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ABSTRACT

This work presents a new approach to gyro calibration where, in addition to being used for

computing attitude that is needed in the calibration process, the gyro outputs are also used as measurements
in a Kalman filter. This work also presents an algorithm for calibrating a quadruplet rather than the

customary triad gyro set. In particular, a new misalignment error model is derived for this case. The new
calibration algorithm is applied to the EOS-AQUA satellite gyros. The effectiveness of the new algorithm is
demonstrated through simulations.

INTRODUCTION

Gyro calibration as well as calibration of other instruments includes two stages. In the first stage
the instrument error parameters are estimated. During the second stage those errors are continuously
removed from the gyro readings. In the classical approach to gyro calibration, the gyro outputs are used to

maintain or compute body orientation rather than being used as measurements in the context of filtering. In
inertial navigation, for example (ref. 1), gyro errors cause erroneous computation of velocity and position,
and then when the latter are compared to measured velocity and position, a great portion of the computed

velocity and position errors can be determined. The latter errors are then fed into a Kalman filter (KF) that
uses the Inertial Navigation System (INS) error model to infer on the gyro errors. Similarly, when applying

the classical approach to spacecraft (SC) attitude determination, the gyro outputs are used to compute the
attitude and then attitude measurements (refs. 2, 3) are used to determine the attitude errors, which again
using a KF, indicates what the gyro errors are.

In the approach adopted in this work, the gyro outputs are used as angular rate measurements and

are compared to estimated angular rate measurements. However, this approach requires the knowledge of
the angular rate. In the past (ref. 4), the estimated angular rate was computed in a rather simplistic way

assuming basically that the rate was constant. In the present work, the estimated angular rate is derived
using a KF whose input can be any kind of attitude measurement; therefore, the angular rate experienced by

the SC can be continuously changing, and yet a good estimate of the rate, necessary for calibration, can be
obtained.

The calibration algorithm presented in this work was derived for a set of quadruplet gyros. This

required the derivation of a new error model, particularly for the gyro misaligrmaents. The new calibration
algorithm was applied to the gyro package of the EOS-AQUA satellite. The latter consists of four gyros,
which are given the task of measuring the three components of the SC angular velocity vector resolved in

the body Cartesian coordinates.

In the next section the gyro error model is derived. The section that follows presents an algorithm

for computing the calibration parameters when the rate is known, and then in the section that follows we
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presentthesamewhentheratesareunknown.In thefollowingsectionwepresentthecompensation
procedurethatneedsto takeplaceto completethecalibrationprocess,andin thesubsequentsectionwe
presentsimulationresults.Finally,inthelastsection,theconclusionsarepresented.

GYRO ERROR MODEL

The gyro errors that are considered in this work are: misalignInent, scale factor error, and bias

(constant drift rate). The gyro error model is basically a linear model, which associates small error sources
to the gyro outputs. Due to the linearity of the model we can compute the contribution of each error source

independently, and then sum up all the contributions into one linear model.

We start the description of the error model, by deriving the expression for the gyro misalignments.

Actual

Direction of

Gyro No. j

C J3

/ df 'v

X_ co
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(nominal)
Direction of

_,_ Gyro No.j

_djl _ Y, O_y

Fig. 1: The geometry of the Assumed and the Actual Direction of the Gyro Input Axis

Misalignment Model

The assumed direction of the sensitive axis of gyro j, which is one of the four gyros, is presented

in Fig. 1 where the body coordinate axes are also presented and are denoted by X, Y, and Z. The orientation
of this gyro is expressed by a vector of unit length in the direction of the gyro sensitive axis. The direction
of this unit vector in the body coordinates is expressed by its three direction cosines, which are identical to

its components when the unit vector is resolved in the body coordinates. These components are

c jl, c j2, and C j3. Being direction cosines, or equivalently, components of a unit vector, the sum of their

squares adds up to 1; that is,
2 2 2

Cjl -t- C j2 nt- Cj3 = 1 (1)

