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(ABSTRACT)

The Thermal Radiation Group at Virginia Polytechnic Institute and State University has

been working closely with scientists and engineers at NASA's Langley Research Center

to develop accurate analytical and numerical models suitable for designing next-

generation thin-film thermal radiation detectors for earth radiation budget measurement

applications. The current study provides an analytical model of the notional thermal

radiation detector that takes into account thermal transport phenomena, such as the

contact resistance between the layers of the detector, and is suitable for use in parameter

estimation. It was found that the responsivity of the detector can increase significantly

due to the presence of contact resistance between the layers of the detector. Also

presented is the effect of doping the thermal impedance layer of the detector with

conducting particles in order to electrically link the two junctions of the detector. It was

found that the responsivity and the time response of the doped detector decrease

significantly in this case. The corresponding decrease of the electrical resistance of the

doped thermal impedance layer is not sufficient to significantly improve the electrical

performance of the detector. Finally, the "roughness effect" is shown to be unable to

explain the decrease in the thermal conductivity often reported for thin-film layers.
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Chapter 1: Introduction

For many years the Thermal Radiation Group (TRG) at Virginia Polytechnic Institute and

State University, under the direction of Professor J.R. Mahan, has been involved in

developing advanced numerical tools for modeling the optical, thermal and electrical

processes in thermal radiation detectors. During the last two years the Group, working

with scientists and engineers at NASA's Langley Research Center, has pursued the

design of a new thermal radiation detector to be used for more accurate measurements of

the earth radiation budget (ERB) from space. The ERB refers to the balance at the top of

the atmosphere between the incoming energy from the sun and the outgoing thermal and

reflected energy from the earth.

The growing interest in ground-based measurements using instruments such as

pyranometers [Smith, 1999], which are cheaper and easier to monitor than space-borne

instruments, makes it crucial for the proponents of space-borne measurements to develop

more reliable instruments using the latest technologies available in order to remain

competitive. The sensors of these latter instruments have to be as small as possible, with

extremely short time response and a maximum responsivity, so that they can be organized

into linear or focal-plane arrays [Weckmann, 1997; Barreto, 1998; Sanchez, 1998;

Sorensen, 1998]. These factors all favor the development of a thin-film multilayer

thermal radiation detector technology, as illustrated in Figure 1. In this approach six

layers of material are sputtered onto a substrate to form the detector. This allows layers

on the order of a few microns thick. The absorption of thermal radiation by the absorber

layer increases the temperature of the active junction, and the difference of temperature
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betweenthis activejunction andthe referencejunction generatesanelectromotiveforce

proportionalto thetemperaturedifferencebetweenthem.

Analysisof heat transferin the resultingthin-film thermalradiationdetectoris essential

for its successfuldesignandfor the predictionof its performance.Creationof the heat

transfer model requires applying either macroscaleor microscaletransport theories,

dependingon the physicaldimensions(lengthscales)of the detectorand its frequency

responsecharacteristics(time scale).If macroscaleheat transfer theory is appliedto a

microscaleproblemin a situationfor which it is inappropriate,thena significanterror in

the calculatedheattransferrate or temperaturedistributioncanresult [Flik et al., 1992].

The model also requires the preciseknowledgeof the thermophysicalpropertiesof

materialsusedin the conceptionof the detector.With the contemplatedgeometryand

fabrication technique,severalinterestingquestionsarise,and the performanceof the

detectorwill dependon the responseto thesequestions.Ignoring thesenuancescould

leadto verypoorthermalmodelsof thedetector.

Normallythe thermalresistanceofferedto heatconductionby a uniform layeris directly

proportionalto its thickness.Whentwo materialshavingdifferentthermalconductivities

are in mechanicalcontact,a temperaturediscontinuitycan occurat their interface.This

temperaturejump resultsfrom contact resistance between the two layers. In fact, even

with thin-films, perfect contact at the interface occurs only at a limited number of spots

[Hmina et al., 1997; Kelkar et al., 1996] and the void found elsewhere between the layers

is filled with gas or a vacuum. It is possible that the intrinsic thermal resistance of a thin

film is significantly smaller than the contact resistance at the interface. Modeling the

detector without taking into account this hypothetical contact resistance could lead to a

serious departure from reality. Even if the values of the contact resistances between the

different layers are not currently known, it is important to include them in the thermal

models. These more general models can then be used by other members of the Thermal

Radiation Group who are developing parameter estimation techniques aimed at

recovering the thermophysical properties of the detector. The use of fictitious contact

resistance values in the model will reveal the importance of that factor to the performance

of the detector.
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The correct treatment of the thin-film effect is another key factor in the process of

obtaining a good thermal model. The thin-film effect has been defined in terms of the

departure of the thermal conductivity of a layer from its bulk value as the thickness of the

layer approaches the order of magnitude of the mean free path of the energy carriers, a

definition that presupposes that Fourier's law of heat conduction governs thin-film heat

transfer. However the thin-film effect implies the use of microscale heat transfer theories.

In these theories the classical Fourier's law no longer describes the temperature and heat

flow fields, and the thermal conductivity loses its meaning as an intrinsic thermal

property of the thin-film material. Several analytical [Flik et al., 1990; and Kumar et al.,

1994] and experimental [Nath et al., 1974; Lambropoulos et al., 1989; Lee et al., 1997;

and Orain et al., 1998] studies have shown that the thermal conductivity of thin-film

layers, defined as the heat flux divided by the temperature difference across the layer per

unit thickness, can be several orders of magnitude lower than that of the bulk material.

The closed-form models for computing thermal transport in such cases require the

knowledge of material properties such as the mean free path that are unknown for

materials contemplated for use in the notional detector.

In the current effort the use of a geometrical property characterizing the mechanical

roughness of the film layer is considered in an attempt to show the dependence between

the effective thermal conductivity and the layer thickness. It is evident that in a thin film,

the roughness of the layer can be of the same order of magnitude as the layer thickness

itself. The idea here is to try to explain the decrease of the thermal conductivity often

attributed to the thin-film effect in terms of a roughness effect. A numerical thermal

model derived from a macroscale approach with the roughness as a parameter is used to

analyze the dependence of the effective thermal conductivity on the roughness of the

layer.

The overall distance between the two thermocouple junctions of the notional detector

shown in Figure 1 is less than fifty microns. Another problem that arises is how to

electrically connect these two junctions. Fabrication and size limitations preclude the use

of a traditional electrical conductor (a "wire" lead) to connect these two junctions. The

NASA design team led by Kist [1999] has proposed that the thermal impedance layer
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betweenthetwo thermocouplejunctionsalsodoubleasanelectricalconductor.Oneidea

wouldbeto dopethethermalimpedancelayerwith carbonparticles.It is hopedthat these

particles would then effect the electrical connectionbetween the junctions without

completely eliminating the thermal impedanceneeded to maintain the temperature

differencebetween the active and referencethermocouplejunctions. Two different

approachesareconsideredin order to characterizethe thermalandelectricalbehaviorof

this new detector configuration.The first approachconsistsof using a model adapted

from Vick and Scott [1998]. The secondapproachmodelsthe heterogeneousthermal

impedancelayer of the detector using micromechanicalapproximationsto obtain

averagedelectrical and thermophysicalproperties. In the first approachthe thermal

impedancelayer is modeled as a matrix with embeddedsmall particles, and heat is

assumedto be transferredfrom the matrix to the separatedparticles.The temperature

distribution within sucha layer is obtainedby solving two coupledequationsderived

from the energybalanceof the matrix and the particles.In the secondapproach,an

equivalentthermalconductivityandheatcapacityareusedto representanappropriately

layeredmedium,and the detector is modeledas if the layerswere homogeneous.The

samehomogeneousapproximationsare alsousedin orderto analyzethe changeof the

electricalresistanceof the dopedthermalimpedancelayer. In either case,the resulting

modelwouldneedto besuitablefor laterusein aparameterestimationscheme.

Objectives

The objectives of the current investigation are to explore the following three questions:

• How might the presence of contact resistance influence the response of the

detector?

• Can the so-called thin-film effect be explained and treated as a roughness effect?

• What is the effect of the addition of electrically conducting particles in the

thermal impedance layer on the performance of the detector?

Even if the answer to the second question is negative, a secondary goal is to advance the

Group's knowledge of this interesting phenomenon.
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In pursuing the answers of these questions the author has profited from the fruits of

earlier investigations by members of the Thermal Radiation Group. Weckmann's [1997]

model of the dynamic electrothermal response of a similar thermal radiation detector

ignored contact resistance and did not speculate on the possible consequences of a "thin-

film" effect. SSaachez [1998] formulated a Monte-Carlo ray-trace radiative model of an

integrated detector concept in which a linear array of the detectors from Weckmann's

thesis was bonded to the wall of a V-groove cavity, and Barreto [1998] designed

experiments for estimating the electro-thermophysical properties of the materials in

Weckmalm's detector concept. More recently Sorensen [1998] performed analytical and

experimental characterizations of some aspects of the detector. Sorensen is currently

developing genetic and hybrid algorithms and designing experiments to estimate the

electro-thermophysical properties of detectors such as the one shown in Figure 1.

Chapter 2 addresses the problem of modeling the effects of contact resistance for use in

the optimal design of experiments aimed at recovering its value.
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Chapter 2: The Effect Contact Resistance

Three questions bearing on the electrothermal performance of thin-film thermal radiation

detectors were posed in Chapter 1. In the current chapter, one of these questions, that

concerning contact resistance, is explored in detail.

2.1 Description of the notional thermal radiation detector

The notional thermal radiation detector considered in this thesis consists of six parallel

layers of different materials, as illustrated in Figure 1. A 1.0-t, tm thick platinum layer is

deposited on an aluminum-nitride substrate, and then a 1.0-t, tm zinc-antimonide layer is

sputtered over the platinum. Next, a 25-t, tm thick thermal impedance layer is deposited

over the zinc-antimonide layer. Then additional layers of zinc-antimonide and platinum

are deposited on the thermal impedance layer. Finally, the platinum is coated with a 10-

t,tm thick black absorber layer to increase the absorption of thermal radiation. The

platinum/zinc-antimonide layer near the substrate forms the reference junction of the

thermocouple, and the platinum/zinc-antimonide layer on the thermal impedance layer

forms the active junction. The junction materials are chosen to provide the highest

available Seebeck coefficient [Weckmann, 1997]. In this baseline configuration the

thermal impedance is not doped with carbon particles. The doped configuration is

considered in Chapter 4. The thermal impedance layer considered in the current chapter is

assumed to be fabricated from Parylene. The nominal properties of the material used in

the detector are given in Table 1.
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Incident thermal radiation

I

m

Absorber layer (10 btm)

Zi_c-antimonJde layer (1 .ku_0

Platinum layer (1 bun)

Ther_aI i_pedar:_ce layer

[Not to scale]

Figure 1: Configuration of the notional thermal radiation detector considered in this
thesis.

The Effect of Contact Resistance 7



Table 1: Thermophysicalpropertiesof materialsusedin thebaselinethermalradiation
detectormodel [Weckmann,1997].

Aluminum
Substrate

Absorber

Layer

Parylene

Platinum

Zinc

Antimonide

Carbon

Platinum/Zinc-

Antimonide

Junction

Mass

density

(kg/m 3)

3260

1400

1289

21450

6880

2620

N/A

Specific

heat

(J/kg.K)

800

669

712

133

200

710

N/A

Conductivity

(W/m.K)

165

0.209

0.084

71.6

60

1.59

65.3

Diffusivity

(m2/s)

6.33x10 -5

2.23x10 -7

9.15x10 -8

2.51x10 -5

4.4x10 -5

8.55X10 -7

3.09x10 -5

Seebeck

Coefficient

(V/K)

N/A

N/A

N/A

N/A

N/A

N/A

960X10 -6
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2.2 One-dimensional model of the detector with contact resistance

Due to the thickness of the layers of the thermal detector, on the order of a few microns,

the thermal resistance resulting from the imperfect contact between layers, illustrated in

Figure 2(a), may play an important role in the overall thermal resistance. In fact, a careful

search of the literature provided no insight into the nature of the interface and the

consequent contact resistance at the interface between the sputtered materials in the

notional detector. With contact resistance, the temperature profile through the detector

would be discontinuous at the interfaces between layers. The first objective of the model

is to validate the results obtained assuming perfect thermal contact. A preliminary study

is also carried out to evaluate the effect of the thickness of a Parylene thermal impedance

layer on detector time response and responsivity.

In order to develop a one-dimensional analytical model we assume for both the steady-

state and transient cases that:

* the thermophysical properties (conductivity, specific heat, density) are constant

and uniform,

• thermal radiation is negligible,

• Fourier's law is valid, and

• internal heat generation is absent.
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Active

junction

Reference

junction

(a)

q
X

0=0

(b)

L

[Not to scale]

Absorber layer [_ Zinc-Antinomide layer [--] void

[] Platinum layer m] Thermal impedance layer

Figure 2: (a) Model of the detector with contact resistance, and (b) boundary conditions.
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2.2.1 Steady-state temperature distribution

For each layer (i) the steady-state temperature rise 0,, i (x) above the substrate temperature

is governed by

d20"i -0 x_<x<x_+ 1 i=1,2 ..... 6, (2-1)
dy2 '

subject to the boundary conditions, indicated in Figure 2(b),

0,,1 = 0 , at x = 0 , (2-2)

f
- k_ dO,,_ _ hi,i+1 (O,,i _ Os,i+l) , at the interfaces x = x_+1, (2-3)

dx

ki dO, i ki+l dO, i+1' - ________z___' , i = 1,2 ..... 5, (2-4)
dx dx

os,6

and k 6 -q , at x=x 6 . (2-5)
dx

The heat flux q is uniform through the different layers.

The differential equations given by Equations 2-1 through 2-5 can be solved directly.

