

Total Solar Eclipse of 2002 December 04

F. Espenak and J. Anderson

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION.

English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov/STI-homepage.html
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:

NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

Total Solar Eclipse of 2002 December 04

Fred Espenak
Goddard Space Flight Center, Greenbelt, Maryland
Jay Anderson
Environment Canada, Winnipeg, Manitoba

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

Available from:

NASA Center for AeroSpace Information 7121 Standard Drive
Hanover, MD 21076-1320
Price Code: A17

National Technical Information Service
5285 Port Royal Road Springfield, VA 22161

Price Code: A10

Preface

This work is the latest in a series of NASA publications containing detailed predictions, maps and meteorological data for future central solar eclipses of interest. Published as part of NASA's Technical Publication (TP) series, the eclipse bulletins are prepared in cooperation with the Working Group on Eclipses of the International Astronomical Union and are provided as a public service to both the professional and lay communities, including educators and the media. In order to allow a reasonable lead time for planning purposes, eclipse bulletins are published 18 to 24 months before each event.

Single copies of the bulletins are available at no cost by sending a 9×12-inch self-addressed stamped envelope with postage for 12 oz . (340 g .). Detailed instructions and an order form can be found at the back of this publication.

The 2002 bulletin uses the World Data Bank Π (WDBII) mapping data base for the path figures. WDBII outline files were digitized from navigational charts to a scale of approximately $1: 3,000,000$. The data base is available through the Global Relief Data CD-ROM from the National Geophysical Data Center.

The highest detail eclipse maps are constructed from the Digital Chart of the World (DCW), a digital database of the world developed by the U.S. Defense Mapping Agency (DMA). The primary sources of information for the geographic database are the Operational Navigation Charts (ONC) and the Jet Navigation Charts (JNC). The eclipse path and DCW maps are plotted at a scale of $1: 2,000,000$ in order to show roads, cities and villages, lakes and rivers, suitable for eclipse expedition planning.

The geographic coordinates data base includes over 90,000 cities and locations. This permits the identification of many more cities within the umbral path and their subsequent inclusion in the local circumstances tables. These same coordinates are plotted in the path figures and are labeled when the scale allows. The source of these coordinates is Rand McNally's The New International Atlas. A subset of these coordinates is available in a digital form which we've augmented with population data.

The bulletins have undergone a great deal of change since their inception in 1993. The expansion of the mapping and geographic coordinates data bases have significantly improved the coverage and level of detail demanded by eclipse planning. Some of these changes are the direct result of suggestions from our readers. We strongly encourage you to share your comments, suggestions and criticisms on how to improve the content and layout in subsequent editions. Although every effort is made to ensure that the bulletins are as accurate as possible, an error occasionally slips by. We would appreciate your assistance in reporting all errors, regardless of their magnitude.

We thank Dr. B. Ralph Chou for a comprehensive discussion on solar eclipse eye safety. Dr. Chou is Professor of Optometry at the University of Waterloo and he has over twenty-five years of eclipse observing experience. As a leading authority on the subject, Dr. Chou's contribution should help dispel much of the fear and misinformation about safe eclipse viewing.

Dr. Joe Gurman (GSFC/Solar Physics Branch) has made this and previous eclipse bulletins available over the Internet. They can be read or downloaded via the World Wide Web from Goddard's Solar Data Analysis Center eclipse information page: http://umbra.nascom.nasa.gov/eclipse/.

In 1996, Fred Espenak developed the NASA Eclipse Home Page, a web site which provides general information on every solar and lunar eclipse occurring during the period 1951 through 2050. An online catalog also lists that date and characteristics of every solar and lunar eclipse from 2000 BC through AD 3000. The URL for the site is: http:// sunearth.gsfc.nasa.gov/eclipseleclipse.html.

In addition to the general information web site above, a special web site devoted to the 2002 total solar eclipse has been set up: http://sunearth.gsfc.nasa.gov/eclipse/TSE2002/TSE2002html. It includes supplemental predictions, figures and maps which could not be included in the present publication.

Since the eclipse bulletins are of a limited and finite size, they cannot include everything needed by every scientific investigation. Some investigators may require exact contact times which include lunar limb effects or for a specific observing site not listed in the bulletin. Other investigations may need customized predictions for an aerial rendezvous or from the path limits for grazing eclipse experiments. We would like to assist such investigations by offering to calculate additional predictions for any professionals or large groups of amateurs. Please contact Espenak with complete details and eclipse prediction requirements.

We would like to acknowledge the valued contributions of a number of individuals who were essential to the success of this publication. The format and content of the NASA eclipse bulletins has drawn heavily upon over 40 years of eclipse Circulars published by the U. S. Naval Observatory. We owe a debt of gratitude to past and present staff of that institution who have performed this service for so many years. The many publications and algorithms of Dr. Jean Meeus have served to inspire a life-long interest in eclipse prediction. We thank Francis Reddy, who helped develop the original geographic data base and to Rique Pottenger for his assistance in expanding the data base to over 90,000 cities. Peter Anderson of the Astronomical Association of Queensland provided a great deal of information about Australia. Nick Zambatis and Peter Tiedt contributed information about cloud and weather in Kruger National Park. GPS coordinates of key locations
throughout Kruger National Park were generously provided by Peter Tiedt. Prof. Jay M. Pasachoff reviewed the manuscript and offered many helpful suggestions. Internet availability of the eclipse bulletins is due to the efforts of Dr. Joseph B. Gurman. The support of Environment Canada is acknowledged in the acquisition of the weather data.

Permission is freely granted to reproduce any portion of this publication, including data, figures, maps, tables and text. All uses and/or publication of this material should be accompanied by an appropriate acknowledgment (e.g. - "Reprinted from Total Solar Eclipse of 2002 December 04 Espenak and Anderson, 2001%. We would appreciate receiving a copy of any publications where this material appears.

The names and spellings of countries, cities and other geopolitical regions are not authoritative, nor do they imply any official recognition in status. Corrections to names, geographic coordinates and elevations are actively solicited in order to update the data base for future eclipses. All calculations, diagrams and opinions are those of the authors and they assume full responsibility for their accuracy.

	Fred Espenak
	NASA/Goddard Space Flight Center
	Planetary Systems Branch, Code 693
	Greenbelt, MD 20771
	USA
email:	espenak@gsfc.nasa.gov
FAX:	$(301) 286-0212$

Jay Anderson
Environment Canada
123 Main Street, Suite 150
Winnipeg, MB,
CANADA R3C 4W2
email: jander@cc.umanitoba.ca
FAX: (204) 983-0109

Current and Future NASA Solar Eclipse Bulletins

NASA Eclipse Bulletin	RP\#	Publica
Annular Solar Eclipse of 1994 May 10	1301	April 1
Total Solar Eclipse of 1994 November 3	1318	October
Total Solar Eclipse of 1995 October 24	1344	July 19
Total Solar Eclipse of 1997 March 9	1369	July 19
Total Solar Eclipse of 1998 February 26	1383	April 1
Total Solar Eclipse of 1999 August 11	1398	March
NASA Eclipse Bulletin	TP\#	Public
Total Solar Eclipse of 2001 June 21	1999-209484	Nove
Total Solar Eclipse of 2002 December 04	2001-209990	Sept
Annular and Total Solar Eclipses of 2003	-	2002
Annular and Total Solar Eclipses of 2005	-	2003
Total Solar Eclipse of 2006 March 29	-	2004

Table of Contents

Eclipse Predictions I
Introduction I
Umbral Path And Visibility I
Maps of the Eclipse Path 2
Orthographic Projection Map of the Eclipse Path 2
Equidistant Conic Projection Map of the Eclipse Path 2
Detailed Maps of the Umbral Path 3
Elements, Shadow Contacts and Eclipse Path Tables 3
Local Circumstances Tables 5
Estimating Times of Second and Third Contacts 6
Mean Lunar Radius 7
Lunar Limb Profile 7
Limb Corrections to the Path Limits: Graze Zones 9
Saros History 10
Weather Prospects for the Eclipse 12
Introduction 12
African Weather Prospects 12
African Overview 12
The Countryside 12
Large Scale Weather Patterns 13
Cloud, Temperature, Rainfall, Winds 15-16
Africa Summary 16
Australian Weather Prospects 16
Australia Overview 16
The Countryside 16
Large Scale Weather Patterns 17
Cloud, Temperature 18
Rainfall, Winds 19
Australia Summary 19
Eclipse Viewing on the Water 19
Weather Web Sites 20
Observing the Eclipse 21
Eye Safety and Solar Eclipses 21
Sources for Solar Filters 23
IAU Solar Eclipse Education Committee 23
Eclipse Photography 24
Sky at Totality 26
Contact Timings from the Path Limits 27
Plotting the Path on Maps 27
IAU Working Group on Eclipses 28
Eclipse Data on Internet 28
NASA Eclipse Bulletins on Internet 28
Future Eclipse Paths on Internet 29
Special Web Site for 2002 Solar Eclipse 29
Predictions for Eclipse Experiments 29
Algorithms, Ephemerides and Parameters 29
Bibliography 31
References 31
Meteorology 31
Eye Safety 32
Further Reading 32

List of Figures and Tables

Figures
Figure 1: Orthographic Projection Map of the Eclipse Path 33
Figure 2: The Eclipse Path Through Africa 34
Figure 3: The Eclipse Path Through Western Africa 35
Figure 4: The Eclipse Path Through Eastern Africa 36
Figure 5: 2002 Eclipse Path - Western Angola 37
Figure 6: 2002 Eclipse Path - Central Angola 38
Figure 7: 2002 Eclipse Path - Eastern Angola 39
Figure 8: 2002 Eclipse Path - Caprivi Strip 40
Figure 9: 2002 Eclipse Path - Botswana \& Zimbabwe 41
Figure 10: 2002 Eclipse Path - Zimbabwe \& South Africa 42
Figure 11: 2002 Eclipse Path - Mozambique 43
Figure 12: The Eclipse Path Through Australia 44
Figure 13: The Eclipse Path Through Southern Australia 45
Figure 14: 2002 Eclipse Path - Ceduna, Australia 46
Figure 15: 2002 Eclipse Path - Woomera, Australia 47
Figure 16: 2002 Eclipse Path - Lyndhurst, Australia 48
Figure 17: 2002 Eclipse Path - Tickalara, Australia 49
Figure 18: The Lunar Limb Profile At 06:15 UT 50
Figure 19: Global Pressure and Weather Systems 51
Figure 20: Map of Mean Cloudiness 51
Figure 21: Graph of Mean Cloudiness Along the Eclipse Path 52
Figure 22: Clear Skies in Australia 52
Figure 23: Spectral Response of Some Commonly Available Solar Filters 53
Figure 24: The Sky During Totality as Seen From Center Line at 06:15 UT 54
Tables
Table 1: Elements of the Total Solar Eclipse of 2002 December 04 55
Table 2: Shadow Contacts and Circumstances 56
Table 3: Path of the Umbral Shadow 57
Table 4: Physical Ephemeris of the Umbral Shadow 58
Table 5: Local Circumstances on the Center Line 59
Table 6: Topocentric Data and Path Corrections - Lunar Limb Profile 60
Table 7: Mapping Coordinates for the Umbral Path - Africa 61
Table 8: Mapping Coordinates for the Umbral Path - Australia 62
Table 9: Mapping Coordinates for the Zones of Grazing Eclipse - Africa 63
Table 10: Mapping Coordinates for the Zones of Grazing Eclipse - Australia 64
Table 11: Local Circumstances for Africa: Angola - Benin 65
Table 12: Local Circumstances for Africa: Botswana - Equatorial Guinea 66
Table 13: Local Circumstances for Africa: Ethiopia - Mali 67
Table 14: Local Circumstances for Africa: Mayotte - Somalia 68
Table I5: Local Circumstances for Africa: South Africa 69
Table 16: Local Circumstances for Africa: Sudan - Zimbabwe 70
Table 17: Local Circumstances for Antarctica, Indonesia \& Indian Ocean 71
Table 18: Local Circumstances for Australia \& New Zealand 72
Table 19: Solar Eclipses of Saros Series 142 73
Table 20: African and Australian Weather Statistics 74
Key to Table 20 75
Table 21: 35 mm Field of View and Size of Sun's Image 76
Table 22: Solar Eclipse Exposure Guide 76
Request Form for NASA Solar Eclipse Bulletins 77

Eclipse Predictions

Introduction

On Wednesday, 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia (Figure 1).

Umbral Path And Visibility

The eclipse begins in the South Atlantic where the Moon's umbral shadow first touches down on Earth at 05:50 UT (Figure 2). Along the sunrise terminator, the duration is only 26 seconds as seen from the center of the 31 kilometerwide path. Seven minutes later, the umbra reaches the Atlantic coast of Angola (05:57 UT) as it begins its trajectory across southern Africa (Figures 2 to 11). Quite coincidentally, some regions within the initial track through Angola were also in the path of the total solar eclipse of 2001 June 21 (Figure 2). The local residents there are indeed fortunate to witness two total eclipses of the Sun within the span of eighteen months.

The early morning eclipse lasts 51 seconds from the center line with the Sun 19° above the horizon. The umbra carves out a 50 kilometer-wide path as it sweeps across Angola in a southeastern direction. Briefly straddling the Angola/ Zambia border (Figure 3), the shadow crosses eastern Namibia before entering northern Botswana (06:09 UT). The path width has grown to 60 kilometers and totality lasts 1 minute 11 seconds. Following the political boundary between Zimbabwe and Botswana, the umbra travels with a ground speed of $1.2 \mathrm{~km} / \mathrm{s}$. Bulawayo, Zimbabwe, lies just north of the track and its residents witness a deep partial eclipse of magnitude 0.987 at 06:14 UT.

The umbra crosses completely into Zimbabwe before entering northern South Africa at 06:19 UT (Figure 4). One minute later, the northern third of Kruger National Park is plunged into totality, which lasts 1 minute 25 seconds as the hidden Sun stands 42° above the horizon. Quickly crossing southern Mozambique, the shadow leaves the dark continent at 06:28 UT. The coastal city of Xai-Xai lies south of the center line but still experiences 58 seconds of totality before the umbra begins its long trek across the Indian Ocean.

The instant of greatest eclipse ${ }^{1}$ occurs at 07:31:11 UT when the axis of the Moon's shadow passes closest to the center of Earth $\left(\mathrm{gamma}^{2}=-0.302\right)$. The length of totality reaches its maximum duration of 2 minutes 4 seconds, the Sun's altitude is 72°, the path width is 87 kilometers and the umbra's yelocity is $0.670 \mathrm{~km} / \mathrm{s}$. Unfortunately, the umbra is far at sea ~ 2000 kilometers southeast of Madagascar.

During the next hour and a half, no land is encountered as the eclipse track curves to the northeast and begins to narrow. In the final 90 seconds of its terrestrial trajectory, the umbra traverses South Australia (Figures 12 to 17). The coastal town of Ceduna lies at the center of the 35 kilometer-wide path. Totality lasts 33 seconds while the Sun stands 9° above the western horizon. The accelerating ground speed of the umbra already exceeds $5 \mathrm{~km} / \mathrm{s}$. In the remaining seconds, the increasingly elliptical shadow sweeps across 900 kilometers of the Australian Outback.

The umbra leaves Earth's surface at the sunset terminator at 09:12 UT. Over the course of 3 hours and 21 minutes, the Moon's umbra travels along a path approximately 12,000 kilometers long and covering 0.14% of Earth's surface area.

[^0]
Maps of the Eclipse Path

Orihographic Projection Map of the Eclipse Path

Figure 1 is an orthographic projection map of Earth [adapted from Espenak, 1987] showing the path of penumbral (partial) and umbral (total) eclipse. The daylight terminator is plotted for the instant of greatest eclipse with north at the top. The sub-Earth point is centered over the point of greatest eclipse and is indicated with an asterisk-like symbol. The sub-solar point (Sun in zenith) at that instant is also shown.

The limits of the Moon's penumbral shadow define the region of visibility of the partial eclipse. This saddleshaped region often covers more than half of Earth's daylight hemisphere and consists of several distinct zones or limits. At the northern and/or southern boundaries lie the limits of the penumbra's path. Partial eclipses have only one of these limits, as do central eclipses when the shadow axis falls no closer than about 0.45 radii from Earth's center. Great loops at the western and eastern extremes of the penumbra's path identify the areas where the eclipse begins/ends at sunrise and sunset, respectively. If the penumbra has both a northern and southern limit, the rising and setting curves form two separate, closed loops. Otherwise, the curves are connected in a distorted figure eight. Bisecting the 'eclipse begins/ends at sunrise and sunset' loops is the curve of maximum eclipse at sunrise (western loop) and sunset (eastern loop). The exterior tangency points P1 and P4 mark the coordinates where the penumbral shadow first contacts (partial eclipse begins) and last contacts (partial eclipse ends) Earth's surface. The path of the umbral shadow bisects the penumbral path from west to east and is shaded dark gray.

A curve of maximum eclipse is the locus of all points where the eclipse is at maximum at a given time. They are plotted at each half hour Universal Time (UT), and generally run from northern to southern penumbral limits, or from the maximum eclipse at sunrise or sunset curves to one of the limits. The outline of the umbral shadow is plotted every 10 minutes in UT. Curves of constant eclipse magnitude ${ }^{3}$ delineate the locus of all points where the magnitude at maximum eclipse is constant. These curves run exclusively between the curves of maximum eclipse at sunrise and sunset. Furthermore, they are quasi-parallel to the northern/southern penumbral limits and the umbral paths of central eclipses. Northern and southern limits of the penumbra may be thought of as curves of constant magnitude of 0%, while adjacent curves are for magnitudes of $20 \%, 40 \%, 60 \%$ and 80%. The northern and southern limits of the path of total eclipse are curves of constant magnitude of 100%.

At the top of Figure 1, the Universal Time of geocentric conjunction between the Moon and Sun is given followed by the instant of greatest eclipse. The eclipse magnitude is given for greatest eclipse. For central eclipses (both total and annular), it is equivalent to the geocentric ratio of diameters of the Moon and Sun. Gamma is the minimum distance of the Moon's shadow axis from Earth's center in units of equatorial Earth radii. The shadow axis passes south of Earth's geocenter for negative values of Gamma. Finally, the Saros series number of the eclipse is given along with its relative sequence in the series.

Equidistant Conic Projection Map of the Eclipse Path

Figures 2, 3, 4 (covering Africa), 12 and 13 (covering Australia) are maps using an equidistant conic projection chosen to minimize distortion, and which isolate the African and Australian portions of the umbral path. Curves of maximum eclipse and constant eclipse magnitude are plotted and labeled at intervals ranging from 1 to 10 minutes, depending on the map scale and umbral shadow velocity. A linear scale is included for estimating approximate distances (kilometers). Within the northern and southern limits of the path of totality, the outline of the umbral shadow is plotted at intervals of 10 minutes or less. The duration of totality (minutes and seconds) and the Sun's altitude correspond to the local circumstances on the center line at each shadow position.

The scales used in the maps in these figures are as follows:
Figure 2 - 1:31,804,000
Figure 3\&4-1:7,952,000
Figure 12 - $\quad 1: 20,240,000$
Figure 13 - $1: 5,936,000$

[^1]The positions of larger cities and metropolitan areas in and near the umbral path are depicted as black dots. The size of each city is logarithmically proportional to its population using 1990 census data (Rand McNally, 1991). City data from a geographic data base of over 90,000 positions are plotted to give as many locations as possible in the path of totality. Local circumstances have been calculated for many of these positions and can be found in Tables 11 through I8.

Detailed Maps of the Umbral Path

The path of totality is plotted on a series detailed maps appearing in Figures 5 through 11 (Africa) and Figures 14 through 17 (Australia). The maps were chosen to isolate small regions along the entire land portion of the eclipse path. Curves of maximum eclipse are plotted at 1 - or 2-minute intervals along the track and labeled with the center line duration of totality and the Sun's altitude. The maps are constructed from the Digital Chart of the World (DCW), a digital database of the world developed by the U.S. Defense Mapping Agency (DMA). The primary sources of information for the geographic database are the Operational Navigation Charts (ONC) and the Jet Navigation Charts (JNC) developed by the DMA.

The $1: 2,000,000$ scale of the eclipse maps is adequate for showing roads, villages and cities, required for eclipse expedition planning. Caution should be employed in using the maps since no distinction is made between major highways and second class soft-surface roads. Those who require more detailed maps of the eclipse track should plot the coordinates from Tables $7-9$ on larger scale maps.

The DCW database was assembled in the 1980s and contains names of places that are no longer used in some parts of Africa, particularly Zimbabwe. Where possible, modern names have been substituted for those in the database but this correction could not be applied to all sites. Some areas of missing topographic data appear as blank or white rectangles on the map background.

Northern and southern limits as well as the center line of the path are plotted using data from Tables 7 and 8. Although no corrections have been made for center of figure or lunar limb profile, they have little or no effect at this scale. Atmospheric refraction has not been included, as it plays a significant role only at very low solar altitudes ${ }^{4}$. In any case, refraction corrections to the path are uncertain since they depend on the atmospheric temperature-pressure profile, which cannot be predicted in advance. If observations from the graze zones are planned, then the zones of grazing eclipse must be plotted on higher scale maps using coordinates in Table 9. See Plotting the Path on Maps for sources and more information. The paths also show the curves of maximum eclipse at 2 -minute increments in UT. These maps are also available on the web at http://sunearth.gsfc.nasa.gov/eclipse/TSE2002/TSE2002.html).

Elements, Shadow Contacts and Eclipse Path Tables

The geocentric ephemeris for the Sun and Moon, various parameters, constants, and the Besselian elements (polynomial form) are given in Table 1. The eclipse elements and predictions were derived from the DE200 and LE200 ephemerides (solar and lunar, respectively) developed jointly by the Jet Propulsion Laboratory and the U. S. Naval Observatory for use in the Astronomical Almanac for 1984 and thereafter. Unless otherwise stated, all predictions are based on center of mass positions for the Moon and Sun with no corrections made for center of figure, lunar limb profile or atmospheric refraction. The predictions depart from normal IAU convention through the use of a smaller constant for the mean lunar radius k for all umbral contacts (see: Lunar Limb Profile). Times are expressed in either Terrestrial Dynamical Time (TDT) or in Universal Time (UT), where the best value of $\Delta \mathrm{T}^{5}$ available at the time of preparation is used.

From the polynomial form of the Besselian elements, any element can be evaluated for any time t_{l} (in decimal hours) via the equation:

$$
\begin{aligned}
& \mathbf{a}=\mathbf{a}_{0}+\mathbf{a}_{1} * \mathbf{t}+\mathbf{a}_{2} * \mathbf{t}^{2}+\mathbf{a}_{3} * \mathbf{t}^{3} \quad\left(\text { or } \mathbf{a}=\sum\left[\mathbf{a}_{\mathrm{n}}{ }^{*} \mathbf{t}^{\mathrm{n}}\right] ; \mathrm{n}=0 \text { to } 3\right) \\
& \text { where: } \quad \begin{array}{l}
\mathbf{a}=\mathrm{x}, \mathrm{y}, \mathrm{~d}, \mathrm{l}_{1}, \mathrm{l}_{2}, \text { or } \mu \\
\\
\mathbf{t}=\mathrm{t}_{1}-\mathrm{t}_{0} \text { (decimal hours) and } \mathrm{t}_{0}=8.00 \mathrm{TDT}
\end{array}
\end{aligned}
$$

[^2]The polynomial Besselian elements were derived from a least-squares fit to elements rigorously calculated at five separate times over a 6 -hour period centered at t_{0}. Thus, the equation and elements are valid over the period $5.00 \leq t_{1} \leq 11.00 \mathrm{TDT}$.

