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1 Introduction

AUTOBAYES is a fully automatic program synthesis system for the statistical

data analysis domain. Its input is a concise description of a data analysis problem

in the form of a statistical model; its output is optimized and full)' documented

C/C++ code which can be linked dynamically into the Matlab and Octave envi-

ronments. AL'TOBAYES synthesizes code by a schema-guided deductive process.

Schemas (i.e., code templates with associated semantic constraints) are applied

to the original problem and recursively to emerging subproblems. AL:TOBAYES
complements this approach by symbolic computation to derive closed-form solu-

tions whenever possible. In this paper, we concentrate on the interaction between

the symbolic computations and the deductive synthesis process; a detailed de-

scription of AUTOBAYES can be found in [FSP00,FS01].

A statistical model specifies for each problem variable (i.e., data or parame-

ter) its properties and dependencies in the form of a probability" distribution. A

typical data analysis task is to estimate the best possible parameter values from

the given observations or measurements. The following example models normal-

distributed data but takes prior information (e.g., from previous experiments)
on the data's mean value and variance into account.

I model normal a_/s'Normal model with conjugate priors'

2 const double kappa_O, mu_O.

3 where 0 <kappa_O.

4 doubt_@ mu ~ gauss (mu_O, sqrt (siEma_sq/kappa_O)).

5 const double, sigma_O_sq, delta_O.

6 where 0 < sigma_O_sq and 0 <delta_O.

7 double sigraa_sq - invgamma(delta_O/2+i, sigma_O_sq*(delta_O/2)).

8 co___nstnat n_points.

9 where 0 < n_points.

I0 data double x(O..n_points-l) - gauss(mu, sqrt(sigma_sq)).

11 max pr({x, mu, si_a_sq}) fo...._r{mu, sigma_sq}.

Here, lines 8-10 describe the data properties: x is a vector of n_points real-

valued observations that are independently drawn from a normal or Gaussian

distribution with unknown mean mu and variance sqr_(sigma_sq). Lines 2-4

specify the prior information on mu, which is itself drawn from a normal distribu-

tion. This prior summarizes a number of previous experiments, where mu turned



tions.Thr applic;ttionof thrsrschrma.sisalsoguidedbythenetworkstructure
but theyrequiremoresubstantialsymboliccomputations.Thr skeletonof the
synthesizedcodeisgeneratedbytheapplicationofstatisticalalgorithmschem_.
ACTTOBAYgScurrentlyimplementstwosuchschema._,theE.\I-algorithmandk-
Means(i.e.,nearestneighborclustering).Afterthislastnetwork-orientedlayer,
thestatisticalproblemh_ beentransformedintoanordinaryoptimizationprob-
lem.If AuToBAYEScannotfinda symbolicsolutionfor thisproblem,it ap-
pliesstandardnumericoptimizationmethods.AUTOBAYEScurrentlyprovides
schem_for theNewton-RaphsonandNelder-Meadsimplexalgorithms.These
schem_areinstantiatedwiththefunctionto beoptimized.In contr_t to using
a library function,thisopenapproachallowsfltrther symbolic simplifications
and optimizations.

Symbolic Subsystem. The main task of this subsystem is to find symbolic

solutions to optimization problems. This daunting task, however, is simplified

substantially by the relatively uniform structure of the optimization problems

which allows implementing powerful heuristics.

At the core of the symbolic subsystem is a small but reasonably efficient

AC-rewrite engine implemented in Prolog. Since a rewrite system for this en-

gine is implemented naturally as a Prolog-predicate, conditional rewriting comes

•"for free." Moreover, the rule clauses can access explicit assumptions; hence,

AL'TOBAYES allows conditional rules as for example x/x _,_ _0 1 where -+F ,#o
means "rewrites to, provided x # 0 can be proven from the current assump-

tions." The assumptions are managed almost transparently by the rewrite en-

gine; the rewrite system only needs to contain the non-congruent propagation

rules which modify the assumptions under which subterms are rewritten, e.g.,

if p then s else t fi "-_-A if p $_,4 then s $_AAp else t J-_A,,_p fi where

t $--.l is the normal form of t under the assumptions .4.

Expression simplification and symbolic differentiation are implemented on

top of the rewrite engine. The basic rules are straightforward; however, vec-

tors and matrices introduce the usual aliasing problems and require careful for-

malizations. For example, as the index values i and j are usually unknown

at synthesis time, the partial derivative Oxi/Oxj can only be rewritten into

if i = j then 1 else 0 fi. More advanced rules, however, require explicit meta-
programming, especially when bound variables are involved.

Abstract interpretation is used as an efficient mechanism to evaluate range
constraints such as x > 0 or x g: 0 which occur in the conditions of many rewrite

rules. AUTOBAYES implements as a rewrite system a domain-specific refinement

of the standard sign abstraction where numbers are not only abstracted into pos

and neg but also into small (i.e., [x] < 1) and large.

It then turns out out that a relatively simple solver built on top of this core

system is already sufficient. AUTOBAYES thus essentially relies on a low-order

polynomial (i.e., linear, quadratic, and simple cubic) symbolic solver. However, it

also shifts and normalizes exponents, recognizes multiple roots and hi-quadratic

forms, and tries to find polynomial factors. It also handles expressions in x and
(1 - x) which are common in Bernoulli models.



4 Conclusions

The tight combination of schema-guided synthesis, deduction, and symbolic com-

putation in ACTOBAYES is essential to generate efficient co,[e. Symbolic compu-

tation is used for simplification and for finding symbolic sohttions if they exist.

However, we can only synthesize a correct program from a specification when we

can rely on tile soundness of the symbolic machinery. This in particular means

that all transformations have to be performed with respect to the proper assump-

tions, like an expression being non-zero. Transformations can also give rise to
new proof obligations, e.g., showing that a possible solution is the minimum and

not just a saddle point. AUTOB.-WES keeps track of all assumptions and either

discharges them during synthesis or generates assertions to be checked during
runtime. The importance for symbolic calculation under assumptions and the

possible unsoundness of a commercial symbolic algebra system like Mathemat-

ica led us to develop our own symbolic subsystem on top of Prolog.
Although we have been able to synthesize code for various non-trivial text-

book examples, AUTOB:WES's code generating capabilities for a variety of statis-

tical models need to be extended substantially. Besides adding further algorithm

schemas for statistical computations and for general numerical optimization, im-

provement of the symbolic subsystem is of major importance. The power and

generality of the equation solver will need to be enhanced. Furthermore, for

marginalization in statistical models, symbolic handling of (relatively) simple

integrals is important. Each enhancement in the symbolic subsystem will lead to
improvement of the synthesized code as more subtasks can be solved in closed

form rather than being approximated by (slower) numerical algorithms. In all

cases, AUTOBAYES ensures correctness of the synthesized code with respect to

the specification by generating the appropriate runtime assertions and documen-
tation.
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