is skew symmetric.

It is important to note that Air, and it's derivatives, are defined by the motion of the two primary masses.
behavior of Ai_ is generally well known for trajectories within our solar system.

Hence, the

CONTROL LAW DESIGN FOR THE THREE-BODY PROBLEM

The results of the two preceding sections combine to generate the control law. Here Fd is considered a constant,
unknown, force in inertial coordinates. This is reasonable, since the significant perturbations (the gravitational

influence of other bodies and solar pressure) will be reasonably constant in inertial space over short periods of time.

In fact, Fa is expressed as a combination of known and unknown components. For example, the gravitational forces
due to select bodies are directly computed as known disturbances. The remaining disturbances are estimated with

the adaptive rule given in (9).

Combining (5) and (9), let

u(t)=A_ *U=H*i_ + C(t)* _ + E(r)-K d *s+A, T,*_',

with F, = -F'Air*s, /" =/'d -A*(r-rd)

(13)

Expressed in inertial coordinates, the control is:

U(t) = Air *[_ +C(t)* i" +E(r)-K d *s]+_" d (14)

As previously shown, this control achieves perfect tracking. Note that with zero tracking error, rr = rd. In this case,

equation (14) reduces to

Ud(t) = A,, *[i: d + C(t)* i"d +E(r.)]+F d (15)

So, as the tracking error goes to zero, the control effort converges to the exact value required to maintain the desired
trajectory. Hence, under this control strategy (and the stated assumptions), optimal control is achieved by optimal

trajectory design.

This development assumes the barycenter of the two masses remains inertially "fixed", and the spacecraft state is

known. Additional assumptions regarding the relative motion of the primaries are not required. The dynamics
model for traditional linear control designs constrain the primaries to planar circular (or elliptic) motion, and require

linearization of the dynamics equation about a point (typically a libration point). Therefore, modeling errors are
significantly reduced in the nonlinear design. Also, the linear design is locally optimal. In contrast, the nonlinear

design is globally optimal, although constrained to the region governed by the restricted three-body dynamics.

SIMULATION

Implementation of the proposed adaptive control law, equation (13), is simulated using FreeFlyer® interfaced with

MATLAB®. FreeFlyer® supplied the dynamics model and propagation tool. MATLAB® provides the

computational tools to determine the control effort at each time step. Additionally, MATLAB® serves to capture

and analyze the simulation data.
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The simulation scenario considers a spacecraft stationed in the vicinity of the L2 point in the Earth-Moon system.
This choice allows comparison with the linear control design presented by Hoffman (ref. 1). Also, the motion of the

Earth/Moon about their barycenter is dynamically complex. It is eccentric, but non-elliptic and non-planar, and thus
provides a challenging environment for any tracking problem. The control is successfully simulated as both a

continuous and impulsive thrust. The results are similar, therefore all presented cases are based on a continuous

thrust model. The linear control law is based on an LQR design of a classic PD controller. The gain matrices are
provided in Reference 1, Table 5-I1. Initial conditions are set with zero position and velocity error to limit the time

required for the system to reach "steady state".

Five separate cases are studied. For each case the location of L2, and the orientation of the rotating coordinates are
considered dynamic, determined by the instantaneous position of the Earth and Moon. The goal for cases 1 through

3, is to track the position of L2. For cases 4 and 5, the desired trajectory is a 3600 km halo orbit about the L2 point.
The trajectory, based on Reference 1, Equation 3.20, is shown in Figure 1, as it appears in th e rotating coordinate

frame. For cases 1 through 4, the nonlinear control gains, Ka and A, were chosen to be equivalent to the linear
control gains. Case 5 is the same as case 4, except the nonlinear control gains are adjusted for improved tracking

performance. Perturbations include the gravitational influence of the Sun and Jupiter, and solar pressure.

Additionally, the Earth is modeled as a point mass for the cases without perturbations. Under perturbations, the
Earth's gravitational field model includes zonal and tesseral terms up to J5. The simulation period is 100 days,

starting on January 1, 2000. The integration step size is 600 seconds.

The distinguishing features of the five cases are summarized below:

Case 1 Track L2 Without Adaptation No Perturbations
Case 2 Track L2 With Adaptive Law No Perturbations

Case 3 Track L2 With Adaptive Law With Perturbations
Case 4 Track Halo Orbit With Adaptive Law With Perturbations

Case 5 Track Halo Orbit With Adaptive Law With Perturbations Modified Gains

Simulation results are exhibited in Figures 2 through 4.

