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ABSTRACT

A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer
for the case of constant gyro bias, in the presence of gyro noise. The observer bias estimates converge exponentially

to a mean square bound determined by the standard deviation of the gyro noise. The resulting coupled, closed loop
dynamics are proven to be globally stable, with asymptotic tracking which is also mean square bounded. A

simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-
varying attitude sequence to illustrate the theoretical claims.

INTRODUCTION

Combined observer-controller designs for the attitude control of rigid flight vehicles are a subject of active
research 1'2. Successful design of such architectures is complicated by the fact that there is, in general, no separation

principle for nonlinear systems. In contrast to linear systems, "certainty equivalence" substitution of the states fTom
even an exponentially converging observer into a nominally stabilizing state feedback control law does not

necessarily guarantee stable closed-loop operation for the coupled systems 3'4.

However, in reference 2, a separation principle is found to exist for the problem of forcing the attitude of a rigid

vehicle to asymptotically track a (time-varying) reference attitude using feedback from sensors with persistent
nonzero bias errors. A persistency of excitation argument demonstrated that the bias estimates provided by the

observer are exponentially convergent to the true bias values. Reference 2 also proves that the certainty equivalence
use of the observer bias estimates in the nonlinear feedback control algorithm proposed in reference 5 resulted in a
stable closed-loop operation, with asymptotically perfect tracking.

Here we extend the analysis of reference 2 to include noise in the gyro reading. The Converse Lyaponov

Theorem demonstrates that in this case the bias estimates provided by the observer converge exponentially to a
mean square bound proportional to the variance of the noise. We then consider the certainty equivalence use of

these observer estimates in the nonlinear feedback control algorithm and show that, as in reference 2, the
perturbation introduced by this strategy into the closed-loop dynamics can be represented as a bounded function of

the vehicle states multiplying the observer transients and the noise. We demonstrate that the stability properties of
the controller are, in fact, maintained in the face of the perturbations, with asymptotic tracking to a mean square
bound.

The paper is organized as follows. Section II contains definitions of the terms used in the controller and

observer. In Section III the nonlinear observer for the constant gyro bias with added noise is developed and the
convergence is proven. Section IV presents the nonlinear controller design and the proof of stability of the closed

loop system and the convergence of the tracking errors. Section V presents simulation results, followed by
conclusions in Section VI.
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DEFINITIONS

The attitude of a spacecraft can be represented by a four component quatemion, consisting of a rotation angle and
unit rotation vector, known as the Euler axis

[esin-_]

q=Lcoq-J=[:]

where @ is the rotation angle, e is the Euler axis, e and ri are the vector and scalar portions of the quatemion,

respectively. Note that Ilqil= 1 by definition. The quatemion represents the rotation from an inertial coordinate

system to the spacecraft body coordinate system. A rotation matrix can be computed from the quatemion as6

R(q) = (ri2 _ Je)I + 2e eT - 2riS(e)

where S(8) is a cross product matrix formed from the vector g.

0 - gz 8y l

S(c) = 6z 0 - c x

L-Cy I_x 0

T = [eaT,qa] The attitude error used in the controllerA desired target attitude is represented by the quatemion, qa

is defined as a rotation from the desired body frame to the actual body frame and is computed according to 7

"?]qe = qc = q ® qd-1 - L edT rid JLriJ

Similarly, in the observer, the attitude error is defined as the rotation from the estimated body frame to the actual

body frame as

go ^_,
= =q®q = (1)L

where _ represents the attitude state of the observer. Note that $c = 0, _c = _+1 indicates that the spacecraft is

aligned with the desired attitude and, similarly, $o = 0, Go = +1 indicates that the attitude estimate is aligned with

the actual attitude.

The kinematics equation for the quatemion is given as

[_l i F rII + s(_)l

Jc°=lQ(q)°'l

where _ is the spacecraft angular velocity. The angular velocity is typically measured by a gyro, which can be

corrupted with both systematic and random errors. In the case of gyro bias and random noise, the gyro reading, a_g,
can be written as

COg = CO + b + v(t)
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where_ is thetrueangularvelocity,b is the gyro bias (which in this work is treated without noise), and v(t) is an

added noise. An estimate of the angular velocity is given as _ = Og

between the true and estimated bias

- I_. The bias error is def'med as the difference

_=h-b (2)

Finally, a measure of the discrepancy between the actual and desired angular velocity in the controller is
computed as 7

_c = o - R(Te)co d (3)

which is defined such that _c = _-Q(Tc)_e •

NONLINEAR OBSERVER FOR CONSTANT GYRO BIAS

Following the development of reference 1, a state observer for the bias can be defined as

_l = 10(fi)RT(qo)(tOg - !_ + k_'o sgn(_o) )
L

h = -½50 sgn(_o)

The gain, k, is chosen as a positive constant.

frame.