For the first layer

d 20s,1 -- 0
dx 2

(2-6)

Os,1 : 0 , at x = 0 , (2-7)

os,1

and q=k 1- , at x=x 1 .
dx

(2-8)
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The temperature profile is then 0,1(x) = q--x
' kz

(2-9)

For the second layer

(2-10)

dO,,1 [- I

k I - hl,2[O,,l(Xl)-O,,2(Xl) ] at

dx
X ---- X 1 (2-11)

dos,2

and q = k 2 -- at x = x 2 .
dr,

(2-12)

Thus,
1 1)+ 1 1' Lk2

(2-13)

More generally the steady-state temperature distribution for any layer is given by

and

Os, 1 =qx

kl

O.,i = q + 2_. xi-11 k-
j=2 _ j-1

1 ]-[- m_li-1 1 /k; = h .......+1 '

i>2.

(2-14)
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2.2.2 Transient temperature distribution

The differential equation describing the evolution of the transient temperature rise

0 i (x, t) above the substrate temperature for each layer is

a2Oi(x,t) 1 aO_(x,t)

OX 2 0_' i Og

in x_<x<x_+ 1, t>O , (2-15)

where i = 1,2 ..... 6 , subject to the boundary conditions

01 (0, t) = 0 at x = x I , (2-16)

f
and

-k i O0.---_i=hii+l(O i -0i+1)
OX

at the interfaces x = xi+1, (2-17)

k i OOi - ki+ 1 --00i+1 , i = 1,2 ..... 5 , t > 0 , (2-18)
Ox Ox

006 _

k 6_-q at x=x 6 , t>0 (2-19)

The initial condition is O, (x,O) = O. (2-20)

This problem can be solved by different techniques, including the finite difference

method, by the finite element method and by finite integral transforms. However an

analytical solution being more convenient for later parameter estimation studies, the

orthogonal expansion technique [0zisik, 1993] for a multi-layer medium with perfect

contact between layers is adapted to the transient model described by Equations 2-15

through 2-20. The problem involves a nonhomogeneous boundary condition at x = x 6 (at

the top of the detector) and so cannot be directly solved using separation of variables. In

order to transform this nonhomogeneous boundary condition into a homogeneous one, we
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considerthat

Figure3:

* a steady-state problem with specified heat flux at x = x 6 •

* a transient problem with insulated boundary at x = x 6 •

Oi(x,t ) is obtained by the superposition of two problems, as suggested in

0.,i (x)

0t,_(x, t)

Thus 0_(x, t) = 0.,_(x) + 0._ (x, t). (2-21)

X

q

O20,(x,t) 1 O0,(x,t)

0X2 _'i 0t

q

d 20.. i (x)
-0

dx 2

Os, 1 (0) = 0

+

a 0.6 (x6, t)
-0

bx

///// //////. /

O_O,,_(x,t) 1 O0,,_(x,t)

0,,i(x,0) = -0.,, (x)

Or, l(O,t) = 0

Figure 3: Illustration of the superposition principle.

The steady-state problem is described by an ordinary differential equation and has

already been solved; the solution is given by Equation 2-14.

The transient solution0,_ (x,t) is governed by a homogeneous partial differential equation

and is solved using the separation of variables technique. Let us assume that 0,_ (x, t) may

be expressed

0._ (x,t) = xi (x)F(t) (2-22)
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Substitutioninto Equation2-15 yields

a2(X,(x)F(t)) 1 a(X,(x)F(t))

Ox 2 O:i Ot
(2-23)

Thus o:i d2Xi - 1 dr'_ f12 , (2-24)
X i dx 2 F dt

where the eigenvalue fl is the separation constant. The minus sign in front of f12 is

required to capture the exponential nature of the variation with time. The change of

variables transforms the partial differential equation into two ordinary differential

equations,

clF
t- fl,_F = 0 (2-25)

dt

2 2

and d X i.... 1-fl,_ X i.... =0 (2-26)
dy 2 O[i

The subscript m is used in Equations 2-25 and 2-26 to indicate that there are an infinite

number of eigenvalues tim.

For a given eigenvalue the solution of Equation 2-25 is obtained directly as

Fm (t) = e (2-27)
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The complete solution is then of the form

2

0,, i (x, t) = _], C.,Xi,., (x)e -_''' , (2-28)
m=l

where the coefficients C. are eventually obtained by exploiting the orthogonality

property.

The ordinary differential equation to be solved to obtain the eigenfunctions X_ .... and the

corresponding eigenvalues is

2 2

d X i.... i_fl_Xi .... =0, x i<x<xi+ 1 ,i=1 ..... 6, (2-29)
dy 2 Or' i

with boundary conditions

Xira (0) = 0 at x = 0 , (2-30)

f kidX i....
- k i dXi ....

dx

dX i+l,m
- ki+ 1

dr. dr.
at the interfaces x = x_ , (2-31)

-hi,i+l(Xi .... --Xi+l,m), i=1,2 ..... 5 , (2-32)

dX 6m
and k 6 - 0 at x = x 6 .

dx
(2-33)

The general solution of this eigenvalue problem is [C)zisik, 1993]

sin( fl" x/+ cos( fl" x/

.... ='.... /,/a-,.J (2-34)
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Let usassumethat (2-35)

ThenEquation2-34becomes

+,,,,xcos/ , /X(2-36)

The derivative of Equation 2-36 is

dX i , r,_l

dr
x B x/

_/, l r/'l

(2-37)

Substitution of Equations 2-35 and 2-37 into Equations 2-31 and 2-32 yields

/xi) /Xi)Ai+ 1., sin "--/7i+1 "]- Bi+l,r,, COS --/7i+1

' Xi+l Xi+l

(2-38)

= A,,., [sin(r/, ) + fl.,H i,i+l cos(/], )]-1- Bi,m [cos(/]i ) - rim si,i+I sin(r/, )]

and

(I (xlAi+l m XiCOS --_]i+l -- B,+I. , sin --_]i+l : Ki,i+I[A,,., cos(r/, )- B,., sin(r/_ )].
' Xi+I ' Xi+I

(2-39)
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where
k i

Hi,i+1 -- hi,i+1
(2-40)

and (2-41)

In matrix form Equations 2-38 and 2-39 can be written

[ sin(xi/]i+l / Xi+I ) COS(Xi/]i+1 / Xi+I ) 3r Ai+l m

COS(Xi/]i+I / X,+I ) - sin(xi/]i+l / Xi+l )JLBi+l',m ]

(2-42)

-sin(/] i ) + Hi,i+lfl m cos(/]/)

Ki,i+l cos(/]i )

cos(/]i)-Hii+l_m _in(,,>lrA,.,
-Ki,i+l'sin(bi) JLei]]

Solving Equation 2-42 for the unknown coefficients A i.... and B i.... yields

Z,+l.,Ix'/ Ix'/= sin --/]i+1 _-Wi m COS --/]i+1

, , Xi+l ' Xi+l

, i=1,2 ..... 5 , (2-43)

and

/ /x /= COS --/]i+l -Wi, m sin --/]i+l

, , Xi+l Xi+l

, i=1,2 ..... 5 , (2-44)

where

Ui, m = Ai,m [sin(/]i) + 1_mHi,i+l cos(/]i)]+ Bi,m[cos(/]i)-Hi,i+lflmsin(/]i)] (2-45)

and
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V_.... = K,.,+, [A,.., cos(., ) - B,.., sin(., )] (2-46)

The boundary condition given by Equation 2-30 requires that B 1.... = 0. Thus we can set

A 1.... = 1.

All of the coefficients A i.... and Bi .... can now be computed using Equations 2-43 and 2-

44. Introducing A 1.... = 1 into Equation 2-42 and expanding it for the six layers of the

detector yields

- 1
M 1 M? M? 0 0 0 0 0 0 0 0

M_ M_ M_ 0 0 0 0 0 0 0 0
0 M: M: M; M_ 0 0 0 0 0 0
0 M: M_ M_ M_ 0 0 0 0 0 0
0 0 0 M; M_ M6 M_ 0 0 0 0
0 0 0 M_ M_ M6 M_6 0 0 0 0
0 0 0 0 0 M6 M_ M_ M_ 0 0
0 0 0 0 0 M6 M_ M_ M: 0 0
0 0 0 0 0 0 0 M 8 M 9 M_ 0 M_ 1

o o o o o o o M_o M_o M_° M_1
0 0 0 0 0 0 0 M_I M_I M_° M_

1

A2.,

B 2m

A3.,

B3.,

A4.,

B 4m

A5.,

Bs.,

A6.,

_B6m

0

0

0

0

0

= 0

0

0

0

0

0

,(2-47)

where

M 1 = sin/]1 +H1, 2 COS]]1

• x1 /M 2 = -sln(--rl2

_,x2
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M _ = K1, 2 cos 711

2 xl )
M 2 =--COS/--_]2

_x2

3 __-sin /7 2M2

M_ = sinr/2 "kH2,3 COS/J2

M 3 = cost/2 - H2, 3 sinrh

t x_

_x3

M_ = K2,3 COS/J2

M 3 = -Kz, 3 sinr/2

M; = sinq3 +H3,4 COS_73

M 5 = cos/73 -H3,4 sinr]3
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6 _ X3 )
M 5 = sin(-- r/4

_x_

/ )M 7 -_ -cos --7]4

M2 = K3,4 COS/']3

M 5 = -K3,4 sin r/3

M 6 = sin/]4 + H4,5 cosr]4

M77 = cosr/4 - H4,5 sinr/4

_.x5

_x_

M _ = K4,5 cos 174

M y =-K4, 5 sinr/4
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9 • ( X4 _/
M s = sin|--/]5

)_x5

M_ = sin/] 5 +Hs, 6 COS/]5

M 9 = cos/] 5 - Hs, 6 sin/]5

10 • (X5 "_/

M 9 = - sin|--/]6
)_x6

x5 )
M_ 1 = --COS(--/] 6

_x6

M_0 = Ks, 6 COS/]5

M19o = -Ks, 6 sin/]5

x5 )
M1 l° = -cos(--/]6

t, x6

M _ =sm --/]6
_x6

M_° = co_/]6

and

M 11 = --sill/'] 6
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The eigenvaluesft., are the solutions of the transcendental equation obtained by setting

the determinant of the matrix in Equation 2-47 equal to zero. To obtain the remaining

coefficients C., of Equation 2-28, we exploit orthogonality and the initial condition. The

eigenfunctions Xi,., (x) satisfy the orthogonal relation [C)zisik, 1993]

_:_+1 _N.,, m = n
k---!-_f X,.,(x)X,.(x)dx = [ O,m ¢ n

i=1 _'i x i '

(2-48)

The normalization integral N., and is given by

N., = X 2,., (x)dx
'm

(2-49)

When t = 0

r, lm_

0,,, (x,O) = _ c.,x,,., (x) = -O.,i (x)
m:l

(2-50)

k
Now multiplying both sides of Equation 2-50 by 'X_, n (x), integrating from x_ to x_+,,

Of i

and summing the result from i = 1 to 6 (the number of layers) yields

'= ' :i '= ' :i m=l

6 I_, Xi+l

=0+0+...+C,,N,,+0+0+...

(2-51)
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Thus C.,- 1 6 I_ Xf+I

i_l-_i !O,,i_i(x)Xi,,(x)dx (2-52)
N l'n

'= ' :i

At this point all of the parameters needed to compute 0,, i (x, t) from Equation 2-28 are

known. The complete solution of the transient problem is given by Equation 2-21.

The C++ program homog.cpp listed in Appendix A is implemented using the preceding

results to determine the temperature profile through the thermal radiation detector. A

parametric study is performed to determine the optimum value of the thickness of the

actual thermal impedance layer (Parylene). The influence of the contact conductance on

the accuracy of the results obtained assuming perfect contact between layers is also

considered.

2.3 Results

The actual values of the contact conductances are currently unknown for the fabrication

technique (sputtering) anticipated for the notional detector. Further studies of the type

being pursued by Sorensen will be necessary in order to determine these values. The

models developed in the current chapter are anticipated to be an essential tool of

Sorensen's research. The current objectives are to simulate the thermal behavior of the

detector using different assumed values of the contact conductances to investigate the

sensitivity of the overall behavior to this parameter. The bulk properties of the materials

are used in this preliminary study. Assuming continuum mechanics, the thermal

properties of thin-film layers are known to be a function of the layer thickness [Nath and

Chopra, 1974; Kelemen, 1976; and Kumar et al, 1994]. However, thin-film properties for

the materials in this investigation are currently unavailable. This is the topic of Chapter 3.

Figures 4 and 5 show, respectively, the transient temperature distribution of the detector

with perfect contact and with imperfect contact conductance (in which case the contact

conductance is arbitrarily set at 50,000 W/m 2 K for the six interfaces). This assumed

value of contact conductance produces an increase of the temperature at all the locations

The Effect of Contact Resistance 24



of the detector,as shownin Figure5. Thetemperatureis uniform acrosseachjunction

anddiscontinuousat the interfacesfor thenon-perfectthermalcontactbetweenlayers.

Figure6 presentsthe steady-stateresponseof the detectorfor differentvaluesof contact

resistanceas well as for perfect contact. As expected,the lower contactconductance

resultsin a higheroveralltemperaturerise at the activejunction. It is apparentthat the

contact resistanceeffect, if present,cannot be neglectedwithout underestimatingthe

responseof thedetector.Also, the curioussituationin Figures5 and6 in whichthetwo

componentsof the thermocouplejunction areat differenttemperaturesraisesa question

abouthowto interpretthetemperaturesin termsof thethermoelectriceffect.
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Figure 4: Temperature response of the notional detector of Figure 1 with perfect thermal

contact between all layers.
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Figure S: Temperature response of the notional detector of Figure 1 with a uniform

thermal contact resistance between the layers.
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Figure 6: Steady-state temperature response of the notional detector of Figure 1 for

different values of interlayer contact conductance.
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The transient temperature response of the active junction, when the detector is subjected

to a uniform heat flux of 1 W/m 2 on the upper surface of the absorber layer, is shown in

Figure 7. The response is quasi-first order. The time constant is defined as the time for

the temperature to undergo 63 percent of the temperature change from the initial to the

steady-state value. The responsivity of the detector is the difference between the steady-

state temperature of the active junction and that of the reference junction provoked by the

heat flux. Figure 8 shows a linear increasing dependence of the responsivity on the

thickness of the thermal isolation layer. However, the time constant also increases with

thickness.

