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ABSTRACT

Accurate data is important in the aviation planning process. In this project we consider
systems for measuring aircraft activity at airports. This would include determining the type of
aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues
involved in deploying technologies for monitoring aircraft operations are cost, reliability, and
accuracy. In addition, the system must be field portable and acceptable at airports. A
comparison of technologies was conducted and it was decided that an aircraft monitoring
system should be based upon acoustic technology.

A multimedia relational database was established for the study. The information contained in
the database consists of airport information, runway information, acoustic records,
photographic records, a description of the event (takeoff, landing), aircraft type, and
environmental information. We extracted features from the time signal and the frequency
content of the signal. A multi-layer feed-forward neural network was chosen as the classifier.
Training and testing results were obtained. We were able to obtain classification results of
over 90 percent for training and testing for takeoff events.
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INTRODUCTION

In this project we consider the development of a system for
automatically measuring aircraft activity at airports. This would include
determining the type of aircraft and the type of aircraft activity. The
different types of aircraft considered in this study are helicopter, single
engine, multiengine, and jet aircraft. An accurate count of aircraft
operations is important to airport managers and aviation planners. These
counts are difficult to obtain at non-towered airports.

BACKGROUND

A system for monitoring aircraft operations will likely include methods
for directly counting the aircraft as well as the use of ancillary and
statistical information to estimate total counts since it is unlikely that
counters will be in constant operation at all airports (FAA, 1985). At
airports without full-time tower facilities there are other indirect or
ancillary indicators of aircraft operations. If this information is put in a
database system, it will be useful in determining aircraft operations. The
following describes some indirect sources of information on aircraft
operations.

Many airports are associated with an approach control at a major airport
giving the major airports information about operations at small airports.
Some pilots do not use the services offered. Many airports have unicoms
(local advisory service from the airport operator). This information is
unreliable unless the operator is willing to log in arrivals and departures
since there is no recording of the transmissions. Even then, hours of
operation vary, and thus do not guarantee accurate information around the
clock.

Other sources of information are flight plans filed with Flight Service
Stations (FSSs). One disadvantage is that not every pilot files a flight plan
when flying cross-country, and most rarely ever file a plan for a flight
within the local area of their departure point. Another disadvantage is that it
may be difficult to obtain this information on a regular basis from FSSs.
Monitoring gas sales may also be considered, but this may be inaccurate
because of the variety of sales that may occur. Another method to assist in
assessment of aircraft operations would be to confirm the number and type
of aircraft based at each airport and survey each aircraft owner to determine
their normal aircraft use and flying patterns. Some pilots may use their
aircraft purely for pleasure once or twice each month. Further, these pilots
may perform touch and go maneuvers that will increase the airport usage.
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Others who use their aircraft for business may only make one departure and
one arrival each week. Another indicator is the category of airport. Some
airports have shorter runways that are stressed for heavy loads, thus
limiting the size and/or type of aircraft that operate at the facility.
Additionally, airports that don’t have any services or aircraft based at the
airport will likely be used less and airport personnel may be able to
accurately estimate the number of aircraft operations. While looking into
different airports, interviews with airport managers or fixed base operators
will give an indication of times that will assist the study such as “Peak
Month,” “Peak Week,” “Busiest Day,” as well as “Busiest Hour.”

The above ancillary information may be useful in estimating aircraft
operations and may be useful in determining where and when to monitor
aircraft operations at different airports. Since the above indicators do not
give direct counts, one still will need methods to directly monitor aircraft
operations. The best overall approach may be to build databases with the
above types of information and use statistical analysis and direct counts to
increase the reliability of the analysis.

TECHNOLOGIES FOR MONITORING AIRCRAFT OPERATIONS

The following review of technical literature indicates the approaches
taken for automatic aircraft detection and classification. Some of the issues
involved in deploying technologies for monitoring aircraft operations
include the cost of the monitoring operation, the reliability of the system,
the system must be portable, the system must operate self contained in the
field for two weeks, and the system must be acceptable at airports. The
costs of the monitoring operation includes capital equipment costs, travel
costs, labor costs, and overhead costs.

