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ABSTRACT

This paper presents a robust and efficient approach for relative navigation and attitude estimation of spacecraft flying
in formation. This approach uses measurements from a new optical sensor that provides a line of sight vector from the

master spacecraft to the secondary satellite. The overall system provides a novel, reliable, and autonomous relative
navigation and attitude determination system, employing relatively simple electronic circuits with modest digital
signal processing requirements and is fully independent of any external systems. Experimental calibration results
are presented, which are used to achieve accurate line of sight measurements. State estimation for formation flying
is achieved through an optimal observer design. Also, because the rotational and translational motions are coupled
through the observation vectors, three approaches are suggested to separate both signals just for stability analysis.
Simulation and experimental results indicate that the combined sensor/estimator approach provides accurate relative
position and attitude estimates.

INTRODUCTION

The vision-based navigation (VISNAV) system described in this paper for formation flying applications comprises

an optical sensor of a new kind combined with specific light sources (beacons) in order to achieve a selective or
"intelligent" vision. The VISNAV sensor 1'2 is made up of a Position Sensing Diode (PSD) placed in the focal plane
of a wide angle lens. When the rectangular silicon area of the PSD is illuminated by energy from a beacon focused by
the lens, it generates electrical currents in four directions that can be processed with appropriate electronic equipment
to estimate the energy eentroid of the image. While the individual currents depend on the intensity of the light,
their imbalances are weakly dependent on the intensity and are almost linearly proportional to the location of the

centroid of the energy incident on the PSD. The idea behind the concept of intelligent vision is that the PSD can be
used to see only specific light sources, accomplished by frequency domain modulation of the target lights and some
relatively simple analog signal processing (demodulation). The light is produced by LEDs (beacons) modulated at an
arbitrary known frequency while the currents generated are driven through an active filter set on the same frequency.
Calculating the current imbalances then yields two analog signals directly related to the coordinates locating the
centroid of that beacon's energy distribution on the PSD, in a quasi-linear fashion, and therefore to the incident
direction of this light on the wide-angle lens (which gives a line of sight vector). A more detailed description of the
VISNAV system can be found in Refs. [1-2].

Because the beacons are offset from the mass center of the secondary satellite, the observed line of sight couples
the rotational and the translational motion. The traditional Kalman filter uses this raw information to update the
attitude and the position equations without any discrimination about the nature of the signal. This approach is
effective in most of the cases, but it is very difficult for stability analysis because of the complexity of the system
in hand and of the way that the Kalman gain is calculated. The approach presented in this paper is based on two
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0004-1999) and Air Force Office of Sponsored Research grant (32525-57200).
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Figure 1: Focal Plane Measurement from One Light Source

special characteristics: the observer uses a constant gain for each parameter to be estimated (suboptimal filter) and

the incoming signal is split according to the translational and the rotational dynamics. The use of constant gains

avoids dealing with nonlinear time-varying systems, and the signal separation allows two independent plants where

the stability analysis is feasible on each one using different approaches.

The presence of four or more beacons in the sensor head field of view (FOV) assures a deterministic solution for

the navigation and the attitude problem as well. In this case, the sensor redundancy produces a natural division of

both dynamics, without any additional mathematical procedures. The filtering stage uses this deterministic solution

as the VISNAV measurements so that the plant models only play the role of increasing the sensor accuracy. In this

particular case, the stability can be proven by adopting a constant gain in the updating equation suggested in the

present paper. Three methods for signal separation are given, one in time domain and two in the frequency domain.

The first method is based on the signal magnitude difference produced by the navigation and the attitude at the

sensor head location. The other two approaches use the frequency differences of both motions.

The organization of this paper proceeds as follows. First, the basic equations for the VISNAV system are given.

Next, the experimental calibration procedure is shown. Then, the relative attitude equations are derived, followed

by a presentation of the orbital equations of motion. The suggested methods for the signal separation process are

then presented. Next, the observer design for relative attitude and position estimation is shown. Finally, simulation

results for formation flying applications are presented.

BASIC EQUATIONS

In this section the mathematical models are presented in the context of the particular problem related to relative

position and attitude estimation from line of sight observations. The notation 3 used in the derivations is briefly

revisited for the sake of clarification. The angular velocity of the a frame with respect to the/3 frame is represented

by the physical vector wZ_ (physical denotes that the vector is independent of the frame, whereas mathematical

denotes the physical vector components expressed in some frame). The vector w_ is the mathematical vector made
up of the components of w;_ taken in the 7 frame. The derivative with respect to time is indicated by the operator

p, where par is the rate of change of the vector R relative to the frame a, and pR _ is the time derivative of the

vector expressed in the a frame.

