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ABSTRACT

The general problem of gyro calibration can be stated as the estimation of the scale

factors, misalignments and drift-rate biases of the gyro using the on-orbit sensor

measurements. These gyro parameters have been traditionally treated as temperature-

independent in the operational flight dynamics ground systems at NASA Goddard Space

Flight Center (GSFC), a scenario which has been successfully applied in the gyro

calibration of a large number of missions. A significant departure from this is the

Microwave Anisotropy Probe (MAP) mission where, due to the high thermal variations

expected during the mission phase, it is necessary to model the scale factors as functions

of temperature.

This paper addresses the issue of gyro calibration for the MAP gyro model using a

manufacturer-supplied model of the variation of scale factors with temperature. The

problem is formulated as a least squares problem and solved using the Levenberg-

Marquardt algorithm in the MATLAB © library function 'NLSQ'. The algorithm was

tested on simulated data with Gaussian noise for the quaternions as well as the gyro rates

and was found to consistently converge close to the true values. Significant improvement

in accuracy was noticed due to the estimation of the temperature-dependent scale factors

as against constant scale factors.

INTRODUCTION

The general problem of gyro calibration can be stated as the estimation of the scale

factors, misalignments and the biases of the gyro using the on-orbit sensor measurements
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(ref.1).Usually,thescalefactorsof thegyrosaredeemedto beconstantswhichwill be
estimatedapriori andonly small,possiblyslowly varyingcorrectionsto these
manufacturer-suppliedvalueswill beestimatedduringthemission(ref. 2-5).But in some
missionssuchastheMicrowaveAnisotropyProbe(MAP) (ref. 6), dueto thehigh
thermalvariationsexpectedduringthemission,thescalefactorsarethemselvesfunctions
of temperature.In mostof thesecases,thefunctionalform of thevariationof thegyro
scalefactorswill beknownapriori from themanufacturerandcertainassociated
parametersfor their actualvalueson-orbitareto beestimatedaspartof thegyro
calibrationexercise.

Theexistinggyrocalibrationutilities usedat theNASA GoddardSpaceFlight Center
(GSFC)assumethat thescalefactorsareconstants.Thereforetheobjectiveof thework
reportedin thisdocumentis to formulatethis temperature-dependentgyrocalibrationand
providea methodologyandatool to solveit.

PROBLEM FORMULATION

The problem of temperature-dependent gyro calibration is formulated in this section.

With a view to applying this methodology to the MAP gyro calibration scenario, the gyro

model conforming to MAP (ref.7) was used here. The 3xl vector of gyro rates is given

by:

001iN11co(t) = M S 2 0 N 2

0 S 3 N 3

-b (i)

where

Si =aio + ailv + ai2v 2 + ai3v 3, i=1,2,3 (2)

are the temperature dependent scale factors, v is the voltage, Ni are the gyro telemetry

counts, b is the 3xl bias vector to be estimated, and M is the 3x3 misalignment matrix.

The scale factors are actually functions of temperature but are provided by the

manufacturer in terms of gyro thermistor voltage variations.

The gyro calibration problem now reduces to estimating the 28xl state vector X

X = [{aij},{ Mkt}, br, q0r] r (3)

where lair are the 12 coefficients of the scale factors defined in Equation (2), [Mkl} are

the 9 elements of M, and q0 is the 4xl epoch inertial-to-body quaternion. It is convenient

to define the 3x4 matrix A whose elements are lair.

It is possible to reduce the number of parameters in the state vector by 3 by redefining the

alignment matrix to incorporate the linear part of the scale factor corrections by
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normalization.We areconsideringapplyingthisreductionin afutureversionof the
algorithm.

Thekinematicequationrelatingtheattitudeto thegyroratesis (ref. 8)

4 = (4)

where q is the attitude quaternion and 12 is given by

0 ;]

O) x

g'2 = - O)z 0 09 x (_Oy

(.Oy - COx 0

-(O x -(Oy --COz

(5)

Here oJ = (cox, coy, coZ ) is the spacecraft angular velocity measured by the gyros with

components along the body axes.

X is estimated by minimizing the error between the attitude quaternions computed from

sensor measurements and the attitude obtained by integrating the kinematic equation

above. The closed form solution to the equation is given by (ref. 8):

q(ti+l ):LCOSk_J'+1S_"09 Qi q(ti)
(6)

where

co= IOx2( ti )+ (Oy2( ti )+ (_Oz2( ti )_12

At = ti+ 1 -t i

g2i = g2( 09( t i ))

q(ti) is the attitude quaternion at time ti, and q(ti+l) is the propagated attitude quaternion at

time ti+1 • This closed form solution is used in the present formulation to get the

propagated attitude quaternions qp(t) for evaluating the objective function matrix for

minimization using the Levenberg-Marquardt algorithm. The quaternion residualsf(X)

are now defined by

f i(X) = qp( ti) - qt( ti) (7)

where qt(t) is the true quaternion at time t obtained using the attitude sensor

measurements. The problem will then be to find the state vector that minimizes the cost
function

L(X) = _i (fi(X))2 (8)
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with (fi(X))2 defined as the sum of the squares of the individual components offi(X).