The rate that this gyro reads is the projection of the angular velocity vector on this unit vector. If

we express the angular velocity vector in the body coordinates, where its components are COx, COy,and coz ,

then this projection is given by

lj • to = cjlo) x + cj2O)y + cj3¢o z (2.a)
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wherelj
nominal(error-less)readingofthisgyroisthen

]IGjn = cjlo) x + cj2r_0y + cj3(o z = [Cjl C j2 c j3 (.Oy (2.b)

LCOz

where the subscript n denotes the nominal or design value. Combining all four gyros we obtain

is the unit vector along the j tu gyro sensitive axis, and co is the angular rate vector. The

Define

and

Eq. (3.a) can be written as

IGlnl I-Cll Cl2 Cl3 lr-f.0 x -1c2 // /

LG4oJ Lc4, C42 c43j _ _

GnT =lOin G2n San a4n]

Gll C12 C13 1

C = G21 C22 G23 /

c31 C32 G33]

c41 C42 C43 J

G_ = C¢o

(3.a)

(3.b)

(3.c)

(4)
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Fig. 2: The Gyro Configuration in the EOS-AQUA Satellite.
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IntheEOS-AQUAsatellitethegyroconfigurationisasshowninFig.2where,asmentionedbefore,X, Y,
and Z are the axes of the body frame. The C matrix in this case is

o -,g]
0 0 1

(5)

Note that the vector described by each row is of unit length like it should be (see Eq. 1).

Due to misalignment, the sensitive axis of each gyro may actually point at a slightly different direction

than the assumed one. This is illustrated in Fig. 1 where the components of this direction (which is still a

unit vector) are djl, dj2, and dj3 respectively. Following the steps that led to the development of the

nominal gyro reading presented in Eq. (2.b), the actual gyro reading is found to be

Gja = djlco x + dj2coy + djBco z = [djl ,id j2 d j3 COy

L%J

(6)

where the subscript a denotes an actual value. The difference, AGj, between the reading of the j _ gyro

and its assumed nominal reading is computable using Eqs. (2.b) and (6), as follows;

AG_ = Oja - Gjn -- [dj, - Cjl d j2 - c j2 d j3 -- C j3 (_y (7)

LOzJ

where the superscript m denotes the fact that the error is due to misalignment. We denote by mji the

differences d jl - c jl, d j2 - c j2, and d j3 -- Cj3 as follows

mj_ = djl - c jl (8.a) m j2 = d j2 - o j2 (8.b) m j3 = d j3 - CjB (8.c)

Using Eqs. (8) we can write Eq. (7), as follows;

AG_ =[co x coy

mjl 1

LmjaJ

(9)

The mji differences are shown in Fig. 1. Actually only two of the mji of each gyro are independent. This

results from the fact that the nominal as well as the actual directions of the gyros are given by vectors of

unit length. For a reason that will be clear later, let us choose to present the third component of mj by the
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firsttwo;thatis,weexpressmj3, themisalignmentalongthesensitiveaxis,by mjl
similarlytoEq.(1),it isalsotruethat

dj21+dj2:+dj23=1

andmj2. Since

(10)

thenusingthisrelationandEq.(8.c)wecanwrite

x/ 2 2m j3 = 1 - d j21- dj22 - 1 - Cjl -- Cj2 (11)

For the case described by the fourth gyro (G 4 in fig. 3) the nominal direction of the gyro sensitive

axis is along the Z axis; therefore, c41 = c42 = 0, then from Eqs. (8.a) and (8.b)

and from Eq. (11)

m41 = d41 (12.a) m42 = d42 (12.b)

m43 = _/1-d241-d_2 -I (13)

In the case where the misalignments are small, d]l and d]2 are small too. Therefore we can expand the

square root fimction of Eq. (11) in a Taylor series, as follows;

1 d 2 d 2 1 _ 2 1 241 -- 42 = -- T d 41 -- T d 42 (14)

(Note that the linear term of the series vanishes). Substituting of the last equation into Eq. (13) yields

1 2 1 2 1 2 1 2
m43 =-7d41 -yd42 =-7m41 -7m42 (15)

When d41 and d42 are indeed small, such as this case, then 1/143 is negligible with respect to m41 and

m42. Then using Eqs. (12) we can write

m42| = 0]/d42Jm43 .J

(16)

It is the choice to express the component of mj along the gyro sensitive axis (in this case m43 ) that

enables its elimination.