300

250

200

/-_ 150

E 100

° /
!

0

Thermophysical properties as given
in Table 1; no contact resistance.

0 10 20 30 40 50

Time (ms)

Figure 7: Transient temperature response of the active junction of the notional thermal

radiation of Figure 1 detector with no contact resistance (thermophysical properties given

in Table 1).

The use of less dense materials such as Larc-Si and aerogels, having superior thermal

insulation properties, is anticipated to be the subject of future investigations. These
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materials could possibly lead to a lower thermal capacitance for a layer of equal

thickness, resulting in both a faster time response and a higher responsivity. One of the

problems with these new materials is that their thin-film thermal properties are unknown.

The numerical model developed in the current chapter is modified in Chapter 4 in order

to take into account a nonhomogeneous thermal impedance layer consisting of a mixture

of aerogel and carbon, or a mixture of Larc-Si and carbon, or a mixture of Parylene and

carbon.
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Figure 8: Time constant and responsivity of the notional detector of Figure 1 and Table 1

as a function of the thickness of the thermal impedance layer.
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Chapter 3: The Thin-Film Effect

3.1 Review of thin-film heat transfer

In Chapter 2 the effect of contact resistance on detector performance was considered. In

the current chapter we take up the question of the possible departure of thermophysical

properties from their bulk values due to the so-called thin-film effect.

The heat conduction mechanism occurs in solids through collisions among phonons and

electrons. In metals the main energy carriers are free electrons, while in insulators and

semi-conductors, the energy is mainly carried by phonons. The macroscale heat transfer

theories such as heat diffusion given by Fourier's law fail to describe the heat transfer

process in microstructures if they are not used appropriately. The classical Fourier's law

may be written

q = -kVT , (3-1)

where q is the heat flux, k is the thermal conductivity and, I7Y is the local temperature

gradient.

In situations where the characteristic length or/and characteristic time of a structure

approaches, respectively, the mean free path or the mean free time of the main energy

carrier, microscale heat transfer models are more appropriate. The classical macroscopic

Fourier's law defined by Equation 3-1 breaks down because the definition of thermal

conductivity depends on the existence of a gradient of temperature within the structure
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[Majumdar, 1993]. The macroscopic models assume that the physical structure is so large

and the time scale sufficiently long that sufficient collisions occur between the energy

carriers as to assure that a local thermodynamic equilibrium is reached. In fact, the very

concept of temperature at a given point is strictly defined only under the condition of

local thermodynamic equilibrium. Therefore a meaningful temperature can be defined

only at points separated by at least the mean free path of the energy carriers [Bejan,

1988]. We conclude that for heat conduction across a thin-film layer whose thickness

approaches the order of magnitude of the mean free path, the thermal conductivity of the

material cannot be defined as given by Equation 3-1. Because an insufficient number of

heat carriers are present within the material, the temperature field becomes discontinuous

through the layer and the temperature gradient concept looses its physical meaning within

the layer. Microscale heat transfer can occur either in length scale or in time scale or in

both scales. The two-step phonon-electron interaction model, the phonon-scattering

model, the phonon radiative model, and the thermal wave model are some of the

available microscale heat transfer models and are discussed by Tzou [1997].

An important issue of microscale heat transfer is the dependence of the thermophysical

properties of thin-films on the micro structure of those films. In a 1984 effort, Decker et

al. report that the measurements of the thermal conductivities of SiO2 and A1203 thin

films are apparently one or two orders of magnitude lower than those for the

corresponding bulk materials. They also report that the thickness dependence is more

pronounced for thermal conductivity than for the heat capacity and density in dielectric

thin-films. Nath et al. [1974] report similar behavior by measuring the thermal

conductivity of copper films ranging in thickness from 400 to 8000 A in the temperature

range 100-500 K. This decrease is attributed to a structural disorder inside the thin film

layer, to a large interface thermal resistance, or to the limitation of the mean free path.

Orain et al. [1998] also report a decrease of the thermal conductivity of ZrO2 films with
o

thickness ranging from 750 to 10,000 A deposited on A1203 substrates.

Based on kinetic theory, the thermal conductivity of dielectrics and semiconductors is

given by [Zima, 1960]
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1
k = -_Cvl , (3-2)

3

where C is the phonon specific heat, v is the speed of sound, and 1 is the phonon mean

free path.

Equation 3-2 shows that the thermal conductivity is directly proportional to the mean free

path of the main energy carrier. In thin films the mean free path is reduced from its bulk

value because of the scattering on the boundaries, and thus so is the thermal conductivity.

Also the mean free path being smaller in the transverse dimension of the film, the thermal

conductivity in that direction is smaller than that in the longitudinal direction. For a film

thickness much larger than the mean free path, the scattering being small, the decrease of

the thermal conductivity by scattering can be neglected. From Equation 3-2, it is clear

that the computation of an effective thermal conductivity of the thin film requires the

knowledge of the mean free path of the main heat carrier. However the contradiction of

using Equation 3-2 to explain departures from bulk thermal behavior in a mean free path

regime where Fourier's law itself probably does not apply is obvious and must be

recognized.

Kumar et al. [1994], using the Boltzmann transport theory, derived closed-form

expressions that predict the reduction in the longitudinal thermal conductivity (in the

direction parallel to the plane bounding the thin film) of thin metallic films due to

boundary scattering. Flik and Tien [1990] argue that since the thermal conductivity is

directly proportional to the mean free path, the reduction of the thermal conductivity

should be equal to the reduction of the mean free path. They use geometric assumptions

to evaluate the reduction in the component of the mean free path along the longitudinal

direction of the film due to the termination of the path lines at the boundaries. They

derive for the longitudinal conductivity of a thin metallic film, assuming that the path

lines originate uniformly along the transverse direction (direction normal to the plane

bounding the thin film) of the thin film,

k¢_,,, l+2filnl+fi+s 2 -1 2 1- cos 6-----(1-s 3), 6 <1, (3-3)
kbu_k _ l+6-s _ 3_6
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and

k_., 2 1
-1 ,6>1, (3-4)

kb,lk 3re 6

where 8 is the ratio of the film thickness to the mean free path, and s = (1 - 6 2)_ in

Equation 3-3.

Figure 9 shows the ratio of the "thin-film" longitudinal conductivity to the bulk

conductivity for a range of thicknesses determined using Equations 3-3 and 3-4. The

figure clearly shows the dependence of the thin-film thermal conductivity on the ratio of

the thin-film thickness to the mean free path length.
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Figure 9: The ratio of the longitudinal thin-film to the bulk conductivities as defined by

Equations 3-3 and 3-4.

3.2 The thin-film thermal conductivity anomaly as a roughness effect

The thermal conductivity is a parameter that has a direct influence on the accuracy of

models of heat conduction processes. The experimental studies reported in the open

literature that attempt to recover the effective thermal conductivity of a thin film fail to
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take into accountthe roughnessof thethin film. Theyseemto assumethatthethin-film is

completelysmoothor that its roughnessis negligible, Closed-formequationsof the

thermalconductivityof thin films, suchasEquations3-3 and3-4, requiretheknowledge

of themeanfreepathof the energycarrier,a propertythat isnot availablein the literature

for the materialsof the notional thermalradiationdetector.Whenthe film layeris very

thin (on the order of microns),its relativeroughnesscanno longerbe neglected.It may

behypothesizedthat roughnessplaysan importantrole in the apparentdeviationof the

propertiesof individuallayersfrom their bulk values.In otherwords,reporteddeviations

of thermalpropertiesfrom the bulk valuesmaybe anartifact of experimentaltechniques

thatignorethepossibilityof roughnesseffects.

The objectivehere is to determinewhetheror not unsampledsurfaceroughnesscould

possiblyexplain the observeddecreaseof thermal conductivity. In fact, no effective

conductivitydata are availablein the openliteraturefor the specialmaterials,suchas

Larc-Si andZinc-antimonide,that arebeingconsideredfor use in the notionaldetector.

One can then imagineperformingan experimentto definethe statisticaldescriptionof

surface roughnessfor a given sampleand then using this information and the bulk

thermal conductivity with an appropriate model to predict the effective thermal

conductivity.

A statisticaltechniqueis requiredfor solvingthe heat transferequationsdescribingthe

roughnesseffectfor verycomplicatedsurfacetopographies.

3.2.1 The random walk approach

The Monte-Carlo method, also called the method of statistical trials, is a system of

techniques that enables complex physical models of problems to be solved in relatively

simple manners. The computer is instructed to do most of the work. This approach is

limited only by the availability of adequate computer resources (mainly speed). In

Monte-Carlo methods, instead of directly solving an analytical problem, one "plays a

game" following rules similar to those governing the actual physical process. The game

has the same outcome as the actual physical process but is in some sense easier to play.
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The random walk is a Monte-Carlo method used to solve boundary-value and initial

condition problems. The random walk method enables problems with irregular

geometries and multiple dimensions to be solved using algorithms that are quite simple

compared to other methods such as the finite difference or finite element methods.

3.2.1.1 Presentation of the technique

In the current study, a two-dimensional steady-state heat conduction problem with no

internal heat generation is considered.

The mathematical formulation of the problem is

aZT(x,y) aZT(x,y)
_- - 0 (3-5)

ax 2 Oy_ '

with either

or

T=f(x,y) (3-6)

q(x,y) =0 (3-7)

specified on the boundary F. That is, the kind of boundary condition considered is either

specified boundary temperature or an
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Z
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Figure 10: Network of nodes for an arbitrary irregular geometry.

The Thin-Film Effect 34



One would like to computethe temperatureat a given point P(xo,Yo) in the two-

dimensional domain limited by the boundary F, as illustrated in Figure 10. The random

walk technique works as follow.

Starting at P(xo,Yo) a random number uniformly distributed between zero and unity is

drawn to determine in which direction to "step". In a two-dimensional net, one can step

with equal probability either to the north, the south, the east or the west with a step size

Ax in the x direction and Ay in the y direction. Having arrived at the appropriate

neighboring node, the same process is repeated to determine the direction of the next

step. This process is repeated until a boundary node is reached. Having arrived at a node

whose location is approximately on the boundary, the next step depends on the type of

boundary condition: either a specified temperature or an insulated boundary is

considered. When an insulated boundary node is reached, the next node in the random

walk is identical to the previous node, as in specular reflection. When a boundary node

with a specified temperature is reached, a counter (0is incremented by the value of the

temperature specified at that node. Then the whole process recommences at point

P(xo, Y0) and is repeated until a large number N of random walks has been completed.

Finally, after a sufficiently large number of random walks initiated a point P(x o, Yo), the

temperature at point P(x o, Yo) is estimated as (0/N .

The precision of the temperature computed this way depends on the value of the number

of random walks N and the fineness of the grid. The larger N, the more accurate the

result for a sufficiently fine grid. On the other hand increasing either N or the fineness of

the grid increases the computational time. A trade-off clearly exists between the precision

sought and the computer time needed to get that precision, assuming the grid is

sufficiently fine to provide the desired precision.

Another problem of using random walk methods is the lack of reproducibility of the

results if N is not sufficiently high. When running the same problem several times, one

never gets exactly the same results. This is due to the difference in the sequences of

random numbers generated for each experiment.
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Theinterestedreaderis referredto thebook by Shreider[1966] for additionalinformation

on this technique.

The flowchart given in Figure 11 illustrates the random walk techniquein a two-

dimensionalheatconditionproblemwithout internalheatgeneration.

f

Ax

Ay

T(Xb,yb) or q(xb,yb)=0

N

P(xo,yo)

_'0 -- 0
sum = 0

step in the x-direction

step in the y-direction

boundary condition
number of random walks

starting point

counter

Figure 11: Flowchart of a two-dimensional random walk (continued on next page).
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Draw a random number, r

I I I

0<r <=0.25 [ 0.25<r<=0.5 [[ 0.5<r<=0.75
I

X=X

y=y+Ay
I

Set C

I

X=Xy = y -Ay
I

I _et_ I

I

x=x+Ax Iy=y
I

Set E

I I I

Yes

Boundary condition

I

0.75< r <=1

I

X=X -Ax

y=y

I

Set F I

No

T(Xb,Yb) q=0

(o = (o + T (x b , Yb )

sum = sum + 1

Yes

II I[

+
y = y - Ay/2

++4>
y=y+Ay/2 x=x-Ax/2 x=x+ Ax/2

I I

Figure 11 (continued): Flowchart of a two-dimensional random walk.
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3.2.1.2 Results

The program randwalk2d.cpp listed in the Appendix B can be used to determine the

temperature profile for different geometries. The random walk method developed is

benchmarked using a problem for which exact closed-form solutions are available.

The benchmark problem considered using this technique is one-dimensional steady-state

heat conduction in a flat plate, as illustrated in Figure 12.

T(x,1/2) = 100

1/2

insulated insulated

X

/
T(x,- 1/2) = 0

Figure 12: One-dimensional, steady-state heat transfer in a flat plate.

The analytical temperature distribution is

Texac t (y) = 100y + 50 (3-8)

It is convenient to define an error c e= I__I__T,.w(Y,)-T_(Y,)
Hy i:1 Laact(Y,)

× 100% (3-9)
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In Equation3-9, T,., (y) is the value of the temperature obtained using the random walk

method and fly is the number of discrete divisions in the y direction.

The random walk code is executed for different values of the number of random walks,

N. The reproducibility at a given N is studied by running the code several times with

different starting seeds in the pseudorandom number generator used to draw the required

random number. The error c is computed for each run.

Table 2 displays the results obtained for fives runs at a given value of N and shows that

the error is different from one run to the next. The lack of reproducibility from one run to

the next is illustrated in Figure 13.

Table 2: Error values for different runs of the random walk solution to the problem

defined by Figure 11 with ny = 50.

Number of

random walks, error, e (%, Equation 3-9), ny = 50

N

first run second run third run fourth run fifth run

50 19.26 17.91 16.91 16.16 10.57

100 12.48 7.07 10.22 11.61 10.53

250 8.72 5.71 8.67 6.34 7.03

500 5.81 4.19 3.33 4.29 5.20

1000 4.20 3.78 2.90 3.27 2.76
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Figure 13: First two runs for N = 50 compared with exact temperature distribution for

the problem defined by Figure 12.
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Figure 14: First two runs for N = 1000 compared with the exact solution for the problem

defined by Figure 12.
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Table2 andFigure 14 showthat the lack of reproducibilitydecreasessignificantlywhen

the number of random walks increases.The value of ny is fifty for each of these

experiments.