(4)

(5)

The R T (qo)resolves the angular velocity terms in the observer

Computing the derivatives of qo in (1) and b in (2) results in the following differential error equations

2,.

b = _'_o sgn(_o) (7)

The above error equations are rewritten as

r_?]: r _(T°)(-_ -k_'° sgn(_°)] + F-*
L  ' osgn( o) J k 0

The system in (8) is divided into the nominal system of reference 2 plus a perturbation

i(t) = f(t, x) + D(t)

(8)

where xT=[EoT _T] and D(t)T=[(-½[_oI+S(_o)]V(t)) T 0]. Through apersistancyofexcitationargument,

the nominal system i(t)= f(t,x) is proven to be exponentially stable z. Therefore, according to the Converse

Lyapunov Theorem 3, a Lyapunov function and positive, finite constants c_, c2, c3, and c4 exist and satisfy the

following

c,llxll2_<Vo_<c211xl(
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TheperturbedLyapunovfunctionthensatisfies

Since_T_: I, IIDII= ffllvll and (9) becomes

Vo-<-c311xll2+_ IIDll (9)

<_o-<=%llxll=+_ll_llllvll (10)

If v(t) is uniformly bounded, the system is globally stable. The state x(0 converges exponentially to a ball

determined by the bound on v(t), and then remains within that baU 3.

Consider the case that the noise v(t) is a bounded, zero mean, wide sense stationary (WSS) process with a mean

square value of c2I. Applying Young's inequality 4 to (10) results in

_ _c3 Ilvll (11)

The time average of(1 I) is computed as

1T 2 C4 1 T 2

¥IoIlxUdx -<-_-3-_IoII"lld'_+-L;2_[v°(°)-%1V°(T)]

Taking the limit as T _

1 T 2

lim sup- _o IM dx _<
T--.'.Qo T lib

The root mean square (RMS) bound is then given as

c 4 1 T 2 c4 3Cr2lim --_---J'_ IM dx =
T---}*o C; T v ... C32

R_S-<HR_S--<_

NONLINEAR CONTROLLER DESIGN

The complete attitude dynamics for a rigid spacecraft are given as

Hob - S(Ho)co = u

(l = ½Q(q)¢o

where H is a constant, symmetric inertia matrix and u is the applied external torque, for example, from attached
rocket thrusters. The goal of the controller is for the actual, measured attitude q(t) to asymptotically track a
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(generally)time-varying desired attitude qd(t) and angular velocity rod(t), related for consistency by

did = ffQ(qd)tod • It is assumed that Od(t) is bounded and differentiable with d_d(t) also bounded.

The passivity based controller of reference 5 utilizes the composite error metric

s =_c +_c = to-tor (12)

where from (3), tot = R(_¢ )tod - _-_'e, _.>O. Taking the derivative of(12) and multiplying by H results in

Hi = Hd_ - Hd_ r = u + S(Hto)to - Ha r (13)

where

(lr = _r = R(qc)_d -- S(_c)R(qc)tod - _,Q1 (qc)_c

and Q1 (qc) = _e I + S(ec) as defined above. With these definitions, the control law

u = -KDS + Ha r - S(Hto)to r (14)

for any symmetric, positive definite KD results in closed-loop dynamics

Hi - S(Hto)s + KDS = 0

As shown in reference 5, these dynamics, together with the defmition of the composite error, produces the desired

stability and tracking properties.

In the current application, the control law (14) cannot be implemented because exact measurements of the

angular velocity _ are not available. Instead a certainty equivalence approach is employed using the estimates

from above, resulting in

u = -KD_ + H_t r - S(Hd_)o_ r (15)

where _ = _ -Or, ¢_¢ = (.o - R(qe)Od, and

fir = R(qe){bd + S(R(qc)°d)_°c - _Ql(qc)_°¢ •

Substituting (15) into (13), along with (12), and noting that _ = s - § = -b - v(t),

ar = [-S(R(qc)tod) + _Q1 (qc)](b + v(t)), and _c - _c = to - tb = -b - v(t) produces the closed-loop dynamics

Hi - S(Hto)s + Kos = [S(t_r)H + HS(R(_e)oJd) - _.HQI(_c) - KD](b + v(t)) (16)

The terms on the right hand side of (16) can be rewritten as A(_c,tod)(b+v(t)). Since ]lqcl[= 1 by definition and

IlmU<_ by assumption

y - sup sup IlA(_c,tod (t))ll< oo
t>t0 ll_cll=l

253



UsingtheLyapunovfunctionVc= 2&sTHs,thederivative of Vc along closed-loop trajectories of (15) satisfies

the inequality

*c = --sTKD s + sTA(b + V) --<-kDllsll2+ _llsll( _ + Ilvll)

where kD is the smallest eigenvalue Of KD. Using Young's inequality 4 on the last term above, _'c is rewritten as

% _<__llsll2+T__(_2 +ilvll2) (17)