The technologies that have been considered are electromagnetic loops,
radar, microwave, radiation, video, pressure counters, and acoustic
technologies. Acoustic counters use a microphone located near the runway
to record takeoffs that produce a strong acoustic signal (Dress & Kercel,
1994). Total operations cannot be counted directly because landings are
quieter and do not register on the systems. The systems by Larson Davis are
used by a number of states to count aircraft operations. The aircraft counter
system has a high accuracy for counting takeoffs as reported by users.
These systems have the advantage of low cost, portable, and are a
demonstrated technology for operating in airport environments.

Tamayo et al. (1993) developed a magnetometric sensor for detecting
airport ground traffic with the goal of performing detection, discrimination
and tracking of static and moving targets. The authors also reviewed other
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methods for solving the problem of airport traffic control such as radar,
microwave gates, radiation, pressure sensors, acoustic sensors and loops
(electromagnetic). Radar was determined to be too expensive and can
easily be interfered with by obstacles. Radar can interfere with airport
operations and may be difficult to operate in this environment. Microwave
gates could not be installed flush to the ground, thus creating a potential
obstacle. Microwave gates can cause electromagnetic interference, which
is not acceptable in an airport environment. Radiation methods consisted of
detecting infrared signatures from the target. This approach was found to be
too sensitive to environmental fluctuations and weather conditions.
Pressure sensors such as pneumatic tubes were likely to break and require
maintenance that would be invasive to the flow of traffic and thus
undesirable. Acoustic sensors were thought to be unsuitable in noisy
environments. Ultrasonic sensors were dismissed due to their short range
and high power consumption. Electromagnetic loops were also dismissed
by the authors due to their invasive installation, maintenance and the
limited information that they deliver. The authors’solution was to develop a
magnetometric sensor that would detect the magnetic fields produced by
ferro-metallic components in the aircraft, such as landing gear and wings.
The resulting sensor systems were able to detect cars at a distance of 10
meters and aircraft up to 20 meters from their axis (due mainly to ferro-
metalic components in the wings). While this range may be suitable for
controlling ground flow, it would not be sufficient for detection along the
runway as the distance to the aircraft to the sensor can easily exceed 20
meters if the aircraft is airborne when passing the sensor. The magnetic
signatures obtained from the sensors did provide clear discrimination
between vehicles and aircraft, but no information was given as to the ability
to differentiate between various types of aircraft.

Hudson and Psaltis (1993) investigated ways to identify a target aircraft
from one-dimensional radar range data. It was found that the quality of
classification depends not only on the aspect angle to the aircraft of the
radar site but also the number of range images examined for a single
classification. The usability of this method on airport traffic is questionable
since precise control of the aspect ratio would prove to be very difficult. As
such, one must consider the classification rates when no aspect angles were
taken into consideration. With rates of 57 percent, 65 percent and 86
percent for single profile, frame, and encounter classification, respectively,
we see that the classification rates are low. Couple that with the cost of
obtaining required permissions, installing, and maintaining radar sites at
strategic locations around an airport, and this method seems unfeasible.
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Adams and Esler (1995) describe a number of issues related to acoustic
recognition of aircraft events. It is noted that there is a change in the sound
quality as the aircraft approaches and departs from the observer. There are
differences between the sound emitted from the front and rear of an aircraft.
There is also the Doppler shift associated with the speed of the aircraft. It
was observed that for propeller aircraft (fixed wing and helicopters) there
are recognizable components in the acoustic signal that can be used for
Doppler analysis. Doppler analysis for jet aircraft is more difficult because
the spectrum is less coherent. Their analysis concluded that frequencies
above eight kHz could be ignored. Reported problems encountered were
difficult in determining corresponding features in the approaching and
departing signal, and one must make allowance for the angle of flight of the
aircraft relative to the observer. Some differences between speech and
aircraft signals are observed. Aircraft signals are continuous without breaks
as opposed to speech. However, aircraft signals have high variability due to
different environmental conditions, distances, and aircraft orientations.