Table 2 lists all external and internal contacts of penumbral and umbral shadows with Earth. They include TDT times and geodetic coordinates with and without corrections for $\Delta \mathrm{T}$. The contacts are defined:

P1 - Instant of first external tangency of penumbral shadow cone with Earth's limb.
(partial eclipse begins)
P4 - Instant of last external tangency of penumbral shadow cone with Earth's limb. (partial eclipse ends)
U1 - Instant of first external tangency of umbral shadow cone with Earth's limb.
(umbral eclipse begins)
U2 - Instant of first internal tangency of umbral shadow cone with Earth's limb.
U3 - Instant of last internal tangency of umbral shadow cone with Earth's limb.
U4 - Instant of last external tangency of umbral shadow cone with Earth's limb. (umbral eclipse ends)

Similarly, the northern and southern extremes of the penumbral and umbral paths, and extreme limits of the umbral center line are given. The IAU (International Astronomical Union) longitude convention is used throughout this publication (i.e., for longitude, east is positive and west is negative; for latitude, north is positive and south is negative).

The path of the umbral shadow is delineated at 5 -minute intervals in Universal Time in Table 3. Coordinates of the northern limit, the southern limit and the center line are listed to the nearest tenth of an arc-minute ($\sim 185 \mathrm{~m}$ at the Equator). The Sun's altitude, path width and umbral duration are calculated for the center line position. Table 4 presents a physical ephemeris for the umbral shadow at 5 -minute intervals in UT. The center line coordinates are followed by the topocentric ratio of the apparent diameters of the Moon and Sun, the eclipse obscuration ${ }^{6}$, and the Sun's altitude and azimuth at that instant. The central path width, the umbral shadow's major and minor axes and its instantaneous velocity with respect to Earth's surface are included. Finally, the center line duration of the umbral phase is given.

Local circumstances for each center line position listed in Tables 3 and 4 are presented in Table 5. The first three columns give the Universal Time of maximum eclipse, the center line duration of totality and the altitude of the Sun at that instant. The following columns list each of the four eclipse contact times followed by their related contact position angles and the corresponding altitude of the Sun. The four contacts identify significant stages in the progress of the eclipse. They are defined as follows:

First Contact - Instant of first external tangency between the Moon and Sun. (partial eclipse begins)
Second Contact - Instant of first internal tangency between the Moon and Sun. (central or umbral eclipse begins; total or annular eclipse begins)
Third Contact - Instant of last internal tangency between the Moon and Sun. (central or umbral eclipse ends; total or annular eclipse ends)
Fourth Contact - Instant of last external tangency between the Moon and Sun. (partial eclipse ends)

The position angles \mathbf{P} and \mathbf{V} identify the point along the Sun's disk where each contact occurs ${ }^{7}$. Second and third contact altitudes are omitted since they are always within 1° of the altitude at maximum eclipse.

Table 6 presents topocentric values from the central path at maximum eclipse for the Moon's horizontal parallax, semi-diameter, relative angular velocity with respect to the Sun, and libration in longitude. The altitude and azimuth of the Sun are given along with the azimuth of the umbral path. The northern limit position angle identifies the point on the lunar disk defining the umbral path's northern limit. It is measured counter-clockwise frcm the north point of the Moon. In addition, corrections to the path limits due to the lunar limb profile are listed. The irregular profile of the Moon results in a zone of 'grazing eclipse' at each limit that is delineated by interior and exterior contacts of lunar features with the Sun's limb. This geometry is described in greater detail in the section Limb Corrfettons to th三 Path Limits: Graze Zones. Corrections to center line durations due to the lunar limb profile are also included. When arded to the durations in Tables $3,4,5,7$ and 8 , a slightly shorter central total phase is predicted along most of the path.

[^3]To aid and assist in the plotting of the umbral path on large scale maps, the path coordinates are also tabulated at 30 ' intervals in longitude in Tables 7 and 8. The latitude of the northern limit, southern limit and center line for each longitude is tabulated to the nearest hundredth of an arc-minute ($\sim 18.5 \mathrm{~m}$ at the Equator) along with the Universal Time of maximum eclipse at each position. Finally, local circumstances on the center line at maximum eclipse are listed and include the Sun's altitude and azimuth, the umbral path width and the central duration of totality.

In applications where the zones of grazing eclipse are needed in greater detail, Tables 9 and 10 list these coordinates over land- based portions of the path at 30^{\prime} intervals in longitude. The time of maximum eclipse is given at both northern and southern limits as well as the path's azimuth. The elevation and scale factors are also given (see: Limb Corrections to the Path Limits: Graze Zones).

Local Circumstances Tables

Local circumstances for approximately 400 cities, metropolitan areas and places in Africa, Australia, etc., are presented in Tables 11 through 18. These tables give the local circumstances at each contact and at maximum eclipse ${ }^{8}$ for every location. The coordinates are listed along with the location's elevation (meters) above sea-level, if known. If the elevation is unknown (i.e., not in the data base), then the local circumstances for that location are calculated at sea-level. In any case, the elevation does not play a significant role in the predictions unless the location is near the umbral path limits and the Sun's altitude is relatively small $\left(<10^{\circ}\right)$. The Universal Time of each contact is given to a tenth of a second, along with position angles \mathbf{P} and \mathbf{V} and the altitude of the Sun. The position angles identify the point along the Sun's disk where each contact occurs and are measured counter-clockwise (i.e., eastward) from the north and zenith points, respectively. Locations outside the umbral path miss the umbral eclipse and only witness first and fourth contacts. The Universal Time of maximum eclipse (either partial or total) is listed to a tenth of a second. Next, the position angles \mathbf{P} and \mathbf{V} of the Moon's disk with respect to the Sun are given, followed by the altitude and azimuth of the Sun at maximum eclipse. Finally, the corresponding eclipse magnitude and obscuration are listed. For umbral eclipses (both annular and total), the eclipse magnitude is identical to the topocentric ratio of the Moon's and Sun's apparent diameters.

Two additional columns are included if the location lies within the path of the Moon's umbral shadow. The umbral depth is a relative measure of a location's position with respect to the center line and path limits. It is a unitless parameter which is defined as:

$$
\begin{equation*}
\mathbf{u}=1-\mathrm{abs}(\mathbf{x} / \mathbf{R}) \tag{1}
\end{equation*}
$$

```
where: \(\mathbf{u}=\) umbral depth
\(\mathbf{x}=\) perpendicular distance from the shadow axis (kilometers)
\(\mathbf{R}=\) radius of the umbral shadow as it intersects Earth's surface (kilometers)
```

The umbral depth for a location varies from 0.0 to 1.0 . A position at the path limits corresponds to a value of 0.0 while a position on the center line has a value of 1.0 . The parameter can be used to quickly determine the corresponding center line duration. Thus, it is a useful tool for evaluating the trade-off in duration of a location's position relative to the center line. Using the location's duration and umbral depth, the center line duration is calculated as:

$$
\begin{equation*}
\mathbf{D}=\mathbf{d} /\left(1-(\mathbf{I}-\mathbf{u})^{2}\right)^{1 / 2} \text { seconds } \tag{2}
\end{equation*}
$$

where: $\quad \mathbf{D}=$ duration of totality on the center line (seconds)
d = duration of totality at location (seconds)
$\mathbf{u}=$ umbral depth
The final column gives the duration of totality. The effects of refraction have not been included in these calculations, nor have there been any corrections for center of figure or the lunar limb profile.

Locations were chosen based on general geographic distribution, population, and proximity to the path. The primary source for geographic coordinates is The New International Atlas (Rand McNally, 1991). Elevations for major cities were taken from Climates of the World (U. S. Dept. of Commerce, 1972). In this rapidly changing political world, it is often difficult to ascertain the correct name or spelling for a given location. Therefore, the information presented here is

[^4]for location purposes only and is not meant to be authoritative. Furthermore, it does not imply recognition of status of any location by the United States Government. We hereby solicit corrections to names, spellings, coordinates and elevations in order to update the geographic data base for future eclipse predictions.

For countries in the path of totality, expanded versions of the local circumstances tables listing many more locations are available via a special web site of supplemental material for the total solar eclipse of 2002 (http:// sunearth.gsfc.nasa.gov/eclipse/TSE2002/TSE2002.html).

Estimating Times of Second and Third Contacts

The times of second and third contact for any location not listed in this publication can be estimated using the detailed maps (Figures 5-11, and 14-17). Alternatively, the contact times can be estimated from maps on which the umbral path has been plotted. Tables 7 and 8 list the path coordinates conveniently arranged in 30^{\prime} increments of longitude to assist plotting by hand. The path coordinates in Table 3 define a line of maximum eclipse at 5 -minute increments in time. These lines of maximum eclipse each represent the projection diameter of the umbral shadow at the given time. Thus, any point on one of these lines will witness maximum eclipse (i.e., mid-totality) at the same instant. The coordinates in Table 3 should be plotted on the map in order to construct lines of maximum eclipse.

The estimation of contact times for any one point begins with an interpolation for the time of maximum eclipse at that location. The time of maximum eclipse is proportional to a point's distance between two adjacent lines of maximum eclipse, measured along a line parallel to the center line. This relationship is valid along most of the path with the exception of the extreme ends, where the shadow experiences its largest acceleration. The center line duration of totality \mathbf{D} and the path width \mathbf{W} are similarly interpolated from the values of the adjacent lines of maximum eclipse as listed in Table 3. Since the location of interest probably does not lie on the center line, it is useful to have an expression for calculating the duration of totality \mathbf{d} as a function of its perpendicular distance a from the center line:

$$
\begin{equation*}
\mathbf{d}=\mathbf{D}\left(1-(2 \mathbf{a} / \mathbf{W})^{2}\right)^{1 / 2} \text { seconds } \tag{3}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { where: } & \mathbf{d}=\text { duration of totality at desired location (seconds) } \\
& \mathbf{D}=\text { duration of totality on the center line (seconds) } \\
& \mathbf{a}=\text { perpendicular distance from the center line (kilometers) } \\
& \mathbf{W}=\text { width of the path (kilometers) }
\end{array}
$$

If $\mathbf{t}_{\mathbf{m}}$ is the interpolated time of maximum eclipse for the location, then the approximate times of second and third contacts (t_{2} and t_{3}, respectively) are:

$$
\begin{array}{ll}
\text { Second Contact: } & \mathbf{t}_{\mathbf{2}}=\mathbf{t}_{\mathbf{m}}-\mathbf{d} / 2 \\
\text { Third Contact: } & \mathbf{t}_{\mathbf{3}}=\mathbf{t}_{\mathbf{m}}+\mathbf{d} / 2 \tag{5}
\end{array}
$$

The position angles of second and third contact (either \mathbf{P} or \mathbf{V}) for any location off the center line are also useful in some applications. First, linearly interpolate the center line position angles of second and third contacts from the values of the adjacent lines of maximum eclipse as listed in Table 5. If \mathbf{X}_{2} and \mathbf{X}_{3} are the interpolated center line position angles of second and third contacts, then the position angles \mathbf{x}_{2} and $\mathbf{x}_{\mathbf{3}}$ of those contacts for an observer located a kilometers from the center line are:

Second Contact:	$\mathbf{x}_{\mathbf{2}}=\mathbf{X}_{\mathbf{2}}-\arcsin (\mathbf{2} a / \mathbf{W})$
Third Contact:	$\mathbf{x}_{\mathbf{3}}=\mathbf{X}_{\mathbf{3}}+\arcsin (\mathbf{2} a / \mathbf{W})$

where: $\quad \mathbf{x}_{\mathbf{n}}=$ interpolated position angle (either \mathbf{P} or \mathbf{V}) of contact \mathbf{n} at location
$\mathbf{X}_{\mathbf{n}}=$ interpolated position angle (either \mathbf{P} or \mathbf{V}) of contact \mathbf{n} on center line
$\mathbf{a}=$ perpendicular distance from the center line (kilometers)
(use negative values for locations south of the center line)
$\mathbf{W}=$ width of the path (kilometers)

Mean Lunar Radius

A fundamental parameter used in eclipse predictions is the Moon's radius k, expressed in units of Earth's equatorial radius. The Moon's actual radius varies as a function of position angle and libration due to the irregularity in the limb profile. From 1968 through 1980, the Nautical Almanac Office used two separate values for k in their predictions. The larger value ($k=0.2724880$), representing a mean over topographic features, was used for all penumbral (exterior) contacts and for annular eclipses. A smaller value ($k=0.272281$), representing a mean minimum radius, was reserved exclusively for umbral (interior) contact calculations of total eclipses [Explanatory Supplement, 1974]. Unfortunately, the use of two different values of k for umbral eclipses introduces a discontinuity in the case of hybrid or annular-total eclipses.

In August 1982, the International Astronomical Union (IAU) General Assembly adopted a value of $k=0.2725076$ for the mean lunar radius. This value is now used by the Nautical Almanac Office for all solar eclipse predictions [Fiala and Lukac, 1983] and is currently the best mean radius, averaging mountain peaks and low valleys along the Moon's rugged limb. The adoption of one single value for k eliminates the discontinuity in the case of annular-total eclipses and ends confusion arising from the use of two different values. However, the use of even the best 'mean' value for the Moon's radius introduces a problem in predicting the true character and duration of umbral eclipses, particularly total eclipses. A total eclipse can be defined as an eclipse in which the Sun's disk is completely occulted by the Moon. This cannot occur so long as any photospheric rays are visible through deep valleys along the Moon's limb [Meeus, Grosjean and Vanderleen, 1966]. But the use of the IAU's mean k guarantees that some annular or annular-total eclipses will be misidentified as total. A case in point is the eclipse of 3 October 1986. Using the IAU value for k, the Astronomical Almanac identified this event as a total eclipse of 3 seconds duration when it was, in fact, a beaded annular eclipse. Since a smaller value of k is more representative of the deeper lunar valleys and hence the minimum solid disk radius, it helps ensure the correct identification of an eclipse's true nature.

Of primary interest to most observers are the times when umbral eclipse begins and ends (second and third contacts, respectively) and the duration of the umbral phase. When the IAU's value for k is used to calculate these times, they must be corrected to accommodate low valleys (total) or high mountains (annular) along the Moon's limb. The calculation of these corrections is not trivial but must be performed, especially if one plans to observe near the path limits [Herald, 1983]. For observers near the center line of a total eclipse, the limb corrections can be more closely approximated by using a smaller value of k which accounts for the valleys along the profile.

This publication uses the IAU's accepted value of $k=0.2725076$ for all penumbral (exterior) contacts. In order to avoid eclipse type misidentification and to predict central durations which are closer to the actual durations at total eclipses, we depart from standard convention by adopting the smaller value of $k=0.272281$ for all umbral (interior) contacts. This is consistent with predictions in Fifty Year Canon of Solar Eclipses: 1986-2035 [Espenak, 1987]. Consequently, the smaller k produces shorter umbral durations and narrower paths for total eclipses when compared with calculations using the IAU value for k. Similarly, predictions using a smaller k result in longer umbral durations and wider paths for annular eclipses than do predictions using the IAU's k.

Lunar Limb Profile

Eclipse contact times, magnitude and duration of totality all depend on the angular diameters and relative velocities of the Moon and Sun. Unfortunately, these calculations are limited in accuracy by the departure of the Moon's limb from a perfectly circular figure. The Moon's surface exhibits a rather dramatic topography, which manifests itself as an irregular limb when seen in profile. Most eclipse calculations assume some mean radius that averages high mountain peaks and low valleys along the Moon's rugged limb. Such an approximation is acceptable for many applications, but if higher accuracy is needed, the Moon's actual limb profile must be considered. Fortunately, an extensive body of knowledge exists on this subject in the form of Watts' limb charts [Watts, 1963]. These data are the product of a photographic survey of the marginal zone of the Moon and give limb profile heights with respect to an adopted smooth reference surface (or datum). Analyses of lunar occultations of stars by Van Flandern [1970] and Morrison [1979] have shown that the average cross-section of Watts' datum is slightly elliptical rather than circular. Furthermore, the implicit center of the datum (i.e., the center of figure) is displaced from the Moon's center of mass. In a follow-up analysis of 66,000 occultations, Morrison and Appleby [1981] have found that the radius of the datum appears to vary with libration. These variations produce systematic errors in Watts' original limb profile heights that attain 0.4 arc-seconds at some position angles. Thus, corrections to Watts' limb data are necessary to ensure that the reference datum is a sphere with its center at the center of mass.

The Watts charts were digitized by Her Majesty's Nautical Almanac Office in Herstmonceux, England, and transformed to grid-profile format at the U. S. Naval Observatory. In this computer readable form, the Watts limb charts lend themselves to the generation of limb profiles for any lunar libration. Ellipticity and libration corrections may be
applied to refer the profile to the Moon's center of mass. Such a profile can then be used to correct eclipse predictions which have been generated using a mean lunar limb.

Along the path, the Moon's topocentric libration (physical + optical) in longitude ranges from $\mathrm{I}=+4.5^{\circ}$ to $\mathrm{l}=+2.9^{\circ}$. Thus, a limb profile with the appropriate libration is required in any detailed analysis of contact times, central durations, etc. But a profile with an intermediate value is useful for planning purposes and may even be adequate for most applications. The lunar limb profile presented in Figure 18 includes corrections for center of mass and ellipticity [Morrison and Appleby, 198I]. It is generated for 06:15 UT, which corresponds to western Zimbabwe near the border with Botswana. The Moon's topocentric libration is $1=+4.37^{\circ}$, and the topocentric semi-diameters of the Sun and Moon are 973.7 and 992.2 arcseconds, respectively. The Moon's angular velocity with respect to the Sun is 0.468 arc-seconds per second.

The radial scale of the limb profile in Figure 18 (at bottom) is greatly exaggerated so that the true limb's departure from the mean lunar limb is readily apparent. The mean limb with respect to the center of figure of Watts' original data is shown (dashed) along with the mean limb with respect to the center of mass (solid). Note that all the predictions presented in this publication are calculated with respect to the latter limb unless otherwise noted. Position angles of various lunar features can be read using the protractor marks along the Moon's mean limb (center of mass). The position angles of second and third contact are clearly marked along with the north pole of the Moon's axis of rotation and the observer's zenith at mid-totality. The dashed line with arrows at either end identifies the contact points on the limb corresponding to the northern and southern limits of the path. To the upper left of the profile are the Sun's topocentric coordinates at maximum eclipse. They include the right ascension R.A., declination Dec., semi-diameter S.D. and horizontal parallax H.P. The corresponding topocentric coordinates for the Moon are to the upper right. Below and left of the profile are the geographic coordinates of the center line at 06:15 UT while the times of the four eclipse contacts at that location appear to the lower right. Directly below the profile are the local circumstances at maximum eclipse. They include the Sun's altitude and azimuth, the path width, and central duration. The position angle of the path's northern/southern limit axis is PA(N.Limit) and the angular velocity of the Moon with respect to the Sun is $A . V e l .(M: S)$. At the bottom left are a number of parameters used in the predictions, and the topocentric lunar librations appear at the lower right.

In investigations where accurate contact times are needed, the lunar limb profile can be used to correct the nominal or mean limb predictions. For any given position angle, there will be a high mountain (annular eclipses) or a low valley (total eclipses) in the vicinity that ultimately determines the true instant of contact. The difference, in time, between the Sun's position when tangent to the contact point on the mean limb and tangent to the highest mountain (annular) or lowest valley (total) at actual contact is the desired correction to the predicted contact time. On the exaggerated radial scale of Figure 18, the Sun's limb can be represented as an epicyclic curve that is tangent to the mean lunar limb at the point of contact and departs from the limb by \mathbf{h} through:

$$
\begin{equation*}
\mathbf{h}=\mathbf{S}(\mathbf{m}-1)(1-\cos [\mathbf{C}]) \tag{8}
\end{equation*}
$$

where: $\mathbf{h}=$ departure of Sun's limb from mean lunar limb
$\mathbf{S}=$ Sun's semi-diameter
$\mathbf{m}=$ eclipse magnitude
$\mathbf{C}=$ angle from the point of contact
Herald [1983] has taken advantage of this geometry to develop a graphical procedure for estimating correction times over a range of position angles. Briefly, a displacement curve of the Sun's limb is constructed on a transparent overlay by way of equation [8]. For a given position angle, the solar limb overlay is moved radially from the mean lunar limb contact point until it is tangent to the lowest lunar profile feature in the vicinity. The solar limb's distance d (arcseconds) from the mean lunar limb is then converted to a time correction Δ by:

$$
\begin{equation*}
\Delta=\mathbf{d} \mathbf{v} \cos [\mathbf{X}-\mathbf{C}] \tag{9}
\end{equation*}
$$

where: $\Delta=$ correction to contact time (seconds)
d = distance of Solar limb from Moon's mean limb (arc-sec)
$\mathbf{v}=$ angular velocity of the Moon with respect to the Sun (arc-sec/sec)
$\mathbf{X}=$ center line position angle of the contact
$\mathbf{C}=$ angle from the point of contact
This operation may be used for predicting the formation and location of Baily's beads. When calculations are performed over a large range of position angles, a contact time correction curve can then be constructed.

Since the limb profile data are available in digital form, an analytical solution to the problem is possible that is quite straightforward and robust. Curves of corrections to the times of second and third contact for most position angles have been computer generated and are plotted in Figure 18. The circular protractor scale at the center represents the
nominal contact time using a mean lunar limb. The departure of the contact correction curves from this scale graphically illustrates the time correction to the mean predictions for any position angle as a result of the Moon's true limb profile. Time corrections external to the circular scale are added to the mean contact time; time corrections internal to the protractor are subtracted from the mean contact time. The magnitude of the time correction at a given position angle is measured using any of the four radial scales plotted at each cardinal point.

For example, Table 16 gives the following data for Beitbridge, Zimbabwe:

$$
\begin{array}{ll}
\text { Second Contact } & =06: 18: 03.4 \text { UT } P_{2}=127^{\circ} \\
\text { Third Contact } & =06: 19: 25.0 \text { UT P } P_{3}=286^{\circ}
\end{array}
$$

Using Figure 18, the measured time corrections and the resulting contact times are:

$$
\begin{array}{llll}
C_{2}=-2.2 \text { seconds; } & & \text { Second Contact }=06: 18: 03.4-2.2 \mathrm{~s} & =06: 18: 01.2 \mathrm{UT} \\
\mathrm{C}_{3}=-2.7 \text { seconds; } & \text { Third Contact } & =06: 19: 25.0-2.7 \mathrm{~s} & =06: 19: 22.3 \mathrm{UT}
\end{array}
$$

The above corrected values are within 0.1 seconds of a rigorous calculation using the true limb profile.
Lunar limb profile diagrams for several other positions/times along the path of totality are available via a special web site of supplemental material for the total solar eclipse of 2002 (http://sunearth.gsfc.nasa.gov/eclipse/TSE2002/ TSE2002. html).

