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ABSTRACT

This paper presents the development and performance of a special algorithm for estimating the attitude and
angular rate of a spacecraft. The algorithm is a pseudo-linear Kalman filter, which is an ordinary linear Kalman filter

that operates on a linear model whose matrices are current state estimate dependent. The nonlinear rotational
dynamics equation of the spacecraft is presented in the state space as a state-dependent linear system. Two types of
measurements are considered. One type is a measurement of the quaternion of rotation, which is obtained from a

newly introduced star tracker based apparatus. The other type of measurement is that of vectors, which permits the
use of a variety of vector measuring sensors like sun sensors and magnetometers. While quaternion measurements are

related linearly to the state vector, vector measurements constitute a nonlinear function of the state vector. Therefore,
in this paper, a state-dependent linear measurement equation is developed for the vector measurement case. The state-

dependent pseudo linear filter is applied to simulated spacecraft rotations and adequate estimates of the spacecraft
attitude and rate are obtained for the case of quatemion measurements as well as of vector measurements.

INTRODUCTION

Precise angular-rate is required for spacecraft (SC) attitude determination, and a coarse rate is needed for

attitude control damping. Classically, angular-rate information is obtained from gyros; however, these days, there is a
tendency to build smaller, lighter and cheaper SC where rate accuracy can be compromised. Therefore, the

inclination now is to do away with gyros and use other means to determine the SC angular-rate. In fact other means

are needed even in gyro-equipped satellites when the angular-rate is out of range of the SC gyros.

There are several ways to obtain the angular-rate in a gyro-less SC. When the attitude is known, one can
differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the
derivative of the attitude with the satellite angular-rate in order to compute the latter (ref. 1, 2). However, the

differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector. To

overcome this noise, one can use an active filter, like a Kalman filter (KF) (ref. 3, 4).

All these methods use the derivative of either the attitude parameters or of the measured directions, which

normally determine the attitude parameters. Another approach is that of using the attitude parameters, or the
measured directions themselves, as measurements in a KF. The dynamics model of that KF also includes the SC
angular dynamics equation, which is a nonlinear first order vector differential equation. In this case, the kinematics
equation tfiat connects the attitude parameters, or the directions, with their derivatives are included in the dynamics

model used by the filter thereby the need for differentiation is eliminated (ref. 5, 6). The KF dynamics model also

includes the SC angular dynamics equation, which is a nonlinear first order vector differential equation.
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Newsensorpackagesthatusesstartrackersand yield the SC attitude in terms of the attitude quaternion
recently became available 1. Therefore, it became possible to use the quatemion supplied by such sensors as
measurements. This approach was indeed used in a recent work (ref. 7) where the nonlinear dynamics equation was

converted to a state-dependent pseudo-linear equation but the measurement equation was linear. The pseudo-linear
dynamics model together with he linear quaternion measurement model enabled the use of PSEudo Linear KAlman

(PSELIKA) filter.

While the use of quaternion measurement yielded very satisfactory results, the algorithm was limited to one
type of instrumentation package, consequently, the popular vector measuring devises like sun sensors,
magnetometers, horizon sensors and others could not benefit from the PSELIKA estimator for estimating attitude and

angular rate.

In the present work we add a development, which enables the use of the elementary vector observations as
filter measurements rather than the quaternions derived from them. On one hand, this approach allows the use of a
wide range of instruments to track the SC attitude, but on the other hand, it introduces nonlinear measurement

equations. However, as shown in this paper, these measurement equations can be transformed into a state-dependent
pseudo-linear equation thereby permitting the use of the PSELIKA filter.

In the next section we briefly describe the development of the filter dynamics equation and, in particular, the

development of the state-dependent pseudo-linear SC angular equation. Then, in the following section we present the
development of the pseudo-linear measurement equation associated with vector measurements. In the section that

follows this one, we present the PSELIKA filter. Next, we present computer runs for vector measurements that, as
mentioned, involve pseudo-linear dynamics as well as pseudo-linear measurement equations, and compare them with
the results obtained when using quaternion measurements, which involve pseudo-linear dynamics but truly linear

measurement equations. Finally, in the last section we present the conclusions derived from this work.