Thus, from the def'mition of V¢, and recalling from the observer analysis that b and IIvllare bounded, s is also seen

to be uniformly bounded. Similarly _ is uniformly bounded, since all the terms in (16) are bounded. Integrating

(17)

I0_llsll2dr_<_ T-2
_-D (Io b dr + y0q_l(d_)+_(vo(0)-Vo(T))

Substituting Ilsl(=I1_oll2+2x_c +x211_ol(from (12)

"Y T ~ 2 7_22(Vc(0)_Vc(T)) 2 T--T--
<- -_]'o ¢% _dx (18)

Noting that _c = 2_, (18) is then

I°T[J_c[J2d_<_ (I°Tb 2d_+gTllvll2d_)+'-_2_2(V°(0)-V°(T))-4[_(T)-_(0)]kD_.L (19)

Computing the time average of (19) and taking the limit as T --> oo

The RMS limit of the tracking error is then

-kD_Lc_ I

SIMULATION RESULTS

The spacecraft attitude controller/observer design is tested with a Matlab simulation. The inertia matrix is a
diagonal matrix with principal moments of inertia of [90, 100, 70]T kg-m 2. Table I lists the initial conditions for the

observer and controller, as well as the true gyro bias, true initial angular velocity, and desired angular velocity. The

gains are chosen as k=l, Ko=koI with ko=10, and _.=3. The standard deviation of the gyro noise was first set to 0.57
deg/sec and then to 0.057 deg/sec.

Figures 1 and 2 show the observer bias errors with the two different standard deviations for the gyro noise,

respectively. In each figure the top plot shows b(t) and the bottom plot shows the b(t) RMS" In Figure 1,
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b(t) convergestolessthan0.3deg/sec,andinFigure2to lessthan0.03deg/sec.Inbothcases,theRMSerrors
arelessthanthestandarddeviationofthegyronoise.

Figures 3 and 4 show the attitude tracking error from the controller, again for the two different standard

deviations ofthe gyro noise. In each figure the upper plot shows the angular error and the lower plot shows

II_o(t)ll_,s.In Figure 3 the attitude error converges to less than 0.4 degrees and to less than 0.04 degrees in Figure

4. Note that the RMS error of the vector part of the quaternion is plotted with the standard deviation of the gyro

noise (converted to rad/sec) for comparison of the magnitudes only.

Table I. Simulation Initial and True Values

Variable Initial Value

t_ [0, 1, O, O]x

q [0, 0, 1, 0] T
qd [0, 0, 0, 1]r

f) [0, 0, 0]T deg/sec

ca - true [-5.7,11.4,-22.9] T deg/sec

b - true [2.9, -2.9, 1.9] T deg/sec
cad [0, 6.3, 0] x deg/sec

|A
"_"401-/'-1- .... _......... ! ............ i............. !............. i............. _............. L............ _............. L............
¢D /r | i :: :: :: :: :: :: :: ::_-_ II I

!#ti .............i.....................i.........i .........i...........i............i.........................
._ i i i ! i i i i ::
•-'or......_ ....i.............!.............i.............i............_............._............i............._............

I I/ ,' N.
01 ¥ i N,,,---q, i i i i , i i i ,
0 10 20 30 40 50 60 70 80 90 100

time (sec)

! ! ,

1,5

1 ........................................ iI....................................................... _.......................................
: i

0._ _-- ....... :--_ ........... _- ........... :!:.: ---_-..... :: ..... "-:::---,-----:---,_ ---'........ _............
i i :: :: i
i i i i i I i f i

100 UO 120 130 140 150 160 170 180 190 200

time(sec)

Figure 1. Bias Errors - b(t) and _a(t) RMS(solid lines), and (r=0.57 deg/sec (dashed line)
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0 I i I I I I I I I
100 110 120 130 140 150 160 1"70 180 190 200

time(sec)

Figure 2. Bias Errors - b(t) and b(t) RMS(solid lines), and o=0.057 deg/sec (dashed line)
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Figure 3. Attitude Tracking Error, II_c(t)ll_s(solid lines), and o=0.01 rad/sec (dashed line)
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Figure 4. Attitude Tracking Error, s (solid lines), and _:0.001 rad/sec (dashed line)

CONCLUSIONS

A nonlinear controller/observer is presented for spacecraft attitude applications, given a constant gyro bias and
gyro noise. The gyro bias estimates converge exponentially to a mean square bound determined by the standard

deviation of the noise, relying on a persistency of excitation argument, which proves asymptotic identification of the
gyro bias in the absence of noise. The nonlinear controller is a passivity based controller. The control input requires

the use of the gyro bias estimate from the nonlinear observer. The closed loop stability properties of this nonlinear
controller coupled with the nonlinear observer are analyzed and the system is found to be globally stable, leading to

a separation principle for the nonlinear system, with asymptotic tracking to a mean square bound.
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