Limb Corrections to the Path Limits: Graze Zones

The northern and southern umbral limits provided in this publication were derived using the Moon's center of mass and a mean lunar radius. They have not been corrected for the Moon's center of figure or the effects of the lunar limb profile. In applications where precise limits are required, Watts' limb data must be used to correct the nominal or mean path. Unfortunately, a single correction at each limit is not possible since the Moon's libration in longitude and the contact points of the limits along the Moon's limb each vary as a function of time and position along the umbral path. This makes it necessary to calculate a unique correction to the limits at each point along the path. Furthermore, the northern and southern limits of the umbral path are actually paralleled by a relatively narrow zone where the eclipse is neither penumbral nor umbral. An observer positioned here will witness a slender solar crescent that is fragmented into a series of bright beads and short segments whose morphology changes quickly with the rapidly varying geometry between the limbs of the Moon and the Sun. These beading phenomena are caused by the appearance of photospheric rays that alternately pass through deep Iunar valleys and hide behind high mountain peaks as the Moon's irregular limb grazes the edge of the Sun's disk. The geometry is directly analogous to the case of grazing occultations of stars by the Moon. The graze zone is typically 5 to 10 kilometers wide and its interior and exterior boundaries can be predicted using the lunar limb profile. The interior boundaries define the actual limits of the umbral eclipse (both total and annular) while the exterior boundaries set the outer limits of the grazing eclipse zone.

Table 6 provides topocentric data and corrections to the path limits due to the true lunar limb profile. At 5-minute intervals, the table lists the Moon's topocentric horizontal parallax, semi-diameter, relative angular velocity of the Moon with respect to the Sun and lunar libration in longitude. The Sun's center line altitude and azimuth is given, followed by the azimuth of the umbral path. The position angle of the point on the Moon's limb which defines the northern limit of the path is measured counter-clockwise (i.e., eastward) from the north point on the limb. The path corrections to the northern and southern limits are listed as interior and exterior components in order to define the graze zone. Positive corrections are in the northern sense while negative shifts are in the southern sense. These corrections (minutes of arc in latitude) may be added directly to the path coordinates listed in Table 3. Corrections to the center line umbral durations due to the lunar limb profile are also included and they are all negative. Thus, when added to the central durations given in Tables $3,4,5$, 7 and 8 , a slightly shorter central total phase is predicted.

Detailed coordinates for the zones of grazing eclipse at each limit for all land-based sections of the path are presented in Tables 9 and 10. Given the uncertainties in the Watts data, these predictions should be accurate to ± 0.3 arcseconds. The interior graze coordinates take into account the deepest valleys along the Moon's limb which produce the simultaneous second and third contacts at the path limits. Thus, the interior coordinates define the true edge of the path of totality. They are calculated from an algorithm which searches the path limits for the extreme positions where no photospheric beads are visible along a $\pm 30^{\circ}$ segment of the Moon's limb, symmetric about the extreme contact points at the instant of maximum eclipse. The exterior graze coordinates are somewhat arbitrarily defined and calculated for the geodetic positions where an unbroken photospheric crescent of 60° in angular extent is visible at maximum eclipse.

In Tables 9 and 10 , the graze zone latitudes are listed every 30^{\prime} in longitude (at sea level) and include the time of maximum eclipse at the northern and southern limits as well as the path's azimuth. To correct the path for locations above sea level, Elev Fact^{9} is a multiplicative factor by which the path must be shifted north perpendicular to itself (i.e., perpendicular to path azimuth) for each unit of elevation (height) above sea level. To calculate the shift, a location's elevation is multiplied by the Elev Fact value. Positive values (usually the case for eclipses in the Southern Hemisphere) indicate that the path must be shifted north. For instance, if one's elevation is 1000 meters above sea level and the Elev Fact value is +0.50 , then the shift is $+500 \mathrm{~m}(=1000 \mathrm{mx}+0.50)$. Thus, the observer must shift the path coordinates 500 meters in a direction perpendicular to the path and in a positive or northerly sense.

The final column of Tables 9 and 10 list the Scale Fact (km/arc-second). This scaling factor provides an indication of the width of the zone of grazing phenomena, due to the topocentric distance of the Moon and the projection geometry of the Moon's shadow on Earth's surface. Since the solar chromosphere has an apparent thickness of about 3 arc-seconds, and assuming a Scale Fact value of $2 \mathrm{~km} /$ arc-seconds, then the chromosphere should be visible continuously during totality for any observer in the path who is within 6 kilometers ($=2 \times 3$) of each interior limit. However, the most dynamic beading phenomena occurs within 1.5 arc-seconds of the Moon's limb. Using the above Scale Factor, this translates into the first 3 kilometers inside the interior limits. But observers should position themselves at least 1 kilometer inside the interior limits (south of the northern interior limit or north of the southern interior limit) in order to ensure that they are inside the path due of to small uncertainties in Watts' data and the actual path limits.

For applications where the zones of grazing eclipse are needed at a higher frequency in longitude interval, tables of coordinates every 7.5 ' in longitude are available via a special web site for the total solar eclipse of 2002 (http:// sunearth.gsfc.nasa.gov/eclipse/TSE2002/TSE2002.html).

Saros History

The periodicity and recurrence of solar (and lunar) eclipses is governed by the Saros cycle, a period of approximately $6,585.3$ days (18 years 11 days 8 hours). When two eclipses are separated by a period of one Saros, they share a very similar geometry. The eclipses occur at the same node with the Moon at nearly the same distance from Earth and at the same time of year. Thus, the Saros is useful for organizing eclipses into families or series. Each series typically lasts 12 to 13 centuries and contains 70 or more eclipses.

The total eclipse of 2002 December 04 is the twenty-second member of Saros series 142 (Table 19), as defined by van den Bergh [1955]. All eclipses in the series occur at the Moon's descending node and the Moon moves northward with each member in the family (i.e. - gamma ${ }^{10}$ increases). Saros 142 is a young series which began with a small partial eclipse at high southern latitudes on 1624 Apr 17. After seven partial eclipses each of increasing magnitude, the first umbral eclipse occurred on 1750 Jul 03. This unusual annular eclipse was non-central and had no southern limit as the northern edge of the Moon's antumbral shadow briefly grazed Earth in the South Pacific. One saros later, the eclipse of 1768 Jul 14 was a short hybrid eclipse just south of Australia. The next eclipse in the series (1786 Jul 25) began a long sequence of total eclipses. The maximum duration of totality was just under 1 minute and the path passed through South Africa.

Over the next two centuries, the duration of totality of each eclipse has gradually increased as the Moon moved closer to perigee with every succeeding event. However, during the twentieth century, the maximum duration has hovered near 2 minutes as Earth approaches perihelion. In the next century, the duration will continue to increase as the umbral shadow passes progressively closer to Earth's geocenter. The most recent eclipse of the series occurred on 1984 Nov 22. The umbral path ran through Papua New Guinea and the South Pacific. After 2002, the following member occurs on 2020 Dec 14. Its track stretches from the South Pacific, across South America and into the South Atlantic (http:// sunearth.gsfc.nasa.gov/eclipse/eclipse/SEplot/SE2002Dec 14T.gif) .

[^5]By the twenty-third century, Saros 142 will be producing total eclipses with maximum durations exceeding 6 minutes in the northern tropics. The longest eclipse of the series occurs on 2291 May 28 and will last 6 minutes 34 seconds. The path of each succeeding event swings further north and a 6 -minute eclipse will be visible from much of the United States on 2345 Jun 30. The duration of totality steadily decreases as the eclipse paths run through higher northern latitudes. The last total eclipse occurs in northern Canada on 2543 Oct 29 . Although the event is central and lasts over 2 minutes, the northern edge of the umbral shadow will miss Earth completely. Partial eclipses will be visible from the northern hemisphere for the next three centuries. Saros 142 reaches its conclusion with the partial eclipse of 2886 May 25. A detailed list of eclipses in Saros series 142 appears in Table 19. For a more detailed list including local circumstances at greatest eclipse, see: http://sunearth.gsfc.nasa.gov/eclipse/SEsaros/SEsaros $142 . \mathrm{html}$

In summary, Saros series 142 includes 72 eclipses. It begins with 7 partials, followed by 1 annular, 1 hybrid, 43 total eclipses and finally ends with 20 more partials. The total duration of Saros 142 is 1280.1 years.

Weather Prospects for the Eclipse

Introduction

Just eighteen months after the 2001 eclipse the Moon's shadow returns to southern Africa. The shift in season marks a dramatic change in the weather, for where 2001 's eclipse occurred during the dry southern winter, that of 2002 is in the midst of the wet summer. This time around, Australia offers a tempting alternative to the African rainy season, but the choices presented to the observer will be difficult to reconcile. In Australia, better weather prospects come at the cost of a short eclipse and a very low solar altitude that will magnify the effects of any cloud that might be present.

African Weather Prospects

African Overview

Africa's most significant climatic feature is its variable rainfall, driven by the continent's position between Earth's anticyclonic belts and its location astride the equator. In the southern part of the continent, the rainfall is highly seasonal, with a pronounced dry season in the winter (June) and an equally prominent wet season in the summer. December (start of southern hemisphere summer) is well into the rainy season, though not the wettest month, and eclipse watchers must contend with a very different climate from that which occurred for the 2001 eclipse.

In December, tropical moisture pushes well southward as high temperatures under an overhead Sun drag Earth's weather equator, the Inter-tropical Convergence Zone (ITCZ), into northern Zambia and central Mozambique (Figure 19). The Indian Ocean air behind the ITCZ is a generous reservoir of moisture, always ready to push southward when opportunity permits, but normally held at bay by the easterly trade winds. A second source of sub-tropical moisture can be found on the Atlantic side of the continent, where west and northwest winds cover Congo, Angola, and northwest Zambia with a moist airmass in December. This airmass is also opposed by the easterly trade winds; the boundary between the two is known as the Inter-Ocean Convergence Zone (IOCZ).

The anticyclonic (high-pressure) belt can be found, on average, along the $35^{\text {th }}$ parallel, just south of the tip of the continent. The mean pressure pattern for December (Figure 19) shows anticyclones on both the Atlantic and Indian Ocean sides of the continent with a weak low pressure trough running north-to-south over Angola, Zambia and Botswana (the Botswana low). The images suggests that they are relatively static, but daily weather charts show that they move from west to east in a semi-regular cycle, bringing an ever-changing pattern of cloud and sun. The anticyclones are of critical importance to the eclipse chaser for they are the main controllers of sunny skies, bringing the dry trade winds from the Indian Ocean onto the continent.

Overlying the anticyclones is a zone of westerly winds that carry weather disturbances of their own. These upper level troughs and lows have a great influence on the weather below as they destabilize the air column and allow convective showers and thunderstorms to grow much more readily than in a stable environment.

Moist air from the northwest and dry air from the southeast moderate the changeable weather and cloudiness across southern Africa in December. Under the influence of passing anticyclones, waxing and waning northerly winds, upper level disturbances, occasional frontal systems, and winds deflected by mountainous terrain, a dynamic climatology of cloud and sun competes for the eclipse watcher's attention. But in spite of the variability of the weather systems there is a generous supply of sunny weather in December in southern Africa to attract the eclipse-watcher. The best areas are in northern South Africa and southeast Zimbabwe. Should movement be necessary as eclipse day approaches, the many countries that are spread out along the track will complicate last-minute adjustments in observing sites, but the main controls on the weather should be predictable for several days in advance.

The Countryside

For Angola, this is the second eclipse in as many years, and for a few small coastal communities north of Benguela, a second chance to see totality. The two tracks actually cross a hundred kilometers offshore, but are close enough on the coast that a very narrow strip defined by the south limit of the eclipse of 2001 and the north limit of 2002 will enjoy a rerun of the spectacle. Beyond this interesting coincidence however, Angola has little to offer the eclipse-seeker because of its
prolonged civil war. Recent events have seen an effective counter-offensive by government troops, but the area of fighting is traversed by the eclipse track and millions of land mines make travel very hazardous.

Leaving Angola, the Moon's shadow skips along the Zambian border and then crosses a narrow extension of Namibia known as the Caprivi Strip before heading southeastward into Botswana. The Caprivi landscape features an expansive broad-leafed forest that bespeaks of its relatively generous precipitation and several prominent rivers, particularly the Okavango. The eclipse path lies across East Caprivi, about 40 km west of the town of Kongola. The track is easily reached by the Golden Highway between Kongola and Katima Mulilo. The narrowness of the Caprivi Strip and the lack of north-south roads limit the ability to move to clearer skies if the day is cloudy.

In Botswana, the track crosses the marvelous Chobe Game Park but the wet season severely restricts travel within the Park. December is still early in the rainy season and the eclipse may be accessible with four-wheel-drive vehicles, but it is likely easier (though farther) to travel from Victoria Falls or Livingstone, Zambia, through Zambia to Sesheke and view the eclipse from the Caprivi Strip. Farther south, the track zigzags back and forth between Botswana and Zimbabwe, passing through Hwange National Park, one of the finest conservation areas in the world. The center line within the park is relatively remote and areas to the southeast, closer to Bulawayo where the road network is denser, will be more accessible.

In southern Zimbabwe, the shadow path moves into better weather prospects. Between Plumtree and Beitbridge the center line can be followed for nearly 400 km on a network of roads, allowing a generous selection of eclipse sites and easy movement in case of adverse weather. Bulawayo lies only 50 km outside the north limit. From this city, major roads lead southwest to Plumtree and southeast to Beitbridge, both of which lie very nearly on the centerline. Access to this area is also possible from South Africa but the deteriorating political situation in Zimbabwe should be carefully reevaluated, especially in the weeks leading up to the eclipse.

Leaving Beitbridge, the eclipse track crosses briefly into South Africa, passing through the Venda Region and the northern part of Kruger National Park. The terrain becomes much rougher than the other parts of the eclipse track, crossing the peaks of the Soutpansberg, a mysterious land of magical lakes, rock engravings, legend and beauty. The Soutpansberg is richly vegetated, in contrast to the low veld over Zimbabwe, but the greenery is also a sign of the frequent mists and rains.

Kruger National Park is likely to be one of the primary destinations for the 2002 eclipse. A jewel of South Africa, the park is regarded as one of the finest wildlife management areas in the world. The center line travels across the drier part of the park, though in December the vegetation is a lush green because of the summer rains. Punda Maria and Shingwedzi are the two major camps within the zone of totality; Shingwedzi is barely north of the centerline. Of all of the National Parks crossed by this eclipse, Kruger is the easiest to reach and provides the greatest range of facilities.

Leaving South Africa, the track descends onto the coastal lowlands of Mozambique. Here, access to the center line can be obtained by following the coastal highway northward from the capital Maputo, crossing the Limpopo River near Xai-Xai (Shy-Shy) and proceeding onward another 40 km . The region has numerous palm-fringed beaches and resorts that should provide convenient bases for eclipse chasers. Floods in 2000 severely damaged roads and bridges in the Xai-Xai area though most of the route from Maputo to the center line was left in relatively good condition.

Malaria is a severe problem in southern Africa during the wet season and no part of the eclipse track is immune from the threat. The disease is becoming increasingly resistant to drugs and stringent precautions should be taken by all eclipse observers to minimize the chances of being infected. Light-colored clothing, mosquito repellants, and an appropriate drug regimen will help reduce the risk. Most African hotel beds are provided with mosquito netting for security at night. With good medical advice and sensible precautions, the risk of malaria can be minimized.

Large Scale Weather Patterns

The eclipse track is squeezed between the moist air circulations in the north and the drier trade winds in the south. At its early part, in Angola, the track is affected by the Atlantic monsoon winds, but farther southeastward the path moves gradually into the drier trade wind climate as it approaches the Indian Ocean. The presence of the easterly trades is no guarantee of fine weather, however, as the controlling anticyclones have their own embedded disturbances that team up with the northern winds to bring the seasonal rains that define December's weather.

Most of the eclipse track is found in the zone of easterly trade winds. These winds are caused by the circulation around the belt of high-pressure anticyclones located south of the continent; the dry air in the center of each anticyclone is a virtual guarantee of sunny skies. Unfortunately, each high is separated from the other by a trough of lower pressure that usually contains the remnants of an ocean cold front and brings cloudy, wet weather if sufficient moisture is present. The eastward trek of the anticyclones and the intervening troughs brings an alternating pattern of rain and sun to South Africa. Secondary highs and high-pressure ridges also complicate the weather pattern, frequently reaching northward to extend the anticyclones' influence to the eclipse track.

The boundaries between Congo, Indian Ocean, and anticyclone airmasses create zones of wind convergence where air is forced upward. Since rising air cools and becomes moist, the boundaries are marked by extensive cloudiness and precipitation, usually in the form of thunderstorms. These convergence zones are not fixed in position, but slosh back and forth under the influence of high and low pressure systems as they pass across the continent. In general northerly flows are moist and southerly are dry.

One of the major controls on the weather across the eclipse track is a persistent heat low that forms over Botswana in the summer months. The circulation around this low brings northerly winds to the mid-continent and has the effect of pushing moist and unstable Angolan and Indian Ocean air southward into Botswana, Mozambique and northern South Africa when it intensifies. The moisture is usually capped by a temperature inversion that suppresses the development of convective clouds, but when upper level troughs or lows are also present, much more instability is created and the airmass erupts in showers and thunderstorms. These bring much-needed rain to the area, but also form extensive cloud shields that can spread across much of the eclipse track.

As in all climatologies, Africa has its share of typical weather patterns. Recognition of these patterns could help in establishing an eclipse site where sunshine is most likely.

One of the more effective rain-producing patterns begins with a high-pressure system located over the eastern eclipse track, usually with sunny skies overhead. On its western side, satellite images often show the formation of a long band of cloud angling from coastal Angola across Namibia and Botswana into central South Africa. This cloudiness is associated with upper level changes in the winds that occur near the Botswana low. The cloud band in the satellite images shows that the cloud is linked to the tropical moisture behind the IOCZ. A generous rainfall is produced if the Botswana low strengthens along this convergence boundary.

Southwest of the continent, some hundreds of kilometers distant, a band of frontal cloudiness marks the approach of an inter-anticyclonic trough. The approach of this trailing system induces the Botswana cloud band to move eastward to replace the sunny skies over South Africa's northern provinces, ending good eclipse weather. Occasionally the frontal cloud band will join with the leading cloud band, but the effects of the union are usually felt over southern regions, well away from the eclipse track.

Another significant pattern develops when an anticyclone invades the eastern parts of South Africa or strengthens in the waters offshore while a similar ridge prevails along the Atlantic coast. Between the two highs, the Botswana heat low deepens and stronger northerly winds develop on its east side. These northerlies carry high humidity tropical air southward into South Africa where mountainous terrain and instability can induce flooding rains. The presence of the high along the Indian Ocean coast often prevents this rainfall from moving into the eastern parts of the eclipse track, at least in the early stages of the event. In many respects this pattern is similar to the first example above, except that the intensity is more pronounced and the area of precipitation is likely narrower, in spite of higher rainfall amounts. A major difference, however, is that this second pattern tends to linger in place rather than moving eastward.

A third pattern begins when a cold low forms in the upper atmosphere, typically over the west coast of South Africa from where it drifts slowly eastward over a period of several days, isolated from the usual westerly flow aloft. The low induces a wide assortment of unfavorable weather to much of southern Africa. Moist tropical air flows southward across the mid continent, blocked from eastward motion only by the western slopes of the Drakensberg Mountains, bringing widespread rains. Shortly thereafter, and on the opposite side of the mountains, surface winds bring moisture onshore where the rising terrain induces a second extensive rainfall. This pattern usually lingers for a few days before the low weakens and the upper westerlies return.

To an eclipse watcher, the most important feature of December weather systems is the traveling high-pressure systems that move across South Africa. When an anticyclone is centered over Mozambique and eastern South Africa, the Botswana low is weakened and pushed well to the north over Angola. Winds are generally easterly to northeasterly across the eclipse track and fine weather dominates. If the pattern persists for an extended period, it can bring extreme dryness and even drought. Even in the wet patterns described above, dry areas can be found in the midst of the highs that characteristically inhabit the east end of the eclipse track and that is where the best weather prospects are to be found.

Discussion of the weather systems affecting South Africa would not be complete without mention of tropical cyclones. December is within the cyclone season; on average, there are eleven per year in the southwest Indian Ocean. The cyclones tend to form northeast of Madagascar and track west and southward, occasionally entering the Mozambique Channel before dying against the African coast or curving back to the east. This is an infrequent occurrence - about once every 2 years-but there are years when two cyclones manage to reach into the Channel. They may even be of some benefit to the eclipse seeker, as a sunny anticyclone is usually found over northern South Africa when a cyclone first moves into the Mozambique Channel.

Cloud

Table 20, a collection of useful climatological statistics, Figure 20, a satellite-based map of mean cloud cover, and Figure 21, a graph of mean cloudiness along the track extracted from Figure 20 together present the cloud cover statistics in considerable detail. Two columns in Table 20 speak best for the assessment of cloud cover. These are the percent of possible sunshine and the sum of clear and scattered cloud. The highest value on the eclipse track for the percent of possible sunshine (the number of sunshine hours divided by the time between sunrise and sunset) lies at Beitbridge (59%), a small community in Zimbabwe on the border with South Africa.

Correspondingly high values for the sum of clear and scattered cloud can be found at Shingwedzi in Kruger National Park. The cloud cover map in Figure 20 and the graph in Figure 21 confirm these results, showing a minimum in mean December cloud cover in the same area. Careful examination of these data shows that the best prospects can be found in an area stretching from Beitbridge in Zimbabwe across Kruger National Park in South Africa to Massingir in Mozambique. Beitbridge is an arid area of Zimbabwe, though prodigious rainfalls have been known to occur when a rare tropical cyclone manages to reach the area.

Most of the cloudiness in the southern African summer is convective. Satellite images show that the cloud is generally organized into large systems, so that one area might be nearly overcast while adjacent parts several hundred kilometers away are completely clear. And though areas of thunderstorms tend to have holes in the cloud cover on a finer scale, these are small, difficult to find, and impossible to predict more than a short time ahead. Convective clouds build through the day as the ground warms, with the result that a cooler morning eclipse is likely to have less cloudiness than an afternoon one. The frequency for clear, scattered, broken and overcast cloud in Table 20 accommodates this diurnal trendthe numbers apply to the morning-but the percent of possible sunshine is probably slightly pessimistic.

Temperature

Temperature is intimately related to sunshine, altitude and moisture and the eclipse track shows evidence of all three influences. Low elevation coastal regions in Mozambique have the warmest daily highs, reaching up to the mid thirties Celsius. On the interior plateau average highs range through the upper 20 s to the lower 30 s , about five degrees cooler than coastal regions. Over coastal Angola, the daily maximum is suppressed because of the presence of cool water offshore. Nighttime temperatures are about 10 degrees below those of the day, a small difference that reflects the relatively short nights, frequent cloudiness and high moisture content of the atmosphere. In the most promising region, from Beitbridge in Zimbabwe to Kruger National Park in South Africa, eclipse observers can expect daily temperatures to range from the lower 20 s in the morning to the lower 30 s in the afternoon.

Rainfall

The rainfall statistics in Table 20 match the pattern of sunshine, with much lower amounts and frequencies in the sunniest regions. At Beitbridge and Messina, monthly amounts are less than 60 mm . West of Beitbridge the mean monthly precipitation rises abruptly to over 150 mm , and then increases more slowly to over 233 mm at Huambo in Angola. Along the Angolan coast rainfall decreases abruptly (to 61 mm at Lobito) because of the stabilizing influence of the cold Atlantic water. On the opposite side of the continent, east of Messina, the increase in rainfall is more gradual, averaging 88 mm at Shingwedzi in Kruger National Park and just over 100 mm at Maputo and Panda on the Mozambique lowlands. The rainfall minimum is a caused by the frequent anticyclones that inhabit this area and the higher terrain to the southeast that blocks the flow of moisture from the Indian Ocean. Also noteworthy in the statistics in Table 20 is the very low frequency of rainy days at Beitbridge.