THE STATE-DEPENDENT DYNAMICS EQUATION

The angular dynamics of a constant mass SC is given in the following equation (ref. 8, p. 523)

hb +la+cox(Io+h) = T (1)

where I is the SC inertia matrix, o_ is the angular velocity vector, h is the angular momentum of the momentum

wheels, and T is the external torque acting on the SC. Since the inertia matrix I is invertible we may write this

equation as

eb : I-1 [(Io_ + h)xloJ + 1-1 (T - h)

where [ax] denotes the cross product matrix of the general vector a. Defining

(2)

and

Eq. (2) can be written as

F' (m) = I -_ [(Io_ + h)x]

u(t) = 1-1 (T - ll)

_b = F (o)¢o + u(t)

(3.a)

(3.b)

(3.c)

As was noted by Cloutier, D'Souza, and Mracek (refs. 9, 10) the decomposition of Im x o_ into [Io)x]o is not

unique. In fact there are eight possible ways to decompose the vector (ref. 11), consequently there are eight primary

1Van Bezooijen, R.W.H., "AST Capabilities," Lockheed Martin Advanced Technology Center, Palo Alto, CA
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dynamicsmatriceswhichexpresstheangulardynamicsof an SC; that is, we have F i'(co) i = 1,2,...., 8 for which

F; (0))0) = F; (0))0) =. ........ = Fs (0))0) but

F;(0)). F;(0)), .......... Fi(0)) (4)

Although there are only eight primary representations, one can generate infinite secondary dynamics matrices as

linear combinations of the primary matrices by forming (refs. 9, 10)
8 8

E; (0)) = _-]oqjFj(0)) where _--] oqj =1 i = 1, 2,..., --_ oo (5)
j=l j=l

This can be easily proven when noting that
8 8

where

form

8

g' i (0))0)= Z (zi,jFi (0))0)= Z _i,J f(0)) = f(0))Z cqj = f(0))
j=l j=l j=l

(6)

f(o)) = 1-1[(I0_ + h)x]o_. We conclude then that the representation of the SC dynamics equation in the

i = F_ (x)x + u_ (t) (7)

is not unique, and that there are exactly eight different ways to express the nonlinear SC dynamics equation by basic

state-dependent linear equations, and infinite secondary such equations.

The attitude is best described by the quaternion of rotation. The quatemion dynamics equation is (ref. 8, p. 512)

where

Grouping Eqs. (2) and (8) yields

/1 = ½Q0)

q4 - q3 q2 1

Q = q3 q4 -ql

-q2 ql q4-ql -q2 --q3

(8)

(9)

L 1Q -h'] (10)

In order to use the last equation as a dynamics equation in a KF, we need to add to it white noise to account for

modeling inaccuracies. This results in the following dynamics equation.

[_.'] [I-'[(I_+h),] OlFo ] [I-1(T-h)] [w_]
= + + (11)

½Q °JkqJL 0 Wq
where w,o accounts for the inaccuracies in the modeling of the SC angular dynamics and w q accounts for modeling

errors of the quaternion dynamics.
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THE STATE-DEPENDENT MEASURMENT EQUATION

As mentioned earlier, a measurement system has been introduced recently 1, which yields the attitude directly in a

form of a quaternion of rotation. In this case the measurement equation is linear; namely,

am I4 [:]+Vq (12)

where qm is the measured quaternion and Vq is the noise associated with this "measurement". The actual

measurements are vector measurements obtained from star trackers out of which the "measured" quaternion is

computed. Traditionally though, it is the vector measurements which are used directly to estimate the attitude. In this
case the link between the measurements and the attitude expressed by the quaternion of rotation is a nonlinear one.

However, this nonlinear relationship can too be expressed as a state-dependent pseudo-linear function. This is shown

next. Let r denote the measured vector expressed in the reference coordinate system and let b denote the

measurement of this vector as obtained in body coordinates. The relationship between the two vectors is expressed by

b = Dr + v (13)

where D is the direction cosine matrix that transforms vectors from the reference to the body coordinates, and v

denotes the zero mean white noise associated with this measurement. It is well known that D is the following

function of the quaternion elements (ref. 8, p. 414)

I 2 2 2

ql -q2 -q3 +q:4

D = 2(qlq2 -q3q4)

2(qlq3 + q2q4)

2(qlq2 + q3q4)

-q_ +q]-q_ +q]

2(q2q3 -qlq4)
2(qlq3-q2q4) J
2(q2q3 +qlq4)

-q_ -q2 2 +q_ +q2 4

(14)

when the last expression is substituted into Eq. (13) we obtain

b

(q_-q2 2 -q_ +q])q +2(q,q2 +q3q4)r2 +2(q_q3-q2q4)r3

2(q_q2-q3q4)r_ +(-q_ +q2 2 -q_ +q24)r 2 +2(q2q3 +q_q4)r3

2(q,q3 +q2q4)r_ +2(q2q 3 -qlq4)r2 +(-q_-q2 2 +q_ +q24)r3

+ v (is)