Adams and Esler (1996) a recognition system based on a one-third-
octave filter bank and half-second Leq values from acoustic signals is
described. A data reduction algorithm is applied to the spectra to extract 25
features. A neural network is used to discriminate between helicopters,
fixed-wing propeller aircraft, jet aircraft, and background noise of
uncertain origin. The reduced data from 100 aircraft and background noise
events are used to train and test the classifier. Classification accuracy was
reported to be better than 80 percent.

Cabell and Fuller (1989) developed a recognition system for the
identification of helicopters, propeller aircraft, jet aircraft, wind turbines,
and trains from acoustic data. It is based on a decision tree. The features are
extracted from the Fourier spectrum and auto-correlation function of the
noise events. The best design could correctly identify 90 percent of the
recordings. Scott, Fuller, Obrien and Cabells (1993) tested an associative
memory and a multilayer perceptron neural network as alternatives to the
decision tree. On the same data set, results show that the associative
memory classifier identifies 96 percent of the sources correctly and the
neural network identifies over 81 percent of the sources correctly.

Two aircraft noise event detection systems based on one-second A-
weighted Leq time history of the acoustic signal are described by Wallis and
Snell (1995). The decision of classifying a noise event as caused by an
aircraft or not is based on a series of tests performed on the shape of the
time history Leq. In addition, an anemometer is used to provide
supplemental information on the speed and direction of the wind during the
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noise event. Special sensors located at the ends of the runway are used to
provide timing and directional data on the takeoffs and landings of aircraft.
Extensive field tests showed “excellent” performance.

Yamada, Yokota, Yamamota, and Shimizu (1985) describe an aircraft
classification system that utilizes acoustic data. It composed of a one-third-
octave spectral analyzer combined with a modified Gaussian classifier.
Nine features are extracted empirically from the output of the one-third-
octave band real-time spectral analyzer. The features consist of one-third-
octave band peak levels normalized with respect to the peak A-weighted
level of the noise event. Ten classes are considered in the first experiment:
three types of airplanes performing takeoff or landing, helicopters, jet
airplanes, propeller-driven airplanes. Sixteen classes corresponding to
sixteen types of airplanes are considered in the second experiment. Eight
classes corresponding to eight types of airplanes are considered in the third
experiment. The classification accuracy was 86 percent, 86 percent, and 90
percent, respectively, in the three experiments.

Some systems have been proposed for the classification (Cabell, Fuller,
& Obrien, 1992, 1993) of helicopter operations from acoustic data. They
are based on specific properties of the helicopter signal that is impulsive
and strongly periodic. They describe Gaussian classifiers and neural
networks applied to the identification of the type of a helicopter. Cabell and
Fuller (1991) developed a pattern recognition system to classify acoustic
signals from aircraft. Five classes of vehicles were defined for the purpose
of identification, namely, jet plane, propeller plane, helicopter, train, and
wind turbine. All sources taken together produced a recognition rate of 90
percent. The authors indicate that with classes such as jet planes, further
discrimination within the class is possible if additional features are used to
create more complex decision surfaces.

From the above review and our own experiences we note a number of
issues that complicate the recognition process (Harlow, Bullock &
Smailius, 1997). Aircraft acoustic signals have variability due to different
environmental conditions and aircraft distances. Acoustic classification
systems have difficulty differentiating other events from actual takeoffs and
landings. Examples are preflight throttle tests, echoes from large buildings,
vehicular ground traffic, and nature. Examples of vehicular traffic are
airport luggage transport, fueling trucks, and tractors for cutting grass.
Different airports and different weather conditions will affect the signals.
Noisy environments and natural phenomena such as thunderstorms provide
problems. Multiple signals from different sources will distort the signals.
Finally, aircraft of the same type will produce somewhat different signals.
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At present a satisfactory system does not exist. The different
technologies have different advantages and disadvantages.
Electromagnetic loop technology is expensive and maintenance can
interfere with operations. Magnetic field detectors have difficulty detecting
aircraft at a distance. Pressure counters are likely to break and maintenance
can interfere with operations. Also, they cannot determine aircraft type.
Radar is expensive, is sensitive to the location of the unit, and can interfere
with airport operations. Radiation (infrared) detection units are sensitive to
the environment and will have difficulty classifying aircraft types. It is
difficult to determine the type of aircraft from video signals. Acoustic
sensors have shown success as counters of aircraft operations. The units are
low cost and portable. They have difficulties with quiet aircraft landings
and may be sensitive to environmental conditions. At the present time
acoustic technology has proven effective in counting takeoffs and is the
most promising for future development. We decided to perform an analysis
of the costs factors related to developing acoustic technologies.