Measurement Equation

Figure 1 shows the focal plane measurement of the VISNAV system for a master and secondary satellite system using

one light source from a beacon (see Ref. [1] for more details). Three frames are used to describe the orientation and
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positionof themasterandsecondarysatellites.Thefirst one,denotedby (Xs, Ys, Zs), is fixed on the secondary

satellite, with the LED beacons firmly attached to the body of the satellite, and having known positions in the
(Xs, Y_, Zs) frame. This frame is also the reference frame for the attitude problem. We assume that this frame is

centered at the mass center of this spacecraft, and is denoted using the superscript s on the mathematical vectors.

The second reference system, denoted by (X:, Y:, Z:), is fixed on the master satellite, where the focal plane of the

VISNAV system is located. We assume that the Z: axis is along the boresight, passing through the input pin hole

which is at a distance Z] = +f from the focal plane. The axes X/ and Y: are arbitrary, but fixed in the VISNAV

sensor. This frame is denoted as the f frame. The third frame, denoted by (X,_, Ym, Zm), is fixed to the mass

center of the master satellite. The position and orientation of this frame with respect to the focal frame is assumed

to be known. The vectors for the master frame are identified with the superscript m.

The point S is the origin of the frame s. The point O is the location of each light beacon in the secondary satellite;

normally there are several beacons to assure continuous tracking of the satellite and for redundancy. The point I is

sometimes referred as the image center since it is the intersection of each light beam from the beacon with the focal

plane, where position of I with respect to the focal reference system is used to form a line of sight observation. The

point denoted as F in Figure 1 is the pinhole which is coincident with the sensor principal point. Three vectors are
now defined: S_O (the vector from the center S of the s frame to the beacon location O), S_I (the vector from the the

center S of the s frame to the image center I), and OI (the vector from the beacon location O to the image center

I, with the constraint equation given by OI = S_I - S_O.

The orientation between the secondary and master frames is denoted by the (unknown) rotation matrix C m which

transforms a vector expressed in the secondary frame s to the primary frame m. The rotation matrix C}_ between

the focal and the master frames is known by ground calibration. Expressing the vectors S_I, OI and SO in frame

components gives the following relation (colinearity equations) 4

C_ (S_I- S_O) _= CmvS= v "_ = (OI) m (1)

wherev _ =_-1/2 [Xs-xo, YI - Yo, Zt - zo] T andS- (Xi - xo) 2 + (YI - yo) 2 + (ZI - zo) 2. The quantity

(Xo, Yo, Zo) represents the known beacon location, and (Xx, ]/I, ZI) is the unknown position with respect to the

secondary satellite. The measurements xi and YI in the focal frame can be expressed in unit vector form by

+ + :2 (2)

where f is the known focal distance. This unit vector in the master frame is expressed using the fixed rotation

matrix between the sensor plane frame and the master satellite reference frame, with v TM = C_v]. A bias offset
in the measurement is also accounted for in the model (denoted by A in Figure 1). The bias vector is a constant

error vector induced by an unbalance of the horizontal and vertical gains in the focal plane detector relative to the
particular coordinate system associated with the detector at calibration. Essentially this is the same offset between

the "electrical center" (zero voltage imbalance) and the geometrical center associated with the optical boresight and
sensor coordinate system. This vector is denoted by va and is normally referenced in the focal plane frame:

Xa
m m f

v_ = Cf v_ = C_ (3)

Finally,the measurement equation foreach lightsourcefrom a beacon, placedon the secondary satellite,isasfollows:

v_=Cyv_+v m forj=l,...,N (4)

where N is the number of LED beacons.

Small separations between light beams from multiple LEDs reduces the discrimination of each beacon, which

ultimately produces a dilution of precision in the position and attitude solution. A larger distance between the

satellites also leads to a dilution of precision since the beacons ultimately approach angular co-location. If the relative

position between satellites is known then only two non-colinear line of sight vectors are required to determine an

attitude solution. In a similar fashion for the position navigation only problem, where the satellite is considered to be

a "mass point" (in other words without attitude), two line of sight vectors are only required. A covariance analysis
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showsthat whentherelativepositionandattitudebothareunknownthentwolineofsightvectorsprovideonlyone
axisof attitudeandoneaxisofpositioninformationfiFurthermore,anobservabilityanalysisusingtwolineof sight
observationsindicatesthat thebeaconthat is closestto thetargetprovidesthemostattitudeinformationbut has
theleastpositioninformation,andthebeaconthat is farthestto thetargetprovidesthemostpositioninformation
buthastheleastattitudeinformation.In orderto findadeterministicsolutionforthepositionandvelocityat least
fourvectorobservationsarerequired.