For gyros whose sensitive axes are not aligned along one of the body axes the computation is

more elaborate. Consider for example G2, the second gyro of the EOS-AQUA satellite. In order to define

its misalignment in the body coordinates let us define a coordinate system in which the gyro sensitive axis
is nominally aligned along one of its axes. Such a system (X", Y", Z") is presented in Fig. 3, where the

sensitive axis of the G 2 gyro is aligned along the system Y" axis. Following the preceding development

for the G 4 gyro we conclude that

m;1 = d;1 (16.a) m;3 = d;3 (17.b)
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" 1 . 2 1 ,, 2 1 ,, 2 1 ,, 2
m22 =-7d21 - 7d23 =-2m21 -7m23 (17.c)

(The " sign denotes the fact that the values are expressed in the X", Y", Z" coordinate system.) Here too,

the misalignment along the sensitive axis, m22 , is normally negligible. In order to compute the

misaligmnent error in the gyro reading we have to use Eq. (9) where the angular rate vector is transformed
to the double prime coordinate system and the misalignment parameters are those given in Eqs. (16.a and
b). As shown in Fig. 3 the transformation from the body to the double prime coordinates is performed by

Z=Z _

X

/_<__4 .........
J _ ...................... . ....../5,," .............................

j_-._, ,, "-% .........._ y,
-/ CX "

_,,_- _ ,, /-. Y
X' =X' ' '_

_

Fig. 3: The Transformation from the G 2 Body to Gyro Coordinates.

two rotations. The first rotation is by an angle ot about the Z axis, and the second is by an angle - [3

about the X' axis. The resulting transformation matrix from the body to the G 2 coordinates is therefore

and

then following Eq. (9)

ca sa 0 ]
Rb2=-S_.Cf_ ca-c_ -s_

l_-sa'sl3 ca-sl3 c_

b
0,) 2 = R2o b

(18)

(19)
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AG 2 [R_Ob]Td"2, T 2 "= -_ ¢I)b Rbd 2, (20)

where

It is easy to see that

Define

[d_,]T=[d_l 0 d;3 ]

g_7

ca -sa.spl,- ,,

E 2 =

c(z

s(_

0

-su.s_]

co_-s_[
c_ J

(23.a) d2=[ d_1] (23.b)

LN_3J

(21)

(22)

then Eq. (20) can be written as

AG_ T= ObE2d2 (24)

To evaluate E 2 , we need to compute the angles ot and [3. For this we turn to Fig. 4 where these angles

Z

i G2

x/ -%,_
X Y

+ c222

Fig. 4: Definition of the Rotation Angles ot and [3.

are defined in the projection of the G 2 direction on the body axes. From this figure we conclude that

(25.a)

g

[3 = COS- 1 4C21 "t- C22

1
\

2)= COS -i C 1 -1- C22 (25.b)

Using the EOS-AQUA satellite values (see Eqs. (4) and (5)) we obtain
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,(c2,/__tan tan 30o
uc,,,u tdJ

_=cos-i(#_,+c_2):cos-,(_)=cos-l(_)=35.26o

(25.c)

(25.d)

Due to the symmetry between the positioning of the G 2 and the G 3 gyros, it is easy to see that when

considering the G 3 , the first rotation is about the new Z axis by the angle 7_ -o_ and then about the X'

axis by the angle - _. Therefore

R_ -- -s_.cI3 -cc_-cp -s_
-sa-s_ -ca-sf_ cf_

(26)

and similarly to Eq. (19) for this transformation we obtain

then following Eq. (20)

where

It is easy to see that

Define

b
O.I 3 _ R30_ b

AG 3 [U_{l)blT d"3, T 3 "= = O)bRbd3.