For these comparisons, it was assumed that one would need to monitor
aircraft movements at 50 different sites during a 168 hour period (1 week).
Factors considered in the comparisons were costs for development of
counting procedures, capital equipment costs, travel costs for moving
equipment and personnel, labor costs for operation of the equipment, and
overhead costs. Certain assumptions were made about labor, development,
and travel costs that influence the results. Hence the cost comparisons are
approximate.

Visual observations of aircraft by technicians is the simplest detection
technology. However, this requires scheduling technicians to obtain
complete 24-hour surveillance over a few days. During sunny and moderate
weather, this is not a problem. However, this is an undesirable job during
bad weather, extreme heat, and late in the evening. Furthermore, this
requires paying travel costs to lodge technicians in nearby hotels. For visual
observations it is assumed the crew visits 50 sites. It is assumed the travel is
100 miles to the site. The expenses are 100 miles of travel at $0.25 per mile
per person, plus 7 nights lodging at $40 per night per person, and 7 days of
meals at $21 per day per person. The labor costs for each crew member is
40 hours per week at $6 per hour for 52 weeks per year.

For the counter systems, we assume a one-person installation crew and
two round trips to a site 100 miles away (50 weeks at 4 trips per week at 100
miles per trip at $.25 per mile). Assuming one day for installation and one
day for removal of the system, the labor costs are (50 weeks at 8 hours per
day at $6 per hour for 2 days plus 160 hours of trouble shooting installation
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sites at $6 per hour). The equipment costs for pneumatic tubes is estimated
at $1,000 with a life time of five years. The equipment costs for an acoustic
counter is estimated at $6,000 with a life time of five years. The next issue
involves systems that require development. In this case the development
costs must be considered. This might be required for acoustic or other
systems that require additional development work. In this calculation, it is
estimated that $60,000 is required for development costs. We assume that
10 systems are acquired with a life time to five years. The development
costs are prorated and are reduced when the number of units acquired is
large. The cost of the units is estimated at $10,000 with a life time of five
years. The comparisons are shown in Table 1. One can observe from Table
1 that the technology based systems can be competitive on costs. Even if
some development costs are involved, the costs can be mitigated if a
number of units are acquired. For this reason it is advisable to have a vendor
involved with any development.

We decided to study the development of an aircraft monitoring system
based upon acoustic technology. This decision was based upon our review
of the technologies, a cost analysis of the different technologies, the
feasibility and cost of implementation of a portable unit, and the
compatibility of the technology with normal airport operations. Acoustic
technology exists to operate at airports in a counting mode. This study was
conducted to consider the issue of expanding the technology to include the
classification capability. The study was needed in order to determine
algorithms for classifying aircraft operations and to determine any problem
areas in the development and deployment of a system.
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Table 1. Cost of Different Technologies

Human Pneumatic Acoustic Enhanced
Observers Tubes Counter System

Equipment Development Costs $0 $0 $0 $600
Equipment Costs/Annual $0 $200 $1,200 $2,000
Travel & Mobilization