VISNAV SENSOR CALIBRATION

In order to use the sensor effectively, an accurate mapping between the normalized voltages (Vx, Vy) returned by the

sensor and the location of the light centroid on the image plane (x, y) must be known. The projection equations

in Eq. (4) represent the ideal case for a pin-hole camera model. However, in practice the lens and PSD detector

nonlinearities cause any camera to depart from this ideal model. Therefore a correction of all non-ideal effects must

be applied into a calibration process that is implicitly constrained to be consistent with the colinearity equations.

The PSD sensor experiment configuration for the calibration process places the camera at many known positions

and attitudes (Xcj, Ycj, Zcj, Cj, Oj, Cj) relative to an array of targets located at (X_, Y_, Z_). Unfortunately, we must

also consider the realistic uncertainty in the camera position, orientation and target location since only certain

levels of precision in the laboratory setting can be achieved. The current experimental configurations are as follows:

the focal length of PSD sensor f = 0.01m; beacon position = [1.5716m,0,0], sensor position = [0, 0, 0]; roll =

[-50 ° : 1 ° : 50°], pitch = [-50 ° : 1 ° : 50°], yaw = 0°; total test points = 10201, total test points in the FOV =

6635. Figure 2(i) represents the ideal location of the light centroid corresponding to each test point configuration.

The acquisition of the calibration data is computer-automated: a precision two axis air bearing permits the sweeping

of the sensor over known angles and image-fixed targets. The actual experimental results in Figure 2(ii) show the

presence of high systematic distortions associated both with a wide angle lens and electronic nonlinearities, which
must be calibrated.

One method to accomplish the calibration involves a direct interpolation using the experimental data set. An-

other way involves determining the global calibration function mapping of the normalized voltages (Vx, Vy) into the

corresponding known ideal locations of the light centroid on the image plane (x, y) for the whole FOV data. Yet
other way is to determine the local calibration functions available for the corresponding local part of the FOV region.

The local calibration functions can capture the fine structure of the distortion. In order to compare the optimality of

the proposed methods, it is necessary to compare the calibration accuracy, memory requirement and computational

load. Here, we discuss how to determine the global calibration functions. The problem involves determining the

optimal coefficient sets aij, bij for the bivariate calibration functions

i n ix = fx(V_,Yy) ,_ Eaij¢ij(V_,Vy) = EEaijTi_j(V_)Tj(Vy) (5a)
i=0 j=0 i=0 j----0

n i n i

y = fy(V_,Vy) _-, EEbij¢ij(Vx,Vu) = E E bijTi-j(Vx)Tj(Vy) (5b)
i=0 j=0 i=0 j=0

where n is the order of the univariate element polynomials, ¢iy (V_, Vy) is a bivariate polynomial basis, and Ti(V_),

Ti(Vy) are the univariate first type Chebyshev polynomials. Let the vector form of the complete set of the basis
function be given by

¢(Vx, Vy) -_ [¢oo (Vx, Vy), ¢1o (Vx, Vy), ¢11 (Vx, Vy), ¢20 (Vx, Vy)..., Onn (Vx, Vy)] T

Then, our goal is to determine the two coefficient sets

a _ [aoo, alo, all, a2o, .. •, ann] T

b = [boo, blo, b11, b2o, ..., bnn] T

to minimize the weighted least squares magnitude of the residual vectors R_ and Ry:

Rx-- (gx-Ha)

Ry = (gy - Hb)

(6)

(7a)

(7b)

(8a)
(8b)
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whereH = [¢(V=1, Vyl) i ¢(17=2, Vy2) i ... i ¢(V_, Vy)] T and gx, gy are the vector forms of the ideal location of the

light centroid calculated by the colinearity equations. Consequently, the best coefficient sets are determined by

fi = (HTWH)-IHTWgx (9a)

= (HTWH)-IHTWgy (9b)

where W is typically the inverse of the measurement covariance matrix.

Thereafter, only the coefficient sets are needed to evaluate (x, y) from the PSD sensor output (Vx, Vy). Figure 3
shows that the results of the 35th-order calibration functions. The standard deviation of the x errors is 6.77 x 10-6m

and the standard deviation of the y errors is 5.95 × 10-6m, which indicates an accurate calibration. Figure 4 shows

that the calibration error decreases as the order of polynomial functions for the calibration function increases. These

experimental results indicate that the sensor can be accurately calibrated using polynomial functions.