[d;,]T=[d;, o d33 ]

3 it

Rbd3, =

-CC_ - S0_" S_Tr ,,

s_ c_.s_//d211
o c_ Jkd3_

g 3 = sc_ -co_.s_/ (31.a) d3= d,,33

o c_ j

(31.b)

(27)

(28)

(29)

(30)

then Eq. (28) can be written as

AG 3 T-----O]b E3d 3 (32)

For the G 1 gyro we have only one transformation, which brings the body X-axis into coincidence

with the G1 gyro sensitive axis (see Fig. 2). It is about the Y-axis by an angle which we denote by y. For

this gyro we have then

0 o']R_= 1

LSY 0 cy_ ]

(33)

and the angular rate in coordinate system 1 is then
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and

where

0}1= Rb0}b (34)

AG 1 [RP0}b]X dl * T 1 '= = 0}bRbdl, (35)

[dl,]r = [0 612 di3 ] (36)

We denote the misalignment parameters of this gyro by a single prime because it takes only one rotation (to

a single prime system) to align the coordinate axis with the sensitive axis of the 61 gyro. Note that here

the misalignments that are not negligible are d'12 and d'13. It is easy to see that

Define

[o]idd1
Sy .

Rbdl, 1 0 12

0 cyjL _3

[oE 1 = 1 (38.a)

0 cTJ

then Eq. (35) can be written as

dl = [d'l'21 (38.b)

Ld'l'_j

(37)

AG_ = 0}bTEld_ (39)

From fig. 2 it is easy to see that the rotation angle, y, is computable, as follows;

,:sinl(' i )sin (4O)

Similarly to the computations carried out for the misalignment errors for gyros 1, 2, and 3, we can

write for gyro 4

AG 4 = 0}_E4d 4 (41)

where, based on Eq. (16),

Let

Iii]  42.b)E 4 = (42.a) d 4 = d42

[mGm ]T _- lAG 7 AG 2 AG 3 AG 4 ] (43.a)

o00000000 0 fd) x {l)y {D z 0 0 0 0 0
_-_ m = (43.b)

0 0 0 0 0 cox COy COz 0 0

0 0 0 0 0 0 0 0 COx COy COz
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E 0 0 0

0 E2 0 0
E= 0 0 E3 0

0 0 0 Ea

(43.c) dV=[dl v d2v d3v d_] (43.d)

Then Eqs. (39), (23), (32) and (41) can be unified into the following single equation

AG m = _ mE d (44)

Scale Factor Error Model

As mentioned, another error source that causes the difference between the correct value of the

rates and their measurements are the scale factor errors. The error model for the scale factor error is simply

I c%lk_ ]

__1° 2k2 /
AG k ]0)G3k3 / (45)

LC0Gnk4]

where the subscript k denotes the fact that this error is caused by gyro scale factor error, fDGi, i = 1 - 4 is

the angular velocity measured by gyro number i, and k i is the scale factor error of that gyro. The actual

components c%i are obtained by transforming the angular velocity expressed in body coordinates to the

actual misaligned gyro sensitive axes using the matrix D; however, because D is unknown to us we use

instead the matrix C that transforms the body rate to the nominal gyro axes, and is close enough to D. Thus,

('0G3 / O) z

f-0 G4 ..l

(46)

where in the case ofEOS-AQUA, C is as given in Eq. (5). Equation (45) can be written as follows

Define

L, Gl00:01Ikl1AG k = / 0 O_G2 0 0 k 2

0 OG3 0 k 3

0 0 f_G4 k4

coG, 0 0 0

_--_k._- 0 (DG2 0 0

0 0 COG3 0

0 0 0 OG4

(47)

(48.a)
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and

thenEq.(47)canbewrittenas
k T = [k 1 k2 k3

AG k = f2kk

k4] (48.b)

(48.c)

Bias Model

The bias error model is quite simple and is given by

[bl]b2

b= b3

b4

(49)

where b i is the bias ofgyro number i.