1 Person Crew $22,600 $2,500 $2,500 $2,500
Labor Cost $12,480 $5,760 $5,760 $5,760
Fringe (20 percent of Labor) $2,496 $1,152 $1,152 $1,152
Sub Total $37,576 $9,612 $10,612 $12,012
Overhead (0.4) $15,030 $3,845 $4,245 $4,805
Total Annual Cost $52,606 $13,457 $14,857 $16,817
Cost/Site $1,052 $269 $297 $337



AIRCRAFT OPERATIONS DATABASE FORMATION

In order to develop algorithms and evaluate the system for
characterizing aircraft operations, a database of aircraft operations was
created. The information contained in the database consists of airport
information, runway information, acoustic records, photographic records, a
description of the event (takeoff, landing) and aircraft type, and
environmental information.

The equipment used in the field for recording aircraft acoustic signals,
aircraft information, and the type of aircraft operation consisted of a digital
camera, sound recording equipment, and a form to manually enter
information related to the aircraft operation. The Kodak digital camera was
used for a photographic record of the aircraft operation. Acoustic
equipment was used to record the sound records of the aircraft operations.
This equipment consisted of a Larson Davis Model 712 Sound Level Meter,
Electro-Voice RE55 Microphones, and a Sony TCD-D8 DAT Walkman The
data were collected at 44.1kHz on the DAT tapes. We processed the data at
22.05 kHz since this proved sufficient for this application.

FEATURE EXTRACTION

Sound data are often processed in the root mean square of the sound
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pressure level (SPL). The quantitypo is 20 micro Pascals,µPa, which is the
perception threshold at 1000Hz (Couvreur, 1997; Crocker, (1998). The
sound pressure levelLp varies too fast for interpretation and often generates
too much data for storage. An averaging is performed over some interval to
reduce the amount of data. The equivalent continuous sound level over a
specified time interval is the equivalent steady level that would have the
same RMS value over that time interval (Couvreur, 1997). It is defined as
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Because of the sensitivity of the human ear, often frequency weighting is
used. The most common weightings are A-frequency weighting,
C-frequency weighting, and LIN-frequency weighting. LIN-weighting is
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no weighting (Couvreur, 1997). A-weighting is widely used because it
correlates with the human response to sound. It is intended to simulate a
human ear at 40 phons. Sound level meters, SLM, sound exposure meters,
and noise dosimeters use A frequency weighting to measure the effects of
noise on humans. It is widely used to measure community noise. B
frequency weighting is meant to simulate the human ear at 70 phons. It is
not widely used. The C frequency weighted filter is meant to simulate the
human ear at 100 phons. It is flat over most of the audible frequencies. It is
down 3dB at 31.6 Hz and 8000Hz. It is often used to measure the acoustic
emissions of machinery.

Sound level meters equipped with filters are called spectrum analyzers.
Often data are collected in octave filters or one-third octave filters. An
octave band pass filter is a filter such that the upper cutoff frequency is
twice the lower cutoff frequency. An octave is a doubling of frequency. This
filter can be subdivided into one-third octave filters with 3 bands per
octave.

In the application of aircraft counting and classification, we are
interested in identifying aircraft from one-dimensional (1-D) sound
signals. This problem may be stated as an object identification problem
where the objects are the different types of aircraft. An audio sensor can
generate a significant amount of data in a few seconds. Hence, it is
important to extract features from the sound signal. An important step in
object identification is to obtain information suitable for modeling the
object to the automated recognition system. This process of reducing the
amount of data while retaining the ability to recognize the object is called
feature extraction. The features are represented as vectors. Figures 1 and 2
show the sound signals obtained from a jet and a multi-engine propeller
powered aircraft, respectively.