Rainfall in southern Africa is highly variable, and the mean statistics in Table 20 greatly smooth the alternating wet and dry years. At Bulawayo the maximum rainfall reported in one set of climatological compilations shows a minimum rainfall of only 3 mm in one December and 273 in another. The range for Messina is between 4 and 141 mm while that for Maputo ranges from 10 to 244 . Eclipse chasers could encounter a year with exceptionally dry conditions and very sunny skies or the exact opposite if the weather is wet. Fortunately, and in spite of the range between maximum and minimum, rainfall patterns are actually less variable over northern South Africa than in most other parts of the country and approximately normal conditions can be expected along the eclipse track in about 80% of Decembers.

Winds

Winds are generally light along the eclipse track, save for occasional gusts from thunderstorms and the rare presence of a weakening cyclone along the coast. Mean wind speeds range from 7 to $15 \mathrm{~km} / \mathrm{h}$ along the track, with lighter values inland away from the coast. The prevailing direction is easterly over Mozambique and much of northern South Africa and then turns to northeasterly and northerly over Zimbabwe, Botswana and Angola. This northerly change is a result of the mean position of the Botswana low. Gale force winds (greater than $36 \mathrm{~km} / \mathrm{h}$) are a coastal phenomenon and occur only once or twice in the average December.

Africa Summary

The multiple signals in the climatological record and the satellite imagery point to sites between Beitbridge in Zimbabwe and Massingir in Mozambique as having the best viewing prospects. The single best location, based on the available data, seems to lie at Beitbridge, a community of 6000 on the north bank of the Limpopo River. Because Beitbridge marks the main border crossing between Zimbabwe and South Africa and is very close to where the center line crosses, viewing sites can be selected in either country. The relatively high sun angle and convective nature of the cloudiness, which will be at a minimum for a morning eclipse, suggest a probability of success around 60 percent.

Australian Weather Prospects

Australia Overview

The same features that control the weather along the eclipse track in Africa also operate in Australia, though the equatorial moisture is less important and the influence of the anticyclones is increased. In December the southern part of Australia is entering the sunniest time of year. For the eclipse observer there is a heavy penalty to be paid for these conditions, for the sun is very low, setting during the latter stages of the eclipse, and the eclipse duration is measured in seconds rather than minutes.

As in Africa, Australia's latitude places the eclipse track between the band of high pressure anticyclones that mark the sub-tropics and the equatorial low pressure belt that demarcates Earth's Intertropical Convergence Zone (ITCZ). In December the mean position of the anticyclones can be found close to its most southerly position, just south of the Australian continent. The descending air in the center of the anticyclones suppresses rain-bearing clouds and the south coast is in the early stages of its summer dry season. Farther inland along the eclipse track, in the desert climates of Queensland, New South Wales, and South Australia, rainfall has no pronounced dry or wet season and is generally light throughout the year.

The dry air in the center of the anticyclones does not extend all of the way to the surface, leaving room for low level moisture to gather. This moisture is typically found below a temperature inversion that inhibits vertical motion and so it is difficult to mix wet lower and dry higher level air and evaporate the cloudiness. Because they have only a small vertical extent, rain is uncommon from such clouds and an area may be cloudy and yet dry at the same time.

This position of the high-pressure belt to the south of the continent allows the tropical moisture from the ITCZ to reach into northern Australia. Typically it is well away from the eclipse track but periodically it moves southward to play a prominent role in the weather over South Australia and southern Queensland. Solar heating is extremely high in northern parts of the continent, and a persistent heat low forms south of Port Hedland in Western Australia in response to the abundant sunshine. This Pilbara low is the Australian counterpart of the Botswana low. Its influence waxes and wanes with the flow of the weather, and occasionally strengthens sufficiently to cast a long low-pressure trough southward across the western continent where it plays a role in the formation of cloud and precipitation.

The Countryside

Ceduna, the first community on the track of the eclipse, lies at the edge of the Nullarbor Plain, a flat and infertile landscape that stretches along the Great Australian Bight. Ceduna is reached by the Eyre Highway, one of the world's loneliest roads, stretching 2400 kilometers from Adelaide to Perth. The town itself is a well-appointed popular resting space for long-distance travelers, offers fishing and whale watching, and for astronomers, the Ceduna Radio Observatory operated by the University of Tasmania. This 30 -meter antenna is part of the Australian VLBI array.

Roads from Ceduna lead only a short distance inland and there is little opportunity to move if December 4 proves to be cloudy. The Eyre Highway and most local roads tend to run east-west, leaving very little room to maneuver on an eclipse track only 25 km wide. The only route along the center line is from Ceduna to Maltee, a distance of about 20 kilometers.

Farther northeast the eclipse track crosses Lake Gairdner National Park, a vast salt pan famous for the world land speed records that have been attempted and achieved on its flat surface. Nearby is Lake Hart, another blinding-white salt pan set in a red landscape, but this lake boasts the main launching pad for the Woomera Rocket Range on its northeast side, now no longer in use. Eclipse sites in this area, though convenient to reach by way of Highway 87 from Port Augusta to Alice Springs, will have to contend with the heat of the interior and the tireless Australian flies. The centerline lies very close to Koolymilka, though there seems to be little in the way of community any more at this former launching site.

It should be pointed out that access to the region north of Highway 87 is limited because it is part of the Australian government's Woomera Prohibited Area. Anyone planning eclipse viewing from the region will need detailed maps showing the boundaries of the prohibited area.

A little farther along the track is Roxby Downs, a thoroughly modern uranium-mining town (along with gold, silver and copper) with a turbulent history since its construction in 1986. It's close to the north edge of the track but could provide a convenient base. The surrounding area is more settled than the earlier part of the eclipse track, in large part because of the availability of water from artesian wells. In this area, the eclipsed Sun will hang little more than 5 degrees above the horizon with a duration barely over a half-minute.

Beyond Roxby Downs, the eclipse track skirts the Flinders Ranges. Flinders Ranges National Park, south of the track, is one of the most majestic parks in Australia - an old folded landscape of gorges and craggy red mountains. Local Dreamtime stories tell of the serpent that guards the water holes and formed the Flinders' contours by wriggling north to drink dry the salt lakes.

Continuing northward, the shadow path moves past the Flinders Ranges and into the Sturt Desert. Touching the junction of three states, the track makes a brief passage through New South Wales and then into Queensland. The point where the three states meet is known as Cameron's Corner and the region is the Corner Country. By now, the Sun is very close to the horizon at mid-eclipse, reaching that point just beyond Old Tickalara. The path continues northeastward, right across Australia and into the Pacific Ocean, but gives watchers only a brief view of the eclipsed Sun before it sets.

The Corner Country is a remote part of Australia, well into the Outback. Roads are not paved and are largely deserted. Travel requires food, extra fuel, water and spare parts. The area around Old Tickalara is very dusty; one traveler reports only three homesteads between Cameron's Corner and Thargomindah, a $340-\mathrm{km}$ route that more-or-less follows the eclipse track and its extension northeastward.

Large Scale Weather Patterns

The position and intensity of the subtropical anticyclones that migrate eastward across the Great Australian Bight control southern Australian weather. The pattern is very similar to that in Africa. As highs approach from the southwest, winds blow first from the southeast and then from the east. At least initially, the southeasterlies are onshore winds and frequently pile low-level clouds against the south shore. As the center of the high reaches the Bight, winds become more easterly and then northeasterly, drawing hot dry air out of the interior and dissipating the coastal clouds.

A low-pressure trough then follows, separating the departing high from the next in the sequence. This trough often contains a cold front, substantially modified after passage over the Bight, but containing enough moisture to create the relatively cloudy climate of coastal regions. Most of the cold front cloudiness does not penetrate far inland before it encounters the dry desert air of the interior and gradually dissipates. This is not an incontrovertible rule however, for the stronger systems are quite capable of pushing cloudy weather right across the length of the eclipse track as far as the Great Dividing Range. Southern Australia has a flat terrain that offers little physical impediment to weather moving in from the south.

The highs and troughs moving alternately past the continent bring a repeating pattern of cloud and sun, cool and hot weather. While the cycle from high to high or trough to trough has a modest degree of regularity (repeating at 5-6 day intervals), the weather in Australia is not a monotonous series of predictable events. Troughs vary in strength, some with fronts, some not. Highs may stall, bringing persistent weather for several weeks before moving on to allow the normal cycle to return. Departures from the average are common and bring weather that is far from average.

In northern Australia, cloud and precipitation are influenced by the Intertropical Convergence Zone that has moved southward onto the continent by December. The presence of the ITCZ signals the beginning of "the Wet," a season of frequent and widespread showers and thundershowers. Moisture from the ITCZ can be induced to flow southward under the right conditions, but typically remains in northern regions away from the eclipse path.

One of the elements that may induce a southward excursion of the moisture is a strengthening in the Pilbara heat low. As the low intensifies, northerly winds increase and push tropical moisture southward across Western Australia. This moisture is typically caught by an inter-anticyclonic trough (with its cold front) and is turned eastward toward the center of the continent and the eclipse track. The combination of tropical moisture and the atmospheric dynamics of the trough can create a large area of broken cloud that may linger over the track for several days. The combined system often contains enough instability for showers and thunderstorms. Satellite photos show characteristic arched bands of cloud with this type of pattern that persist from their first appearance in the Bight until they pass Adelaide several days later.

The low may also be reinforced by a tropical cyclone moving onto the continent from the Indian Ocean, with dramatic consequences for cloud cover across much of the country. This is a relatively uncommon event, occurring only about once a year. On December 6, 2000, Tropical Cyclone Sam moved into northwestern Australia, joined the Pilbara low, and pushed a large area of cloud southward for the next five days. In what might be a good omen for this type of meteorological event, the cloud did not reach the south coast and only the northern part of the eclipse track was affected.

Cloud

Figure 20 shows the regional distribution of mean daytime cloudiness along the eclipse track. This map is an average of November and December satellite observations combined to better represent the cloudiness around the eclipse date in early December. Because the satellite cloud statistics are derived from fixed algorithms, the results are free of many of the biases that are contained in human observations of cloud cover and form a better comparison of cloud prospects in Australia versus those in Africa. In Australia, coastal regions are the cloudiest and there is a gradual drying along the track inland, at least as far as the Queensland-New South Wales border. The improvement is substantial - there are more than twice as many sunny days in the interior as on the coast. Figure 21 is derived from the satellite data in Figure 20 and graphs the cloud cover along the centerline in more detail.

Figure 22 shows contours of the number of clear days in December based on surface observations of cloud cover from Australian weather stations. The frequency of clear days increases from 8 to 11 days per month at Ceduna where the eclipse track first reaches land, to 19 days at the end of the track where the Sun sets at mid eclipse. Values for the percent of possible sunshine (Table 20) reach almost 80% at Oodnadatta, and nearly 75% at Woomera-statistics 10 to 15 percent better than the best in Africa. While Australia quite clearly has sunnier weather, the low altitude of the Sun will require a nearly clear horizon in order for the eclipse to be seen. This is a much more stringent requirement than a low frequency of cloud cover at midday and the choice of Australia versus Africa will be a tough one to make.

The seasonal frequency of completely clear skies at sunset ranges from 15 to 35 percent (Table 20) with the larger amount inland. Scattered cloudiness (up to half of the sky covered) will bring a modest probability that the horizon will be obscured. Some of this cloud will be convective and will dissipate as the Sun approaches the horizon and temperatures fall, but this cannot be counted on if a cold front has made a recent passage through the area. Larger cloud amounts, when more than half the sky is covered, will bring progressively slimmer chances of seeing the eclipse. If we make the reasonable assumption that there is a one-third chance that scattered cloud will block the Sun and a two-thirds chance for broken cloud, then the chances of seeing the eclipse will range from about 55% on the coast to about 65% inland. All in all, the prospects for a successful horizon eclipse in Australia likely exceed the best chances in Africa by about five to eight percent. To achieve this advantage, a site inland from the coast must be selected.

Temperature

Temperatures in the interior of Australia can become very hot - similar to those encountered in southern Turkey during the 1999 eclipse. Daytime highs (Table 20) average in the low to mid 30's Celsius (90 's F), and records climb into the mid and upper 40's Celsius (100 's F). Cooler readings prevail along the coast where sea breezes cut off the daytime heating and bring pleasant relief.

Departing anticyclones bring hot northerly winds and coastal regions can see temperatures nearly as great as the interior. In due course, another high-pressure system will approach from the west and winds will turn to the south. This brings temperate ocean air inland, resulting in an abrupt drop in temperature known as a "cool change." A 10° Celsius change in 30 minutes is typical and 20° Celsius is possible.

Though the eclipse occurs while temperatures are falling after the daytime high, equipment set-up will take place at the hottest time of day. Temperatures in the forties occur two or three times on average each month at inland sites. Readings this high require great caution, for heat stroke is a very real possibility. Plenty of water, misters, hats, a slow pace
and occasional refuge in shade would be well advised, along with emergency plans if the heat should prove overpowering. Equipment also suffers in such heat and planning should include provision for cameras and telescopes. It is worth noting that official temperature measurements are made in the shade and readings in full sunlight are much higher.

Rainfall

Along the eclipse track, December rainfall is much lighter in Australia than in Africa. For the most part, monthly accumulations range from 10 to 20 mm . Table 20 shows larger amounts farther east along the extension of the eclipse track (where a short total eclipse may only be seen in the seconds before sunset). This precipitation is found along the Great Dividing Range where terrain and the influence of the Pacific Ocean hold sway. Thundershowers are uncommon, occurring only one or two days of the month.

Winds

Winds favor the southerly quadrant along the eclipse path, especially along the coast where a daily sea breeze is common. At Ceduna, 81% of the 6 PM winds are over $20 \mathrm{knots}(37 \mathrm{~km} / \mathrm{h})$. Inland at Woomera the frequency declines to 46%. These are substantial winds and will demand some accommodation by the eclipse observer, either to seek a little protection or to anchor equipment to reduce vibrations. At the least, observers with sensitive equipment should seek a site at least a few kilometers inland (and 20 to 40 would be better) to take advantage of the decrease in windiness away from the open coast.

The daily sea breezes have long been recognized as a distinctive feature of the local climatology and are given popular local names such as Eucla Doctor, Albany Doctor or Fremantle Doctor. Sea breezes arise because of the temperature difference between the land and the water; the hot air inland rises, drawing air from the cooler South Australian Bight onshore. Sea breezes typically begin in mid-morning along the coast, but the onset can be delayed or even prevented if opposing winds driven by a larger weather system hold them at bay. Depending on the time of onset and the help or hindrance of prevailing winds, sea breezes may extend as far as two or three hundred kilometers inland where they bring a pleasing drop in temperature and an increase in humidity. The effect of the eclipse on these winds will be an interesting observation, as will their effect on shadow bands.

Dust is an unpleasant component of any strong wind in Australia as the dry interior provides a ready supply of material. The initial gust that signals the arrival of the sea breeze is often very strong and then dies quickly to a steadier and lighter flow. Under such circumstances, it may be sufficient to protect equipment for only a short period, but a lingering dust haze may impede the view to the setting sun.

Dust devils, a whirling column of dust, are also common in Australia in the dry season and contribute to the general haziness of the atmosphere. Some can become quite strong and lift a considerable quantity of dirt into the air. Dust storms are also legendary in the country, being driven by particularly strong cold fronts or by the outflow from strong thunderstorms.

Australia Summary

The best weather prospects for viewing the eclipse will be found inland. Cloud cover is at its lowest from the vicinity of Woomera eastward to the end of the track. The higher solar elevation on the coast is not likely to compensate for the greater amount of cloud, leaving the adventurer with a hot and dusty, but ultimately sunnier inland location for best circumstances. Temperatures could be very high and suitable precautions should be taken to protect from heat stroke.

Save for the fact that the eclipse occurs at sunset, Australia would be an easy choice over Africa if weather were the only factor to be considered when selecting a viewing site.

Eclipse Viewing on the Water

Ships and boats offer an opportunity for considerable mobility when seeking those few minutes of sunshine during the critical moments of an eclipse and can often overcome the limitations of a climatologically challenged land-based site. Figure 21, a graph of mean cloudiness along the track, shows that sites off both continents are cloudier than on the land.

Mean cloud cover in the Indian Ocean off Africa rises slowly, but that in the Great Australian Bight is much greater than inland Australia. While ships off either coast would offer the benefits of mobility, a water-based location in the Bight can also bring the advantages that come with a much higher solar altitude.

The Great Australian Bight is a cloudy place in December, though the closer one moves toward landfall on the eclipse track, the better the weather prospects become (Figure 21). Unfortunately the trade-off is steep, with the Sun declining rapidly in the sky as better weather prospects are approached. On the centerline south of Perth the solar elevation will be about 24 degrees while offshore from Ceduna, the Sun will set before fourth contact. The best location along the track can only be determined on eclipse day according to the weather at hand, and so ship-board expeditions should position themselves on the center line in the middle of the Bight in order to be prepared to move either east or west in search of a break in the clouds. Considerable movement may be necessary in order to find such a break, for frontal systems typically stretch across several hundred kilometers and may require many hours of sailing to break free of cloud. A serious attempt cannot be made without access to satellite imagery and a detailed forecast.

Examination of satellite imagery for 1999 and 2000 suggests that the shipboard chances for a view of the Sun on the Australian Bight are slightly lower or equal to that at an inland site in Australia.

Wave heights off Africa average 1.5 to 2 meters and 2 to 2.5 meters off Australia. The values in waters near Africa are similar to those in the Caribbean in 1998. Wave heights are more variable in the Great Australian Bight, reflecting the more stormy nature of weather systems in the region.

Weather Web Sites

World

1. http://www.tvweather.com - Links to current and past weather around the world.
2. http://www.accuweather.com - Forecasts for many cities worldwide.
3. http://www.weatherunderground.com - Good coverage of Africa and Australia.
4. http://www.worldclimate.com/climate/index.htm - World data base of temperature and rainfall.

Africa

1. http://members.nbci.com/rain00/weatab9.html - A site that provides forecast maps for Africa, including moisture and precipitation forecasts up to 6 days in advance. Some expertise in meteorology would be helpful in interpreting the maps and judging the reliability of the predictions.
2. http://www.nottingham.ac.uk/meteosat - Nottingham University site for obtaining satellite imagery over Africa.
3. http://www.sat.dundee.ac.uk/pdus/ - Another site for satellite imagery for Africa, this time from Dundee University. Select the AV subdirectory for visual images and the AI subdirectory for infrared pictures. Images for other places in the world are also available.
4. http://weather.iafrica.com.na/ - The Namibian Meteorological Service, but it seems to point mostly to the South African Weather Service.
5. http://www.zamnet.zm/weather.html - A site for forecasts from the Zambian Meteorological Department.
6. http://weather.utande.co.zw/dbase/zim-weather.idc - The Zimbabwean Weather Service. Short and medium range forecasts for major centres, including Bulawayo.
7. http://www.weathersa.co.za/ - The South African Weather Service, a good place to get maps, forecasts (out to 14 days!), satellite images (pointed to Nottingham) and many other products.

Australia

1. http://www.bom.gov.au - An excellent web site maintained by the Australian Bureau of Meteorology. Satellite images, climatology, surface pressure analyses, and sunshine maps are all available. This is the site to monitor on eclipse day if an Internet connection is available. Note that the Japanese geostationary satellite that provides images over Australia has recently been configured to transmit fewer pictures in order to extend its lifetime a few more years.

Observing the Eclipse

Eye Safety And Solar Eclipses

B. Ralph Chou, MSc, OD
Associate Professor, School of Optometry, University of Waterloo
Waterloo, Ontario, Canada N2L 3GI

A total solar eclipse is probably the most spectacular astronomical event that most people will ever experience. There is great interest in eclipses, and thousands of astronomers (both amateur and professional) and eclipse enthusiasts travel around the world to observe and photograph them.

A solar eclipse offers students a unique opportunity to see a natural phenomenon that illustrates the basic principles of mathematics and science that are taught through elementary and secondary school. Indeed, many scientists (including astronomers!) have been inspired to study science as a result of seeing a total solar eclipse. Teachers can use eclipses to show how the laws of motion and the mathematics of orbital motion can predict the occurrence of eclipses. The use of pinhole cameras and telescopes or binoculars to observe an eclipse leads to an understanding of the optics of these devices. The rise and fall of environmental light levels during an eclipse illustrate the principles of radiometry and photometry, while biology classes can observe the associated behavior of plants and animals. It is also an opportunity for children of school age to contribute actively to scientific research-observations of contact timings at different locations along the eclipse path are useful in refining our knowledge of the orbital motions of the Moon and Earth, and sketches and photographs of the solar corona can be used to build a three-dimensional picture of the Sun's extended atmosphere during the eclipse.

However, observing the Sun can be dangerous if you do not take the proper precautions. The solar radiation that reaches the surface of the Earth includes ultraviolet (UV) radiation at wavelengths longer than 290 nm , to radio waves in the meter range. The tissues in the eye transmit a substantial part of the radiation between 380 and 1400 nm to the lightsensitive retina at the back of the eye. While environmental exposure to UV radiation is known to contribute to the accelerated aging of the outer layers of the eye and the development of cataracts, the concern over improper viewing of the Sun during an eclipse is for the development of "eclipse blindness" or retinal burns.

Exposure of the retina to intense visible light causes damage to its light-sensitive rod and cone cells. The light triggers a series of complex chemical reactions within the cells which damages their ability to respond to a visual stimulus, and in extreme cases, can destroy them. The result is a loss of visual function which may be either temporary or permanent, depending on the severity of the damage. When a person looks repeatedly or for a long time at the Sun without proper protection for the eyes, this photochemical retinal damage may be accompanied by a thermal injury-the high level of visible light causes heating that literally cooks the exposed tissue. This thermal injury or photocoagulation destroys the rods and cones, creating a small blind area. The danger to vision is significant because photic retinal injuries occur without any feeling of pain (the retina has no pain receptors), and the visual effects do not occur for at least several hours after the damage is done (Pitts, 1993). Viewing the Sun through binoculars, a telescope or other optical devices without proper protective filters can result in thermal retinal injury because of the high irradiance level due to visible light, as well as near infrared radiation, in the magnified image.

The only time that the Sun can be viewed safely with the naked eye is during a total eclipse, when the Moon completely covers the Sun. It is never safe to look at the partial phases of any eclipse without the proper equipment and techniques. Even when 99.9% of the Sun's surface (the photosphere) is obscured during the partial phases of a solar eclipse, the remaining crescent Sun is still intense enough to cause a retinal burn, even though illumination levels are comparable to twilight (Chou, 1981, 1996; Marsh, 1982). Failure to use proper observing methods may result in permanent eye damage or severe visual loss. This can have important adverse effects on career choices and earning potential, since it has been shown that most individuals who sustain eclipse-related eye injuries are children and young adults (Penner and McNair, 1966; Chou and Krailo, 1981).