An expansion and rearrangement of the terms in the last equation yields

q_r 1 + q_qgr2 + q_q3r3 - qi2r _+ q,q2r2 - q2q4r3 - q_r_ + q3q4r2 + q,q3r3 + q]r, + q3q4r2 - q2q4rx-] /

b = |qlqzrl -q_rz + qlq4r3 + qlqzr, +q2zr z + q2q3r3-q3q4r,-q_r2 + q2q3r3-q3q4 r, +q]r z + q,q4r3[ + v

/[_qlq3r' - q,q4r2 _q_r 3 + q2q4r ' + q2q3r 2 _q_r 3 + q,%r, + %q3r2 +q_r 3 +qgq4 r, - q,q4r2 + q]r3J

... (16)
which can be written as

Van Bezooijen, R.W.H., "AST Capabilities," Lockheed Martin Advanced Technology Center, Palo Alto, CA

95304-1191. (Slide presentation).
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qlrl + q2r2+ q3r3

b = ]q2rl - qlh + q4r3
[q3rl -- q4h - qlr3

-q2rl +qlr2 -q4r3

qlrl +q2r2 +q3r3

q4rl + q3r2 - q2r3

-- q3rl + q4r2 + q_r3

-q4rl -q3r2 +q2r3

qlrl + q2r2 + q3r3

Let

qlrl q2r2 + q3r3

H(r,q) = [q2r - qlr2 + q4r3

I_q3rl - q4r2 - qlr3

- q2rl + qlr2 -- q4r3

qlrl + q2r2 + q3r3

q4rl + q3r2 - %r 3

q4q +q3h --qzh

--q3q +q4_ +q_h

q2q --qlh +q4_

then Eq. (17) can be written as

b = H(r, q)q + v

- q3rl + q4r2 + qlr3

-q4rl - q3r2 + q2r3

qlh + q2r2 + q3r3

l[qllq2 +v

Jinx/
Lq4J

... (17)

q4q + q3_ -- q2h

--q3_ + q4r2 +qlh

q2q -qlh + q4_

...(18)

which can be written as

b=[0 H(r,q +v
q

We have thus succeeded in expressing the vector measurement equation as pseudo-linear equation.

(19)

(20)

THE PDEUDO-LINEAR KALMAN FILTER

The pseudo linear KF (PSELIKA) is an ordinary linear Kalman filter where the state-dependent coefficients are
functions of the best available state estimate. Let

-I-_(T_I_) -
u(t) =

0

(21.a)

(21.c)

F(¢o) = [ I-1 [(I°_ + h)x] 00][ 1Q (21.b)

w(t) = [ w_]Wq (21.d)

then Eq. (11) can be written as

5I = F(o)x + u(t) + w(t) (22)

From Eq. (12) we obtain the following corresponding quaternion measurement equation

where

Hq+, =[04x3 I4]

(23.a)

(23.b)

and from Eq. (20) we obtain the following corresponding vector measurement equation

where

b [°1b m k+l = H k+l (r, q) + v b,k+l

' q

H_+I = [0 H(r,q)]

(23.c)

(23 d)

263



Filter initialization:

Compute:

Qk = E{W(tk)W(tk) T}

E r
Rq,k+l = {gq,k+lVq,k+l }

E rRb,k+ 1 = {Vb,k+lVb,k+l}

(24.a)

(24.b)

(24.c)

and choose an approximate value for the initial estimate of the state vector. In the absence of such initial estimate,
choose:

XoT=[¢o0 T q0]=[0T 0 0 0 0 0 1] (24.d)

Time propagation:

Solve simultaneously the differential equations

x = F(i)i + u(t) (25.a)

f' = F(i)P + eF T (i) + Q (25.b)

between tk and tk+_ using the definition i(tk) = ik/k, P(tk) = Pk/k, ik+Vk = i(tk+l), and Pk+l/k = P(tk+_)'

(The subscript q/p denotes the estimate at time tq based on the measurements up to time tp ).

Measurement update."

For quaternion measurements."