0.01
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-0.01 -0.005 0 0.005 0.01

Ideal x <rn>

(i) Ideal Location of (x,y) (ii) Actual PSD Sensor Output (Vx, Vy)

Figure 2: Ideal Location and Actual PSD Sensor Output

Relative Attitude Equations

In this section the governing equations for the relative attitude kinematics between two bodies are reviewed. The

kinematic equations presented here are derived using non-inertial reference frames, however only minor changes are

required from the standard formulation. 3 Starting from Eq. (1) and taking derivative of each vector with respect to

the same frame in which they are expressed gives the following expressions

pv TM = Cmpv s + pC smvS = C p (pv s + CSpCsmv s) (10)

The bias in Eq. (1) is considered to be a constant, so it's derivative is zero. The same expression in Eq. (10) can be

derived by the application of the transport theorem, which yields the following expressions

pmv = psv + COrns X V (lla)

pv m = C 2 (pv s + [w_sx]v s) (lib)

where the matrix [. x] denotes the cross product matrix. 6
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Both expressions, (10) and (11), must be equivalent. Setting these equations equal to each other yields the time

rate of change of the attitude matrix, given by

C_pC2 = [_s ×] (12_)
m s m mpcy = c_ ['-'m,X]= -[,,.,_px]C_ (125)

The relative attitude kinematics are described by the expression in Eq. (12) in terms of attitude matrix and the
angular velocity between both frames.
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We now write the expression in Eq. (12) in terms of the corresponding quaternions. 7 Toward this end, the

quaternion is expressed as, qS = [e r sin _ cos _] T, where e is the eigenaxis between both frames and a is the

rotation angle measured from frame m to frame s. The quaternion is a vector with the same components in both

the m and s frames, and can be expressed in any external frame as an arbitrary (i.e. general) vector• This has an

advantage over the rotation matrix formulation, which is fixed to the reference system s and m in this case.
s 1

An infinitesimal rotation is expressed in terms of the quaternion as dq,_ = 1 + 7ws,_dt, where dt is the time

differential• Multiplying by the quaternion q_ and taking the first-order infinitesimal part, the following differential
equation is given

1 8 1
pqS = _q_ ® w_ m=

0 qohx3 + [0x] ws,_ 1 qoWsm + [0x]w_m
• ... _ ............

• 0 -2 -0 T" W_m
qo - 0T

(13)

where the quaternion q_ is decomposed into a scalar and a vector part as q_ = [(0_) T qo] T, and [0x] is the skew

symmetric cross product matrix. Both the attitude matrix and quaternion formulations will be used in the definition

of the observer feedback error, but the quaternion formulation is used in the actual implementation of the observer.

Relative Navigation and Dynamics Equations

From basic orbit theory, s the equations of motion are written assuming that each satellite is referenced with respect

to the same inertial frame. The vectors are described in the Figure 5. The relative orbit is described by the difference
between both vectors, r = Rm - R,. If the master satellite position vector is written as Rm = Rm [1, 0, 0]r, the

expression can be simplified. The frame with this property is the Local Vertical Local Horizontal (LVLH) reference

frame, 9 which is widely used to reference Earth Pointing satellites• The vector r is decomposed in rn frame components

and takes the final expression given by

=-#/ ila'_z+ r]ig -cb LAazj|Aay]

m il--R  +

(14)

where Aa is the relative acceleration• The forcing part along the X axis component has the following structure:

[f (Rm + r12) - f (Rm)] m which is not robust from a numerical point of view• This expression is maintained for

compactness and will be used in the observer analysis, but for practical implementations it is convenient to re-write it

avoiding the subtraction of two large numbers, s Equation (14) expresses the dynamical model for relative navigation

between the secondary satellite with respect to the master satellite• We note that the number of master satellite orbit
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parameterscomputedonthegroundandto beusedin Eq.(14)is at most3. Forthegeneralcase,themagnitude
Rm,theangularvelocityw, and angular acceleration 5J are just needed. For the special case involving circular orbits,

only the position magnitude is necessary.