The same techniques for observing the Sun outside of eclipses are used to view and photograph annular solar eclipses and the partly eclipsed Sun (Sherrod, 1981; Pasachoff 2000; Pasachoff \& Covington, 1993; Reynolds \& Sweetsir, 1995). The safest and most inexpensive method is by projection. A pinhole or small opening is used to form an image of the Sun on a screen placed about a meter behind the opening. Multiple openings in perfboard, a loosely woven straw hat, or even between interlaced fingers can be used to cast a pattern of solar images on a screen. A similar effect is seen on the ground below a broad-leafed tree: the many "pinholes" formed by overlapping leaves creates hundreds of crescent-shaped images. Binoculars or a small telescope mounted on a tripod can also be used to project a magnified image of the Sun onto a white card. All of these methods can be used to provide a safe view of the partial phases of an eclipse to a group of
observers, but care must be taken to ensure that no one looks through the device. The main advantage of the projection methods is that nobody is looking directly at the Sun. The disadvantage of the pinhole method is that the screen must be placed at least a meter behind the opening to get a solar image that is large enough to see easily.

The Sun can only be viewed directly when filters specially designed to protect the eyes are used. Most of these filters have a thin layer of chromium alloy or aluminum deposited on their surfaces that attenuates both visible and nearinfrared radiation. A safe solar filter should transmit less than 0.003% (density 4.5) ${ }^{11}$ of visible light (380 to 780 nm) and no more than 0.5% (density ~ 2.3) of the near-infrared radiation (780 to 1400 nm). Figure 23 shows transmittance curves for a selection of safe solar filters.

One of the most widely available filters for safe solar viewing is shade number 14 welder's glass, which can be obtained from welding supply outlets. A popular inexpensive alternative is aluminized polyester ${ }^{12}$ that has been made specially for solar observation. ("Space blankets" and aluminized polyester used in gardening are NOT suitable for this purpose!) Unlike the welding glass, aluminized polyester can be cut to fit any viewing device, and doesn't break when dropped. It has recently been pointed out that some aluminized polyester filters may have large (up to approximately 1 mm in size) defects in their aluminum coatings that may be hazardous. A microscopic analysis of examples of such defects shows that despite their appearance, the defects arise from a hole in one of the two aluminized polyester films used in the filter. There is no large opening completely devoid of the protective aluminum coating. While this is a quality control problem, the presence of a defect in the aluminum coating does not necessarily imply that the filter is hazardous. When in doubt, an aluminized polyester solar filter that has coating defects larger than 0.2 mm in size, or more than a single defect in any 5 mm circular zone of the filter, should not be used.

An alternative to aluminized polyester solar filter material that has become quite popular is "black polymer" in which carbon particles are suspended in a resin matrix. This material is somewhat stiffer than polyester and requires a special holding cell if it is to be used at the front of binoculars, telephoto lenses or telescopes. Intended mainly as a visual filter, the polymer gives a yellow image of the Sun (aluminized polyester produces a blue-white image). This type of filter may show significant variations in density of the tint across its extent; some areas may appear much lighter than others. Lighter areas of the filter transmit more infrared radiation than may be desirable. A recent development is a filter that consists of aluminum-coated black polymer. Combining the best features of polyester and black polymer, this new material may eventually replace both as the filter of choice in solar eclipse viewers. The transmittance curve of one of these hybrid filters (Polymer Plus ${ }^{\mathrm{TM}}$ by Thousand Oaks Optical) is shown in Figure 23. Another material, Baader AstroSolar Safety Film, can be used for both visual and photographic solar observations. It is an ultrathin resin film with excellent optical quality and less scattered light than most polyester filters,

Many experienced solar observers use one or two layers of black-and-white film that has been fully exposed to light and developed to maximum density. The metallic silver contained in the film emulsion is the protective filter; however any black-and-white negative with images in it is not suitable for this purpose. More recently, solar observers have used floppy disks and compact disks (CDs and CD-ROMs) as protective filters by covering the central openings and looking through the disk media. However, the optical quality of the solar image formed by a floppy disk or CD is relatively poor compared to aluminized polyester or welder's glass. Some CDs are made with very thin aluminum coatings which are not safe-if you can see through the CD in normal room lighting, don't use it!! No filter should be used with an optical device (e.g., binoculars, telescope, camera) unless it has been specifically designed for that purpose and is mounted at the front end. Some sources of solar filters are listed below.

Unsafe filters include color film, black-and-white film that contains no silver, film negatives with images on them, smoked glass, sunglasses (single or multiple pairs), photographic neutral density filters and polarizing filters. Most of these transmit high levels of invisible, infrared radiation which can cause a thermal retinal burn (see Figure 23). The fact that the Sun appears dim, or that you feel no discomfort when looking at the Sun through the filter, is no guarantee that your eyes are safe. Solar filters designed to thread into eyepieces that are often provided with inexpensive telescopes are also unsafe. These glass filters often crack unexpectedly from overheating when the telescope is pointed at the Sun, and retinal damage can occur faster than the observer can move the eye from the eyepiece. Avoid unnecessary risks. Your local planetarium, science center, or amateur astronomy club can provide additional information on how to observe the eclipse safely.
${ }^{11}$ In addition to the term transmittance (in percent), the energy transmission of a filter can also be described by the term density (unitless) where density ' d ' is the common logarithm of the reciprocal of transmittance ' t ' or $\mathrm{d}=\log _{10}[1 / \mathrm{t}]$. A density of ' 0 ' corresponds to a transmittance of 100%; a density of ' 1 ' corresponds to a transmittance of 10%; a density of ' 2 ' corresponds to a transmittance of 1%, etc....
12 Aluminized polyester is popularly known to as mylar. DuPont actually owns the trademark "Mylar ${ }^{\mathrm{TM}}$ " and does not manufacture this material for use as a solar filter.

There are some concerns that UVA radiation (wavelengths between 315 and 380 nm) in sunlight may also adversely affect the retina (Del Priore, 1991). While there is some experimental evidence for this, it only applies to the special case of aphakia, where the natural lens of the eye has been removed because of cataract or injury, and no UV-blocking spectacle, contact or intraocular lens has been fitted. In an intact normal human eye, UVA radiation does not reach the retina because it is absorbed by the crystalline lens. In aphakia, normal environmental exposure to solar UV radiation may indeed cause chronic retinal damage. However, the solar filter materials discussed in this article attenuate solar UV radiation to a level well below the minimum permissible occupational exposure for UVA (ACGIH, 1994), so an aphakic observer is at no additional risk of retinal damage when looking at the Sun through a proper solar filter.

In the days and weeks before a solar eclipse occurs, there are often news stories and announcements in the media, warning about the dangers of looking at the eclipse. Unfortunately, despite the good intentions behind these messages, they frequently contain misinformation, and may be designed to scare people from seeing the eclipse at all. However, this tactic may backfire, particularly when the messages are intended for students. A student who heeds warnings from teachers and other authorities not to view the eclipse because of the danger to vision, and learns later that other students did see it safely, may feel cheated out of the experience. Having now learned that the authority figure was wrong on one occasion, how is this student going to react when other health-related advice about drugs, AIDS, or smoking is given? Misinformation may be just as bad, if not worse than no information (Pasachoff, 2001).

Remember that the total phase of an eclipse can and should be seen without any filters, and certainly never by projection! It is completely safe to do so. Even after observing 15 solar eclipses, I find the naked eye view of the totally eclipsed Sun awe-inspiring. I hope you will also enjoy the experience.

Sources for Solar Filters

A brief list of sources for solar filters in North America appears below. For additional sources, see advertisements in Astronomy and/or Sky \& Telescope magazines. The inclusion of any source on this list does not imply an endorsement of that source by the authors or NASA.

- American Paper Optics, 3080 Bartlett Corporate Drive, Bartlett, TN 38133.
- Celestron International, 2835 Columbia St., Torrance, CA 90503.
- Meade Instruments Corporation, 16542 Millikan Ave., Irvine, CA 92714.
- Orion Telescopes and Binoculars, P.O. Box 1815, Santa Cruz, CA 95061-1815.
- Pocono Mountain Optics, 104 NP 502 Plaza, Moscow, PA 18444.
- Rainbow Symphony, Inc., 6860 Canby Ave., \#120, Reseda, CA 91335
- Thousand Oaks Optical, Box 5044-289, Thousand Oaks, CA 91359.
- Khan Scope Centre, 3243 Dufferin Street, Toronto, Ontario, Canada M6A 2T2
- Perceptor Telescopes TransCanada, Brownsville Junction Plaza, Box 38, Schomberg, Ontario, Canada L0G 1 T0
(800)767-8427
(310) 328-9560
(714) 756-2291
(800) 447-1001
(717) 842-1500
(800) 821-5122*
(805) 491-3642*
(416) 783-4140
(905) 939-2313
* sources for inexpensive hand held solar filters and eclipse glasses

IAU Solar Eclipse Education Committee

In order to ensure that astronomers and public health authorities have access to information on safe viewing practices, the Commission on Education and Development of the International Astronomical Union, the international organization for professional astronomers, set up a Solar Eclipse Education Committee. Under Prof. Jay M. Pasachoff of Williams College, the Committee has assembled information on safe methods of observing the Sun and solar eclipses, eclipse-related eye injuries, and samples of educational materials on solar eclipses (see: http://www:williams.edu/astronomy/ IAU_eclipses).

For more information, contact Prof. Jay M. Pasachoff, Hopkins Observatory, Williams College, Williamstown, MA 01267, USA (e-mail: jay.m.pasachoff@williams.edu). Information on safe solar filters can be obtained by contacting Dr. B. Ralph Chou (e-mail: bchou@sciborg.uwaterloo.ca).

Eclipse Photography

The eclipse may be safely photographed provided that the above precautions are followed. Almost any kind of camera with manual controls can be used to capture this rare event. However, a lens with a fairly long focal length is recommended to produce as large an image of the Sun as possible. A standard 50 mm lens yields a minuscule 0.5 mm image, while a 200 mm telephoto or zoom produces a 1.9 mm image. A better choice would be one of the small, compact catadioptic or mirror lenses that have become widely available in the past ten years. The focal length of 500 mm is most common among such mirror lenses and yields a solar image of 4.6 mm . With one solar radius of corona on either side, an eclipse view during totality will cover 9.2 mm . Adding a 2 x tele-converter will produce a 1000 mm focal length, which doubles the Sun's size to 9.2 mm . Focal lengths in excess of 1000 mm usually fall within the realm of amateur telescopes. If full disk photography of partial phases on 35 mm format is planned, the focal length of the optics must not exceed 2600 mm . However, since most cameras don't show the full extent of the image in their viewfinders, a more practical limit is about 2000 mm . Longer focal lengths permit photography of only a magnified portion of the Sun's disk. In order to photograph the Sun's corona during totality, the focal length should be no longer than 1500 mm to 1800 mm (for 35 mm equipment). However, a focal length of 1000 mm requires less critical framing and can capture some of the longer coronal streamers. For any particular focal length, the diameter of the Sun's image is approximately equal to the focal length divided by 109 (Table 21).

F. Espetiak 1905 June

A solar filter must be used on the lens throughout the partial phases for both photography and safe viewing. Such filters are most casily obtained through manufacturers and dealers listed in Sky \& Telescope and Astronomy magazines (see: Sources for Solar Filters). These filters typically attenuate the Sun's visible and infrared energy by a factor of 100,000 . However, the actual filter factor and choice of ISO film speed will play critical roles in determining the correct photographic exposure. Almost any speed film can be used since the Sun gives off abundant light. The easiest method for determining the correct exposure is accomplished by running a calibration test on the uneclipsed Sun. Shoot a roll of film of the mid-day Sun at a fixed aperture ($\mathrm{f} / 8$ to $\mathrm{f} / 16$) using every shutter speed between $1 / 1000$ and $1 / 4$ second. After the film is developed, note the best exposures and use them to photograph all the partial phases. The Sun's surface brightness remains constant throughout the eclipse, so no exposure compensation is needed except for the crescent phases which require two more stops due to solar limb darkening. Bracketing by several stops is also necessary if haze or clouds interfere on eclipse day.

Certainly the most spectacular and awe inspiring phase of the eclipse is totality. For a few brief minutes or seconds, the Sun's pearly white corona, red prominences and chromosphere are visible. The great challenge is to obtain a
set of photographs which captures some aspect of these fleeting phenomena. The most important point to remember is that during the total phase, all solar filters must be removed! The corona has a surface brightness a million times fainter than the photosphere, so photographs of the corona are made without a filter. Furthermore, it is completely safe to view the totally eclipsed Sun directly with the naked eye. No filters are needed and they will only hinder your view. The average brightness of the corona varies inversely with the distance from the Sun's limb. The inner corona is far brighter than the outer corona. Thus, no single exposure can capture its full dynamic range. The best strategy is to choose one aperture or f/number and bracket the exposures over a range of shutter speeds (i.e., $1 / 1000$ down to 1 second). Rehearsing this sequence is highly recommended since great excitement accompanies totality and there is little time to think.

Exposure times for various combinations of film speeds (ISO), apertures (f/number) and solar features (chromosphere, prominences, inner, middle and outer corona) are summarized in Table 22. The table was developed from eclipse photographs made by Espenak as well as from photographs published in Sky and Telescope. To use the table, first select the ISO film speed in the upper left column. Next, move to the right to the desired aperture or f/number for the chosen ISO. The shutter speeds in that column may be used as starting points for photographing various features and phenomena tabulated in the 'Subject' column at the far left. For example, to photograph prominences using ISO 400 at $\mathrm{f} /$ 16, the table recommends an exposure of $1 / 1000$. Alternatively, you can calculate the recommended shutter speed using the ' Q ' factors tabulated along with the exposure formula at the bottom of Table 22. Keep in mind that these exposures are based on a clear sky and a corona of average brightness. You should bracket your exposures one or more stops to take into account the actual sky conditions and the variable nature of these phenomena.

An interesting but challenging way to photograph the eclipse is to record its phases all on one frame. This is accomplished by using a stationary camera capable of making multiple exposures (check the camera instruction manual). Since the Sun moves through the sky at the rate of 15 degrees per hour, it slowly drifts through the field of view of any camera equipped with a normal focal length lens (i.e., 35 to 50 mm). If the camera is oriented so that the Sun drifts along the frame's diagonal, it will take over three hours for the Sun to cross the field of a 50 mm lens. The proper camera orientation can be determined through trial and error several days before the eclipse. This will also insure that no trees or buildings obscure the view during the eclipse. The Sun should be positioned along the eastern (left in the northern hemisphere) edge or corner of the viewfinder shortly before the eclipse begins. Exposures are then made throughout the eclipse at ~ 5 minute intervals. The camera must remain perfectly rigid during this period and may be clamped to a wall or post since tripods are easily bumped. If you're in the path of totality, remove the solar filter during the total phase and take a long exposure (~ 1 second) in order to record the corona in your sequence. The final photograph will consist of a string of Suns, each showing a different phase of the eclipse.

Finally, an eclipse effect that is easily captured with point-and-shoot or automatic cameras should not be overlooked. Use a kitchen sieve or colander and allow its shadow to fall on a piece of white card-board placed several feet away. The holes in the utensil act like pinhole cameras and each one projects its own image of the Sun. The effect can also be duplicated by forming a small aperture with one's hands and watching the ground below. The pinhole camera effect becomes more prominent with increasing eclipse magnitude. Virtually any camera can be used to photograph the phenomenon, but automatic cameras must have their flashes turned off since this would otherwise obliterate the pinhole images.

Several comments apply to those who choose to photograph the eclipse aboard a cruise ship at sea. Shipboard photography puts certain limits on the focal length and shutter speeds that can be used. It's difficult to make specific recommendations since it depends on the stability of the ship as well as wave heights encountered on eclipse day. Certainly telescopes with focal lengths of 1000 mm or more can be ruled out since their small fields of view would require the ship to remain virtually motionless during totality, and this is rather unlikely even given calm seas. A 500 mm lens might be a safe upper limit in focal length. ISO 400 is a good film speed choice for photography at sea. If it's a calm day, shutter speeds as slow as $1 / 8$ or $1 / 4$ may be tried. Otherwise, stick with a $1 / 15$ or $1 / 30$ and shoot a sequence through $1 / 1000$ second. It might be good insurance to bring a wider 200 mm lens just in case the seas are rougher than expected. As a worst case scenario, Espenak photographed the 1984 total eclipse aboard a 95 -foot yacht in seas of 3 feet. He had to hold on with one hand and point his 350 mm lens with the other! Even at that short focal length, it was difficult to keep the Sun in the field. However, any large cruise ship will offer a far more stable platform than this. New image-stabilized lenses from Canon and Nikon may also be helpful aboard ship but allowing the use of slower shutter speeds.

For more information on eclipse photography, observations and eye safety, see Further Reading in the Bibliography.

Sky at Totality

The total phase of an eclipse is accompanied by the onset of a rapidly darkening sky whose appearance resembles evening twilight about half an hour after sunset. The effect presents an excellent opportunity to view planets and bright stars in the daytime sky. Aside from the sheer novelty of it, such observations are useful in gauging the apparent sky brightness and transparency during totality.

During the total solar eclipse of 2002, the Sun is in southern Ophiuchus. Depending on the geographic location, as many as four naked eye planets and a number of bright stars will be above the horizon within the umbral path. Figure 24 depicts the appearance of the sky during totality as seen from the center line at $06: 15$ UT. This corresponds to western Zimbabwe near the Botswana border.

The most conspicuous planet visible during totality will be Venus ($m_{v}=-4.5$) located 39° west of the Sun in Virgo. Mars ($\mathrm{m}_{\mathrm{V}}=+1.7$) is one and a half degrees west of Venus, but offers a much more difficult target since it will be nearly 500 times fainter. From Zimbabwe, the pair will appear 70° high in the northeast. Compared to Venus, Jupiter ($m_{v}=-2.2$) is the next brightest planet but it will be located in the northwestern sky 114° away from the Sun. None of these planets will be visible from Australia since they all set hours before totality begins. However, Mercury ($\mathrm{m}_{\mathrm{v}}=-0.6$) should be discernible from most places along the eclipse track. The innermost planet lies 11° east of the Sun. Since it is nearly at opposition, Saturn ($m_{y}=-0.1$) will be below the horizon for most locations along the umbral path.

A number of the bright stars may also be visible during totality. Antares ($\mathrm{m}_{\mathrm{v}}=+1.06$) is 5° south of the Sun while Arcturus ($\mathrm{m}_{\mathrm{V}}=-0.05$) stands 55° to the northwest. Spica ($\mathrm{m}_{\mathrm{v}}=+0.98$) lies 10° west of Venus and Mars. Finally, the great southern stars Alpha ($\mathrm{m}_{\mathrm{v}}=+0.14$) and Beta ($\mathrm{m}_{\mathrm{v}}=+0.58$) Centauri are 45° south of the Sun. Star visibility requires a very dark and cloud free sky during totality.

The following ephemeris [using Bretagnon and Simon, 1986] gives the positions of the naked eye planets during the eclipse. Delta is the distance of the planet from Earth (A.U.'s), App. Mag. is the apparent visual magnitude of the planet, and Solar Elong gives the elongation or angle between the Sun and planet.

Ephemeris: 2002 Dec 04 08:00:00 UT						Equinox $=$ Mean Date	
				App.	Apparent		Solar
Planet	RA	Declination	Delta	Mag.	Diameter	Phase	Elong
Sun	16h41m56s	$-22^{\circ} 13^{\prime} 39^{\prime \prime}$	0.98565	-26.7	1947.2	-	-
Moon	16 h 42 m 47 s	-220 $35^{\prime} 01^{\prime \prime}$	0.00244	15.4	1962.8	-0.00	0.4 E
Mercury	17 h 29 m 23 s	$-25^{\circ} 14^{\prime} 21^{\prime \prime}$	1.37356	-0.6	4.9	0.95	11.3 E
Venus	14 h 06 ml 16 s	$-11^{\circ} 02^{\prime} 06^{\prime \prime}$	0.39903	-4.5	41.8	0.24	38.8W
Mars	13h59m38s	$-11^{\circ} 16^{\prime} 06^{\prime \prime}$	2.26296	1.7	4.1	0.96	40.2 W
Jupiter	$09 \mathrm{~h} 23 \mathrm{m00s}$	+16 $6^{\circ} 02^{\prime} 32^{\prime \prime}$	4.81623	-2.2	40.9	0.99	113.9W
Saturn	05h45m41s	+22 ${ }^{\circ} 04^{\prime} 08^{\prime \prime}$	8.07966	-0.1	20.6	1.00	165.2W

For a map of the sky during totality from Australia, see the special web site for the total solar eclipse of 2002: http:// sunearth.gsfc.nasa.gov/eclipse/TSE2002/TSE2002.htmI

Contact Timings from the Path Limits

Precise timings of beading phenomena made near the northern and southern limits of the umbral path (i.e., the graze zones), may be useful in determining the diameter of the Sun relative to the Moon at the time of the eclipse. Such measurements are essential to an ongoing project to detect changes in the solar diameter. Due to the conspicuous nature of the eclipse phenomena and their strong dependence on geographical location, scientifically useful observations can be made with relatively modest equipment. A small telescope, short wave radio and portable camcorder are usually used to make such measurements. Time signals are broadcast via short wave stations WWV and CHU, and are recorded simultaneously as the eclipse is videotaped. If a video camera is not available, a tape recorder can be used to record time signals with verbal timings of each event. Inexperienced observers are cautioned to use great care in making such observations. The safest timing technique consists of observing a projection of the Sun rather than directly imaging the solar disk itself. The observer's geodetic coordinates are required and can be measured from USGS or other large scale maps. If a map is unavailable, then a detailed description of the observing site should be included which provides information such as distance and directions of the nearest towns/settlements, nearby landmarks, identifiable buildings and road intersections. The method of contact timing should be described in detail, along with an estimate of the error. The precisional requirements of these observations are ± 0.5 seconds in time, 1 " (~ 30 meters) in latitude and longitude, and ± 20 meters (~ 60 feet) in elevation. Commercially available GPS's (Global Positioning Satellite receivers) have comparable positional accuracy as long as the U. S. Department of Defense keeps SA (Selective Availability) turned off. Otherwise, SA degrades the positional accuracy to about ± 100. GPS receivers are also a useful source for accurate UT. The International Occultation Timing Association (IOTA) coordinates observers worldwide during each eclipse. For more information, contact:

Dr. David W. Dunham, IOTA Web Site: http://www.lunar-occultations.com/iota
7006 Megan Lane E-mail: dunham@erols.com
Greenbelt, MD 20770-3012, USA
Phone: (301) 474-4722

Send reports containing graze observations, eclipse contact and Baily's bead timings, including those made anywhere near or in the path of totality or annularity to:

Dr. Alan D. Fiala
Orbital Mechanics Dept.
U. S. Naval Observatory
3450 Massachusetts Ave., NW
Washington, DC 20392-5420, USA

Plotting the Path on Maps

For high-resolution maps of the umbral path, the coordinates listed in Tables 7 through 10 are conveniently provided in longitude increments of 30 to assist plotting by hand. The coordinates in Table 3 define a line of maximum eclipse at 5 -minute increments. If observations are to be made near the limits, then the grazing eclipse zones tabulated in Tables 9 and 10 should be used. A higher resolution table of graze zone coordinates at longitude increments of 7.5^{\prime} is available via a special 2002 eclipse web site (http://sunearth.gsfc.nasa.gov/eclipse/TSE2002/TSE2002.htmI). Global Navigation Charts (1:5,000,000), Operational Navigation Charts (scale 1:1,000,000) and Tactical Pilotage Charts (1:500,000) of the world are published by the National Imagery and Mapping Agency. Sales and distribution of these maps is through the National Ocean Service (NOS). For specific information about map availability, purchase prices, and ordering instructions, contact the NOS at:

NOAA Distribution Division, N/ACC3
National Ocean Service Riverdale, MD 20737-1199, USA
phone: 301-436-8301
FAX: 301-436-6829

It is also advisable to check the telephone directory for any map specialty stores in your city/area. They often have large inventories of many maps available for immediate delivery.