[H q P 14qT -'l'-Rq,k+l] -1 (26.a)Kk+l = Pk+l/kHqT+lt k+l--k+l/k**k+l

^ ^ -- Hk+lXk+l/k ] (26.b)Xk+l/k+l = Xk+l/k -1- Kk+l [qm, k+l q ^

ek+t/k+l [I -Kk+lHq+l ]Pk+l/k [ I q T T= -Kk+lHk+l] +Kk+lRq,k+lKk+ 1 (26.c)

For vector measurements:

Kk+l Pk+l_HbkS+l (rk+l, Ok+_/k)[H_+l (rk+l ^ bT ^ (27.a)= , qk+l/k )Pk+l/k Hk+l (rk+l, qk+l/k ) + R b,k+l ]-t

Xk+l/k+l Xk+l/k + Kk+l [bin, k+I b^ = ^ -- Hk+l (rk+l, qk+l/k )Xk+l/k ] (27.b)

Pk+l_,+l = [I-Kk+lH_+a(rk+l,Cik+l/k)]Pk+,_[I- Kk+_H_+,(rk+l,_ik+l/k)] T + Kk+IRb,k+IK_< (27.c)

SIMULATION RESULTS

In order to test the PSELIKA filter a simulation program was constructed. The simulation included a given

profile of the wheel momentum, h(t), that generated the desired true angular velocity vector. Based on that data the

corresponding true SC attitude was computed in terms of the true quatemion. White measurement noise was added to

the true quatemion and the resultant noisy quatemion served as the measured signal for the case where the PSELIKA
filter used measured quatemions to estimate the SC attitude and angular rate. The noise vector was zero mean and

white. Its standard deviation was 0.00001 for each component. Fig. t presents the true and estimated angular velocity

264



components. The estimation error of the angular velocity for this case is presented in Fig. 2. Since the measured
quantity was the quatemion itself, the attitude errors were on the level of the noise. They were, of course, very small.
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Fig. 1: True and Estimated SC Angular Rate Using Quaternion Measurements.
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Fig. 3: True and Estimated SC Angular Rate Using Two Simultaneous Vector Measurements.

In order to simulate the case where the estimator used measured vectors, the following two reference vectors
were assumed

r_=[1 0 01 (28)

r_=[O 1 O]

They represented sun sensor and magnetometer measurements, respectively. The corresponding vectors in body

coordinates, b 1 and b2, were computed by transforming r I and r 2 , by the true attitude matrix. White measurement

noise was added to the true b I and b 2 vector. The noise was zero mean and its standard deviation was 0.01 per

component of b I and 0.005 per component of b 2 . When the two measurements were used in a sequential manner at

each update time point, the filter diverged. It was speculated that although in the truly linear case performing the two

sequential measurement updates is identical to performing the two updates simultaneously, in the pseudo-linear case,
where the matrices involved in the updates are functions of the estimate, there could be a difference between the two

possible update methods. This is particularly true when estimating attitude using vectors because two vector
measurements, determine attitude whereas one vector measurement is not sufficient for that. As a result of the

foregoing discussion, the two measurements were stacked together to form the following measurement equation (see
Eq. 23.c)

-hi m k+l

= [Hb'k+'[r'4k+'(--)]lrCO1+ 1LHT,k+,[r,fi,<+l(--)]JLq_] LV2,b,k+, J

(29)

Indeed, using the two vector measurements together in the filter updates, the filter converged and produced
satisfactory results. Figure 3 presents the true and estimated rates obtained in this case, whereas Fig. 4 presents the

angular rate estimation error for this case. Finally, in Fig. 5 the attitude estimation error is presented for this case of
simultaneous vector measurements.
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CONCLUSIONS

In this work we presented two versions of a pseudo-linear Kahnan filter for spacecraft attitude and rate
estimation, which is based on the ability to express the nonlinear parts of the system model as state-dependent linear

models. This formulation of the model enabled the evaluation of the state-dependent matrices in terms of the best
available state estimate, and thus to express the system model as deterministic matrices multiplying random vectors.

In the first version of the filter, the measurement was that of the attitude quaternion, which is related linearly

to the estimated state vector; therefore, only the nonlinear dynamics model of the spacecraft rotation had to be
formulated in a state-dependent linear model. The second version treated a more general case where the
measurements were vector measurements, in which case, the measurement model too was nonlinear and had to be

formulated as a state dependent linear model.

Simulations were performed which showed that, as expected, the first filter whose quaternion measurements
were based on star tracker measurements yielded very good rate estimates and exceptionally good attitude results.

The second filter, though, was unable to produce good results when the vector measurements were performed
sequentially. However, when the two vector measurements were performed simultaneously the filter performed

satisfactorily. The results were, of course, less accurate than with the previous algorithm, but that was because the
simulated measurements supplied by a sun sensor and magnetometers whose inherent accuracy is less than that of star

trackers which supplied the quaternion measurement to the first algorithm.
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