The NPOESS Preparatory Project: Mission Concept and Status

Robert E Murphy¹, Raynor Taylor², Daniel S DeVito², Janice K Smith², Joy Henegar², James C Dodge³, Peter Wilczynski⁴, Michael Kelly⁴, Stanley Schneider⁴, Carol Welsch⁴, Hal Bloom⁴, Stephen A Mango⁴, Michael Crison⁵

 ¹NASA Goddard Space Flight Center, Greenbelt, MD, USA Tel: 301 614-5827. e-mail:rmurphy@LTPMail.gsfc.nasa.gov
²NASA Goddard Space Flight Center, Greenbelt, MD, USA
³NASA Headquarters, Washington, DC, USA
⁴The Integrated Program Office, National Polar-Orbiting Operational Environmental Satellite System, Silver Spring, MD, USA
⁵NOAA NESDIS, Silver Spring, MD, USA

Abstract - NPP is a joint NASA/IPO mission to extend selected systematic measurements initiated by the Terra and Aqua missions and to proovide risk reduction for NPOESS. The key sensor properties and mission features are summarized.

I. INTRODUCTION

In 2005 NASA and the Integrated Program Office (IPO) for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) will conduct a joint mission to extend a number of environmental measurement series initiated with NASA's Terra and Aqua missions, and to provide risk reduction for three critical NPOESS sensors. This joint mission will launch the NPOESS Preparatory Project (NPP) satellite carrying a moderate resolution imager and a sensor suite to acquire atmospheric profiles of temperature and water vapor.

NPP will be placed into a sun synchronous orbit at 824 km with a descending node at 10:30 AM. This orbit will provide a 16-day (quasi 8-day) ground track repeat and full global coverage by the imager in a single day. The orbit closely matches the groundtrack and repeat cycle of the Terra and Aqua missions.

II. SENSORS

NPP will carry the Visible Infrared Imaging Radiometer Suite (VIIRS), a multispectral imager with 22 spectral bands. VIIRS will acquire data to determine a wide variety of properties of the land and ocean surface as well as of cloud and aerosol properties. There are three types of spectral bands; 5 high resolution (371m at nadir) for imagery (manually interpreted) studies, 16 radiometric bands with medium resolution (742m at nadir), and one "day-night" band to provide imagery across the

Table 1 NPP MISSION SUMMARY		
Sensors:		
VIIRS	22 Bands	
(Imaging Radiometer)	.4-12μ	
	372&744 m at Nadir	
CrIS	1142 Channels	
(1R Interferometer Sounder)	3.9-15.4m	
	14 km at Nadir	
ATMS	22 Channels	
(Microwave Sounder)	23.8-183 GHz	
	2.2° & 5.5° at Nadir	
Launch/Mission Life	2005/5 years	
Orbit:	824 km polar sun-sync	
	10:30 AM descending node	
Data Products		
IPO IDPS	Pre-Operational Standard Products (EDRs)	
NASA SDS	Continuity Products from NASA Science Team (CDRs)	

terminator. The imagery bands have high radiometric fidelity and will be used in concert with the radiometric bands to produce data products. There are 9 bands between .4 and 1 μ . Six of them have dual gains, permitting their use over ocean and land surfaces. Eight bands between 1.2 and 4 μ are used for surface, cloud and aerosol measurements. Four bands cover the long wavelength region between 8.55 and 12 μ for use in imagery, land and sea surface temperature and fire detection.

A more complete description of VIIRS is given in presentations by Welsch et al. (A Next-Generation Operational Sensor for NPOESS: The VIIRS (Visible Infrared Imaging Radiometer Suite)) in the Instrumentation and Future technologies session and by Murphy et al.(Using VIIRS to Provide Data Continuity with MODIS) in the EOS Terra session.

VIIRS will extend the measurement series initiated by the MODerate Resolution Imaging Spectroradiometer (MODIS) on Terra. VIIRS is being built by Raytheon under contract from the IPO.

NPP will also carry the first copies of the Cross-Track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). CrIS/ATMS extends the measurement series that will be initiated by the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder Brazil (HSB) on Aqua.