IAU Working Group on Eclipses

Professional scientists are asked to send descriptions of their eclipse plans to the Working Group on Eclipses of the International Astronomical Union, so that they can keep a list of observations planned. Send such descriptions, even in preliminary form, to:

International Astronomical Union/Working Group on Eclipses
Prof. Jay M. Pasachoff, Chair web: www.williams.edu/astronomy/IAU_eclipses
Williams College-Hopkins Observatory email: jay.m.pasachoff@williams.edu
Williamstown, MA 01267, USA
FAX: (413) 597-3200

The members of the Working Group on Eclipses the Solar Division of the International Astronomical Union are: Jay M. Pasachoff (USA), Chair; F. Clette (Belgium), F. Espenak (USA); Iraida Kim (Russia); Francis Podmore (Zimbabwe); V. Rusin (Slovakia); Jagdev Singh (India); Yoshinori Suematsu (Japan); consultant: J. Anderson (Canada).

Eclipse Data on Internet

NASA Eclipse Bulletins on Internet

To make the NASA solar eclipse bulletins accessible to as large an audience as possible, these publications are also available via the Internet. This was made possible through the efforts and expertise of Dr. Joe Gurman (GSFC/Solar Physics Branch).

NASA eclipse bulletins can be read or downloaded via the World Wide Web using a Web browser (e.g., Netscape, Microsoft Explorer, etc.) from the GSFC SDAC (Solar Data Analysis Center) Eclipse Information home page, or from top-level URL's for the currently available eclipse bulletins themselves:
http://umbra.nascom.nasa.gov/eclipse/
http://umbra.nascom.nasa.gov/eclipse/941103/rp.html http://umbra.nascom.nasa.gov/eclipse/951024/rp.html http://umbra.nascom.nasa.gov/eclipse/970309/rp.html http://umbra.nascom.nasa.gov/eclipse/980226/rp.html http://umbra.nascom.nasa.gov/eclipse/990811/rp.html http://umbra.nascom.nasa.gov/eclipse/010621/rp.html http://umbra.nascom.nasa.gov/eclipse/021204/rp.html

(SDAC Eclipse Information)

(1994 Nov 3)
(1995 Oct 24)
(1997 Mar 9)
(1998 Feb 26)
(1999 Aug 11)
(2001 Jun 21)
(2002 Dec 04)

The original Microsoft Word text files, GIF and PICT figures (Macintosh format) are also available via anonymous ftp. They are stored as BinHex-encoded, Stuffit-compressed Mac folders with .hqx suffixes. For PC's, the text is available in a zip-compressed format in files with the zip suffix. There are three sub directories for figures (GIF format), maps (JPEG format), and tables (html tables, easily readable as plain text). For example, NASA RP 1383 (Total Solar Eclipse of 1998 February $26[=980226]$) has a directory for these files is as follows:
file://umbra.nascom.nasa.gov/pub/eclipse/980226/RP1383GIFs.hqx
file://umbra.nascom.nasa.gov/pub/eclipse/980226/RP1383PICTs.hqx
file://umbra.nascom.nasa.gov/pub/eclipse/980226/RP1383text.hqx
file://umbra.nascom.nasa.gov/pub/eclipse/980226/RP1383text.zip
file://umbra.nascom.nasa.gov/pub/eclipse/980226/figures (directory with GIF's)
file://umbra.nascom.nasa.gov/pub/eclipse/980226/maps
(directory with JPEG's)
file://umbra.nascom.nasa.gov/pub/eclipse/980226/tables
(directory with html's)

Other eclipse bulletins have a similar directory format.
Current plans call for making all future NASA eclipse bulletins available over the Internet, at or before publication of each. The primary goal is to make the bulletins available to as large an audience as possible. Thus, some figures or maps
may not be at their optimum resolution or format. Comments and suggestions are actively solicited to fix problems and improve on compatibility and formats.

Future Eclipse Paths on Internet

Presently, the NASA eclipse bulletins are published 18 to 36 months before each eclipse. However, there have been a growing number of requests for eclipse path data with an even greater lead time. To accommodate the demand, predictions have been generated for all central solar eclipses from 1991 through 2030. All predictions are based on $\mathrm{j}=2$ ephemerides for the Sun [Newcomb, 1895] and Moon [Brown, 1919, and Eckert, Jones and Clark, 1954]. The value used for the Moon's secular acceleration is n-dot $=-26 \operatorname{arc}-\mathrm{sec} / \mathrm{cy}^{2}$, as deduced by Morrison and Ward [1975]. A correction of $-0.6^{\prime \prime}$ was added to the Moon's ecliptic latitude to account for the difference between the Moon's center of mass and center of figure. The value for $\Delta \mathrm{T}$ is from direct measurements during the $20^{\text {th }}$ century and extrapolation into the $21^{\text {st }}$ century. The value used for the Moon's mean radius is $k=0.272281$.

The umbral path characteristics have been predicted at 2 -minute intervals of time compared to the 6-minute interval used in Fifty Year Canon of Solar Eclipses: 1986-2035 [Espenak, 1987]. This should provide enough detail for making preliminary plots of the path on larger scale maps. Global maps using an orthographic projection also present the regions of partial and total (or annular) eclipse. The index page for the path tables and maps is:
http://sunearth.gsfc.nasa.gov/eclipse/SEpath/SEpath.html

Special Web Site for 2002 Solar Eclipse

A special web site is being set up to supplement this bulletin with additional predictions, tables and data for the total solar eclipse of 2002. Some of the data posted there include an expanded version of Tables 9 and 10 (Mapping Coordinates for the Zones of Grazing Eclipse), and local circumstance tables with additional cities as well as for astronomical observatories. Also featured will be higher resolution maps of selected sections of the path of totality and limb profile figures for a range of locations/times along the path. The URL of the special TSE2002 site is:
http://sunearth.gsfc.nasa.gov/eclipse/TSE2002/TSE2002.htmI

Predictions for Eclipse Experiments

This publication provides comprehensive information on the 2002 total solar eclipse to both the professional and amateur/lay communities. However, certain investigations and eclipse experiments may require additional information which lies beyond the scope of this work. We invite the international professional community to contact us for assistance with any aspect of eclipse prediction including predictions for locations not included in this publication, or for more detailed predictions for a specific location (e.g., lunar limb profile and limb corrected contact times for an observing site).

This service is offered for the 2002 eclipse as well as for previous eclipses in which analysis is still in progress. To discuss your needs and requirements, please contact Fred Espenak (espenak @gsfc.nasa.gov).

Algorithms, Ephemerides and Parameters

Algorithms for the eclipse predictions were developed by Espenak primarily from the Explanatory Supplement [1974] with additional algorithms from Meeus, Grosjean and Vanderleen [1966] and Meeus [1982]. The solar and lunar ephemerides were generated from the JPL DE200 and LE200, respectively. All eclipse calculations were made using a value for the Moon's radius of $k=0.2722810$ for umbral contacts, and $k=0.2725076$ (adopted IAU value) for penumbral contacts. Center of mass coordinates were used except where noted. Extrapolating from 2001 to 2002, a value for $\Delta \mathrm{T}$ of 64.7 seconds was used to convert the predictions from Terrestrial Dynamical Time to Universal Time. The international convention of presenting date and time in descending order has been used throughout the bulletin (i.e., year, month, day, hour, minute, second).

The primary source for geographic coordinates used in the local circumstances tables is The New International Atlas (Rand McNally, 1991). Elevations for major cities were taken from Climates of the World (U. S. Dept. of Commerce, 1972).

All eclipse predictions presented in this publication were generated on a Macintosh PowerPC 8500 computer. Word processing and page layout for the publication were done using Microsoft Word v5.1. Figures were annotated with Claris MacDraw Pro 1.5. Meteorological diagrams and tables were prepared using Corel Draw 5.0 and Microsoft Excel 5.0.

The names and spellings of countries, cities and other geopolitical regions are not authoritative, nor do they imply any official recognition in status. Corrections to names, geographic coordinates and elevations are actively solicited in order to update the data base for future eclipses. All calculations, diagrams and opinions presented in this publication are those of the authors and they assume full responsibility for their accuracy.

Bibliography

References

Bretagnon, P., and Simon, J. L., Planetary Programs and Tables from -4000 to +2800 , Willmann-Bell, Richmond, Virginia, 1986.
Dunham, J. B, Dunham, D. W. and Warren, W. H., IOTA Observer's Manual, (draft copy), 1992.
Espenak, F., Fifty Year Canon of Solar Eclipses: 1986-2035, NASA RP-1178, Greenbelt, MD, 1987.
Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty's Nautical Almanac Office, London, 1974.
Herald, D., "Correcting Predictions of Solar Eclipse Contact Times for the Effects of Lunar Limb Irregularities," J. Brit. Ast. Assoc., 1983, 93, 6.
Littmann, M., Willcox, K. and Espenak, F. Totality, Eclipses of the Sun, Oxford University Press, New York, 1999.
Meeus, J., Astronomical Formulae for Calculators, Willmann-Bell, Inc., Richmond, 1982.
Meeus, J., Grosjean, C., and Vanderleen, W., Canon of Solar Eclipses, Pergamon Press, New York, 1966.
Morrison, L. V., "Analysis of lunar occultations in the years 1943-1974...," Astr. J., 1979, 75, 744.
Morrison, L. V., and Appleby, G. M., "Analysis of lunar occultations - III. Systematic corrections to Watts' limb-profiles for the Moon," Mon. Not. R. Astron. Soc., 1981, 196, 1013.
Pasachoff, J. M. and Nelson, B. O., "Timing of the 1984 Total Solar Eclipse and the Size of the Sun," Solar Physics, 1987, 108, 191-194.
Stephenson, F. R., Historical Eclipses and Earth's Rotation, Cambridge/New York: Cambridge University Press, 1997 (p .406).
The New International Atlas, Rand McNally, Chicago/New York/San Francisco, 1991.
van den Bergh, G., Periodicity and Variation of Solar (and Lunar) Eclipses, Tjeenk Willink, Haarlem, Netherlands, 1955.

Watts, C. B., "The Marginal Zone of the Moon," Astron. Papers Amer. Ephem., 1963, 17, 1-951.

Meteorology

Climates of the World, U. S. Dept. of Commerce, Washington DC, 1972.
Griffiths, J.F., ed., World Survey of Climatology, vol 10, Climates of Africa, Elsevier Pub. Co., New York, 1972.
Karoly, David J. and Dayton G. Vincent, (eds.), Meteorology of the Southern Hemisphere. American Meteorological Society, Boston, MA, 1998.
International Station Meteorological Climate Summary; Vol 4.0 (CDROM), National Climatic Data Center, Asheville, NC, 1996.
Warren, Stephen G., Carole J. Hahn, Julius London, Robert M. Chervin and Roy L. Jenne, Global Distribution of Total Cloud Cover and Cloud Type Amounts Over Land, National Center for Atmospheric Research, Boulder, CO., 1986.
World WeatherDisc (CDROM), WeatherDisc Associates Inc., Seattle, WA, 1990.

Eye Safety

American Conference of Governmental Industrial Hygienists, "Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices," ACGIH, Cincinnati, 1996, p. 100.
Chou, B. R., "Safe Solar Filters," Sky \& Telescope, August 1981, 62:2, 119.
Chou, B. R., "Solar Filter Safety," Sky \& Telescope, February 1998, 95:2, 119.
Chou, B. R., "Eye safety during solar eclipses - myths and realities," in Z. Mouradian \& M. Stavinschi (eds.) Theoretical and Observational Problems Related to Solar Eclipses, Proceedings of a NATO Advanced Research Workshop. Kluwer Academic Publishers, Dordrecht, 1996, pp. 243-247.
Chou, B. R. and Krailo M. D., "Eye injuries in Canada following the total solar eclipse of 26 February 1979," Can. J. Optometry, 1981, 43(1):40.
Del Priore, L. V., "Eye damage from a solar eclipse" in Litmann, M., Willcox, K. and Espenak, F. Totality, Eclipses of the Sun, Oxford University Press, New York, 1999, pp. 140-141.
Marsh, J. C. D., "Observing the Sun in Safety," J. Brit. Ast. Assoc., 1982, 92, 6.
Pasachoff, J. M., "Public Education and Solar Eclipses," in L. Gouguenheim, D. McNally, and J. R. Percy, eds., New Trends in Astronomy Teaching, IAU Colloquium 162 (London), published 1998, Astronomical Society of the Pacific Conference Serics, pp. 202-204.
Pasachoff, J. M. "Public Education in Developing Countries on the Occasions of Eclipses," in Astronomy for Developing Countries, IAU special session at the 24th General Assembly, Alan H. Batten, ed., 2001, pp. 101-106.
Penner, R. and McNair, J. N., "Eclipse blindness - Report of an epidemic in the military population of Hawaii," Am. J. Ophthalmology, 1966, 61:1452.
Pitts D. G., "Ocular effects of radiant energy," in D. G. Pitts \& R. N. Kleinstein (eds.) Environmental Vision: Interactions of the Eye, Vision and the Environment, Butterworth-Heinemann, Toronto, 1993, p. 151.

Further Reading

Allen, D., and Allen, C., Eclipse, Allen \& Unwin, Sydney, 1987.
Astrophotography Basics, Kodak Customer Service Pamphlet P150, Eastman Kodak, Rochester, 1988.
Brewer, B., Eclipse, Earth View, Seattle, 1991.
Brunier, S., Glorious Eclipses, Cambridge, Nuiv Press, NY, 2001.
Covington, M., Astrophotography for the Amateur, Cambridge University Press, Cambridge, 1988.
Espenak, F., "Total Eclipse of the Sun," Petersen's PhotoGraphic, June 1991, p. 32.
Golub, L., and Pasachoff, J. M., The Solar Corona, Cambridge University Press, Cambridge, 1997.
Golub, L., and Pasachoff, J., Nearest Star: The Exciting Science of Our Sun, Harvard University Press, Cambridge, 2001.
Harrington, P. S., Eclipse!, John Wiley \& Sons, New York, 1997.
Harris, J., and Talcott, R., Chasing the Shadow, Kalmbach Pub., Waukesha, 1994.
Irwin, A., Africa \& Madagascar - Total Eclipse 2001 \& 2002, Pradt, Bucks (UK), 2000.
Littmann, M., Willcox, K. and Espenak, F. Totality, Eclipses of the Sun, Oxford University Press, New York, 1999.
Mucke, H., and Meeus, J., Canon of Solar Eclipses: - 2003 to +2526 , Astronomisches Büro, Vienna, 1983.
North, G., Advanced Amateur Astronomy, Edinburgh University Press, 1991.
Oppolzer, T. R. von, Canon of Eclipses, Dover Publications, New York, 1962.
Ottewell, G., The Under-Standing of Eclipses, Astronomical Workshop, Greenville, SC, 1991.
Pasachoff, J. M., and Covington, M., Cambridge Guide to Eclipse Photography, Cambridge University Press, Cambridge and New York, 1993.
Pasachoff, J. M., "Solar Eclipses and Public Education," International Astronomical Union Colloquium \#162: New Trends in Teaching Astronomy, D. McNally, ed., London 1997, in press.
Pasachoff, J. M., Field Guide to the Stars and Planets, 4rd edition, Houghton Mifflin, Boston, 2000.
Reynolds, M. D. and Sweetsir, R. A., Observe Eclipses, Astronomical League, Washington, DC, 1995.
Sherrod, P. C., A Complete Manual of Amatetr Astronomy, Prentice-Hall, 1981.
Steel, D., Eclipse, Joseph Henery Press, Washington DC, 2001.
Zirker, J. B., Total Eclipses of the Sun, Princeton University Press, Princeton, 1995.

Total Solar Eclipse of 2002 Dec 04

Figure 1: Orthographic Projection Map of The Eclipse Path

$$
\begin{array}{rll}
\text { Geocentric Conjunction } & =07: 38: 44.0 \text { UT } & \text { J.D. }=2452612.818565 \\
\text { Greatest Eclipse }=07: 31: 11.0 \text { UT } & \text { J.D. }=2452612.813321
\end{array}
$$

$$
\text { Eclipse Magnitude }=1.02437 \quad \text { Gamma }=-0.30204
$$

$\frac{\text { Sun at Greatest Eclipse }}{\text { (Geocentric Coordinates) }}$

Local Circumstances at Greatest Eclipse
Lat. $=39^{\circ} 27.4^{\prime} \mathrm{S} \quad$ Sun Alt. $=72.2^{\circ}$
Long. $=059^{\circ} 33.1^{\prime} \mathrm{E} \quad$ Sun Azm. $=15.8^{\circ}$
Path Width $=87.0 \mathrm{~km} \quad$ Duration $=02 \mathrm{~m} 03.8 \mathrm{~s}$

External/Internal
Contacts of Umbra
$\mathrm{Ul}=05: 50: 19.2 \mathrm{UT}$
$\mathrm{U} 2=05: 50: 48.4 \mathrm{UT}$
$\mathrm{U} 3=09: 11: 31.1 \mathrm{UT}$
$\mathrm{U} 4=09: 11: 56.1 \mathrm{UT}$

Geocentric Libration (Optical + Physical)
$1=3.69^{\circ}$
$\mathrm{b}=0.42^{\circ}$
$\mathrm{c}=6.15^{\circ}$
Brown Lun. No. $=989$

Moon at Greatest Eclipse (Geocentric Coordinates)
R.A. $=16 \mathrm{~h} 41 \mathrm{~m} 32.9 \mathrm{~s}$

Dec. $=-22^{\circ} 31^{\prime} 05.2^{\prime \prime}$
S.D. $=00^{\circ} 16^{\prime} 21.6^{\prime \prime}$
H.P. $=01^{\circ} 000^{\circ} 02.3^{\prime \prime}$

$$
\begin{aligned}
& \Delta \mathrm{T}=64.7 \mathrm{~s} \\
& \mathrm{k} 1=0.2725076 \\
& \mathrm{k} 2=0.2722810
\end{aligned}
$$

$\Delta b=0.0^{\prime \prime} \quad \Delta \mathrm{l}=0.0^{\prime \prime}$
External/Internal Contacts of Penumbra
$\mathrm{Pl}=04: 51: 22.6 \mathrm{UT}$
6.55:13.6 UT

UT

Ephemeris \& Constants
Eph. $=$ DE200/LE200

Saros Series $=142 \quad$ Member $=22$ of 72

Total Solar Eclipse of 2002 December 04
Figure 4: The Eclipse Path Through Eastern Africa

Total Solar Eclipse of 2002 Dec 04

Figure 18: The Lunar Limb Profile at 06:15 UT

Figlre 21: Mean Cloudiness Along the Eclipse Patil

Figure 22: Cifear Skies in Australia

Figure 23: Spectral Response of Some Commonly Available Solar Filters

Total Solar Eclipse of 2002 Dec 04

Figure 24: The Sky During Totality As Seen From Center Line At 06:15 UT

Figure 24: The sky during totality as seen from the center line Zimbabwe at 06:15 UT. The most conspicuous planet visible during totality will be Venus ($\mathrm{m}_{\mathrm{v}}=-4.5$) located 39° west of the Sun in Virgo. Mars ($\mathrm{m}_{\mathrm{v}}=+1.7$) is one and a half degrees west of Venus, but offers a much more difficult target since it will be nearly 500 times fainter. From Zimbabwe, the pair will appear 70° high in the northeast. Compared to Venus, Jupiter ($\mathrm{m}_{\mathrm{v}}=-2.2$) is the next brightest planet but it will be located in the northwestern sky 114° away from the Sun. None of these planets will be visible from Australia since they all set hours before totality begins. However, Mercury $\left(\mathrm{m}_{\mathrm{V}}=-0.6\right)$ should be discernible from most places along the eclipse track. The innermost planet lies 11° east of the Sun. Since it is nearly at opposition, Saturn ($m_{v}=-0$. I) will be below the horizon for most locations along the umbral path.

For sky maps from other locations along the eclipse path, see the special 2002 eclipse web site: http://sunearth.gsfc.nasa.gov/eclipse/TSE2002T/SE2002.html

TAble 1

Elements of the Total Solar Eclipse of 2002 December 04

Geocentric Confunction		
of Sun \& Moon in R.A. $:$	$07: 39: 48.73 \mathrm{TDT}$	J.D. $=2452612.819314$
$(=07: 38: 44.03 \mathrm{UT})$		
Instant of	$07: 32: 15.65 \mathrm{TDT}$	J.D. $=2452612.814070$
Greatest Eclipse:	$(=07: 31: 10.95 \mathrm{UT})$	

Geocentric Coordinates of Sun \& Moon at Greatest Eclipse (DE200/LE200):

Lunar Radius	$k 1=0.2725076$	(Penumbra)	Shift in	$\Delta b=0.00 "$
Constants:	$k 2=0.2722810$	(Umbra)	Lunar Position:	$\Delta l=0.00 "$

Geocentric Libration:	$1=$	$3.8{ }^{\circ}$	Brown Lun. No. $=989$
(Optical + Physical)	$\mathrm{b}=$	0.5°	Saros Series $=142(22 / 72)$
	c	$5.7{ }^{\circ}$	Ephemeris $=($ DE200/LE200)

Eclipse Magnitude $=1.02437 \quad$ Gammas $=-0.30204 \quad \Delta \mathrm{~T}=\quad 64.7 \mathrm{~s}$

Polynomial Besselian Elements for:	2002 Dec 04	$08: 00: 00.0$	TDT	$\left(=t_{0}\right)$		
n	x	y	d	1_{1}	1_{2}	μ

0	0.1861473	-0.3544635	-22.2264977	0.5441862	-0.0019615	302.485046
1	0.5532511	-0.1309133	-0.0052963	0.0000834	0.0000830	14.997272
2	0.0000155	0.0001807	0.0000058	-0.0000125	-0.0000124	-0.000002
3	-0.0000087	0.0000022	0.0000000	0.0000000	0.0000000	0.000000

At time ' t_{1} ' (decimal hours), each Besselian element is evaluated by:

$$
\begin{aligned}
& a=a_{0}+a_{1} * t+a_{2} * t^{2}+a_{3} * t^{3} \quad\left(\text { or } a=\sum\left[a_{n} * t^{n}\right] ; n=0 \text { to } 3\right) \\
& \quad \text { where: } \quad \begin{aligned}
a & =x, y, d, l_{1}, l_{2}, \text { or } \mu \\
& t=t_{1}-t_{0} \text { (decimal hours) and } t_{0}=8.000 \mathrm{TDT}
\end{aligned}
\end{aligned}
$$

The Besselian elements were derived from a least-squares fit to elements calculated at five uniformly spaced times over a six hour period centered at t_{0}. Thus the elements are valid over the period $5.00 \leq t_{1} \leq 11.00 \mathrm{TDT}$.

Note that all times are expressed in Terrestrial Dynamical Time (TDT).
Saros Series 142: Member 22 of 72 eclipses in series.