The Leq acoustic signal has a characteristic shape that is reflective of the
different types of aircraft events. The Leq signal can be processed to reduce
the number of measurements and extract features useful for classification,
see Figure 3. One measurement of relevance is the “maximum” value.
Some sound events such as jet aircraft are loud. Single engine propeller
aircraft landing are very quiet. Other measures can be related to the shape
of the curves. A fast aircraft such as a jet will have a curve that is steeper as
the plane approaches as compared to a propeller aircraft. Other
measurements extracted are “skewness” which measures the skewness of
the curve and “symmetry” that measures the symmetry of the curve about
the maximum value, see Figure 3.
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Figure 2. Sound Signal for Single Engine Aircraft Takeoff

Figure 1. Sound Signal for Jet Aircraft Takeoff



One would expect frequency measures to reflect differences in the
aircraft. These are readily obtained from portable spectral analyzers that
can operate in the field for several weeks. The measures we considered are
one-third-octave frequency measures since they are readily collected with
spectral analyzers. We used sound data at a sampling rate of 22,050 Hz.
This implies that we can estimate frequencies up to 22,050/2 Hz without
aliasing. For this reason, we limited our frequencies to 8,000 Hz.
Therefore, 27 frequency measures are taken up to 8,000 Hz. We extracted
these measures for the aircraft as it approached and departed the acoustic
sensor. The speed of the aircraft is reflected in the shift of the frequencies. It
should be noted that the frequency discrimination of the one-third-octave
filters is not sufficient to obtain an accurate measure of the Doppler shift.

CLASSIFICATION

Let us now consider signal classification which is the process of
identifying the object associated with a given input signal. Once the
features have been extracted as described in the last section, we will have an
n-dimensional feature vector that is the input to a classifier. Neural
networks were selected for the classifier.

Artificial neural networks (ANN) can be grouped into simple-layer and
multiple-layer nets (Fausett, 1994). There are two types of
training—supervised and unsupervised training for a network. Supervised
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training is accomplished by presenting a sequence of training vectors, or
patterns, with associated target output vectors. Then, the weights are
adjusted according to its learning algorithm. Backpropagation nets require
supervised training. ANNs are “trained,” meaning they used previous
examples to establish the relationships between the input variables and the
output variables. Once an ANN is trained, the neural network can be
presented with new input variables and it will generate the output
classification.

A multi-layer feed-forward neural network was chosen as the classifier.
It is very important to define the network’s structure properly. In our case,
there are three layers in the neural network—an input layer, a hidden layer,
and an output layer. It is sufficient to have one hidden layer because it
reduces the complexity of the network. The number of input neurons
depends on the number of features used in classification. Because 35
features have been extracted from the aircraft sound record, 35 input
neurons are needed. The number of output neurons depends on the number
of classes of the aircraft being separated. Four output neurons will be
needed because four kinds of aircraft (helicopter, jet, multi-engine and
single engine) are needed to be distinguished. Each output neuron represent
two states—0 or 1. When it is active, the value is 1, so the aircraft belongs to
that class. The number of hidden neurons is crucial for a network’s
performance. If more hidden neurons are used, one gets a higher training
accuracy, but a lower testing accuracy. After several repeated training and
testing, we found that the performance is best for a network with a hidden
layer with 8 neurons (Harlow, 1999). This configuration was used with the
time domain and frequency measures of the approaching aircraft.

We had a total of 105 takeoff events for jets, multi-engine, and single
engine planes and helicopters. We used all of the available helicopter data
even though they were not all takeoff events. Helicopters will fly in
different paths to their landing area depending upon the traffic. They do not
follow runways and will in general take a path that keeps them near the
runway a short amount of time. One must be located near their landing area
to obtain a good takeoff or landing signal. We used 12 of the samples for
testing and the rest for training. The training results were 99 percent correct
classification. The accuracy of testing was 100 percent classification
accuracy. These results are given in Tables 2 and 3.