Table3 presentsthe influenceof thenumberof randomwalks on themachinetime (SGI;

Model: Indigo2 XZ, Extreme;OperatingSystem:IRIX Release6.5) and on the mean

error. The machinetime is the time it takesto completethe computation,andthe mean

error<e>is obtainedby settingTr, in Equation 3-9 equal to the arithmetic mean value of

Tr,, <T,._>, for all the runs; that is,

< E.(y,) >
_ _ct _ Y i _

< e >
F/y z_.ai=l Laac, (Yi)

x loo% (3-1o)

nr

and <T,...(y,) > =--__T,...(y,) , (3-11)
nr i=1

where n,. is the number of runs for a given number of random walks, N.

As one would anticipate, by increasing the number of random walks, the machine time

increases and the result becomes more accurate. Once again the number of y divisions,

ny, is fifty for each of these numerical experiments.

Table 3: Influence of the number of random walks on the machine time and the mean

error for the problem defined by Figure 12 with ny = 50.

Number ofrandom
Machinetime(s) Number ofruns, _ Mean error(%)

walks, N

50 8 5 7.88

100 17 5 3.61

250 44 5 2.90

500 88 5 2.52

1000 176 5 1.73

5000 885 1 1.54

The Thin-Film Effect 41



Figure 15 shows a comparison between the result obtained for just one run with 5000

random walks and the exact solution. The error being only about 1.5 percent, the

temperature obtained by the random walk technique can be acceptably accurate.
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Figure 1_: Comparison of the temperature distribution computed using the random walk

method with N = 5000 and ny = 50 with the exact solution for the problem defined by

Figurel 1 with.

The tWOldimensional random walk technique has also been used to compute the

temperature distribution when surfaces are modeled as trigonometric functions, as

illustrated in Figure 16.

Figure 17 represents the temperature profile at x = 5 tam in Figure 16 computed using the

random walk method for different values of the number of walks N.
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insulated

yl(X) = Sin(X) + 1.5

!
y2(x) = COS(X)- 1.5

T2(x) = 0 K

Figure 16: Irregular geometry representing a layer of variable thickness.
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Figure 17: Comparison of the temperature distribution computed using the random walk

method at x = 5 _tm in Figure 16 with ny=50, N = 1000, 5000, and 10000.
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3.2.2 Effective thermal conductivity of a thin-film layer of irregular thickness.

The investigation of the effective thermal conductivity of a thin-film layer based on a

roughness effect begins with the simple two-dimensional model illustrated in Figure 18.

The idea is that if the results obtained using this model are consistent with the expected

trend, that is a decrease of the thermal conductivity of the thin-film as the roughness

increases, then more realistic surfaces would be considered. It is convenient to use a finite

difference model in order to determine the temperature distribution for the geometry in

Figure 18. The finite difference method is conceptually simple for problems having

regular rectangular boundaries. It involves the use of nodal networks, finite difference

approximations for derivatives in space and time, standard energy conservation

formulation concepts, and computer solution of systems of algebraic nodal equations.

The control volume approach is used for the discretization of the governing equations.

The C++ code eff cond.cpp listed in Appendix C and developed for computing the

temperature profile using the finite difference method in a two-dimensional regime

without internal heat generation is adapted from Vick [1998]. If this study indicates that

an unsampled roughness effect can explain the observed thin-film effect, then the random

walk method will be used to study more realistic geometries.

Y T=100 K

R

Insulated Insulated

H

0 k

T=0K

Figure 18: Model of a hypothetical two-dimensional rough surface.
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Here, the effective conductivity ke# of a real surface is defined as the conductivity of a

hypothetical plane surface having the following three properties:

• the same length L as the surface in Figure 18,

• the same total heat flux as the problem defined by Figure 18,

• a uniform thickness of H + R / 2, where H and R are defined in Figure 18.

A discretized version of Figure 18 is shown in Figure 19. Because the problem is two-

dimensional, the total heat flux in the y direction is approximated using the bottom row of

control volumes in the Figure 19. Then for a given control volume at the bottom of

Figure 19, the heat flux through the ith heat flow channel is approximated by

Qi = -kbu,k T(xi ,Ay/2)-T 1 Ax_ (W]m). (3-12)
Ay/2

The total heat flux is then approximated by

ii k ii

QT = ZQil = 2_ [(T(x_'Ay/2)-T1)Ax_]
(W/m), (3-13)

where ii, is the number of control volumes in the x direction, and kbu_k is the bulk

conductivity of the material.

The total heat flux of the hypothetical flat surface is given by

L-r1
Q = -keeL (W]m) . (3-14)

(H +R/2)

Equating Equations 3-13 and 3-14 yields

ii

k,#_(H+R/2) 2 ___[(T(x,,Ay/2)_T1)Ax, ] (3-15)
kb.lk L r2 - rl 1
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Figure 19: Control volume discretization of the hypothetical two-dimensional rough

surface of Figure 18.
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Figure 20: ratio of the effective thermal conductivity to the bulk thermal conductivity for

the problem defined by Figures 18 and 19 with forty control volumes in the x direction
and L/H = 5.
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In order to study how the roughness,representedby the nondimensionalquantity

R/(R+H) influences the ratio ke#/kbu_k, the value of R is set constant in the finite

difference procedure and the ratio is computed for different values of H. Figure 20

illustrates the result obtained.

The trend of Figure 20 is completely the opposite of what is expected. That is if

unsampled roughness is to account for the observed [Nath and Chopra, 1974; and Orain

et al., 1998] behavior of effective thermal conductivity in thin-film layers, a decrease of

the effective thermal conductivity is expected as the roughness increases. The effective

conductivity for the model of Figure 19 exceeds the bulk value when the roughness

increases, and approaches the bulk value as the surface becomes smoother . Looking

more closely at the geometry Figure 18, one can see that when H becomes smaller

compared to R, the surface at higher temperature T1 is closer to the plane at temperature

T2 so that the local gradient of temperature is larger. The larger temperature gradient

yields a higher total heat flux and therefore a higher effective conductivity.

We conclude that the approach used is unable to reproduce the trends reported in the

literature. In other words, unsampled surface roughness cannot explain experimental

results. Therefore, the random walk technique is not considered further for studies with

more realistic surface models.

Evidently other approaches such as experimental measurements or parameter estimation

techniques will have to be used to determine how the thermal conductivities for the

materials of current interest are affected by the thin-film effect.

In Chapter 4 we investigate the effect on effective thermal and electrical conductivity of

doping the thermal impedance layer with conducting material such as finely divided

graphite.
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Chapter 4: Effect of Doping the Thermal Impedance

Layer with Conducting Particles

In the previous Chapter we investigated and rejected surface roughness as a possible

explanation for the so-called "thin-fill" effect. In this Chapter we consider the effect on

thermal and electrical conductivity of doping the thermal impedance layer with finely

divided carbon.

The NASA team led by Mr. Edward H. Kist, Jr., has proposed that the thermal impedance

layer of the thermal radiation detector be doped with up to fifty percent by volume of

finely divided graphite. The reason for this is to decrease the internal electrical resistance

of the thermal impedance layer, thereby assuring the electrical connection between the

two junctions of the thermal radiation detector. As stated before, the geometry and size of

the detector preclude linking the two junctions by a more traditional conductor.

Experiments carried out by Sorensen [1998] showed a decrease of the electrical

resistance of thin layers of Larc-Si doped with powdered graphite. Minimization of the

electrical resistance of this layer is a key factor for reducing an important noise source in

radiation detectors. Johnson noise in an electric circuit is known to be directly

proportional to the square root of its electrical resistance [Lenoble, 1993]. The noise

sources in thermal radiation detectors are discussed by Lenoble [1993] and Haeffelin

[1997].

An obvious concern is that reduction of the electrical resistance would also lead to

reduction of the thermal resistance and concomitant reduction of the detector's
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responsivity.The objectiveherethen is to developananalyticalmodel that predictsthe

performanceof the detectorwhosethermal impedancelayer is dopedwith conductive

particles.This situationis shownin Figure21. Themodel is appliedto the specificcase

of aParyleneimpedancelayerdopedwith carbonparticles.

i Absorber layer (10 gin)

I Zinc-an_imonide layer (1 gin)

Platinum layer (1 _lm)

Doped theresa1 i_peda_ce Iayer

(25 t_:m)

Figure 21: Detector geometry with graphite doped thermal impedance layer.

The behavior of the thermal radiation detector is studied first using a model of the

detector derived from a model by Vick and Scott [1998] and then using micromechanical

models.

4.1 Heat transfer in a heterogeneous material modeled as a coupled, two-step

process.

4.1.1 Formulation

The transient thermal response of a heterogeneous material depends on the micro structure

of the material. The one-dimensional heat transfer model developed by Vick and Scott

considers relatively small spherical particles (the Biot number of less than 0.1) embedded

in a matrix. In this model heat is first conducted to the matrix material from the

boundaries and then transferred from the matrix to the particles through a contact
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conductance.Theparticlesarenot in perfectthermalcontactwith the matrixmaterialand

they can receiveheat only from the matrix. The boundariesof the thermalimpedance

layerin the currentversionof the modelarethe two zinc-antimonidelayersof the active

andreferencejunctionsshownin Figure21.

Onthebasisof anenergybalanceVick andScotthaveproposedthat

C., OT., = K o2T'' -H(T., -Tp) (4-1)
bt bx 2

and

Cp Ot -H(T -Tp) (4-2)

for the doped matrix for one-dimensional transient heat flow.

In Equations 4-1 and 4-2 C., = (1 - f)(pc)., is the heat capacity of the matrix per total

volume and K = (1- f)k., is the thermal conductivity of the matrix-particle system.

Cp = f(pC)p is the heat capacity of the embedded particles per total volume, andfis the

volume fraction of the embedded particles. The coupling coefficient between the matrix

and the particles is H = h(NAp ), where Ap = rc a2 is the surface area of a particle, h is the

contact conductance, and N is the number of particles per volume.

This model is analogous to the two-step model developed by Tzou [1997] in order to

describe the microscale heat transfer process for metals in which the electron gas is

heated first and then the heat is transferred to the metal lattice. It holds for each of the six

layers of the thermal radiation detector, but the number of particles is set equal to zero for

layers with no carbon particles. The boundary conditions are a specified temperature at

the base of the detector and a constant and uniform heat flux applied at the upper surface.

The coupled equations, Equations 4-1 and 4-2 are not solvable analytically. Vick and

Scott used a fully implicit finite difference numerical approach to discretize those
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equations. The fully implicit discretization makes the results unconditionally stable. The

results of the discretization are

rr_l'J+l - rr_'J K rr_l'j - rr_l'J-1- T,;,,j ) K HAx(T,;,,j *C,,Ax (T,_,,j i-1 i j i i- -T/,j)
At Ax Ax

(4-3)

and

i i-1

'J - HAx(T,;,,j - T/,j ) ,C p Ax T_ - T/,j
At

(4-4)

where j and i are the indices of the nodes and time steps, respectively.

To solve these coupled equations, T/,j from Equation 4-4 is first substituted into

Equation 4-3 and the resulting tridiagonal matrix is solved for the temperatures T_,,j at

each time step. The values of T_,,j are then substituted into Equation 4-4 to compute the

particle temperature T_,j within the thermal impedance layer.

The program heterog.cpp listed in Appendix D determines the temperature response of

the detector for different values of the contact conductance between the carbon particles

and the matrix material. The values of the contact conductance and the particle diameters

are chosen so that the Biot number always remains small (less than 0.1). In this case the

lumped capacity approximation is valid within each particle; that is, temperature

gradients are negligible within a given particle.

4.1.2 Results

In all the cases considered in this chapter, the contact resistances between the different

layers of the thermal radiation detector are assumed negligible, and the carbon particles

are assumed to be uniform in size. It is recognized that this latter assumption would be

difficult to realize in practice. However, the assumption approximates the situation in

which a mean particle size is used to represent some size distribution. The contact
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resistances between the layers forming the detector are neglected in order to focus on

only one phenomenon at a time.

Studies of the effect of three parameters on detector response were carried out using the

two-step model process. The three parameters are:

• the volume fraction, f, of the particles,

• the contact conductance between the particles and the matrix and

• the particle size.
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Figure 22: Temperature response of the active junction with h = 50 W/m 2 K.

The model developed here holds only for a matrix with dimensions much greater than a

particle diameter and with a small volume fraction of particles within the matrix. Vick

and Scott do not specify the volume fraction limit at which the model breaks down.

Therefore the model is used here only for volume fractions of particles ranging between

zero and thirty percent.
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Figure 22 shows the transient temperature response of the active junction for four cases

of particle volume fraction, f. The contact conductance between the particles and the

matrix is 50 W/m 2 K in all four cases. The figure reveals an increase of the steady-state

temperature of the active junction of the detector as the particle volume fraction

increases. This result seems to be counterintuitive; that is, it is expected that the thermal

impedance would decrease as the volume fraction of conductive particles increased.
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Figure 23: Effect of contact conductance between the particles and the matrix on the

steady-state temperature rise of the active junction.

Figure 23 shows that the contact conductance between the matrix and the particles has

negligible effect on the response of the thermal radiation detector. The greatest change of

the response of the detector with respect to the contact conductance is less than one

percent for the range of particle volume fractions considered in this study.
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For the geometry and range of parameters investigated, the contact conductance has more

effect on the temperature of the particles than on the temperature of the active junction of

the detector, as shown in Figure 24. The heat is transferred from the matrix to the

particles; therefore when the contact conductance increases, the time lag of the particles

decreases. Note that the curve labeled "matrix" in Figure 24 actually consists of three

superposed curves corresponding to the three values of h. Therefore it is clear that the

contact conductance has little effect on the matrix temperature. The time lag of the

particles decreases rapidly as the contact conductance increases. When h is about 10 W/

m 2 K the time lag between the matrix and particle temperatures is effectively zero.
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Figure 24: Matrix and particle temperatures at x = 12 _tm for different values of the

contact conductance.