TAble 2

Shadow Contacts and Circumstances

 Total Solar Eclipse of 2002 December 04| | | | Latitude | $\Delta \mathrm{T}=$ | $\begin{gathered} 64.7 \mathrm{~s} \\ 0^{\circ} 16^{\prime} 13.2^{\prime \prime} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | ```Terrestrial Dynamical Time h m s``` | | Ephemeris
 Longitude† | True
 Longitude* |
| External/Internal | | | | | |
| Contacts of Penumbra: | P1 | 04:52:27.3 | 01\%57.0'N | $015^{\circ} 11.4^{\prime} \mathrm{E}$ | $015^{\circ} 27.6^{\prime} \mathrm{E}$ |
| | P2 | 06:56:18,3 | $26^{\circ} 05.1^{\prime} \mathrm{S}$ | 028*06.1'W | $027^{\circ} 49.8^{\prime} \mathrm{W}$ |
| | P3 | 08:08:01.1 | $49^{\circ} 28.1{ }^{\prime} \mathrm{S}$ | $174^{\circ} 03.7^{\prime} \mathrm{E}$ | $174^{\circ} 19.9^{\prime} \mathrm{E}$ |
| | P4 | 10:12:05.3 | $22^{\circ} 44.6^{\prime} \mathrm{S}$ | $124^{\circ} 22.1^{\prime} \mathrm{E}$ | $124^{\circ} 38.3^{\prime} \mathrm{E}$ |
| Extreme | | | | | |
| North/South Limits | | | | | |
| of Penumbral Path: | N1 | 05:39:35.8 | $24^{\circ} 51.3^{\prime} \mathrm{N}$ | $013^{\circ} 30.9{ }^{\prime} \mathrm{E}$ | $013^{\circ} 47.2^{\prime} \mathrm{E}$ |
| | S1 | 06:40:34.2 | $40^{\circ} 30.0^{\prime} \mathrm{S}$ | 033 ${ }^{\circ} 03.0^{\prime} \mathrm{W}$ | $032^{\circ} 46.8^{\prime} \mathrm{W}$ |
| | N2 | 09:25:02.8 | $00^{\circ} 12.2^{\prime} \mathrm{N}$ | $126^{\circ} 05.3^{\prime} \mathrm{E}$ | $126^{\circ} 21.5^{\prime} \mathrm{E}$ |
| | S2 | 08:23:41.4 | $61^{\circ} 14.5^{\prime} \mathrm{S}$ | $170^{\circ} 16.7$ ' W | $170^{\circ} 00.5{ }^{\prime} \mathrm{W}$ |
| External/Internal | | | | | |
| Contacts of Umbra: | U1 | 05:51:23.9 | $03^{\circ} 53.5^{\prime} \mathrm{S}$ | $001^{\circ} 55.9^{\prime} \mathrm{W}$ | $001{ }^{\circ} 39.7$ 'W |
| | U2 | 05:51:53.1 | $03^{\circ} 58.0^{\prime} \mathrm{S}$ | $002^{\circ} 05.1^{\prime} \mathrm{W}$ | $001^{\circ} 48.9^{\prime} \mathrm{W}$ |
| | U3 | 09:12:35.8 | $28^{\circ} 32.3$ 'S | $142^{\circ} 12.8^{\prime} \mathrm{E}$ | $142^{\circ} 29.0^{\prime} \mathrm{E}$ |
| | U4 | 09:13:00.8 | $28^{\circ} 28.6^{\prime} \mathrm{S}$ | $142^{\circ} 04.5^{\prime} \mathrm{E}$ | $142^{\circ} 20.7{ }^{\prime} \mathrm{E}$ |
| Extreme | | | | | |
| North/South Limits | | | | | |
| of Umbral Path: | N1 | 05:51:32.0 | $03^{\circ} 48.5^{\prime} \mathrm{S}$ | $001^{\circ} 55.9$ ' W | $001{ }^{\circ} 39.7$ 'W |
| | S1 | 05:51:45.0 | $04^{\circ} 03.0^{\prime} \mathrm{S}$ | $002^{\circ} 05.1^{\prime} \mathrm{W}$ | $001^{\circ} 48.9^{\prime} \mathrm{W}$ |
| | N2 | 09:12:53.9 | $28^{\circ} 24.4^{\prime} \mathrm{S}$ | $142^{\circ} 04.0^{\prime} \mathrm{E}$ | $142^{\circ} 20.2{ }^{\prime} \mathrm{E}$ |
| | S2 | 09:12:42.6 | $28^{\circ} 36.5^{\prime} \mathrm{S}$ | $142^{\circ} 13.4{ }^{\prime} \mathrm{E}$ | $142^{\circ} 29.6^{\prime} \mathrm{E}$ |
| Extreme Limits | | | | | |
| of Center Line: | C1 | 05:51:38.5 | $03^{\circ} 55.8^{\prime} \mathrm{S}$ | $002^{\circ} 00.5^{\prime} \mathrm{W}$ | $001{ }^{\circ} 44.3$ 'W |
| | C2 | 09:12:48.3 | $28^{\circ} 30.5^{\prime} \mathrm{S}$ | $142^{\circ} 08.7^{\prime} \mathrm{E}$ | $142^{\circ} 24.9^{\prime} \mathrm{E}$ |
| Instant of | | | | | |
| Greatest Eclipse: | G0 | 07:32:15.7 | $39^{\circ} 27.4{ }^{\prime} 5$ | $059^{\circ} 16.9^{\prime} \mathrm{E}$ | 059 ${ }^{\circ} 33.1{ }^{\prime} \mathrm{E}$ |
| Circumstances at | | | | | |
| Greatest Eclipse: Su | Sun's Altitude $=72.2^{\circ}$ | | | Path Width = | 87.0 km |
| | Sun's Azimuth $=15.8^{\circ}$ Centr | | | Duration $=$ | 02m03.8s |

```
\(\dagger\) Ephemeris Longitude is the terrestrial dynamical longitude assuming a uniformly rotating Earth.
* True Longitude is calculated by correcting the Ephemeris Longitude for the non-uniform rotation of Earth.
(T.L. = E.L. \(+1.002738^{*} \Delta \mathrm{~T} / 240\), where \(\Delta \mathrm{T}(\) in seconds \()=\mathrm{TDT}-\mathrm{UT}\) )
```

Note: Longitude is measured positive to the East.
Since ΔT is not known in advance, the value used in the predictions is an extrapolation based on pre-2002 measurements. Nevertheless, the actual value is expected to fall within ± 0.5 seconds of the estimated ΔT used here.

TABLE 3

Path of the Umbral Shadow Total Solar Eclipse of 2002 December 04

	Northern Limit	Southern Limit	Center Line			
	Latitude Longitude	Latitude Longitude	Latitude Longitude		Width	t.
L	$03^{\circ} 48.5^{\prime} \mathrm{S} 00$	04	03055.8'S 001	0	31	Or
05	$10^{\circ} 33.8$ 'S 01	10	$10^{\circ} 36.4$ 'S 012	16	51	00 m
	$13^{\circ} 51.3^{\prime} \mathrm{S} 018^{\circ} 11.4^{\prime} \mathrm{E}$	1402.6's 017				
06:05	$16^{\circ} 26.3^{\prime} \mathrm{S} 022^{\circ} 16.2^{\prime} \mathrm{E}$	$16^{\circ} 41.4{ }^{\text {S }} 021^{\circ} 34.3{ }^{\text {'E }}$	$16^{\circ} 33.9^{\prime} \mathrm{S} 021$	29	65	01m05.3s
06:10	$18^{\circ} 39.3^{\prime} \mathrm{S} 025^{\circ} 35.6^{\prime} \mathrm{E}$	$18^{\circ} 57.3^{\prime} \mathrm{S} 024^{\circ} 54.2^{\prime} \mathrm{E}$	$18^{\circ} 48.4^{\prime} \mathrm{S} 025^{\circ} 15.0^{\prime} \mathrm{E}$	34	69	01m12.4s
06:15	$20^{\circ} 38.0^{\prime} \mathrm{S} 028^{\circ} 27.7^{\prime} \mathrm{E}$	$20^{\circ} 58.5^{\prime} \mathrm{S} 027^{\circ} 46.7^{\prime} \mathrm{E}$	$20^{\circ} 48.3^{\prime} \mathrm{S} 028^{\circ} 07.2^{\prime} \mathrm{E}$	39	73	01m
06:20	$22^{\circ} 26.3^{\prime} \mathrm{S} 031^{\circ} 01.8^{\prime} \mathrm{E}$	$22^{\circ} 49.1$ S $030^{\circ} 21.0^{\prime} \mathrm{E}$	$22^{\circ} 37.8^{\prime} \mathrm{S} 030^{\circ} 41.5^{\prime} \mathrm{E}$	42	76	01
06:25	$24^{\circ} 06.5^{\prime} \mathrm{S} 033^{\circ} 23.4{ }^{\prime} \mathrm{E}$	$24^{\circ} 31.3^{\prime} \mathrm{S} 032^{\circ} 42.8^{\prime} \mathrm{E}$	$24^{\circ} 19.0^{\prime} \mathrm{S} 033^{\circ} 03.2^{\prime} \mathrm{E}$	46	78	01m
06:30	$25^{\circ} 40.1^{\prime} \mathrm{S} 035^{\circ} 35.9^{\prime} \mathrm{E}$	$26^{\circ} 06.8^{\prime} \mathrm{S} 034^{\circ} 55.6^{\prime} \mathrm{E}$	$25^{\circ} 53.6^{\prime} \mathrm{S} 035^{\circ} 15.8^{\prime} \mathrm{E}$	49	80	01
06:35	$27^{\circ} 08.1^{\prime} \mathrm{S} 037^{\circ} 41.8^{\prime} \mathrm{E}$	$27^{\circ} 36.6^{\prime} \mathrm{S} 037^{\circ} 02.0^{\prime} \mathrm{E}$	$27^{\circ} 22.4{ }^{\text {S }} 037{ }^{\circ} 22.0^{\prime} \mathrm{E}$	52	82	01
06:40	$28^{\circ} 31.1^{\prime} \mathrm{S} 039^{\circ} 43.1^{\prime} \mathrm{E}$	$29^{\circ} 01.3^{\prime} \mathrm{S} 039^{\circ} 03.7^{\prime} \mathrm{E}$	$28^{\circ} 46.3^{\prime} \mathrm{S} 039^{\circ} 23.5^{\prime} \mathrm{E}$	55	83	01 m 43.2 s
06:45	$29^{\circ} 49.7$ S $041^{\circ} 41.0^{\prime} \mathrm{E}$	$30^{\circ} 21.5^{\prime} \mathrm{S} 041^{\circ} 02.3^{\prime} \mathrm{E}$	$30^{\circ} 05.7^{\prime} \mathrm{S} 041^{\circ} 21.8^{\prime} \mathrm{E}$	58	84	01m46.9s
06:50	$31^{\circ} 04.3$ S $043^{\circ} 36.8^{\prime} \mathrm{E}$	$31^{\circ} 37.6^{\prime} \mathrm{S} 042^{\circ} 58.9^{\prime} \mathrm{E}$	$31^{\circ} 21.0^{\prime} \mathrm{S} 043^{\circ} 17.9^{\prime} \mathrm{E}$	60	85	01 m 50.2 s
06:55	$32^{\circ} 15.1^{\prime} \mathrm{S} 045^{\circ} 31.4{ }^{\prime} \mathrm{E}$	$32^{\circ} 49.8^{\prime} \mathrm{S} 044^{\circ} 54.4{ }^{\text {E }}$	$32^{\circ} 32.5^{\prime} \mathrm{S} 045^{\circ} 13.0^{\prime} \mathrm{E}$	63	86	01m53.2s
07:00	$33^{\circ} 22.3$ S 04725.5 E	33 58.4's $0466^{\circ} 49.7$ E	$33^{\circ} 40.4{ }^{\text {S }} 047^{\circ} 07.7^{\prime} \mathrm{E}$	65	86	S
07:05	$34^{\circ} 26.1^{\prime} \mathrm{S} 049^{\circ} 19.9^{\prime} \mathrm{E}$	$35^{\circ} 03.5^{\prime} \mathrm{S} 048^{\circ} 45.4^{\prime} \mathrm{E}$	$34^{\circ} 44.8^{\prime} \mathrm{S} 049^{\circ} 02.7^{\prime} \mathrm{E}$	67	87	01m58.1s
07:10	$35^{\circ} 26.5^{\prime} \mathrm{S} 051^{\circ} 15.2^{\prime} \mathrm{E}$	$36^{\circ} 05.2$ S $050^{\circ} 42.1^{\prime} \mathrm{E}$	$35^{\circ} 45.9^{\prime} \mathrm{S} 050^{\circ} 58.8^{\prime \prime} \mathrm{E}$	69	87	02m00.0s
07:15	$36^{\circ} 23.6^{\prime} \mathrm{S} 053^{\circ} 11.9^{\prime} \mathrm{E}$	$37^{\circ} 03.5^{\prime} \mathrm{S} 052^{\circ} 40.6^{\prime} \mathrm{E}$	$36^{\circ} 43.6^{\prime} \mathrm{S} 052^{\circ} 56.3^{\prime} \mathrm{E}$	70	87	02m01.5s
07:20	$37^{\circ} 17.5^{\prime} \mathrm{S} \mathrm{055} 10.6^{\circ} \mathrm{E}$	$37^{\circ} 58.4{ }^{\text {S }} 054^{\circ} 41.1^{\prime} \mathrm{E}$	$37^{\circ} 38.0^{\prime} \mathrm{S} 054^{\circ} 55.9^{\prime} \mathrm{E}$	71	87	$02 \mathrm{m02.75}$
07:25	$38^{\circ} 08.0 \cdot \mathrm{~S} \mathrm{057}{ }^{\circ} 11.6^{\prime} \mathrm{E}$	$38^{\circ} 50.0$ S $056^{\circ} 44.3^{\prime} \mathrm{E}$	$38^{\circ} 29.0^{\prime} \mathrm{S} 056^{\circ} 58.0^{\prime} \mathrm{E}$	72	87	$02 \mathrm{m03.4s}$
07:30	$38^{\circ} 55.2^{\prime} \mathrm{S} 059^{\circ} 15.5^{\prime} \mathrm{E}$	$39^{\circ} 38.0^{\prime} \mathrm{S} 058^{\circ} 50.5^{\prime} \mathrm{E}$	$39^{\circ} 16.7^{\prime} \mathrm{S} 059^{\circ} 03.1^{\prime} \mathrm{E}$	72	87	$02 \mathrm{m03.8s}$
07:35	$39^{\circ} 39.0^{\prime} \mathrm{S} 061^{\circ} 22.7^{\prime} \mathrm{E}$	$40^{\circ} 22.6^{\prime} \mathrm{S} 061^{\circ} 00.3^{\prime} \mathrm{E}$	$40^{\circ} 00.8^{\prime} \mathrm{S} 061^{\circ} 11.5^{\prime} \mathrm{E}$	72	87	$02 \mathrm{m03.7s}$
07:40	$40^{\circ} 19.3^{\prime} \mathrm{S} 063^{\circ} 33.5^{\prime} \mathrm{E}$	$41^{\circ} 03.5^{\prime} \mathrm{S} 063^{\circ} 14.0^{\prime} \mathrm{E}$	$40^{\circ} 41.4^{\prime} \mathrm{S} 063^{\circ} 23.8^{\prime} \mathrm{E}$	72	86	$02 \mathrm{m03.3s}$
07:45	$40^{\circ} 55.9^{\prime} \mathrm{S} 065^{\circ} 48.4^{\prime} \mathrm{E}$	$41^{\circ} 40.5^{\prime} \mathrm{S} 065^{\circ} 31.9^{\prime} \mathrm{E}$	$41^{\circ} 18.2^{\prime} \mathrm{S} 065^{\circ} 40.2^{\prime} \mathrm{E}$	71	86	02m02.4s
07:50	$41^{\circ} 28.6^{\prime} \mathrm{S} 068^{\circ} 07.9^{\prime} \mathrm{E}$	$42^{\circ} 13.6^{\prime}$ S $067^{\circ} 54.6^{\prime} \mathrm{E}$	4151.1'S $068^{\circ} 01.2^{\prime} \mathrm{E}$	69	85	02 m
07:55	$4^{\circ} 57.4{ }^{\text {S }} 070^{\circ} 32.1^{\prime} \mathrm{E}$	$42^{\circ} 42.5^{\prime} \mathrm{S} 070^{\circ} 22.3^{\prime} \mathrm{E}$	$42^{\circ} 19.9^{\prime} \mathrm{S} 070^{\circ} 27.2^{\prime} \mathrm{E}$	68	84	01
08:00	$42^{\circ} 21.9^{\prime}$ S $073^{\circ} 01.7^{\prime} \mathrm{E}$	$43^{\circ} 06.9^{\prime} \mathrm{S} 072^{\circ} 55.6^{\prime} \mathrm{E}$	420 $44.4{ }^{\text {'S }} 072^{\circ} 58.6^{\prime} \mathrm{E}$	66	83	$01 \mathrm{mb7.4s}$
08:05	$42^{\circ} 41.8^{\prime} \mathrm{S} 075^{\circ} 37.1^{\prime} \mathrm{E}$	$43^{\circ} 26.5^{\prime} \mathrm{S} 075^{\circ} 34.7^{\prime} \mathrm{E}$	$43^{\circ} 04.2^{\prime} \mathrm{S} 075^{\circ} 35.8^{\prime} \mathrm{E}$	64	82	01m54.9s
08:10	$42^{\circ} 56.9^{\prime} \mathrm{S} 078^{\circ} 18.6^{\prime} \mathrm{E}$	$43^{\circ} 41.1^{\prime} \mathrm{S} 078^{\circ} 20.1^{\prime} \mathrm{E}$	$43^{\circ} 19.0^{\prime} \mathrm{S} 078^{\circ} 19.3^{\prime} \mathrm{E}$	61	81	01 m 51.9 s
08:15	$43^{\circ} 06.8^{\prime} \mathrm{S} 081^{\circ} 06.9^{\prime} \mathrm{E}$	$43^{\circ} 50.2$ S $081^{\circ} 12.5^{\prime} \mathrm{E}$	$43^{\circ} 28.5^{\prime} \mathrm{S} 081^{\circ} 09.6^{\prime} \mathrm{E}$	59	80	01 m 48.6 s
08:20	$43^{\circ} 11.0^{\prime} \mathrm{S} 084^{\circ} 02.6^{\prime} \mathrm{E}$	$43^{\circ} 53.4$ S $084^{\circ} 12.2^{\prime} \mathrm{E}$	$43^{\circ} 32.2^{\prime} \mathrm{S} 084^{\circ} 07.3^{\prime} \mathrm{E}$	56	79	01m44.9s
08:25	$43^{\circ} 09.0^{\prime} \mathrm{S} 087^{\circ} 06.5^{\prime} \mathrm{E}$	$43^{\circ} 50.1^{\prime} \mathrm{S} 087^{\circ} 20.2^{\prime} \mathrm{E}$	$43^{\circ} 29.5^{\prime} \mathrm{S} 087^{\circ} 13.2{ }^{\prime} \mathrm{E}$	54	77	01 m 40.7 s
08:30	$43^{\circ} 00.1^{\prime} \mathrm{S} 090^{\circ} 19.5^{\prime} \mathrm{E}$	$43^{\circ} 39.5^{\prime} \mathrm{S} 090^{\circ} 37.3^{\prime} \mathrm{E}$	$43^{\circ} 19.8^{\prime} \mathrm{S} 090^{\circ} 28.3{ }^{\prime} \mathrm{E}$	51	75	01 m 36.1 s
08:35	$42^{\circ} 43.5^{\prime} \mathrm{S} 093^{\circ} 43.3^{\prime} \mathrm{E}$	$43^{\circ} 20.9^{\prime} \mathrm{S} 094^{\circ} 04.9^{\prime} \mathrm{E}$	$43^{\circ} 02.2^{\prime}$ S $093^{\circ} 53.9^{\prime} \mathrm{E}$	47	73	01 m 31.1 s
08:40	$42^{\circ} 18.0^{\prime} \mathrm{S} 097^{\circ} 19.4{ }^{\prime} \mathrm{E}$	$42^{\circ} 53.1^{\prime} \mathrm{S} 097^{\circ} 44.8^{\prime} \mathrm{E}$	$42^{\circ} 35.6^{\prime} \mathrm{S} 097^{\circ} 31.9^{\prime} \mathrm{E}$	44	70	01m25.6s
08:45	$41^{\circ} 42.2$ S $101^{\circ} 10.7^{\prime} \mathrm{E}$	$42^{\circ} 14.6^{\prime} \mathrm{S} 101^{\circ} 39.9^{\prime} \mathrm{E}$	$4^{\circ} \mathrm{5} 8.4^{\prime} \mathrm{S} 101^{\circ} 25.1^{\prime} \mathrm{E}$	40	68	$01 \mathrm{m19.7s}$
08:50	$40^{\circ} 53.8^{\prime} \mathrm{S} 105^{\circ} 21.7{ }^{\prime} \mathrm{E}$	$41^{\circ} 22.9^{\prime} \mathrm{S} 105^{\circ} 54.3^{\prime} \mathrm{E}$	$41^{\circ} 08.4{ }^{\prime} \mathrm{S} 105^{\circ} 37.8^{\prime} \mathrm{E}$	36	64	01m13.2s
08:55	$39^{\circ} 49.3^{\prime} \mathrm{S} 109^{\circ} 59.4{ }^{\text {E }}$	$40^{\circ} 14.5$ 'S $110^{\circ} 35.4{ }^{\prime} \mathrm{E}$	$40^{\circ} 02.0^{\prime} \mathrm{S} 110^{\circ} 17.2^{\prime} \mathrm{E}$	32	60	01m06.0s
09:00	$38^{\circ} 22.3^{\prime} \mathrm{S} 115^{\circ} 17.7^{\prime} \mathrm{E}$	$38^{\circ} 42.6^{\prime} \mathrm{S} 115^{\circ} 57.2^{\prime} \mathrm{E}$	$38^{\circ} 32.6^{\prime} \mathrm{S} 115^{\circ} 37.3^{\prime} \mathrm{E}$	26	56	00 m 57.8 s
09:05	$36^{\circ} 18.5^{\prime} \mathrm{S} 121^{\circ} 48.5^{\prime} \mathrm{E}$	$36^{\circ} 32.2^{\prime} \mathrm{S} 122^{\circ} 32.6^{\prime} \mathrm{E}$	$36^{\circ} 25.5^{\prime}$ S $122^{\circ} 10.4{ }^{\prime} \mathrm{E}$	20	49	00 m 48.2 s
09:10	$32^{\circ} 43.3^{\prime} \mathrm{S} 131^{\circ} 39.0^{\prime} \mathrm{E}$	$32^{\circ} 42.7^{\prime} \mathrm{S} 132^{\circ} 38.5^{\prime} \mathrm{E}$	$32^{\circ} 43.3^{\prime} \mathrm{S} 132^{\circ} 08.4^{\prime} \mathrm{E}$	10	38	00 m 34.6 s
im	$8^{\circ} 24.4$ S $142^{\circ} 20.2$	$42^{\circ} 2$	30.5'S 142	0	27	m22