In the attitude problem, Euler's equation or the measured gyro outputs are the starting point for the derivation

of the rotational dynamics equation to obtain the angular velocity between the inertial frame and a body frame. For
the relative attitude problem, Euler's equation must be applied in a differential mode, similar in fashion as the orbit

case. However, we seek an expression without an additional "third" frame (inertial one included), in addition to the
m and the s frames, so that the system is independent of the extra reference frame's choice. In other words, the

relative navigation and the relative attitude must be a function only of the definition of the master and secondary

frames and completely independent of the particular choice of the inertial frame or any other frame other than m

and s. This simple fact is common in control theory, where the error or its derivative is only defined by the current

and the desired state independent of any other frame choice.
In the two body problem previously derived, the equation for r is very accurate because it is supported by

well known models for almost all involved forces in hand, with any remaining small perturbation bounded. In the

relative attitude dynamics the presence of internal torques, which are normally unmodeled with an unbounded time

integral, plays an important role in the model equations. We assume that each satellite in the constellation has an

attitude control subsystem able to maintain the desired satellite orientation inside of some allowable bound. The last

hypothesis is a qualitative one. We assume that the measurements are available frequently enough to use simpler

propagation models (to be derived) as a function of the sampling interval. A detailed derivation of the relative

attitude dynamics equations can be found in Ref. [6].

SIGNAL SEPARATION

Due to the slow moving dynamics in orbital motion, the translational and rotational dynamics are almost independent

(in fact there is a second order coupling thought the angular velocity which appears in both systems, but for this

analysis we can assume a negligible coupling between both motions). This section presents three approaches for

signal separation of the translational and rotational dynamics:

1. Time Domain Approach: This approach assumes that the contribution of the angular rotation is smaller than

the translational motion contribution on the sensor output. In other words the distance between the beacon

location and the secondary satellite mass center is much smaller than the distance between the mass center of
both satellites.

2. Spline Wavelets Filter:. This approach is a frequency band filter which can run in quasi-real time, and uses

splines as the basis functions for which the incoming signal is represented.

. Standard Band Pass Filter: This is the standard approach from basic signal processing theory and in general

does not run in real time. It uses the different frequency scales between the rotational and translational motion

to separate them via one or two band filters.

Time Domain Approach

Consider r as the effective position vector between the sensor head and the beacon, which couples the orbit and the

attitude dynamics:
r = r ° + r _ (15)

where the superscripts (.)o and (.)a denote orbit and attitude respectively. The first and second derivatives of above

equation are given by i_ = i_° + i"a and i; = i_° + iP. For notation simplicity (*) denotes the time derivative relative to

the frame where the forcing function is expressed. It is assumed that all vectors are expressed in the master satellite

body frame without loss in generality. The solution of this differential equation is given by

r(tk)=r(tj)+_(tj)(tk--tj)+ F(_°,r°,t)(tk-tj)dt+ P(_,r_,t)(tk-tj)dt (16)

where F(.°) represents the orbit dynamics and P(._) denotes the attitude dynamics which is considered as a pertur-

bation of the main motion. In other words, the contribution of the navigation signal is much important in magnitude

than the rotational motion, which allows us to split one from the other.
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The reference problem is computed as

r r (tk) = r r (t j) -}- _r (t j) (t k -- t j) -t- F (_ro, rrO, t) (t k - t j) dt (17)

where the superscript (.)r denotes the reference value. In order to solve the signal separation problem an extra

(weak) condition is required: the reference and the effective vectors are coincident at each sampling time, i.e., r = r r

and i = U. The distance of the ith component of (r - r r) is expressed as the following integral

(r - r')_ = • (t) (tk - tj) dr. (IS)

The disturbance function is defined as

@t_ (t) = _ (r °, i"°, t) - .7- (r _o, U o, t) + 7) (r a, _a t) _ /_._2tj----_ t (') -_-_Dt ('). (19)

where 5 and 79 represent the ira component of F and P, respectively. The residual function Rti--+tk is now defined
as

tk - tj (20)

There are several methods to compute the residual function, but for a small sampling time the overall error is

almost independent of the approach selected. A quadratic linear function is used because for simplicity, given by

_tj (t) = a + b (tj - t) + c (tj - t) 2 (21)

where a, b and c are the linearly embedded coefficients to be computed. The polynomial coefficients can be calculated

using three points, denoted at times tk-1, tk and tk+l. The approximate functions are written as

We now have

t_tk --+ tk- 1

-F_tk-1 -_ tk

Rtk+l -+ tk

Rtk -+ tk+l

where the matrix .M is given by

1/8qhk (tk-1)

7/24_5tk+1 (tk-1)

--1/24_ta+1 (tk-1)

--1/24_tk (tk-1)

5/12_,_ (t_)
1/4_tk__(tk)
1/44hk+_(tk)
5/12_t_ (tk)

-1/24_t_ (tk+l)

-1/24_tk__ (tk+l)

7/24_t_+_ (tk+l)

1/892t_ (tk+l)