CrIS is an interferometer with three spectral bands, 3.9-4.6 µ, 5.7-8.3 µ, and 9.1-15.4 µ. Each spectral band has an associated interferometer with a 3x3 detector array. There are 1,142 spectral channels within the 3 spectral bands. CrIS will retrieve high horizontal spatial resolution (15 km at nadir) temperature profiles in layers of 1 km in the lower troposphere to an accuracy of better than 1° for clear to partly cloudy pixels. It is also capable of determining column abundances of a variety of trace gases. The 3x3 array of detectors in each of the 3 interferometers yields an overall footprint of 45 km that is co-registered to the ATMS footprints. It is being built by ITT under contract from the IPO. A more complete description of CrIS is given by Bloom (The Cross-Track Infrared Sounder (CRIS): A Sensor for Operational Meteorological) in the Atmosphere and Climate session

ATMS is a cross track scanning microwave radiometer with 22 channels. Long wavelength channels at 23.8 and 31.4 GHz are used for tropospheric water vapor. There are 11 channels from 51.76 to 57.6 GHz that are used for temperature profiles. Channels at 89 GHz, 166 GHz and 5 more at 183 GHz complete the water vapor profiling. Spatial resolution ranges from 5.5° to 2.2°. ATMS is being built by Aerojet under contract from NASA.

CrIS and ATMS provide a single set of data products. When cloud conditions permit (typically less than 50% cloud cover within any of the 9 CrIS footprints) data from both sensors will be used. When cloudiness exceeds the threshold, ATMS alone will be used to produce the products at reduced accuracies.

III. DATA PRODUCTS

The Interface Data Processing Segment (IDPS) of the IPO will produce a stream of 29 environmental data records (EDRs) for use by the operational users in the Department of Defense and the Department of Commerce. EDRs are roughly equivalent to NASA level 2 products. These data products will be produced in near real time. See table 2.

Later in 2001 NASA will solicit proposals from the global change science community to develop algorithms and produce long-term consistent data sets using the sensors on NPP. To the maximum extent possible NASA will rely on the EDRs produced by the IDPS. However, proposals to further develop the algorithms to address key scientific questions (see *Exploring Our Home Planet, Earth Science Enterprise*

Table 2 NPP DATA PRODUCTS

PRODUCT NAME	SENSOR	
Imagery (Manually Produced)		
Cloud Cover	VIIRS	
Cloud Type	VIIRS	
Ice Edge Location	VIIRS	
Ice Concentration	VIIRS	
Atmosphere		
Vertical Moisture Profile	CrIS/ATMS	
Vertical Temperature Profile	CrIS/ATMS	
Vertical Pressure Profile	CrIS/ATMS	
Aerosol Optical Thickness	VIIRS	
Aerosol Particle size	VIIRS	
Suspended Matter	VIIRS	
Clouds		
Cloud Cover/layers	VIIRS	
Cloud Effective Particle Size	VIIRS	
Cloud Optical Thickness	VIIRS	
Cloud Top Height	VIIRS	
Cloud Top Pressure	VIIRS	
Cloud Top Temperature	VIIRS	
Cloud Base Height	VIIRS	
Land		
Albedo (Surface)	VIIRS	
Vegetation Index	VIIRS	
Surface Type	VIIRS	
Land Surface Temperature	VIIRS	
Snow Cover	VIIRS	
Soil Moisture	VIIRS	
Active Fires	VIIRS	
Ocean/Water/Ice		
Sea Surface Temperature	VIIRS	
Ocean Color/Chlorophyll	VIIRS	
Sea Ice Age/Edge	VIIRS	
Ice Surface Temperature	VIIRS	
Net Heat Flux	VIIRS	

Strategic Plan, NASA, 2001) will be considered. These level 2, 3 and 4 products, which are known as Climate Data Records (CDRs), will include multi-date data composites such as weekly cloud-cleared surface properties. Research quality level 1 products will also be made.

The NASA CDRs will be produced in the Science Data Segment (SDS). CDRs will not be produced in near real time and will make optimal use of ancillary data. Periodic reprocessing of the key data products will provide consistent longterm data sets critical to global change research. Advanced algorithms will be incorporated into the operational data production stream to the extent that they are compatible with operational needs. The IPO EDRs and NASA CDRs will be available to the global change and applications user communities through an Archive and Distribution Segment (ADS) to be developed by NOAA.

IV. SPACECRAFT

The NPP spacecraft will be selected in early 2002. All data will be kept in on-board storage for transmission to a ground station in Svalbaard, Norway. In addition, all data will be available to users via direct broadcast at no charge. A 3-meter class X-band receiving system is required. The spacecraft will support a full range of calibration maneuvers, including periodic deep space views by all sensors.