The Augmented Gyro Error Model

The total gyro error is the sum of all the errors discussed before; namely, bias, scale factor and
misaligrmaent errors; that is

AG = AG m + AG k + b (50.a)

or using Eqs. (44) and (48.c)

AG = _mE d + f2kk + b (50.b)

The last equation can be written in the following form

G a -- Co) r = [_"2mE _2 k (50.c)

where (O r is the reference angular velocity vector. It is the angular velocity, which the SC experiences in

reality. As mentioned before, G n is the nominal angular velocity measured by the four gyros. The vector of

the left hand side of the last equation as well as the matrix on the right hand side are functions of the body

angular rate, O_r . We denote them as follows

y(COr) = G a -- C(l) r (51 .a)

also let

then Eq. (50.c) can be written as

H(Olr) = [f2mE ['2 k I4] (51.b)

(51.c)

y(o r) = H(_ r)x (51.d)
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CALIBRATION-PARAMETERS ESTIMATION FOR KNOWN RATE

Our goal now is to estimate x, and for that we need to know the angular rate, which the gyros are

set to measure. We distinguish between two major cases. One case is that where co r , the reference SC

angular velocity, is known, and the other case is that where the rate is not known and has to be evaluated

simultaneously with the estimate of x. In the first case we also distinguish between the deterministic and
stochastic cases. All these cases are discussed next.

Deterministic Case

When the SC rotates at a certain angular rate and a one-time measurement of the four gyro readings is

taken at that time, which we denote by t k , we obtain one matrix equation, as follows:

y(_Or,k) : U(COr,k)X (52)

where o_r,k denotes the angular rate at time t k . This yields four equations for the 16 unknowns of x. If the

rate does not change, then more measurements do not change the equations. A change in the angular rate of

the SC is needed to generate more equations. It should be noted that even if we have 16 equations, it does
not mean that they are all independent and that we can solve for x. We have to design the profile of

olr and the times when measurements are taken in such a way that we will be able to find 16 independent

equations. Let us denote the 16 independent equations by one matrix equation, as follows:

y = Hx (53)

Because we have 16 independent equations, H has an inverse; therefore, we can solve for x using

X = _-ly (54)

Stochastic Case

In this case we assume that the measurements are contaminated by noise, which is the most likely

case. Therefore, the matrix equation that describes this case at time t k is

y(Oir, k) = H(Olr, k )x + v k (55)

Even if we find 16 independent equations from measurements done at different time points we still want to

use all available measurements and obtain x as a least squares estimate. We have

-y(O_r,1)-

Y(O-Ir,2)

Y(O_n3)

Y(_rA)

IVll

(56)

Let
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g_

-y(o_r,l)-

Y(¢Or,2)

Y(OIr,3)

Y(O-Ir,4)

(57.a)

I H(Or _)-

H / H(Or'2)

= { H((,Or',3 )

LH(o,,4)

(57.b)

then _, the least squares fit to x, is as follows (ref. 5)

i = (HrH)-IHry (58)

The profile of o r has to be chosen in a careful way as to enhance the observability of x.

CALIBRATION-PARAMETERS ESTIMATION FOR UNKNOWN RATE

In this case we have to find the angular rate vector while estimating the calibration parameters. The

information that we have is attitude information and gyro measurements. We need the attitude information
in order to estimate the angular rate, and we need the gyro measurements, as well as the estimated angular

rate, for the calibration process. The attitude information can be supplied in various ways; namely, we may
have it in the form of raw vector measurements or we can have it in an already processed form as attitude
quaternion for example. The angular rate behaves according to the following SC angular dynamics equation

= 1-1[(Io + h)x]o) + 1-1 (T - fi) (59.a)

where I is the SC inertia tensor, [(Io + h)x] is the cross product matrix of the vector (Io + h), h is the

angular momentum of the momentum wheels, and T is the external torque operating on the SC. Because x

• is a constant vector, it obeys the following differential equation

x=0 (59.b)

We are tempted to combine the last two equations into one dynamics equation, as follows;

I_; = II-l[([O +h)x] O01I_l + II-_ (T- 11)1
(59.c)