The effect of the particle size on the steady-state response of the detector is shown in

Figure 25. The range of particle diameters was chosen so that the lumped capacity

assumption holds. In this range it was found that the particle size has a very small effect
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on the output of the detector. The maximum temperature change of the active junction is

less than one-third of a percent.
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Figure 25: Particle size effect on the steady-state temperature rise of the active junction

for a volume fraction of particles of ten percent.

4.1.3 Discussion of the results

The temperature response shown in the Figure 22 for the thermal radiation detector does

not agree with what one would expect by doping a material of low thermal conductivity

(the conductivity of the Parylene is 0.084 W/m 2 K) with a material of higher thermal

conductivity (the conductivity of the carbon particles is 1.59 W/m 2 K). In Equation 4-1 of

the two-step transient model, the conductivity K is equal to (1- f)k .... where km is the

conductivity of the matrix. This expression for K requires that the thermal conductivity

decrease as the volume fraction of particles increases, with the result that the temperature
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of the activejunction increases.With thismodel,the steady-statetemperaturedistribution

dependsonly on the thermal conductivity of the matrix and the volume fraction of

particles, and not on the thermal conductivity of those particles. The steady-state

temperatureincreasesasthevolumefractionof theparticlesincreases.This is contraryto

intuitive expectationsas well asto observationsof decreasesin electricalresistanceof

Larc-Silayerwith anincreasedloadingof graphiteparticles[Sorensen,1998].

It is hypothesizedthat this two-stepmodelcould be improvedby somehowtaking into

account the thermal conductivity of the particles, even if the lumped capacity

approximationis assumed.One way would be to solve the Laplaceequationfor heat

conductionsubjectto the conditionsof continuityof the temperature(assumingperfect

contact betweenthe particlesand the matrix) and heat flux at the interface of each

particle and the surrounding matrix. This direct method would of course be

computationallyintensive.The alternativeapproachin this thesis,describedbelow, is to

compute equivalent properties for a heterogeneousthermal impedancelayer. The

responseof the detectoris then analyzedusingthe analyticaltransientmodeldeveloped

in Chapter2.

4.2 Heat transfer in a heterogeneous material using micromechanical property

models.

4.2.1 Thermal analysis

The determination of the thermophysical properties of heterogeneous mixtures has been

and continues to be a very active area of research because of the wide range of

applications of these materials in engineering [Meredith et al., 1962]. Although some

properties of these mixtures, such as the specific heat, do not present any difficulties,

other thermal and transport properties, such as thermal or electrical conductivities,

require more sophisticated treatments. The simple mixing rules that consist of averaging

the transport properties of pure phases to get those of the mixture do not apply in these

latter cases. The complexity of the problem increases for more concentrated mixtures.
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The primary interest here is the determination of the effective thermal conductivity and

heat capacity of a two-phase composite material consisting of spherical carbon particles

embedded in a continuous matrix.

4.2.1.1 Effective thermal capacity of the mixture

The effective heat capacity of a mixture can be directly obtained using a simple mixing

rule. The effective specific heat of the matrix-particle mixture is

m

c = f;c. + f,;c., (4-5)

where subscripts p and m indicate "particle" and "matrix" respectively and f' is the

appropriate mass fraction,

f i'- mi (4-6)
m mixgure

Alternatively, we can define the volume fraction

f,_ V_ , (4-7)
Vmi_ture

with i = p or m.

The relation between fi' andf is fi'= P_ f , (4-8)
P

m

where p is the density of the mixture,

-- ppV p+p.,V.,
p = (4-9)

gmi_ture
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Equation 4-5 is a statement of conservation of energy, and Equation 4-9 is a statement of

conservation of mass.

Combining equations 4-5 and 4-6 yields

pc = f(pc)p + (1 - f)(pc),,, (4-10)

In Equation 4-10, pc is the effective heat capacity of the matrix-particle mixture andfis

the volume fraction of the particles. Equation 4-10 is valid for both dilute and

concentrated mixtures.

4.2.1.2 Effective thermal conductivity

The theoretical investigation of the equivalent

distinction between dilute and concentrated mixtures.

thermal conductivity requires the

4.2.1.2.1 Dilute mixtures

Dilute mixtures are mixtures in which the disturbance of the lines of heat flow by one

particle is independent of the disturbance provoked by any other particle. For these dilute

mixtures, Maxwell [1954] derived an equation for the effective electrical conductivity by

solving the Laplace equation for a single sphere in a matrix. The mathematical behavior

of the physical properties thermal and electrical conductivity being analogous, the result

obtained for the effective electrical conductivity is applicable for the effective thermal

conductivity.

The result obtained by Maxwell when the thermal conductivity is substituted for

electrical conductivity, is

_, K,1 +2-2f(1-K,1)

K,1 + 2+ f(1-K,1)
(4-11)
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m

where K is the relative effective thermal conductivity that is the ratio of the effective

thermal conductivity of the mixture, k, to that of the matrix, k,,. The quantity Kd is the

ratio of the thermal conductivity of the spherical particles, k_l, to that of the surrounding

matrix.

Equation 4-11 is valid regardless of the size (particles of uniform size) and spatial

distribution (random or ordered dispersions) of spherical particles as long as the volume

fraction of the particles is less than 0.2 and the contact resistance between the particles

and the matrix is negligible.

Hasselman and Johnson [1987] modified the theory of Maxwell and derived an

expression for the effective thermal conductivity of mixtures with a thermal contact

resistance between the particles and the matrix. They found that the effective thermal

conductivity of a given composite system and dispersed phase do not depend only on the

volume fraction of the particles but also on the particle size. They show that

/ /2+K_l + + 2 K_ +

_= ah

+2k_, +2 +f 1-K_,+k_']
, oh)

(4-12)

where h is the contact conductance between the spherical particles and the matrix

material, kd is the thermal conductivity of the particles, and a is the diameter of the

particles. Like the Maxwell expression, Equation 4-12 is valid only for dilute mixtures.

When h goes to infinity Equation 4-12 reduces to Equation 4-11.

4.2.1.2.2 Concentrated mixtures

The determination of the effective properties of composites in which the volume fraction

of the dispersed phase is high (f > 0.2) presents increased mathematical difficulties

[Meredith et al., 1962]. As the volume fraction of particles increases, the heat flow fields
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surroundingthe particlesbeginto interact.The microstructureof the compositematerial

beginsto play a more important role and so doesthe manufacturingtechniqueupon

whichthemicrostructuredepends.The effectivepropertiesdependon thearrangementof

theparticleswith respectto thedirectionof theheatflow lines.Manypredictiveformulas

of the effective thermal conductivity have been derived for different geometriesand

arrangementsof the dispersedphase.Lord Raleigh[1964] found that for a cubicarrayof

sphereswheretheheatflow field is on theaverageperpendicularto a sideof thecube,the

effectivethermalconductivityis givenby

= 1- 3f (4-13)
(2 + K,)/(1-K,)+ f -O.525(1-K1)f 1°/3/(4/3+ K1)

Equation 4-13 is valid for f less than rc/6o Meredith and Tobias [1962] derived another

equation for K for the same conditions using a different potential function. They found

that

-- 3f

K =1- (2 +K_)/(1-K_)+ f-l.315(1-K_)f 1°/3/[4/3+K_ +0.409(1-Ki)fT/3] (4-14)

Equations 4-13 and 4-14 are valid for the cases of ordered arrangements of the particles

where the position of each particle is known and the locations of the particles are chosen

so that they are symmetric and thus produce fewer interactions among particles. The

general results for randomly distributed particles are quite different. A large number of

relations exist in the literature for the computation of the effective thermal conductivity in

the case of randomly distributed spherical particles in a matrix. The relation derived by

Meredith and Tobias [1962] is used in the current investigation. For two-phase mixtures,

Meredith and Tobias found that

L2(K, -a)i/L (2-f)(K,+2)-(K,-1)f/
(4-15)

The maximum and minimum values of the thermal conductivity are obtained in the

following limiting cases [McLachlan, 1990] :
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• theparticlesof the suspendedphaselink up parallelto the directionof the mean

heatflow, asin Figure26 (a).

• theparticlesof the suspendedphaselink up perpendicularto the directionof the

meanheatflow asin, Figure26 (b).

heat lirection

(a)

heat irection

(b)

Figure 26: (a) lamina parallel to the heat flow direction; (b) lamina perpendicular to the
heat flow direction.

The effective thermal conductivities corresponding to these two cases are, respectively,

the arithmetic mean and the harmonic mean of the thermal conductivity of the matrix and

the particles. That is,
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m

k = fk d + (1 - f)k., (4-16)

and

1/-k= f /k d +(1- f)/k., (4-17)

m

In Equations 4-16 and 4-17 k is the effective thermal conductivity, kd the thermal

conductivity of the particles and km the thermal conductivity of the matrix. Note that

Equations 4-16 and 4-17 follow directly from the limiting cases of the conductance of

parallel and series networks, as shown if Figure 26.

4.2.1.3 Results

The effective thermal conductivity of dilute mixtures is governed by the magnitude of the

parameter k_l/(ah), as described by Equation 4-12. In a matrix doped with very small

particles this term can have a strong influence on the effective thermal conductivity, as

shown in Figure 27. The effective thermal conductivity is maximum when the contact

between the matrix and the particles is perfect. The effective thermal conductivity is

lowest when the nondimensional parameter k_i/(ah) goes to infinity because of the

additional thermal resistance to the heat transfer that builds around the particles. The

determination of the contact resistance between the particles and the matrix would be a

challenging experimental problem because of the dimensions of the detector. To obtain a

first approximation of the effective thermal conductivity, the contact conductance term is

neglected in this current effort and thus the Equations 4-11 and 4-15 are used in

determining the effective thermal conductivities. The use of these two equations assumes

randomly distributed particles in the matrix. The computer code homog.cpp listed in

Appendix A has been modified to take into account the dependence of the heat capacity

and the thermal conductivity of the thermal impedance layer on the volume fraction of

the particles.
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Figure 27: Effective thermal conductivity of the doped thermal impedance layer for Kd =

km/kd = 18.93 and for a range of kd/ah.

The effective thermal conductivity of the thermal impedance layer is shown in Figure 28

for values of the particle volume fraction of up to fifty percent. An increase of the

effective thermal conductivity of the matrix occurs as the volume fraction of the particles

increases. Also presented in that figure are the two limiting cases, Equations 4-16 and 4-

17. The effective thermal conductivity is bounded by these two limiting cases for the

entire volume fraction range. It is clear that using one of these two limiting cases would

lead to important errors in the value of the effective thermal conductivity, assuming the

other models are correct. Equation 4-15 being in good agreement with the Maxwell

expression, Equation 4-11, for a volume fraction less than twenty percent, it is used for

computing the effective thermal conductivity for the entire range of values of the particle

volume fraction.
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Figure 28: Prediction of the effective thermal conductivity of the doped impedance layer

for km= 0.084 W/m K and kd = 1.59 W/m K.
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Figure 29: Active junction transient temperature rise of the detector with doped thermal

impedance using homogeneous approximations method for a range of values of the

volume fraction of the particles and kd/(ah) = 0.
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Figure 29 shows that the temperature of the active junction drops as the volume fraction

of the particles increases, as expected. As the effective thermal conductivity of the

impedance layer increases, more heat is transferred through the detector. The matrix

being doped (perfect contact) with better thermally conducting particles, its ability to

transfer heat to the layers below is improved. This is in keeping with the electrical

conductivity experiments reported by Sorensen. Although the heat capacity of the matrix

increases as the volume fraction of particles increases, Figure 29 shows a faster time

response of the detector with increased particle volume fraction; that is the lower steady-

state temperature is reached more quickly.

Figure 30 shows how the steady-state temperature of the active junction and the

corresponding potential difference decrease when the particle volume fraction is

increased. The temperature drops from about 300 to 75 _tK and the potential difference

from about 0.28 to 0.008 _tV as the volume fraction goes from zero to 50 percent. The

doping of the matrix by the particles greatly decreases the responsivity of the detector.
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Figure 30: Active junction steady-state temperature rise and corresponding potential

difference (Seebeck coefficient x Temperature Rise) for a range of values of the volume

fraction of the particles.
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Finally the temperature distribution through the detector with the thermal impedance

layer doped with fifty percent of particles is shown in Figure 31. The temperature

gradients are smaller than those in Figure 4 but the temperatures of the two layers

forming each junction are still essentially uniform through the junction. While the

performance of the thermal impedance layer is diminished, the temperature of the

reference junction remains that of the aluminum substrate. At this concentration of

particles, the steady-state condition is reached in about ten milliseconds. That is, the time

response of the doped detector is almost three times faster than that of the configuration

without particles.

Figure 32 shows the steady-state temperature distribution through the detector computed

using the two-step process model and the macromechanical model with thirty percent of

particle volume fraction, and that of the undoped thermal detector. The contact

conductance h is fixed high enough so that it can be assumed perfect contact between the

matrix and the particles.

The use of the mixing rules for computing the effective thermal capacity and predictive

formulas for the effective thermal conductivity of the matrix and particles gives results

that are in accord with intuition. Although the predictive correlations start to break down

for higher values of volume fraction, results given by the homogeneous approximations

encompassed by Equations 4-10 and 4-15 are more realistic than those for the two-step

model reported in Section 4-1.
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Figure 31: Temperature profile through the detector doped with fifty percent of carbon

particles using the homogeneous approximations method to estimate the thermal

conductivity and the heat capacity of the thermal impedance layer.
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Figure 32: Comparison of steady-state temperature profile through the detector obtained

using (a) the two-step model, with (c) that obtained using the micromechanical model,

and (b) the undoped detector model (the thermal impedance layer of the detector is doped

with thirty percent of particles for the first two cases).
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4.2.2 Electrical analysis

4.2.2.1 Effective properties

The effective electrical conductivity of the system composed of a matrix doped with

conductive particles is obtained using the same equations derived for the effective

thermal conductivity (Equations 4-10 through 4-17). The objective is to determine how

the effective electrical resistance between the upper surface (S1) and the lower surface

($2) of the thermal impedance layer, illustrated in Figure 33, changes as the volume

fraction of the particles increases. The electric current flow is from S1 to $2 and the other

two boundaries of the thermal impedance are assumed to be electrically insulated.