As will be seen below, the above cost function formulation works well. Note that the

residuals defined in Equation (7) are different from the traditional attitude residuals

represented by three small rotations about the true attitude (see for example, ref. 3). This

traditional approach to the current problem is being investigated. Also, by suitably

introducing a weight matrix in the cost function, non-uniform weighting can be allowed.

This is not done in the current formulation and will be attempted in the future version.

SOLUTION METHODOLOGY

The Levenberg-Marquardt Method

The general nonlinear least squares problem can be stated as:

Find X such that L(X), defined in equation (8), is a minimum.

The Levenberg-Marquardt (L-M) (ref. 9) method uses a trust-region approach to shrink

the step sizes to minimize the cost function at each iteration and the state update is given

by

Xnew = Sold + Inv (jrj + D).J rF

where D is the diagonal matrix given by

D = 2. Diag (jr,]),

3, is a multiplication factor, J is the matrix of first partial derivatives OF/OX, and F is the

residual vector.

The general procedure for this method is to set 3, to 1.0 for the first iteration. If the first

attempt at an iteration reduces the cost function then 2 is reduced for the next iteration by

a factor of 10. If the first step increases the cost function, then 2 is increased by a factor

of 5 until the cost function is reduced. The final value of 3, for the iteration is used for the

next iteration. Rather than compute the sum of squares off(X), 'NLSQ' requires the user-

defined function to compute the matrix-valued function

F(X) = [fl(S) f2(S) f3(S) ... fm(X)lv

Here eachfi(X) could be a vector in which case the objective function will be matrix-
valued.
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The MATLAB Function 'NLSQ'

The MATLAB function 'NLSQ' is a general function to solve the non-linear least

squares problem defined in the previous section. The default algorithm used in this

function is that of L-M algorithm. The calling parameters for this function are

[X, OPTIONS, F,J] = NLSQ('FUN;XO, OPTIONS, 'GRADFUN" P1,P2,..)

This function starts at the state vector Xo and finds a minimum to the sum of squares of

the functions described in FUN. FUN is usually an M-file which returns a vector of

objective functions: F=FUN(X). FUN should return F(X) and not the sum-of-squares

since the cost function is computed implicitly in the algorithm.

OPTIONS is a vector of optional parameters to be defined. GRADFUN is an optional

function which returns the partial derivatives of the functions at a given X. If GRADFUN

is not supplied, numerical derivatives are computed within the function.

APPLICATION TO SIMULATED DATA

General Simulation Procedure

• Assign true values for the misalignment matrix, M, the scale factor

coefficients matrix, A, the bias vector, b, and the epoch quaternion q0.

• Assign start and end times ti and tf.

• Assign m, the number of time tags.

• Assign a temperature/voltage profile for the simulation time interval [ti, tl].

• Assume an angular velocity profile for the spacecraft in [ti, tf].

• Calculate the scale factor vector S =[A] V, where A is the 3x4 matrix of scale

factor coefficients, V=[ 1 v v2 v3] r , v being the voltage as a known function
of time t.

• Calculate the telemetry counts after adding the bias using [S] -_ M -1 (N(t)+b)

where [S] is the diagonal matrix of the scale factor components of S.

• Starting from q0, get the quaternion history using the recursive relation given

in Equation (6) above, normalize it and save it as "true" attitudes qt(t).

Specific Simulation Scenario

The simulated data spanned 1 hour 15 minutes and consisted of inertial pointing periods

interspersed with three slews of rate 0.1 deg/sec rotating +/-45 deg about the x, y axes

and +/-90 deg about z axis. The slews lasted 1 hour totally with a gap of 7 minutes

between slews. The temperature variation in the gyros in the early launch phase was

taken to be between 5-10 degrees which corresponds to about 1 to 2 volts variation in

voltage as per discussion with the MAP Attitude Control System (ACS) engineers. Based

on this, a sinusoidal voltage variation was assigned with an amplitude of 2 volts and

period of 1 hour, i. e.,
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v = 2sin 2_rt/P

where t is the time and P, the period, is 1 hour.

The following set of true gyro parameters and epoch quaternion, denoted by the subscript

"t", were used:

a,=[
0.4945513578201
0.4945513578201

0.4945513578201

.00036598584787

.00036598584787

.00036598584787

.00001662910926 -.000000872664637

.00001662910926 .000000872664631X10 -5

.00001662910926 .00000087266463J

bt = [0.5, 0.5, 0.5] T deg/hr

00]M t = -1 0

0 -1

qo = [0.5 0.5 0.5 0.5] T

The quaternion measurements were corrupted with noise equivalent to 40 arc seconds

root-sum-squared (RSS) in Euler angles to correspond to the MAP star tracker accuracy

and the gyro measurements were corrupted with Gaussian noise of 0.016 deg/hr (1-c_).