This dynamics model calls for the use of a Kalman Filter (KF). In fact the most appropriate filter is the
Pseudo-Linear Kalman (PSELIKA, ref. 6) filter. To find the suitable measurement equation, we turn to Eqs.
(50.c) and (51.b) from which it is obvious that

(60)

In order to apply the filter algorithm we need to add some process noise to Eq. (59.c) and some

measurement noise to Eq. (60). However, it is easy to see though that the last system is unobservable.
Theoretically, if the actual noise values are small, and if we know the initial angular velocity, then we can
compute the angular velocity separately. Once we know the angular rate and we command the SC to

execute a suitable angular rate profile, we should be able to compute the calibration parameters. In reality
though the computation of the angular rate is not accurate enough because it is done in an open loop

manner. Therefore, we have to add attitude measurements in order to check the divergence of the computed
angular rate. In this case we can indeed combine all the dynamics equations into one augmented matrix
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equationandestimatetheaugmentedstatevector.Thisissobecauseit ispossibleto findanangularrate
profilethatwill renderthesystemobservable.

Asmentioned,attitudecanbegivenin severalways;namely,it canbegiveninarawformas
vectormeasurementsor in processedattitudeparameterslikea quatemionor directioncosinematrix
(DCM).Letusconsidertwocases,onewhereattitudeisrepresentedbyaprocessedquaternion,andthe
othercasewhenwehaverawvectormeasurements.ThecasewhereattitudeisgivenintheformofaDCM
canbeinferredfromthedevelopmentpresentedinRef.7andthewaywehandlequaternionrepresentation
ofattitude.

Estimation When Attitude is Presented by the Attitude Quaternion

Let us assume first that the attitude is given in a form of a quaternion (ref. 8). In this case the filter
dynamics is as follows (ref. 7)

where

Iil °°ll00.°°x+I l i
I q4 -- q3 q2 [

Q = q3 q4 -ql

- q2 ql q4

- ql - q2 -q3

(61)

(62)

and the corresponding measurement equation is

qm = [04x3 04x16 (63)

The matrix 14×4

(60) and (63); that is

is a fourth order identity matrix. The combined measurement equation consists of Eqs.

l:E x
qm 04x3 04×16 I4×4 q

Estimation When Attitude is Given by Vector Observations

Normally, in space missions attitude is determined from vector observations. These observations can be

used directly to check the divergence of the angular velocity estimates (ref .7). This is shown next. Suppose

that we have N vector measurements at a certain time point. Let r i denote some abstract ith vector as

expressed in the reference coordinate system, and let b i denote the same vector when expressed in the body

coordinates. From the laws of dynamics it is known that

Di'i = hi -{- o,} × b i (65)
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where/'i is the time derivative of r i as seen by an observer in the reference coordinates, D is the matrix

that transforms vectors from the reference to body coordinates, and hi is the time derivative of b i as seen

by an observer in body coordinates. The vector b i is a measured vector and !_i is its time derivative. We

can write Eq. (65), as follows;

!_i = [b i x]o_ + Dr i (66)

Note that i"i is computable since r i is usually known because, generally, the vector is a direction to a

certain known planet whose location is given in an Almanac or, like with magnetometer measurements, the

vector can be computed using a model. (It should be noted that quite often the rate of change of r i is so

small that i"i is negligible). Define

[b!] l blX 1I]= (67.a) B= (67.b) and u=

L[b_x]J LDr_

(67.c)

then we can augment all the N equations of Eq. (66) into one matrix equation, as follows;

[I = Be + u (68)

therefore, instead of Eq. (61), we obtain in this case of vector measurement the augmented equation

IiliI °°lI lB°II-l T-  ]u0(69)

and the corresponding measurement equation is

_m _--"[03x3

whereas the augmented measurement equation is

lL ]03x|6 I3× 3 (70)

EGa Ic: °4x4 I ]x
_m 03x3 03x16 13×3

(71)

COMPENSATION

To complete the calibration process we need to perform its second stage; namely, compensation
where we eliminate the estimated errors from the gyro readings. From Eq. (50.c) we obtain
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Co.)r =G a -[_'_E (72.a)

As mentioned before, G a is a vector of the gyro readings and _r is the correct angular velocity vector.