S1

,/

w

/ L
/

/

$2

Figure 33: Thermal impedance layer doped with particles.

The heterogeneous matrix-particle system is electrically modeled as a homogenous

material with effective electrical properties. Based upon the effective themal conductivity

equations, the relative effective electrical conductance is given by

X = I2(AI +2)+2(A 1-1)f.lI(2-f)(A, +2)+2(A _-1)f-

L2(A, + 2)-(A, -1)f/L (2- f)(A, + 2)-(A1 -1)f
(4-18)
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m

where A is the relative effective electrical conductivity; that is, the ratio of the effective

electrical conductivity of the mixture, o-, to that of the matrix, cr.... and the quantity A1

is the ratio of the electrical conductivity of the spherical particles, o-i, to that of the

surrounding matrix.

The electrical conductivity for the two limiting cases, i.e. Case (a) and (b) of Figure 26,

is, respectively

m

o-= fo- d + (1- f)o- (4-19)

and

m

1�or = f /cr d + (1- f)/cr (4-20)

/---_

The effective electrical resistance IR) between the surfaces $1 and 82 of the thermal

impedance layer is a function of the cross-sectional area S, the length L, and the effective

resistivity(_ = 1) of that layer; that is,

W
= -- (4-21)

R _0 S

4.2.2.2 Results and Discussions

The effective electrical resistance is determined using the homogeneous approximations

for a Parylene layer with embedded carbon particles. The experimental determination of

the electrical resistance actually underway at NASA Langley Research Center is done for

a Larc-Si matrix with embedded carbon particles. The thermophysical properties of this

new material being currently not well known, Parylene is considered in this investigation.

However, the same equations could be used latter on when the properties of the Larc-Si

are known.
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The resistivitiesof Paryleneandcarbonarerespectively6x1014and 7.27x104 fUlm -1.

The resistivity of Parylenebeing severalorders of magnitudehigher than that of the

carbon,Equations4-18through4-20canbesimplifiedandbecomerespectively,

o-= Axo-., (1+ f)(2+ f)x
= (1- f)(2-f-) o-.,

(4-22)

m

o- = fo- d , (4-23)

-- O- m

and o- - (4-24)
1-f

Figures 34 and 35 present the behavior of the effective resistivity and electrical resistance

of the thermal impedance layer as the volume fraction of the particles increases. Although

the figures show decreasing resistivity and electrical resistance, these two properties still

remain far too high. The electrical conductivity of the Parylene is so low (r_m =

0.167x10-14fU1m -1 ) [Parylene Coating Services, 1999] that doping it with the carbon is

not able to sufficiently improve the electrical properties of the thermal impedance.

Another factor that influences the electrical resistance is the ratio W_s. This multiplying

factor of the resistivity is equal to 7x103 for the dimensions of the thermal impedance

(square cross-section with L = 60 ¢/m and w = 25.4 ¢/m ). The results show that doping

the thermal impedance leads to a decrease in the electrical resistance. The decrease would

be greater if the matrix had a much higher electrical conductivity to begin with.

The limiting cases, Equations 4-23 and 4-24, are not shown in Figure 31 because of their

order of magnitude compare to that of Equation 4-22.

The approach presented here could be used to characterize the electrical performance of

other combinations of matrices and particles, and different dimensions of the thermal

impedance layer.
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Figure 34: Effective resistivity of the thermal impedance layer defined by Figure 33 with
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Figure 35: Effective electrical resistance of the thermal impedance layer defined by

Figure 33 with L = 25.4 btm and S = 60x60 btm 2.
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Chapter 5: Conclusions and Recommendations

5.1 Conclusions

Several results follow and conclusions can be drawn from the research reported in this

thesis:

. An analytical model based on the orthogonal expansion technique has been

developed to characterize the effect on the performance of the thermal

radiation detector of hypothetical contact resistance between the layers of

detector.

. The model shows that the existence of a contact resistance yields a greater

temperature response of the detector. For example the steady-state

temperature response of the detector rises from about 300 _tK for a perfect

contact between layers to 600 _tK for an hypothetical 10,000 W/m 2 K contact

conductance between the layers.

. The responsivity and time response of the detector both increase as the

thickness of the thermal impedance layer increases. This suggests that an

optimum configuration may exist within the constraints of geometry and input

signal strength.

. In order to investigate the possible effect of interface roughness on thermal

conductivity, the random walk technique has been adapted for solving

conduction heat transfer problems in two-dimensional geometries with

specified boundary temperatures or insulated boundaries. The reproducibility
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of the method is benchmarked by solving the special case of a one-

dimensional heat conduction problem in a flat plate. Both the precision of the

method and the machine time increase as the number of random walks

increases.

The roughness effect model is unable to reproduce the decrease of the

effective thermal conductivity of thin-films layers reported in the literature,

and must be rejected as a possible explanation of the so-called thin-film effect.

A two-step model is used to characterize the heat conduction in the thermal

impedance layer doped with conducting particles. The model predicts that by

doping the thermal impedance layer with particles with higher thermal

conductivity, the steady-state temperature response of the detector would

increase, which is a counterintuitive.

The detector with doped thermal impedance layer performance is also

investigated by determining effective electro- and thermophysical properties

of the matrix-particle system using micromechanical models. Doping the

thermal impedance layer of the matrix by conducting particles is shown to

decrease the thermal impedance of the detector, as expected. As a result the

detector responsivity decreases significantly. However the time response of

the doped detector is found to be almost three times faster than that of the

configuration without particles.

The decrease of the electrical resistance of the Parylene layer doped up to 50

percent by carbon particles does not have a significant effect on the electrical

performance of the notional detector.

The thermal contact resistance and the micromechanical mixture models are

expected to be useful in the ongoing parameter estimation activity in the

Thermal Radiation Group.
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5.2 Recommendations

Several recommendations can be drawn from the research reported in this thesis:

For further research in the development of the notional thin-film

thermal radiation detector that is the subject of this effort, it is

suggested that a special effort be dedicated to the determination of the

unknown properties of the materials of the notional detector.

Although the current research was done using macroscale theories, the

knowledge of properties such as the ratio of the thickness of a layer

and the mean free path would give more insight in the understanding

of the heat transfer process in the thermal radiation detector.

Measurement of the contact resistance between layers or the

integration of its effect in an equivalent thermal resistance of layers

will also be valuable.

Efforts should also be oriented toward the determination of other

combinations of materials for the thermal impedance layer in order to

decrease the electrical resistance of this layer without sacrificing its

thermal performance.
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Appendix A: homog.cpp

******************************************************************************

The program homog.cpp computes the temperature rise above the aNminum substrate w_hin the

thermal radiation at a gNen location, x, and a gNen time, t.
******************************************************************************

Listoffuncgons

* eigen

The function eigen returns the determinant of the matrix in Equation 2-47.

* zbrak

This function is used by the bisection method for root finding. When a function has multiple roots

in an interval, zbrak determines the subintervals in that interval containing just one root.

* findroot

findroot is a root finder by bisection method. This function is used to determine the eigenvalues by

setting the determinant returned by the function eigen equal to zero.

* cprime

cprime computes sum{x_node[j-1]*(1/K[j-1]-l/K[j])} forj = 1." i.

* Nm

Nm is the normalization integral.

* Cm

Cm returns the coefficients of 0t,i.

List of variables

A

A[] and B[]

alpha [ ]

matrix in Equation 2-47

vectors of the coefficients of the Xi,,,,' s

thermal diffusivity vector, mZ/s
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beta
guess_beta

kij [ ]

K[]

layer

Mass_density
nb

q

Specific_heat [ ]
t

t trans

t ss

Thickness [ ]

x node [ ]

X

eigenvalue

guess for the eigenvalue beta

vector defined by Equation 2-41

thermal conductivity vector, W/m.K

index of a layer

mass density vector, Kg/m 3

number of eigenvalues
heat flux, W/m 2

specific heat vector, J/Kg.K

time, s

transient component of the temperature rise, K

steady-state component of the temperature rise, K

thickness vector, m

layer upper surface coordinate vector, m

location, m

*Headers and Library functions

#define WANT_STREAM

#define WANT_MATH

#include "newmatap.h"
#include "newmatio.h"

#ifdef use_namespace

using namespace NEWMAT;
#endif

//include.h will get stream functions

//include.h will get math functions

//newmatap.h will get include.h

//need matrix applications

//need matrix output routines

//access NEWMAT namespace

#define coef 1.0*pow(10,-6) // define a constant coef

float eigen(flo_ guess_beta,flo_ rap[],flo_ x node[],flo_ kU[] )

{
//definition of the matrix

M_rix A(ll,ll);

A<<I<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0

<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0;
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A(1,1)=sin(guess_beta*rap[1]);

A(1,2)=-sin(guess_beta*rap[2]*x node[1]/x node[2]);

A(1,3)=-cos(guess_beta*rap[2]*x node[1]/x node[2]);

A(2,1)=kij[1]*cos(guess_beta*rap[1]);

A(2,2)=-cos(guess_beta*rap[2]*x node[1]/x node[2]);

A(2,3)=sin(guess_beta*rap[2]*x node[1]/x node[2]);

A(3,2)=sin(guess_beta*rap[2]);

A(3,3)=cos(guess_beta*rap[2]);

A(3,4)=-sin(guess_beta*rap[3]*x node[2]/x node[3]);

A(3,5)=-cos(guess_beta*rap[3]*x node[2]/x node[3]);

A(4,2)=kij [2] *co s(guess_beta*rap [2]);

A(4,3)=-kij[2]* sin(guess_beta*rap [2]);

A(4,4)=-cos(guess_beta*rap[3]*x node[2]/x node[3]);

A(4,5)=sin(guess_beta*rap[3]*x node[2]/x node[3]);

A(5,4)=sin(guess_beta*rap[3]);

A(5,5)=cos(guess_beta*rap[3]);

A(5,6)=-sin(guess_beta*rap[4]*x node[3]/x node[4]);

A(5,7)=-cos(guess_beta*rap[4]*x node[3]/x node[4]);

A(6,4)=kij [3] *co s(guess_beta*rap [3]);

A(6,5)=-kij[3]* sin(guess_beta*rap [3]);

A(6,6)=-cos(guess_beta*rap[4]*x node[3]/x node[4]);

A(6,7)=sin(guess_beta*rap[4]*x node[3]/x node[4]);

A(7,6)=sin(guess_beta*rap[4]);

A(7,7)=cos(guess_beta*rap[4]);

A(7,8)=-sin(guess_beta*rap[5]*x node[4]/x node[5]);

A(7,9)=-cos(guess_beta*rap[5]*x node[4]/x node[5]);

A(8,6)=kij [4] *co s(guess_beta*rap [4]);

A(8,7) =-kij [4] * sin(gue s s_beta*rap [4]);

A(8,8)=-cos(guess_beta*rap[5]*x node[4]/x node[5]);

A(8,9)=sin(guess_beta*rap[5]*x node[4]/x node[5]);

A(9,8)=sin(guess_beta*rap[5]);

A(9,9)=cos(guess_beta*rap[5]);

A(9,10)=-sin(guess_beta*rap[6]*x node[5]/x node[6]);

A(9,11)=-cos(guess_beta*rap[6]*x node[5]/x node[6]);

A(10, 8)=kij [5] *co s(guess_beta*rap [5]);

A(10,9)=-kij[5]* sin(guess_beta*rap [5]);

A(10,10)=-cos(guess_beta*rap[6]*x node[5]/x node[6]);

A(10,11)=sin(guess_beta*rap[6]*x node[5]/x node[6]);

A(11,10)=co s(gue ss_beta*rap [6]);

A( 11,11)=- sin(guess_beta*rap [6]);

return A.LogDeterminant().Value(); ]]computes the determinant

] ......................................................................................................................
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void zbrak(float (*fx)(float x,floatrap[],float x node[],floatkij[]),float xl,float x2,intn ,float
xbl[], floatxb2[], int *nb,floatrap[],floatx node[],floatkij[])
{

int nbb=O,i;

float x,fp,fc,dx;

x=xl;

dx=(x2-xl)]n;

fp=(*fx)(xl,rap,x node,kij);

for (i=l ;i<=n;i++)

{
fc=(*fx)(x+=dx,rap,x node,kij);

if (fp*fc<=0.0)
{

xbl [++nbb] =x-dx;

xb2[nbb]=x;

if (*nb==nbb)return;

}
fp=fc;

}
*nb=nbb;

/ ......................................................................................................................

void find_root (float (*fx)(float x,float rap[],float x_node[],float kij[]),float xbl [],float xb2[], float

beta[],int nb,float rap[],float x_node[],float kij[])

{
for (int i=l ;i<=nb;i++)

{
float xl=xbl [i];

float x2=xb2[i];

float x_mid, estimated_root;

float precision_x = pow(10,-5);

int number_iteration=0,max_iteration=50;

if (labs((fx)(xl,rap,x_node,kij))<=precision_x)

estimated_root=xl;

else if (labs((fx)(x2,rap,x_node,kij))<=precision_x)

estimated_root=x2;

else if(( fx)(xl,rap,x node,kij) ( fx)(x2,rap,x node,kij)>0)

{
cout<<"There's no root between xl and x2.kn";
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exit(EXIT_FAILURE);

}

else if((*fx)(xl,rap,x node,kij)*(*fx)(x2,rap,x node,kij)<0)

{
do

{
x mid=0.5*(xl+x2);

if((*fx)(x mid,rap,x node,kij)==0)

estimated root=x mid;

else if((*fx)(xl,rap,x node,kij)*(*fx)(x mid,rap,x node,kij)<0)

x2=x mid;

else

xl=x mid;

number_iteration+= 1;

}
while (number_iteration<=max_iteration&fabs (0.5" (x2-

xl))>precision_x&fabs((*fx)(x mid,rap,x node,kij))>precision_x);

estimated root=x mid;