1/8 5/12 --1/24

7/24 1/4 --1/24

--1/24 1/4 7/24

--1/24 5/12 1/8

7) (Ar, tk-1) ]
P (Ar, tk) = 34

7) (Ar, tk+l)

At-2Rt___+tk__ - 1/8A JZt____tk_1 + 1/24A-Ptk--+t_+ _

At-2Rtk_l_tk -- 1/4AiYtk__--_tk + 1/24A_t__a_t_+_

At-2 Rtk+v-+t_ + 1/24AiYtk+_tk__ -- 1/4AJztk+_t_

At-2Rt_-_t_+_ + 1/24A-Tt_-+tk__ -- 1/8A_t_-+t_+_

The minimum norm solution applied to each one of the above vector equations gives the following results

-0.9 3.7 1.3 -2.1 ]
Ap+_34 = 7) where A+__ = 1.5 -0.5 -0.5 1.5

-2.1 1.3 3.7 -0.9

(22)

(23)

(24)

(25)

It is well known from the interpolation theory that the minimum error can be expected at the middle point, where

"the mass center of the data" is allocated, therefore, only 7) (tk) is calculated from the above expression to reduce

the integration error. After the calculation of the vector 7) (t), the signal proportional only to the attitude motion is

obtained and the angular displacement can be computed.
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Spline Wavelets Filter

In this section, we use B-splines N,m to be the scaling functions. Let N1 be the characteristic function, which is zero

everywhere except in the finite support [0, 1) where it takes unit value. For each positive integer m, the mth-order

cardinal B-spline is defined, inductively, by

/o1Nm(t) = (Nm-1 * Ni) (t) = Nm-1 (t - x) dx (26)

A fast computation of Nm (t) can be achieved by using the following formula recursively until we arrive at the first

order B-spline NI: i°

"_----AN (t- 1) (27)Nm(t) _ ._ t_i xm-1 (t) + ._ _ 1 _-1

One of the most important properties of the B-spline is "total positivity" (see Ref. [11]) by virtue of which the

function in terms of a B-spline series follows the shape of the data. For example, if g(t) = _j [ajNm (t - j)],
then aj >__0Yj _ g(t) > O, aj (increasing) _ 9(t)(increasing), and aj (convex) _ g(t) (convex). Furthermore, the

number of sign changes of g(t) does not exceed that of the coefficient sequence {aj}.
Any function f(t) E L 2 can be mapped into a spline space of order m as

f(t) _ fM(t) = E cM N'_(2Mt- k) E VM (28)
k

For m = 1, we have an orthonormal basis (see Ref. [10] for a complete theory). The scaling function coefficients cM

are computed from the signal samples using

/iocM = 2M fM(t) _[m (2 Mt -- k)dt (29)

where Nm(t) is the dual of N,_(t) and (-) is the complex conjugate. In practice the signal f(t) is known at some

discrete points. The given time step determines the scale M to which the function can be mapped. Because of the

interpolatory representation f(t) = fM(t) at the sampling points, and because of the polynomial reproducibility, the
representation is exact at every point for a polynomial of order m if the basis is Nm. In addition, since they are a

local basis, the representation (28) is also local, which means we only need a few values of the function to obtain the

coefficients cM for some k.

For a given B-spline N,_ we can construct the corresponding wavelet function _bm with minimal support (for

more details on wavelet theory see Refs. [11-12]). A function f(t) can be represented in terms of ¢ as

f(t) = _ 4 ¢ (2it - k) (ao)
j,k

where

d{ = 25 f(t) _ (2it- k)dt (31)

Unlike the total positivity of splines, wavelets have the so-called "complete oscillation" property by virtue of which

the wavelet coefficients help to detect any change in the function behavior. The algorithm based on a multiresolution

analysis (MRA) has the following relations

XM+I (t) E AM+l,

XM(t) E AM,

Yu(t) E WM,

Since the MRA requires n

=2_ XM+I:EcM+INm(2M+lt--k)

k

xM= E c_"lvm(2_t- k)
k

yM=Z,if¢(2Mt-k)
k

AM+t = AM + WM (32)
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wehave

XM-I- 1 (t) : X M -I- YM

Z +iNto(2M+lt-k)=Z Nm(2Mt-k)+Z k)
k k k

Using the decomposition relationl_gives

Nm (2M+lt- l) = E {h0 [2k -l] Nm (2Mr- k) -F hi [2k -l] ¢ (2Mr- k) }
k

(33a)

(33b)

(34)