We conducted one final study. This study included 48 sound events that
were not aircraft events. Various background sound events such as tractors,
car, trucks, construction sounds, or natural sounds like thunder may occur
at airports. We collected 48 sound events of vehicles such as cars and trucks

Harlow and Zhu 59



for this study. We also implemented a binary tree classification method
with a neural network classifier at each node of the tree. The tree
classification system is shown in Figure 4. We used 153 sound samples
consisting of 105 aircraft data and 48 vehicle events. Of these 133 samples
were used for training and 20 samples were used for testing. The training
results of correct classification were 100 percent. The testing results were
also 100 percent. The results are given in Tables 4 and 5.
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Table 2. Training Results

Helicopter Jet Multi-engine Single engine

Helicopter 13 0 0 0
Jet 0 11 0 0
Multi-engine 0 1 21 0
Single engine 0 0 0 47

Table 3. Testing Results

Helicopter Jet Multi-engine Single engine

Helicopter 2 0 0 0
Jet 0 2 0 0
Multi-engine 0 0 3 0
Single engine 0 0 0 5

Figure 4. Binary Tree Classification



The choice of features is an important problem in the development of a
classification system (Fukunaga, 1990). More features may allow one to
perform better classification, but the feature set often contains redundant
features. It is best to keep only the most effective features and remove the
redundant features. A reduction in the number of features results in reduced
complexity and computation time for the classifier. With a limited number
of training samples one may also get better classification rates with a
smaller number of features (Fukunaga, 1990).

We did some experiments to determine the most effective measures. We
extracted the time domain measures and also frequency measures as the
object approached and departed the acoustic sensor. For the aircraft vs.
non-aircraft experiment nine measures were found to be significant. Five of
these measures were frequency measures of the approaching object and
four were frequency measures of the departing aircraft. In the aircraft
category of helicopter vs. other aircraft, four measures were found to be
significant. These were a time domain measure (the slope of the curve), two
frequency measures of the approaching aircraft, and one frequency
measure of the departing aircraft. For jet vs. propeller aircraft, the most
significant measure was a frequency measure of the approaching aircraft.
For multiengine vs. single engine propeller the most significant measures
were a time domain measure of slope and two frequency measures of the
approaching aircraft. These results indicate that a reasonable subset of the
features can be extracted for classification. These results are not
conclusive, since additional data would need to be collected under a wide
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Table 5. Testing Results

Non aircraft Aircraft

Traffic 7 0
Helicopter 0 2
Jets 0 2
Multi-engine 0 3
Single engine 0 6

Table 4. Training Results

Non aircraft Aircraft

Traffic 41 0
Helicopter 0 13
Jets 0 11
Multi-engine 0 22
Single engine 0 46



variety of environmental conditions in order to determine the best
measures.

In order to provide for updating the system, a flexible software system
has been developed. The system allows one to process, display the raw data,
and perform classifications. The software also provides for retraining the
classification network as one experiments with the system and new data
becomes available. The software is programmed in Matlab (MathWorks,
1998).

DISCUSSION

Our discussion in the “Technologies for Monitoring Aircraft
Operations” section indicates that there are issues related to the deployment
of the different technologies for monitoring aircraft operations. Acoustic
technology was determined to be the best developed and the most feasible
technology upon which to develop an aircraft operations monitoring
system. This study considered the development of a classification system to
determine the type of aircraft involved in aircraft operations.

The results of the classification studies indicate that automatic
classification of aircraft takeoffs can be accomplished at acceptable rates.
Operations such as landings that are quiet events may not be detected. Also,
the monitors will have to be located near runways with aircraft operations.
If there are several runways or operations are occurring on the runway far
from the sensor, then the acoustic signal may be very weak at the sensor.
Several sensors may be needed to cover all the areas of operation. For
smaller airports, this should not be a problem. Since the automatic
classification of aircraft operations will not cover the operations at every
airport all the time, the automatic counts will need to augmented with
statistical models as discussed in the “Background” section.

These results demonstrate the feasibility of developing an automated
aircraft operations monitor. Current hardware exists for portable operation
that will record the time and spectral information required for
classification. The system needs further testing with data collected under
varying environment conditions. It is difficult to obtain data under adverse
weather conditions due to the risk to personnel near runways under adverse
conditions. The next stage in the work would be to place an automated data
collection system in the field to collect data under adverse conditions. In
addition, studies need to be conducted on the best manner to incorporate
automatic aircraft operations counters with statistical and ancillary
information in order to obtain the best estimate of aircraft operations.
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