}

beta[i]=estimated root;

}
}

/ ......................................................................................................................

float cprime(int i,float x node[], foat K[])

{
float result=0.0;

if 0==1)

return 0;
else

{for (int j=2;j<=i;j++)

result+=x node[j- 1]*(1/K[j- 1]- 1/K[j]); }

return result;

}

/ ......................................................................................................................

float Nm(float A[],float B[],float K[],float x node[],float alpha[],float b)

{
float sum_l=O.O;
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for(int i=l ;i<=6;i++)
{
foat u=2*x node[i- 1]*b/sqrt(alpha[i]);

float v=2*x node[i]*b/sqrt(alpha[i]);

sum_l+=K[i]/alpha[i] *(0.5*(A[i] *A[i]+B [i] *B [i])*(x node[i]-x node[i- 1])+

0.5/b*A[i]*B[i]*sqrt(alpha[i])*(cos(u)-cos(v))+

sqrt(alpha[i])/(4.0*b)* (A[i]*A[i]-g [i]*g [i])* (sin(u)- sin(v)));

}
return sum_l;

}
/ ......................................................................................................................

float Cm(float A[],float B[],float K[],float x node [],float alpha[],float b,float q)

{
float sum_2=0.0;

for (int i=l;i<=6;i++)

{
float u=x node[i- 1]*b/sqrt(alpha[i]);

float v=x node[i]*b/sqrt(alpha[i]);

sum_2+=-q/(sqrt (alpha[i])*b*b)* ((A[i]*cprime(i,x node,K)*K[i]*b-B [i]* sqrt (alpha[i]))*

(co s(u)-co s(v))- (A[i]* sqrt (alpha[i])+B [i]*cprime(i,x node,K)*K[i]*b)*

(sin(u)-sin(v))+A[i]*b*(x node[i- 1]*cos(u)-x node[i]*cos(v))-

B[i]*b*(x node[i-1]*sin(u)-x node[i]*sin(v)));

//Beginning of the main program

int main()

{

//Initialization

float t=0.02;//time (ms)

float x=39.4*pow(10,-6);//location in the detector

float q=l.0;//heat flux q=lW/m2.K

float K[7]= {0,71.6,60,0.084,71.6,60,0.209 };//layers conductivity (W/m.K)

float Thickness[7] = {0,coef, coef,25.4*coef, coef, coef, 10*coef} ;//layers thickness (m)

float Specific heat [7] = {0,133.0,200.0,712.0,133.0,200.0,669.0 };//specific heat (J/kg.K)

float Mass_density[7] = {0,21450.0,6880.0,1289.0,21450.0,6880.0,1400.0 };//(kg/m^3)

float t_trans=0;//initialization of the transient temperature

float phi;

int layer;//index of layer
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float alpha[7]={0};//layersdiffusivity (mA2/s)
float rap[7]={0} ;//rapgivestheratiox node[i]/sqrt[alpha[i]]for computingeta[i]
floatx node[7]={0.0};

for (int i=l;i<7;i++)
{

x node[i]=x node[i-1]+Thickness[i];

alpha[i]=K[i]/(Mass_density[i]*Specific heat[i]);

rap[i]=x node[i]/sqrt (alpha[i]);

float kij[6l={0};//kij gives the value of (K[i]/K[i+ll)*sqrt(alpha[i+ll/alpha[i])

for (i=l;i<6;i++)

{
kij[i] =(K[i]/K[i+ 1])* sqrt(alpha[i+ 1]/alpha[i]);

}
int nb=10;//nb is the maximum of eigenvalues sought

float beta[ll]={0};

float xbl [11 ] ;//size always nb+ 1

float xb2[11] ;//size always nb+l

zbrak(eigen,0.0,290.0,10,xbl,xb2,&nb,rap,x node,kij);

find_root (eigen,xbl,xb2,beta,nb,rap,x node,kij);//computes the eigenvalues

//find the layer index corresponding to the value of x

if (x>0.0 && x<=coef)

layer= 1;

else if (x>coef && x<=2*coet)

layer=2;

else if (x>2*coef && x<=27.4*coet)

layer=3;

else if (x>27.4*coef && x<=28.4*coet)

layer=4;

else if (x>28.4*coef && x<=29.4*coef)

layer=5;
else

layer=6;

for (int indbeta=l ;indbeta<=nb;indbeta++)

{
float b=beta[indbeta];
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float A[7]={0.0,1.0};

float B[7]={0.0,0.0};

for (i=l;i<=5;i++)

{
float eta=rap[i]*b;

float c=x node[i]*rap[i+l]*b/x node[i+1];

A[i+ 1]=sin(c) * (A[i] * sin(eta)+B [i] *co s(eta))+kij [i] *co s(c) * (A[i] *co s(eta)-B [i] * sin(eta));

B[i+_]=cos(c)*(A[i]*sin(eta)+B[i]*cos(eta))-kij[i]*sin(c)*(A[i]*cos(eta)-B[i]*sin(eta));

phi=A[layer] * sin(b*x/sqrt (alpha[layer]))+B [layer] *co s(b*x/sqrt (alpha[layer]));

t_trans+=exp(-b*b*t)*Cn(A,B,K,x node,alpha,b,q)*phi;//computes the transient component

of the temperature rise.

float t_ss=q*(x/K[layer]+cprime(layer,x node,K));//steady-state component.

//displays on the screen the values of the location, time, and temperature rise

cout<<'NnThe temperature rise at x = "<<x<<" at t="<<t<<" is"<<(t_trans+t_ss)*pow(10,6)

<<" _micro_K"<<'NnXn";

return 0;

}
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Appendix B: randwalk2d.cpp

The computer program randwalk2d.cpp determines the temperature at a given location using a two-

dimensional random walk algorithm. The boundary conditions are specified temperature at the

upper and lower surfaces, and insulated at the two other surfaces.

//C+ + headers

#include<io stream.h>

#include<math.h>

#include<stdlib.h>

#include<stdio.h>

#include<time.h>

#include<f stream.h>

/ ......................................................................................................................

List of variables

N

HX

ny
L

H

dr,

dy
r

(xi,yi)
T1

number of random walks

number of nodes in the x direction

number of nodes in the y direction

dimension in the x direction, m

dimension in the y direction, m

step size in the x direction, m

step size in the y direction, m
random number

coordinates of the starting point, m

temperature of the upper surface, K
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T_2 temperatureof the lower surface,K

ofstreamPoint5_file("result.dat");//createa file calledresultto storethetemperaturedistribution.

floatfunct_l(float x,float H) ]]the upper and lower boundary

{ return 0*sin(3*x)+0.5; } //of the surface are represented by

floatfunct2(float x,float H) //trigonometric functions

{ return 0.0*cos(x)-0.5; }

//start of the main program

int main()
{

//Initialization

clock t start_time=clock();

int N=1500; // number of simulations at each node.

int nx=100;//number of discrete points in the x-direction

float L=10.0;//dimension in the x direction, m

float H=I;//dimension in the y direction, y

int ny=100;//number of discrete points in the y-direction

float dx=L/nx;//step size in the x-direction
float

float

float

float

float

float

float

dy=H/ny;//step size in the x-direction

r;//random number;

xi=dx/2.0;//x coordinate

yi=dy/2.0;//y coordinate

T_l=20;//temperature of the upper surface

T_2=0;//temperature of the lower surface

temp=0.0;

//change the seed of the random number generator

int seed=(int) time(NULL);

srand(seed);

for (int i=l;i<=N;i++)

{
float x=xi;

float y=yi;

while (y<funct_l (x,H) && y>funct_2(x,H))

{
if(x = = )
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{
x+=dx/2;

y=y;
}

if(x = = L)

{
x-=dx/2;

y=y;

/

r=rand0/(RAND_MAX+I.0);/! drawing of the random number

//search for direction

if (r<0.25)

y-y;
if (x = = dx/2)

x- = dx/2;

else

x- = dx;

else if(r>=.25 && r<0.5)

y = y;
if (x = =L-dx/2.0)

x+ = dx/2;

else

x+ = dx;

else if (r>=0.5 && r<0.75)

{
X=X;

y-=dy;

/

else

X=X;
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y+=dy;

};

//temperature computation after a boundary node is reached

if (y>0)

temp+=T_ 1;
else

temp+=T_2;

//write in the file result

Point5_file<<xi<< .... <<yi<< .... <<temp/N<<"_n";

//compute the machine time

clock t stop_time=clock();

cout<<"Time taken = "<<(stop_time-start_time)/CLOCKS_PER_SEC<<" secs._n";

return 0;

}
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Appendix C: eff_cond.cpp

This code uses a finite difference scheme to determine the temperature profile in a two-dimensional

geometry. The temperature distribution obtained is used to approximate the heat flux in the y

direction for the geometry in Figure 19. Equation 3-15 is then used to compute the ratio of the
effective and bulk conductivities.

ffC++ headers

#include<io stream.h>

#include<math.h>

#include<stdio.h>

#include<f stream.h>

//creation of different files

ofstream Point l_file("fd2d.dat"); //temperature file

ofstream Point2_file("x.dat"); //x coordinate

ofstream Point3_file("y.dat"); //y coordinate

ofstream Point4_file("h ratio.dat");//ratio R/(R+H) and k_eff/k bulk

const int ii=5;//number of control volumes in the x_direction

const int kk=20;//number of control volume by which R has been divided

//The function convergence checks if the convergence criteria during the computation of the

//temperature is satisfied
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float convergence (foat (*M_l)[ii+3],float (*M_2)[ii+3],int jj)

{
float sum=0.0;

float (*M) [ii+3]=new float [jj+kk+3] [ii+3];

for(int j= 1;j<=jj+kk+2;j++)

for (int i=l;i<=ii+2;i++)

{
M[j] [i]=M_2 [j][i]-M_l [j][i];

sum+=M[j] [i];

}

return fabs(sum)/((jj+kk)*ii);

}

//beginning of the main program

int main()

{

//Initialization

int jj=l;//number of control volumes in the y direction

float (*Tj) [ii+3]=new float [jj+kk+3] [ii+3];
float

float

float

float

float

float

float

L=0.5;//length of the surface

R=0.08;//height of the roughness

H_ini=0.1;

H=H_ini;//initial value of H

k bulk=405.46;//bulk conductivity (W/m.K)

x[ii+3]={0};

y_step=H_ini/4;//constant step size in the y-direction.

//the step size being constant in the y-direction, when R increases

//the number of control volume jj increases also. This keeps the size of the control volumes

//constant

for( int step=l;step<=10;step++)//this loop set the number of values of H

{ //that will be considered, R being constant.

H+=0.2;

jj=H/y step;

float total heat=0.0;

//increment of H

//new number of control volumes in the y-direction

//initial value of the total heat flux

eft cond.cpp 92



float (*k) [ii+3]=new float [jj+kk+3] [ii+3] ;//thermal conductivity matrix

for (int j=l;j<=jj+l;j++)
for (int i=l;i<=ii+2;i++)

k[j] [i]=k bulk;

for (j=jj+2;j<=jj+kk+2;j++)

for (int i=l;i<=ii+2;i++)

{
if (i%2= =0) //specifying this high value for the thermal conductivity

k[j] [i]=pow(10,19); // sets the temperature of those control volumes equals

else //to the surface temperature and models the geometry in Figure 18.

k[j] [i]=k bulk; //the remaining control volumes are assigned the bulk conductivity.

}

float dx[ii+3] = {0 };

for (int i=2;i<=ii+l;i++)

dx[i] =L/ii;

//step size in the x-direction

float *dy=new float [jj+kk+3]; //initialization of the step size in the y direction

dy[0]=0, dy[1]=0, dy[jj+kk+3]=0;

for ( j=2;j<=jj+l ;j++)

dy[j] =H/j j;

for ( j=jj+2;j<=jj+kk+l ;j++)

dy[j] =R/kk;

//creation vectors of the coordinates of the control volumes

//x coordinates

for (i=2;i<=ii+2;i++)

x[i] =x[i- 1] +0.5" (dx[i- 1]+dx[i]);

//y coordinates

float (*y)=new float[jj+kk+3];

for (j=l ;j<=jj+kk+2;j++)

y[j] =y[j- 1]+0.5" (dy[j- 1]+dy[j]);

/ .....................................................................................................................

//initialization of the matrices

//These matrices are defined by Vick [1998].
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float (*aE)[ii+3]=newfloat[jj+kk+3][ii+3];
float (*aW)[ii+3]=newfloat[jj+kk+3][ii+3];
float (*aN)[ii+3]=newfloat[jj+kk+3][ii+3];
float (*aS)[ii+3]=newfloat[jj+kk+3][ii+3];
float (*a)[ii+3]=newfloat[jj+kk+3][ii+3];
float (%)[ii+3]=newfloat[jj+kk+3][ii+3];
float (*p)[ii+3]=newfloat[jj+kk+3][ii+3];
float (*q)[ii+3]=newfloat[jj+kk+3][ii+3];

/ ......................................................................................................................

//Boundary conditions

//at x=0

for(j= 1 ;j<=jj+kk+2;j++)

{
ag[j][1]=2*k[j] [2]/dx[2];
a[j][1]=aE[j][1];
b[j][1]=0;

}

//insulated

//at x=L //insulated

for(j= 1 ;j<=jj+kk+2;j++)

{
aW[j] [ii+2]=2*k[j] [ii+1]/dx[ii+ 1];
a[j] [ii+2] =aW[j] [ii+2];

b[j][ii+2]=0.0;

}

N at y=O

for(i=l ;i<=fi+2;i++)

{
aNU][_=o;
a[1][_=l;

b[1][_=0.0;

}

//specified temperature

//temperature specified is 0

//at y=H

for(i=l ;i<=ii+2;i++)

{
aS [jj+kk+2] [i] =0;

a[jj+kk+2] [i] = 1;

//specified temperature
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b[jj+kk+2][i]=100; //specified temperature 100 K

/
/]/ .....................................................................