Figure 2 Cases 1 through 4
Figure 3 Cases 1 through 4

Figure 4 Case 5

Position Error

Control Effort

Position Error/Velocity Error/Control Effort

Examination of the data leads to several observations. In general, the nonlinear control provides superior tracking
with or without adaptation for all cases. Comparing cases 1 and 2, adaptation significantly improves the tracking

performance of the nonlinear control. Case 3 shows improved tracking over cases 1 and 2. Although intuition

suggests adding the perturbations would degrade performance, Figure 3 provides the necessary insight into the
observed behavior. Case 3 requires less control to maintain the desired trajectory, suggesting the perturbations

complement the control. This is true since the perturbations affect the motion of both the spacecraft and the position
of L2 (indirectly) in a similar fashion. In this case compensation for the unmodeled perturbations are effectively

built into the control law through the definition of the desired trajectory. This simplifies the demand on the adaptive

rule, yielding improved tracking performance for both the nonlinear and linear control strategies.

As noted above, cases 4 and 5 explore the performance for a 3600 km halo orbit based on a design presented in

reference 1. Although this trajectory is not considered optimal, it does provide a basis for comparing the control
designs. For case 4, the nonlinear control still yields better tracking performance, but less significant than cases 1

through 3. As previously noted, the control gains are modified in case 5 to improve performance. Gain adjustments,

established through a trial process, are limited to increasing the magnitude of A, by a factor of 5. The modification

increased the controller sensitivity to position error. The modification does not optimize the design, rather it
demonstrates the controller can achieve improved position tracking without the constraint of matching the gains of

the linear control law. Following control gain adjustment, the position tracking error is dramatically reduced, as
expected (Figure 4).

Perfect tracking is not observed in the simulated results as the theory predicts. This is attributed to the limitations in

the simulation environment, coupled with the large values of the spacecraft position vectors. The position vectors,
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inertiallyreferencedto thebarycenterof theEarth-Moonsystem,areontheorderof 4x108meters.Hence,a40
metertrackingerrorequatesto anaccuracyof 10-5percent.A controllawbasedon relativepositionof two
spacecrafteliminatesthesenumericalproblems,providingmuchtighterpositiontracking,a requirementfortight
formationflying.Thispresentsatopicforfurtherresearch.

Asnoted,thesimulationenviromnentimposesadditionallimitationswhichcontributetothenon-zerotrackingerror.
Themostsignificantlimitationrelatesto computingtheinstantaneousaccelerationof theMoonrelativeto the
barycenter,a parameternotavailableasanoutputfromFreeFlyer®.Therefore,theMoon'saccelerationwas
estimatedas(AV/At)foranintervalcenteredatanygiveninstanceintime.Thisintroducesnumericalerrorin the
computedcontrol,sincethedesiredtrajectoryis ultimatelyreferencedto theMoon'sposition,velocityand
acceleration.Airisestimatedinasimilarfashion,sincesufficientdataisnotavailablefordirectcomputation.The
combinedinfluenceoftheseandothernumericalerrorsresultinthenon-zerotrackingerrorobservedinCase1. The
improvedtrackingforCase2 impliestheadaptivecontrolisreactingtothecomputationalerrorsasif thesystemis
subjectedtoadisturbanceforce.Therefore,theadaptivecontrolcompensatesforbothunmodeleddisturbancesand
numericaldisturbances.

Finally,ineachcasethelinearandnonlineardesignsrequiresimilarcontroleffort.Thisisexpectedsincethemajor
componentofthecontroleffortisrequiredtomaintainthedesiredtrajectory.

Conclusion

An adaptive non-linear control law can be effectively implemented to perfectly track a pre-defined trajectory within

the dynamic environment of the restricted, three body problem. These trajectories include orbits about either of the

primary masses. Further, as the tracking error tends to zero, the resultant control will converge to its optimal value
required for the desired trajectory. Thus, the control will perform optimally with an optimal trajectory.

This control is applicable to maintenance of a "leader/follower" formation. For this case the control is implemented

on a "follower" spacecraft with the desired trajectory referenced to a "leader" spacecraft. However, for formation
maintenance a control based on relative states between spacecraft is preferred. As future work, this design will be

reformulated to base the control on relative states between spacecraft with superior performance expected, due to
reduced sources of computational errors.

Finally, noise sources are not considered in this analysis, although the simulation environment introduces
computational noise in the results. Therefore, additional work is required to evaluate the performance and stability

of this control law when coupled with an appropriate estimator.
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Figure 1: Sample Desired Trajectory, 3600 km Halo Orbit about Dynamic L2 (Earth-Moon)
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Figure 2: Magnitude of Position Error vs. time
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Figure 3: Magnitude of Control Thrust
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Figure 4: Results for Nonlinear Adaptive Control of a 3600 kin Halo Orbit about L2 (Earth-Moon) with
Improved Gains
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