Estimation Steps

The core of the estimation procedure is the evaluation of the matrix of residuals F(X):

• Offset M, A, b and qo from the true values to get the initial state vector X0

• Calculate the gyro rates using S=A V, co = M S N - b where N is the vector of

telemetry counts

• Starting from qo, use Equation (6) above to get the propagated attitude

quaternions, qp(t), at the sampling intervals and normalize it at every time
instant.

• Compute the residual vectors via Equation (7) at times tl ..... tm

• Update the 28x 1 state vector X using the L-M algorithm via the MATLAB

function NLSQ'.

This procedure is repeated till the convergence criterion of the L-M method is achieved.

In order to scale the independent variables and make their range of variation uniform

across the state vector, the components of the bias vector and the coefficients of the scale

factors are multiplied by 10 -6 before using them in the cost function evaluation. It was

found that without this, the problem becomes ill-conditioned and the procedure
terminates.
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DISCUSSION OF RESULTS

Numerous estimation runs were made for widely ranging values of the a priori state

vector X0. Convergence close to the true value was obtained consistently. The following

is a typical result:

b = [ 0.51543 0.5052 0.4954 ]cleg/hr

-1.00000000000000 0.00000000131127 -0.00000000043832-
M= 0.00000000160429 -1.00000000000000 -0.00000000916929

0.00000000030366 -0.00000001133398 -1.00000000000000

0.44509621842136
A = 0.44509603800549

0.44509511127285

0.00032942235090
0.00032951201204
0.00033038158483

0.00001491460493 -0.000000805056957

0.00001499181614 -0.00000080575904|10 -5

0.00001508609330 -0.00000097751931J

qo = [ 0.500001 0.500008 0.49994 0.49995] T

The biases agree to an accuracy of .015 deg/hr and the products of misalignment and

scale factor matrices match to an accuracy of 10 1° , which corresponds to 0.017% error.

Figure 1 gives the plot of the errors between estimated and true Euler angles and Figure 2

gives the deviations plot of the components of the products of the M and S matrices

defined in equation (1) as a function of time (i.e., as temperature varies).

It was found that the solutions were independent of the initial guesses. Some of the initial

guesses tried were: 0.9 for all diagonal elements of M, 0.1 for all diagonal elements of M,

zero for all components of b, 2 deg/hr for all components of b, zero for all scale factor
coefficients and 1.0 for all scale factor coefficients and different combinations thereof.

Results differing only in the 12 th or 13 th significant figure were obtained with these initial

guesses, which is essentially due to the limitation of the machine precision. Runs were

also made not including measurements during maneuver times and the resulting

accuracies did not vary significantly.

Further, estimation was carried out with only constant scale factors in the state vector and

setting all other coefficients to zero as in the conventional gyro calibration methods. As

seen in Figure 3, which gives the errors in the Euler angles for this case, as compared to

those of the temperature-dependent gyro calibration case above, the improvement in

accuracy is significant due to the enhanced state vector. Note that the asterisks in this

figure represent the same data as in Figure 1, but on a different scale.
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Fig 1. Euler Angle Error Plot After Gyro Calibration
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Fig. 2. Deviations Plot of the Components of the Products of Misalignment and
Scale Factors
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:Without Temp DependentCalibration
*Wth Temperature Dependent :Ca brat on

Fig 3. Euler Angle Errors Improvement Due to Temperature-Dependent Gyro

Calibration

CONCLUSIONS

A gyro calibration problem with temperature dependent scale factors was formulated.

The Levenberg-Marquardt algorithm in the MATLAB function NLSQ was used to solve

the resulting least squares problem. Encouraging results using simulated data, conforming

to the MAP mission, show the feasibility of applying it for recovering the spacecraft gyro

scale factors. The advantage of this approach is that no partial derivatives of the cost

function with respect to the state vector are needed. This helps to augment or remove
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componentsfrom thestatevectorveryeasily.Also, sincetheentirestatevectoris
estimatedusingasinglespanof data,nooperatorinterventionis needed.

SYMBOLS

o)

M

S

N

b

X

aij

qo
t2

f(X)

qt

qp

8q
At

Vector of gyro rates

Misalignment matrix

Temperature-dependent scale factors

Gyro telemetry counts
Bias vector

State vector

Scale factor coefficients

Epoch quaternion

Matrix of gyro rate components
Vector of residuals

True quaternion

Propagated quaternion

Quaternion error

Time interval
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