However, we do not have co r which is what we are trying to measure; therefore, to compute _m and _k,

which have to be computed using Olr, we use the measured uncompensated angular rate vector. This

vector is derived from the uncompensated gyro measurements which we called actual and denoted by a.

Also, we do not have the actual values of d, k or h, but rather their estimate; therefore, using the values on

hand Eq. (72.a) becomes

(72.b)

where a denotes the actual values and A denotes estimated vectors. To obtain the compensated
measurements of the angular rate vector define the A matrix, as follows:

It is easy to verify that

A= 1

0

([73)

AcT C = I (74)

therefore pre multiplying Eq. (72.b) by AC T yields

O')r : ACTGa - ACt [_amE (75)

SIMULATION RESULTS

In lieu of actual SC data, a simulator was developed to produce the gyro, reaction wheel, and star

tracker data. Much care was devoted to the simulation since any dynamics errors would be perceived by
the KF as a state error. First, the maneuver strategy was developed. An inertial period before any

maneuver would facilitate the estimation of the gyro bias. The scale factors of each gyro could be
estimated by a maneuver about that gyro axis. The misalignments could be estimated by the same scale
factor maneuvers. An additional two maneuvers about the SC X and Y body axes, respectively, were added

to assist in the alignment estimation of gyro 4 which senses rate about the body Z axis. Second, the
maneuvers were modeled as a ramp-coast-ramp where the linear ramp time was 5 seconds. The rate profile

was then obtained and _ was derived by simple subtraction. Third, the dynamics Eq. (59.a) was re-written

in terms of ]1 and the ordinary differential equation (ODE) was solved using the _ and _ generated

above. Fourth, using the newly generated system momentum profile h, the rate, co, was determined from
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Fig. 5: Oyro Bias Estimate (bold) versus Truth (thin)
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Fig. 6: Gyro Scale Factor Estimate (bold) versus Truth (thin)
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Fig. 7: Gyro Misalignment Estimate (bold) versus Truth (thin)

the ODE in Eq. (59.a). Fifth, using this o1, the quaternion was estimated using the /1 portion of Eq. (61).

Lastly, the body rate was resolved in the AQUA gyro fxame by use of Eq. (50.c).

The KF was then executed on the simulated data. The biases were estimated using the initial

inertial period. Also, to facilitate the bias estimation, the scale factor and misalignment parameter
estimation was terminated by zeroing out their respective rows and columns in the state covariances and

process noise. The scale factors for each gyro were then estimated using the respective maneuver about
that axis and by zeroing out the influences of the other scale factors, the misalignments, and biases as
described with the bias estimation. Lastly, the gyro misalignment slews, which were a repeat of the scale

factor slews with the addition of X and Y-axis maneuvers, were executed with the biases and scale factors
zeroed out. All states were estimated with less than a 1% deviation from truth. The KF bias estimate can

be seen in Fig. 5, followed by the scale factor estimate in Fig. 6, and lastly the misalignment estimate in
Fig. 7.

CONCLUSIONS

In this paper we presented a new method of gyro calibration. Normally, we have to calibrate a

cluster of three gyros whose sensitive axes are along the body axes. Here, the rate is read by four gyros only
one of which is aligned along the body coordinate axes. Therefore, a new algorithm was devised for
calibrating a quadruplet rather than the customary triad gyro set. In particular, a new model had to be

developed for the gyro misalignment errors. Normally, the gyro outputs are used to supply data for a
differential equation, which is solved in order to compute attitude. According to the new method the gyro

outputs are also used as measurements, which are fed into a Kalman filter that estimates the gyro
misalignment, scale factors, and biases. The new calibration algorithm was developed in particular for the
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calibrationof the EOS-AQUA satellite gyros. The effectiveness of the new algorithm was demonstrated
through simulations with error of each estimated parameter being less than 1%.
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