Substituting (34) into (33b) gives an equation in the same resolution M. Finally, the coefficients are computed as

cM : E h0 [2k -- l]Cl M-F1 (35a)

l

dM = _ hi [2k -l]c M+I (35b)
l

where h0 represents a low pass filter and hi a high pass filter. The input signal is projected in two subspaces AM

and WM via the filter h0 and hi. In our particular case, these subspaces are the navigation plane (low frequency)

and the attitude plane (high frequency). By repeating this algorithm, a signal decomposition at various frequency

octaves is obtained, which is the standard MRA decomposition of any arbitrary function. The objective of this

analysis is obtain two functions which may or may not be related to octave frequencies. To deal with this problem,

as interoctave parameter is defined, given by 12

2 N
as=aN, N-- N>0 andn=l, ,2 N-1 (36)

n+2N "'"

which gives 2N - 1 additional levels between any two consecutive octave levels.

The original problem of mapping XM to x_ is similar to the standard MRA decomposition. For the special case
of a B-spline, with m = 2 we have

x_4(t) = E ckM,nN2 ( 2M an(t)t -- k) (37)
k

with

CM ( k + 1 _ (38)
k,n = XM \2Morrill

The proper selection of n and N allows the separation of any frequency band that is desired. The important fact

of this interoctave algorithm is the original signal can be projected on each subspace without intersection (i.e., the

attitude subspace does not receive any navigation signal).

Standard Band Pass Filter

In general the navigation motion is dominated by the orbital period of the master satellite which is around 6000

seconds for Low Earth Orbit (LEO). The attitude motion is related to the internal closed-loop design which is in

general around a couple of hundred seconds. This frequency distance can be used to filter one motion with respect

to the other a using standard band filter design. This approach saves previous data to sequentially apply the band

filters at each time. Therefore, in general, it is more suitable for batch processing than for real time application.

OBSERVER DESIGN

In this section an observer is designed to estimate the relative attitude and angular velocity as well as the relative

position and the linear velocity. In Ref. [5] the information matrix of the attitude and position estimation errors is
explicitly calculated for two line of sight observations. The information matrix is divided into four partitions, where

the two main diagonal elements correspond to the attitude and position information matrices that have the identical

structure if each problem (i.e., attitude or position) was considered independent of each other. The off-diagonal

partitions couple the attitude and the position errors. A diagonalization (i.e., a decoupling of the attitude and
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position) of the information matrix occurs only in very special cases (the presence of a deterministic solution for

example). Therefore, the entire problem which includes both attitude and position estimation should be considered

in the observer design. Toward this end, the signal is separated using the previous methods, and both observers

(attitude and position) are designed independently.

Attitude and Navigation Observer

The observer design treats the attitude portion by representing the residual (measurement minus estimate) error

through a quaternion vector formulation, and treats the position portion of the residual in a straightforward position

vector formulation. The angular error between the measured (v TM) and the estimated (_,m) vectors in master frame
can be "visualized" by a rotation axes normal to plane that contains both vectors. This axis (¢m) can be interpreted

as the vector part of the quaternion error, and the rotation angle between both vectors is the scalar part of the

quaternion. The position error (dz) is simple vector difference between the estimated and measured vectors. Figure

6 shows both approaches.

Before continuing with this concept, the following matrix relation is first written

C m = C_d_ h = ACC 2 (39)

where the estimated vector, matrix or frames are noted with the superscript (?), and C_ -= AC. The rotation

error matrix between the estimated and measured quantities can be written in terms of the quaternion as AC =

I + 2qo0 k + 2[0×] 2. To simplify the notation this matrix is simply defined as AC = (I + [6×])_. Equation (1) can
now be re-written as

X m ^ ^ ^Vm = (I + [5 ])_ Cyv s (40)

where fs is an estimated vector,which depends on only of the angular motion (after signal separation). Equation

(40) can be re-written in residual form as

v,_ _ ,_m = [Sx]m?r_ (41)

Using the multiplicative property of the cross product matrix the right hand side of Eq. (41) can be expressed in a
more convenient form as

#'_ - v "_ = [,_×]_ (¢_)_ (42)

where the vector ¢_ is expressed as the vector part of a quaternion in any frame. As stated previously this is one
advantage of using the quaternion parameterization over the rotation matrix in the observer. The left hand side of

Eq. (42) is denoted by dz - _m _ v m for simplicity.
The number of measured line of sight vectors is generally greater than one, and the processing of this information

can be done in the least square sense. Each estimated vector cross product is stacked into a matrix as

17_= • (43)