//Computation of the different coefficients aE,aN,aW, aO,a,b

for (i=2;i<=ii+l ;i++)

{
for(j=2;j<=jj+kk+ 1;j++)

{
aW[j] [i]=2*k[j] [i- 1]*k[j] [i]*dy[j]/(dx[i- 1]*k[j] [i]+dx[i]*k[j] [i- 1]);

aE[j] [i]=2*k[j] [i]*k[j] [i+l]*dy[j]/(dx[i]*k[j] [i+l]+dx[i+l]*k[j] [i]);

aS[j][i]=2*k[j-1][i]*k[j][i]*dx[i]/(dy[j-1]*k[j][i]+dy[j]*k[j-1][i]);

aN[j][i]=2*k[j][i]*k[j+l][i]*dx[i]/(dy[j]*k[j+l][i]+dy[j+l]*k[j][i]);

b[j] [i]=0;//no source term

a[j] [i]=aW[j] [i]+aE[j] [i]+aS [j] [i]+aN[j] [i];

}
}

/ ......................................................................................................................

//initialization of the temperature at all the nodes

float (*T_guess) [ii+3]=new float[jj+kk+3] [ii+3];

for(j= 1 ;j<=jj+kk+2;j++)

for (int i=l;i<=ii+2;i++)

T_guess[j] [i] =0.0;

float (*T) [ii+3]=new float[jj+kk+3] [ii+3];

for(j= 1 ;j<=jj+kk+2;j++)

for (int i=l;i<=ii+2;i++)

T[j] [i] =T_guess [j] [i];

float (*Ti) [ii+3]=new float[jj+kk+3] [ii+3];

float (*bi) [ii+3]=new float[jj+kk+3] [ii+3];

float (*bj) [ii+3]=new float[jj+kk+3] [ii+3];

for (j=2;j<=jj+kk+l ;j++)

for (int i=l;i<=ii+2;i++)

bi[j] [i] =b[j] [i] +aS [j] [i]*T[j- l][i] +aN[j] [i]*T[j+ l][i];

float conv_crit=l;//initialization of the convergence criteria

//determination of the temperature by iterations in the x and the y direction by using the properties

//of tridiagonal matrices
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while (conv_crit>pow(10,-4))
{

//sweep in the y_direction

for G=2_<=_+kk+l_++)
{

pU][1]=aEU][1]/aU][1];
qU][1]=bU][1]/aU][1];

for (i=2;i<=ii+2;i++)

{
p[j] [i]=aE[j] [i]/(a[j] [i]-aW[j] [i] *p[j] [i- 11);

q[j] [i] =(bi[j] [i] +aW[j] [i] *q[j] [i- 1])/(a[j] [i]-aW[j] [i] *p[j] [i- 1]);

}

T [j] [ii+2] =q[j] [ii+2];

for (i=ii+l ;i>=l ;i=i- 1)

T[j] [i] =p [j] [i] *T[j] [i+ 1] +q[j] [i];

for (int u=2;u<=jj+kk+l ;u++)

for (i=l ;i<=ii+2;i++)

bi[u] [i]=b[u] [i]+aS[u] [i]*T[u- 1] [i]+aN[u] [i]*T[u+l] [i];

for(j= 1;j<=jj+kk+2;j++)

{ for(i= 1 ;i<=ii+2;i++)

{Ti[j] [i]=T[j] [i];} }

//sweep in the x_direction

for (i=2;i<=ii+l ;i++)

for(j= 1 ;j<=jj+kk+2;j++)

bj[j] [i] =b[j] [i] +aW[j] [i]*T[j] [i- 1]+aE[j] [i]*T[j] [i+l];

for (i=2;i<=ii+l ;i++)

{
p[l] [i]=aN[ 11[il/a[ 11[i];

q[1][i]=b[1][i]/a[1][i];

for (j=2;j<=jj+kk+2;j++)
{
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p[j] [i]=aN[j][i]/(a[j] [i]-aS[j] [i]*p [j- 1] [i]);
q[j] [i]=(bd[j] [i]+aS[j] [i] *q [j- 1] [i])/( a [j] [i]-aS [j] [i] *p [j- 1] [i]);

}
T[jj+kk+2] [i]=q[jj+kk+2] [i];

for(j=jj+kk+ 1;j>=l ;j=j- 1)

T[j] [i] =p[j] [i]*T[j+ 1] [i] +q[j] [i];

for(j= 1 ;j<=jj+kk+2;j++)

for (int v=2;v<=ii+l ;v++)

bj[j] [v] =b[j] [v] +aW[j] [vl*T[j] [v- 1]+aE[j] [vl*T[j] [v+l];

}
for(j= 1;j<=jj+kk+2;j++)

for(i=l ;i<=ii+2;i++)

Tj[j][i]=T[j][i];

conv_crit=convergence (Tj,Ti,jj);//compute the convergence value

}

Tj[jj+kk+2] [1]=100;

Tj [jj+kk+2] [ii+2] = 100;

for(j= 1 ;j<=jj+kk+2;j++)

{
for(i= 1;i<=ii+2;i++)

Point l_file<<Tj[j] [i]<< .... ;

Point l_file<<'Nn";

}
for (i=l ;i<=ii+2;i++)

Point2_file<<x[i]<<'Nn";//write the value of x in a file

for (j=l ;j<=jj+kk+2;j++)

Point3_file<<y[j]<<'Nn";//write the value of y in a file

for (i=2;i<=ii+l ;i++)

totalheat+=k_bulk dx[i] 2/dy[2] (Tj[2][i]-Tj[1][i]);

//computation of ratio = k_eft/k_bulk

float ratio=total heat*(H+ampl/2)/(L*k bulk*(b[jj+kk+2] [i]-b[1 ] [i]));

Point4_file<<R/(R+H)<< .... <<ratio<<'Nn"; // write the values of R/(R+H) and ratio in a file.

}
return 0;

}
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Appendix D: heterog.cpp

The program heterog.cpp is adapted from Vick and Scott [1998]. It computes the one-dimensional

transient temperature distribution of the thermal radiation detector with doped thermal impedance,

using the two-step process as developed in Section 4-1.

//Formulation

T i _Ti-. 1 T i _2T i +T i
C _'J _9 -K _J-Z _J m'j+l-H(Ti -T i .] (i)

m At (Ax)2 --_ m,j p,j )

T i . - Ti_ 1

°p At r_j p,j

//j control volume.

//Tm_ matrix temperature at the j location

//Tp_ particle temperature at the j location.

//The integration of the two equations above yields:

//From equation (2) we get

C HAt TiT i _ P Ti_l +
P,J C +HAt P,J C +HAt m,j

p p

//By replacing T_,j by (3) the equation (1) becomes:

//ajTi_.j - aWjTi_.j__ - aEjTi_j+_ = bj

(2)

(3)

(4)
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C Ax
aO _ m

_J At

//
k E

aE.-
J Ax E

HCAx k
P ; aW.- w

aO,-pi C +HAt J Ax
p w

a. =aO +aW. +aE. +aO • b. =aO *Ti-l+aO *Ti_ 1
o r_j o o p,J' o r_j r_o p,J p,o

HC++ headers

#include<math.h>

#include<iostream.h>

#include<fstream.h>

#include<stdio.h>

#define coef pow(10,-6)

//creation of data files

ofstream Pointl file("Matrix_temp.dat"); //matrix temperature file

ofstream Point2--file("Particles_temp.dat");// particles temperature file

ofstream Point3--file("y.dat"); //location

ofstream Point4Zfile("Temp_act_junct.dat"); //active junction temperature file

const int t_cvy=60;//total cv in the y_direction=sum of ny

//main program

int main()

{
//initialization

double density=0.01;//volume fraction of the particles

double dp=pow(10,-7);//diameter of the particles, m

double rocp=1860.2*pow(10,3);//heat capacity the particles

double vp:3.14*pow(dp,3)/6.0;//volume of a particle

double Np=density/vp///number of particles in the thermal impedance layer per

volume;

double h:10; contact conductance, W/m2.K

double Ap=3.14*dp*dp; //surface area of the particles, m 2

float Q:pow(10,6);//heat flux, W/m 2

double tmax=0.1;// time maxi, s

int n time=100; // number of time steps

int count=l;

double dt=tmax/n time;// time step, s

double t:0; //time

double kp=l.59;//thermal conductivity of the particles, W/m,K

double H[7]={0,coef, coef, 25.4*coef, coef, coef, 10*coef}///thickness of the layers

double conduct[7]={0,71.6,60,0.084,71.6,60,0.209};// layers conductivity

(W/m.K)

double ny[7]={0,10,10,10,10,10,10}///number of control volumes of each layer

double np[7]:{0,0,0,Np,0,0,0};//number of particles

double Specific_heat[7]={0,133.0,200.0,712.0,133.0,200.0,669.0};//specific

heat(J/kg.K)

double Mass_density[7]={0,21450.0,6880.0,1289.0,21450.0,6880.0,1400.0};//Mass

density of the layers(kg/m^3)
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int jj [7]={0};

double bio=h*dp/(6*kp);//computes the Biot number

double roc[7]={0};//heat capacity of the layers

for (int i=l;i<=6;i++)

{

roc [i] :Mass_density [i] *Specific_heat [i]

jj [i]=jj [i-l] +ny [i] ;

}

double

double

double

double

double

km [t_cvy+3 ]={ 0.0 } ;

Rocm [t_cvy+3 ]={ 0.0 } ;

K [t_cvy+3 ]={ 0.0 } ;

Cm [t_cvy+3 ]={ 0.0 } ;

Cp [t_cvy+3 ]={ 0.0 } ;

int c=l;

for (int m=l;m<=6;m++)

{

for (int j=c;j<=(jj[m]+2);j++)

{

km [j ]=conduct [m] ;

Rocm [j ]=roc [m] ;

K[j]=(l-np[m]*vp)*km[j] ;

Cm[j]=(l-np[m]*vp)*Rocm[j] ;

Cp [j ]=np [m] *vp*rocp;

}

c=jj [m] +2;

//effectives properties

//thermal detector

of the

double dy[t_cvy+3]={0.0}; //step size vector, m

double y[t_cvy+3]={0.0}; //location vector, m

int d=2 ;

for (m=l ;m<=6; m++)

{

for (int j=d;j<=jj [m]+l;j++)

dy[j]=H[m]/ny[m] ;

d=jj [m] +2;

}

for (int j=2;j<=t_cvy+2;j++)

y[j]=y[j-l]+0.5*(dy[j-l]+dy[j]);

for (j=l;j<=t_cvy+2;j++)

Point3_file<<y[j]<<"\n";

//Initial temperature

double Tmprev[t_cvy+3]

double Tpprev[t_cvy+3]

={0.0};//matrix

={0.0};//particles;

Point4 file<<0<< ....<<0<<"\n";//initial value of the active

double

double

double

double

aN [t_cvy+3 ]={ 0.0 } ;

aS [t_cvy+3 ]={ 0.0 } ;

a [t_cvy+3 ]={ 0.0 } ;

b [t_cvy+3 ]={ 0.0 } ;

layers of the

junction temperature.

hetero.cpp 1 O0



double

double

double

double

double

double

p [t_cvy+3 ] :{ 0.0 },

q [t_cvy+3 ] :{ 0.0 },

amO [t_cvy+3 ] ={ 0.0 },

apO [t_cvy+3 ] ={ 0.0 } ;

Tm [t_cvy+3 ] ={ 0.0 } ;

Tp [t_cvy+3 ] ={ 0.0 } ;

/Boundary conditions

/ @ y=0

aN[l]=0;

a[1]=l;

b[1]=0;

specified temperature, 0 K

/ @ y=H specified heat flux Q

aS[t_cvy+2]=2*km[t_cvy+l]/dy[t_cvy+l];

a[t_cvy+2]=aS[t_cvy+2];

b[t_cvy+2]=Q;

/Computation of the different coefficients aN, aS,amO, apOa,b

for(j=2, j<=t_cvy+l, j++)

{

aS[j]=2*K[j-l]*K[j]/(dy[j-1]*K[j]+dy[j]*K[j-l]) ;

aN[j]=2*K[j]*K[j+l]/(dy[j]*K[j+l]+dy[j+l]*K[j]),

amO[j]=Cm[j]*dy[j]/dt,

apO [j] =Cp [j] *h*Np*hp*dy [j] / (Cp [j] +h*Np*hp*dt) ,

a [j] =amO [j] +apO [j] +aS [j] +aN [j] ;

}

//computation of the matrix and particle temperature by solving the coupled

//Equations 3 and 4. Equation 4 is solved by using the tridiagonal matrix

properties.

for (count=l;count<=n time;count++)

{

t + =dt ;

for(j=2, j<=t_cvy+l, j++)

b [j ]=amO [j ]*Tmprev [j ]+apO [j ]*Tpprev [j ] ,

p [1] =aN [1] /a [1] ,

q[1]=b[1]/a[1],

for (j=2, j<=t_cvy+2, j++)

{

p[j]=aN[j]/(a[j]-aS[j]*p[j-l]) ;

q[j] = (b [j] +aS [j] *q[j-l] / (a[j]-aS [j]*p[j-l] ) ,

}

Tm [t_cvy+2 ]=q [t_cvy+2 ] ,

for (j=t_cvy+l, j>=l, j=j-l)

Tm[j] =p [j] *Tm [j+l] +q[j]
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for (j=l;j<=t_cvy+2;j++)

{

Tmprev[j]=Tm[j];

Pointl_file<<t*pow(10,3)<< ....<<Tm[j]<<"\n";

}

//write the temperature of the active junction in a file

Point4_file<<t*pow(10,3)<< ....<<Tm[jj[4]+l]<<"\n";

for (j=jj[2]+2;j<=jj[3]+l;j++)

{

Tp [j ]= (h*Np*Ap*dt*Tm [j ]+Cp [j ]*Tpprev [j ] ) / (Cp [j ]+h*Np*Ap*dt) ;

//write the temperature of the particles in a file

Point2 file<<t<< ....<<Tp[j]<<"\n";

}

Point5_file<<t*pow (10, 3) << ....<<Tm[jj [2] +4]<< ....<<Tp[jj [2] +4]<<"\n";

for (j=l;j<=t_cvy+2;j++)

Tpprev[j]=Tp[j];

return 0;

}
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