L[%vxl_J

In this case the pseudoinverse is computed using all available information. Therefore, the quaternion error is computed

by
^ + m (44)Vr_ dz = Cs -+ [50, 5qo]
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Table1: OrbitalElementsoftheMasterSatellite
Semimajoraxis a = 6,878 km

Eccentricity e = 0
Inclination i = 50 °

Node right ascension _ = 5°

Argument of perigee co = 10 °

Mean anomaly M = 8 °

where 1/+ is the pseudoinverse of 1/,_. The computation of the quaternion error is comparable to the algorithm

presented in Ref. [13], but the scalar part of the quaternion (Sqo) is assumed to always be equal to +1. However, the

scheme presented in this section maintains all four elements of the quaternion error because the sign of the scalar

part is used in the design of the observer.

The nonlinear observer presented in Ref. [14] is used for attitude estimation; however, two slight modifications

are introduced. The first one incorporates an angular velocity model, and the second includes a model of a potential

bias, represented by b m, in the quaternion differential equation to include any offset of the sensor, which may even

be the computation of the focal distance. The dynamics of the observer are given by

_m 1
= [005×3+ Ibm×I]

(45)

x [_m s +b+ KvSosign(Sqo)]

1
_}o= -_ (Qr) T [dJm, + I_ + K_50 sign ((_qo)] (46)

_m ^]ql

Wm_ = -Awms + AT TM + KpSo sign (Sqo) (47)
Am

AT = -HAT m + KT5 0 sign (5qo) (48)
im

b = -Mf_ m + KbSo sign (Sqo) (49)

where T is the torque difference estimate, d_ms is the relative angular velocity, M is a diagonal positive definite

matrix which represents the time constant of the process, and K_, Kp, KT and Kb are positive definite matrices.

The sign function ensures that the smallest possible angle is chosen between the two equivalent rotations angles

described by ¢ and 27r - ¢. The stability proof of this observer can be found in Ref. [6].

The observers for the relative position and relative linear velocity are given by

A

r = _ - Kp dz (50)

= f (_, _) - K_ dz (51)

where f (.) is the right hand side of Eq. (14), r is the relative position vector, and v is the relative linear velocity

vector. The minus signs in Eqs. (50) and (51) are due to the definition of dz. The constant gains Kp and K_ are

positive definite matrices (usually diagonal). The stability proof of this observer can be found in Ref. [6].

SIMULATION

The orbital elements used in the simulation of the master satellite are shown in Table 1. A small initial condition

perturbation of these elements is used to simulate the motion of the secondary satellite. The true inertia matrices of

both satellites is given by

Is =Im = diag[100, 120, 130] N-m-s 2 (52)

In the observer the following inertia matrices are used:

Is = Im = diag[ll0, 115, 140] N-m-s 2 (53)

The true relative initial angular velocity is constant, and given by

w = [0.065, 0.048, 0.03] T deg/sec (54)
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Figure 7: Attitude and Angular Velocity Errors, and Position and Linear Velocity Errors

The relative angular velocity trajectory is computed by integrating the following equation

= _21_ (55)

where Is is the true inertia and A = 0.02. A noise of 0.01/3000 is assumed for each measurement on the focal
plane. Four beacons are placed on the secondary satellite at a distance of 1 meter from the mass center along each
coordinate axis. The fourth beacon is placed at [1, 1, 1]T in the secondary frame.

The observer described in the last section is implemented for state estimation from the line of sight measurements.
The initial condition angular error is a rotation of about 15° along each of the coordinates axes. The initial angular
velocity has 50 percent errors from Eq. (54). The initial position condition 10 percent from the true value and the

initial linear velocity condition is 30 percent from the true value. The sampling rate is 4 Hz. The plots in Figure
7 show attitude and angular velocity errors, and position and linear velocity errors for the estimator. The relative
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distance along the X axis is almost three times the distance along the other two axes (around 94 meters against 30

meters). This difference can be observed in the oscillation of the attitude error in roll, which is intuitively correct.

The roll angle error is within 0.3 degrees, and the pitch and yaw angles are within 0.05 degrees. The position error

in all three axis is within 1 cm. Also, the velocities are well estimated using the observer.

CONCLUSION

A novel vision-based sensor involving LED beacons and position sensing technology in the focal plane has been

introduced for formation flying applications. In order to achieve an accurate line of sight measurement from this

sensor a calibration procedure has been shown. Experimental results indicate that the calibration provides accurate

results. Also, an observer based system has been presented as an alternative to the extended Kalman filter for

formation flying navigation of spacecraft. Simulation results have shown that accurate relative attitude and position

estimation is possible.
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