TAble 4

Physical Ephemeris of the Umbral Shadow Total Solar Eclipse of 2002 December 04

Universal Time	Center Line		Diameter Ratio	Eclipse Obscur.	$\begin{aligned} & \text { Sun } \\ & \text { Alt } \\ & 0 \end{aligned}$	$\begin{gathered} \text { Sun } \\ \text { AzZn } \\ \hline \end{gathered}$	Path width km	Major Axis km	Minor Axis km	Umbra Veloc. km/s	Central Durat.
	Latitude	Longitude									
05:50.6	030 55.8'S	$001{ }^{\circ} 44.3$ ' W	1.0081	1.0163	0.0	112.3	31.3	-	28.0	-	00 m 26.1 s
05:55	$10^{\circ} 36.4{ }^{\prime} \mathrm{S}$	012007.9'E	1.0130	1.0262	16.3	110.2	50.8	159.9	44.7	0.545	00 m 46.55
06:00	13057.1'S	0170 49.8 ' E	1.0	1.030	23.8	108.4	59.2	129.	52.0	0.518	00 m 57.0 s
06:05	$16^{\circ} 33.9^{\prime} \mathrm{S}$	021055.3'E	1.0167	1.0337	29.5	106.6	65.0	116.4	57.2	0.498	01m05.3s
06:10	$18^{\circ} 48.4$ 'S	$025^{\circ} 15.0{ }^{\text {' }}$	1.0179	1.0362	34.3	104.6	69.4	109.0	61.3	0.482	01m12.4s
06:15	$20^{\circ} 48.3^{\prime} \mathrm{S}$	028 ${ }^{\circ} 07.2^{\prime} \mathrm{E}$	1.0190	1.0383	38.5	102.4	73.0	104.1	64.8	0.468	01 ml 18.8 s
06:20	$22^{\circ} 37.8$ 'S	$030^{\circ} 41.5^{\prime} \mathrm{E}$	1.0198	1.0400	42.4	100.0	75.9	100.6	67.7	0.457	01 m 24.65
06:25	$24^{\circ} 19.0^{\prime} \mathrm{S}$	$033^{\circ} 03.2^{\prime} \mathrm{E}$	1.0206	1.0416	45.9	97.5	78.3	97.9	70.3	0.446	01m29.8s
06:30	$25^{\circ} 53.6$ 'S	$035^{\circ} 15.8^{\prime} \mathrm{E}$	1.0212	1.0429	49.2	94.7	80.2	95.8	72.5	0.437	01 m 34.7 s
06:35	$27^{\circ} 22.4{ }^{\text {'S }}$	$037^{\circ} 22.0$ E	1.0218	1.0441	52.2	91.5	81.9	94.2	74.4	0.429	01 m 39.1 s
06:40	$28^{\circ} 46.3^{\prime} \mathrm{S}$	$039^{\circ} 23.5^{\prime} \mathrm{E}$	1.0223	1.0451	55.1	88.1	83.2	92.8	76.0	0.421	01m43.2s
06:45	$30^{\circ} 05.7$ 'S	041 ${ }^{\circ} 21.8^{\prime} \mathrm{E}$	1.0228	1.0460	57.8	84.2	84.3	91.6	77.5	0.415	01m46.95
06:50	$31^{\circ} 21.0^{\prime} \mathrm{s}$	$043^{\circ} 17.9^{\prime} \mathrm{E}$	1.0231	1.0468	60.4	79.9	85.2	90.7	78.8	0.409	01 m 50.2 s
06:55	$32^{\circ} 32.5{ }^{\prime} \mathrm{S}$	$045^{\circ} 13.0$ E	1.0235	1.0475	62.7	75.0	85.9	89.8	79.8	0.403	01 m 53.2 s
07:00	$33^{\circ} 40.4^{\prime} \mathrm{S}$	047 $07.7{ }^{\circ} \mathrm{E}$	1.0237	1.0480	64.9	69.4	86.5	89.2	80.7	0.399	01m55.9s
07:05	$34^{\circ} 44.8^{\prime} \mathrm{S}$	049 $02.7{ }^{\circ} \mathrm{E}$	1.0239	1.0485	66.9	63.1	86.9	88.6	81.5	0.395	01 m 58.1 s
07:10	$35^{\circ} 45.9^{\prime} \mathrm{S}$	050 ${ }^{\circ} 58.8^{\prime} \mathrm{E}$	1.0241	1.0488	68.6	55.9	87.1	88.1	82.0	0.391	02m00.0s
07:15	$36^{\circ} 43.6^{\prime} \mathrm{S}$	$052^{\circ} 56.3^{\prime} \mathrm{E}$	1.0242	1.0491	70.1	47.7	87.3	87.8	82.5	0.389	02m01.5s
07:20	$37^{\circ} 38.0^{\prime} \mathrm{S}$	$054^{\circ} 55.9^{\prime} \mathrm{E}$	1.0243	1.0493	71.2	38.7	87.3	87.5	82.7	0.386	02m02.7s
07:25	$38^{\circ} 29.0^{\prime} \mathrm{S}$	$056^{\circ} 58.0^{\prime} \mathrm{E}$	1.0244	1.0493	71.9	28.8	87.2	87.2	82.9	0.385	02 m 03.45
07:30	$39^{\circ} 16.7^{\prime} \mathrm{S}$	$059^{\circ} 03.1{ }^{\prime} \mathrm{E}$	1.0244	1.0493	72.2	18.3	87.0	87.1	82.9	0.383	02m03.8s
07:35	$40^{\circ} 00.8^{\prime} \mathrm{S}$	$061^{\circ} 11.5^{\prime} \mathrm{E}$	1.0243	1.0493	72.1	7.8	86.7	87.0	82.7	0.383	02m03.7s
07:40	$40^{\circ} 41.4^{\prime} \mathrm{S}$	$063^{\circ} 23.8^{\prime} \mathrm{E}$	1.0242	1.0491	71.5	357.4	86.3	87.0	82.5	0.383	02 m 03.3 s
07:45	$41^{\circ} 18.2^{\prime} \mathrm{S}$	$065^{\circ} 40.2^{\prime} \mathrm{E}$	1.0241	1.0488	70.6	347.7	85.8	87.0	82.0	0.384	02 m 02.4 s
07:50	$41^{\circ} 51.1^{\prime} \mathrm{S}$	$068^{\circ} 01.2^{\prime} \mathrm{E}$	1.0239	1.0485	69.3	338.7	85.1	87.1	81.5	0.385	02m01.1s
07:55	$42^{\circ} 19.9 ' \mathrm{~S}$	070 ${ }^{\circ} 27.2^{\prime} \mathrm{E}$	1.0237	1.0480	67.6	330.5	84.4	87.3	80.8	0.387	01 m 59.5 s
08:00	$42^{\circ} 44.4{ }^{\prime} \mathrm{S}$	$072^{\circ} 58.6^{\prime \prime} \mathrm{E}$	1.0235	1.0475	65.8	323.0	83.5	87.6	79.9	0.390	01 m 57.4 s
08:05	$43^{\circ} 04.2{ }^{\prime} \mathrm{S}$	075 35.8 E	1.0232	1.0469	63.7	316.3	82.5	88.0	78.9	0.393	01 m 54.9 s
08:10	$43^{\circ} 19.0{ }^{\prime} \mathrm{S}$	$078^{\circ} 19.3^{\prime} \mathrm{E}$	1.0228	1.0461	61.4	310.1	81.3	88.5	77.7	0.397	01m51.9s
08:15	$43^{\circ} 28.5^{\prime} \mathrm{S}$	081 $09.6^{\prime} \mathrm{E}$	1.0224	1.0453	58.9	304.3	80.0	89.1	76.3	0.402	01 m 48.6 s
08:20	$43^{\circ} 32.2^{\prime} \mathrm{S}$	$084^{\circ} 07.3^{\prime} \mathrm{E}$	1.0219	1.0443	56.3	299.0	78.5	89.9	74.7	0.407	01m44.9s
08:25	$43^{\circ} 29.5^{\prime} \mathrm{S}$	$087^{\circ} 13.2{ }^{\prime} \mathrm{E}$	1.0214	1.0433	53.5	293.9	76.9	90.8	73.0	0.414	$01 \mathrm{m40.75}$
08:30	$43^{\circ} 19.8{ }^{\prime} \mathrm{S}$	$090^{\circ} 28.3^{\prime} \mathrm{E}$	1.0208	1.0420	50.5	289.1	75.0	92.0	71.0	0.421	01 m 36.1 s
08:35	$43^{\circ} 02.2^{\prime} \mathrm{S}$	093 ${ }^{\circ} 53.9^{\prime} \mathrm{E}$	1.0201	1.0406	47.4	284.5	72.9	93.5	68.7	0.430	01 m 31.1 s
08:40	$42^{\circ} 35.6^{\prime} \mathrm{S}$	$097^{\circ} 31.9^{\prime} \mathrm{E}$	1.0193	1.0391	43.9	279.9	70.4	95.4	66.1	0.440	01m25.6s
08:45	$41^{\circ} 58.4{ }^{\prime} \mathrm{S}$	$101^{\circ} 25.1^{\prime} \mathrm{E}$	1.0185	1.0373	40.3	275.5	67.6	97.9	63.2	0.451	01 ml 19.7 s
08:50	$41^{\circ} 08.4{ }^{\prime} \mathrm{S}$	$105^{\circ} 37.8^{\prime} \mathrm{E}$	1.0175	1.0352	36.2	271.0	64.4	101.3	59.8	0.465	$01 \mathrm{ml3} .2 \mathrm{~s}$
08:55	$40^{\circ} 02.01 \mathrm{~S}$	$110^{\circ} 17.2{ }^{\prime} \mathrm{E}$	1.0163	1.0328	31.7	266.5	60.5	106.3	55.8	0.480	01m06.0s
09:00	$38^{\circ} 32.6^{\prime} \mathrm{S}$	$115^{\circ} 37.3^{\prime} \mathrm{E}$	1.0148	1.0299	26.5	261.8	55.6	114.4	50.9	0.499	00 m 57.8 s
09:05	$36^{\circ} 25.5^{\prime} \mathrm{S}$	$122^{\circ} 10.4{ }^{\prime} \mathrm{E}$	1.0130	1.0261	20.0	256.6	49.1	130.7	44.6	0.524	00 m 48.2 s
09:10	$32^{\circ} 43.3^{\prime} \mathrm{S}$	$132^{\circ} 08.4{ }^{\text {E }}$	1.0100	1.0201	10.1	250.0	38.4	197.7	34.5	0.564	00 m 34.6 s
09:11.7	$28^{\circ} 30.5^{\prime} \mathrm{S}$	$142^{\circ} 24.9{ }^{\prime} \mathrm{E}$	1.0069	1.0139	0.0	244.5	26.9	-	24.0	-	00 m 22.4 s

TABLE 5

Local Circumstances on the Center Line Total Solar Eclipse of 2002 December 04

			First Contact				Second contact			Third Contact			Fourth Contact			
U.T	Durat.	${ }_{0}^{\text {Alt }}$	U.T.	$\stackrel{\text { P }}{ }$	V	Alt	U.T.	P	V	U.T.	$\stackrel{\text { P }}{0}$	V	U.T.	P		Alt
05:55	00 m 46.5 s	16	04:58:02	293	34	3	05:54:37	115	210	05:55:23	295	30	06:58:39	116	205	31
6:0	Om57.0s	24	05:00	294	35	10	05:59:32	115	211	06	296	31	7:07:20	117	20	39
06:05	01m05.3s	30	05:03:01	295	37	15	06:04:27	116	213	06:05:33	296	33	07:15:14	117	208	46
06:10	01m12.4s	34	05:06:03	295	38	20	06:09:24	116	215	06:10:36	296	34	07:22:43	117	210	51
06:15	01m18.8s	39	05:09:15	296	39	24	06:14:21	117	216	06:15:39	297	36	07:29:5	117	212	56
06:20	01m24.6s	42	05:12:35	296	41	27	06:19:18	117	218	06:20:4	297	37	07:36:52	117	214	60
06:25	01m29.8s	46	05:16:00	296	42	30	06:24:15	117	219	06:25:4	297	39	07:43:3	117	217	64
06:30	01m34.7s	49	05:19:31	296	43	33	06:29:13	117	221	06:30:47	297	41	07:50:13	117	221	67
06:35	01m39.1s	52	05:23:07	296	44	36	06:34	117	223	06:35:5	297	43	07:56:3	116	225	70
06:40	01 m 43.2 s	55	05:26:47	296	46	39	06:39:09	116	225	06:40:5	296	45	08:02:5	116	232	73
06:45	01m46.9s	58	05:30:30	296	47	42	06:44:07	116	227	06:45:5	296	47	08:08:56	116	240	75
06:50	01m50.2s	60	05:34:18	296	48	44	06:49:05	116	230	06:50:5	296	50	08:14:51	115	251	77
06:55	01m53.2s	63	05:38:09	296	50	47	06:54:03	116	23	06:5	295	54	08:20:37	11	264	78
07:00	m5	65	05:42:	295	51	49	06:59:02	15	237	07:00:58	295	58	08:26:13	114	278	78
07:05	01m58.1s	67	05:46:03	295	53	51	07:04:01	115	242	07:05:59	295	62	08:31:40	113	291	77
07:10	02m00.0s	69	05:50:06	295	55	54	07:09:00	114	247	07:11:00	294	67	08:36:58	112	302	76
07:15	02m01.5s	70	05:54:14	294	57	56	07:13:59	114	253	07:16:01	294	74	08:42:06	112	310	75
07:20	02m02.7s	71	05:58:26	294	60	58	07:18:59	113	260	07:21:01	293	81	08:47:07	111	316	73
07:25	02m03.4s	72	06:02:43	294	63	60	07:23:58	112	267	07:26:02	292	89	08:51:58	110	321	71
07:30	02m03.8s	72	06:07:06	293	66	62	07:28:58	112	276	07:31:02	292	97	08:56:42	109	324	68
07:35	02 m 03.7 s	72	06:11:34	292	69	63	07:33:58	111	284	07:36:02	291	105	09:01:17	109	327	66
07:	02m03.3s	72	06:16:08	292	74	65	07:38:58	110	292	07:41:02	290	113	09:05:4	108	329	64
07	02m02.4s	71	06:20:48	291	78	6	07:43:59	109	299	07:46:01	289	120	09:10:0	107	330	61
07:50	02m01.1s	69	06:25:36	291	84	68	07:48:59	109	305	07:51:01	289	126	09:14:18	106	331	59
07:55	01 m	68	06:30	290	90	68	07:54:00	08	31	07:56:00	288	32	09:18:25			56
8:00	01m57.4s	66	06:35:34	289	97	69	07:59:01	107	315	08:00:59	287	136	09:22:24	105	332	54
08:05	01m54.9s	64	06:40:45	288	105	69	08:04:03	106	319	08:05:5	286	140	09:26:18	10	332	51
08:10	01m51.9s	61	06:46:06	287	112	69	08:09:04	105	322	08:10:5	285	143	09:30:0	10	332	49
08:15	01m48.6s	59	06:51:36	286	119	68	08:14:06	104	325	08:15:54	284	145	09:33:47	102	332	46
08:20	01m44.9s	56	06:57:17	286	126	67	08:19:07	103	327	08:20:52	283	147	09:37:23	101	332	43
08:25	01m40.7s	54	07:03:08	285	132	65	08:24:10	103	328	08:25:50	282	149	09:40:54	101	332	40
08:30	01m36.1s	51	07:09:12	284	138	63	08:29:12	102	330	08:30:48	282	150	09:44:19	100	332	37
08:35	01 m 31.1 s	47	07:15:28	283	142	60	08:34:14	101	331	08:35:45	281	151	09:47:38	99	332	34
08:40	01m25.6s	44	07:21:58	282	146	57	08:39:17	100	332	08:40:43	280	152	09:50:50	99	331	31
08:45	01m19.7s	40	07:28:42	281	149	54	08:44:20	99	332	08:45:40	279	152	09:53:56	98	331	28
08:50	01m13.2s	36	07:35:43	280	152	50	08:49:23	98	333	08:50:37	278	153	09:56:54	97	331	24
08:55	01m06.0s	32	07:43:03	279	154	45	08:54:27	97	333	08:55:33	277	153	09:59:41	97	330	20
09:00	00m57.8s	27	07:50:48	277	155	40	08:59:31	97	333	09:00:29	277	153	10:02:14	96	330	15
09:05	00 m 48.2 s	20	07:59:11	276	157	33	09:04:36	96	334	09:05:24	276	154	10:04:22	95	330	9
09:10	00m34.6s	10	08:09:06		158	22	09:09:43	95	334	09:10:17	275	154	10:05:2	95	329	

Table 6

Topocentric data and Path Corrections due to Lunar limb Profile Total Solar Eclipse of 2002 December 04

	Moon	Moon	Moon	Topo				North	North Limit		South Limit		Central
Universal	Topo	Topo	Rel.	Lib.			Path	Limit					.
Time	H.P.	S.D.	$\begin{gathered} \text { Ang.V } \\ \mathrm{n} / \mathrm{s} \end{gathered}$	Long	Alt.	$\underset{\circ}{\mathrm{Az}} .$	$A z:$	P.A.	Int.	Ext.	Int.	Ext.	$\begin{gathered} \text { Corr } \\ \mathrm{s} \end{gathered}$
05:55	3622.0	986.4	0.545	4.54	16.3	110.2	119.5	24.6	0.2	1.4		-2.3	-0.3
06:00	3629.7	988.5	0.518	4.50	23.8	108.4	122.5	25.5	0.3	1.0	0.3	-2.3	-0.2
06:05	3635.3	990.0	0.498	4.46	29.5	106.6	124.5	26.0	0.3	0.6	0.3	-2.6	-0.2
06:10	3639.8	991.2	0.482	4.41	34.3	104.6	126.0	26.4	0.3	0.8	0.3	-2.7	-0.2
06:15	3643.5	992.2	0.468	4.37	38.5	102.4	127.0	26.6	0.3	0.9	0.3	-2.8	-0.1
06:20	3646.7	993.0	0.457	4.33	42.4	100.0	127.7	26.7	0.3	0.9	0.3	-2.8	-0.1
06:25	3649.4	993.8	0.446	4.29	45.9	97.5	128.1	26.8	0.3	0.9	0.3	-2.8	-0.6
06:30	3651.8	994.4	0.437	4.24	49.2	94.7	128.3	26.7	0.3	0.9	0.3	-2.8	-0.6
06:35	3653.9	995.0	0.429	4.20	52.2	91.5	128.2	26.6	0.3	0.9	0.2	-2.8	-0.6
06:40	3655.7	995.5	0.421	4.16	55.1	88.1	127.9	26.4	0.3	0.8	0.2	-2.7	-0.6
06:45	3657.3	995.9	0.415	4.12	57.8	84.2	127.4	26.2	0.3	0.7	0.2	-2.6	-0.6
06:50	3658.7	996.3	0.409	4.08	60.4	79.9	126.6	25.9	0.3	0.7	0.1	-2.4	-1.1
06:55	3659.8	996.6	0.403	4.03	62.7	75.0	125.8	25.5	0.3	0.9	0.1	-2.1	-1.1
07:00	3660.8	996.8	0.399	3.99	64.9	69.4	124.7	25.1	0.3	1.2	0.1	-2.2	-1.1
07:05	3661.6	997.0	0.395	3.95	66.9	63.1	123.5	24.6	0.3	1.3	0.0	-2.2	-1.1
07:10	3662.3	997.2	0.391	3.91	68.6	55.9	122.1	24.1	0.3	1.4	0.0	-2.1	-1.1
07:15	3662.7	997.3	0.389	3.87	70.1	47.7	120.5	23.5	0.3	1.5	-0.1	-1.9	-1.1
07:20	3663.1	997.4	0.386	3.82	71.2	38.7	118.9	22.9	0.3	1.4	-0.1	-2.0	-1.1
07:25	3663.2	997.5	0.385	3.78	71.9	28.8	117.0	22.3	0.3	1.2	-0.2	-2.6	-1.0
07:30	3663.2	997.5	0.383	3.74	72.2	18.3	115.1	21.6	0.4	1.0	-0.2	-3.1	-0.9
07:35	3663.1	997.4	0.383	3.70	72.1	7.8	113.0	20.9	0.3	1.1	-0.3	-3.4	-0.8
07:40	3662.8	997.3	0.383	3.65	71.5	357.4	110.8	20.1	0.4	1.2	-0.4	-3.6	-1.0
07:45	3662.3	997.2	0.384	3.61	70.6	347.7	108.5	19.4	0.4	1.0	-0.4	-3.6	-1.1
07:50	3661.7	997.1	0.385	3.57	69.3	338.7	106.1	18.6	0.4	0.9	-0.4	-3.4	-1.1
07:55	3660.9	996.8	0.387	3.52	67.6	330.5	103.6	17.7	0.4	0.8	-0.4	-3.5	-1.2
08:00	3660.0	996.6	0.390	3.48	65.8	323.0	101.1	16.9	0.5	1.1	-0.1	-3.5	-1.4
08:05	3658.8	996.3	0.393	3.44	63.7	316.3	98.4	16.0	0.5	1.1	0.0	-3.2	-1.4
08:10	3657.5	995.9	0.397	3.40	61.4	310.1	95.8	15.2	0.4	1.0	0.1	-2.8	-1.4
08:15	3656.1	995.5	0.402	3.36	58.9	304.3	93.0	14.3	0.3	1.2	0.2	-2.4	-1.3
08:20	3654.4	995.1	0.407	3.31	56.3	299.0	90.3	13.4	0.3	1.3	0.3	-2.6	-1.3
08:25	3652.4	994.6	0.414	3.27	53.5	293.9	87.5	12.5	0.2	1.2	0.3	-2.5	-1.5
08:30	3650.3	994.0	0.421	3.23	50.5	289.1	84.7	11.6	0.1	1.1	0.4	-2.2	-1.4
08:35	3647.8	993.3	0.430	3.19	47.4	284.5	81.9	10.8	0.1	0.9	0.4	-2.2	-1.3
08:40	3645.0	992.6	0.440	3.14	43.9	279.9	79.2	9.9	0.0	0.6	0.5	-2.5	-1.2
08:45	3641.8	991.7	0.451	3.10	40.3	275.5	76.5	9.0	0.0	0.8	0.5	-2.7	-1.0
08:50	3638.2	990.7	0.465	3.06	36.2	271.0	73.9	8.2	-0.0	0.8	0.6	-2.6	-0.9
08:55	3633.9	989.6	0.480	3.02	31.7	266.5	71.4	7.3	-0.0	0.8	0.6	-2.3	-0.8
09:00	3628.7	988.2	0.499	2.98	26.5	261.8	69.0	6.5	-0.1	0.7		-2.3	-0.8
09:05	3622.0	986.3	0.524	2.93	20.0	256.6	66.8	5.7	-0.1	0.8	0.7	-2.4	-0.8
09:10	3611.4	983.4	0.564	2.89	10.1	250.0	64.9	4.8	-0.3	0.6	0.7	-2.3	-0.9

Table 7

Mapping Coordinates for the Umbral Path - AFrica TOTAL SOlAR EClipse of 2002 DECEMBER 04

Longitude	Latitude of:			Circumstances on Center Line				
	Northern Limit	Southern Limit	Center Line	$\begin{gathered} \text { Universal } \\ \text { Time } \\ \mathrm{h} \mathrm{~m} \mathrm{~s} \end{gathered}$	$\begin{aligned} & \text { Sun } \\ & \text { Alt } \end{aligned}$		Path dth m	Central Durat.
013	10		11		17.			
$013^{\circ} 30.0$	$11^{\circ} 06.16^{\prime}$	$11^{\circ} 39.27^{\prime} \mathrm{S}$	$11^{\circ} 22.64{ }^{\prime}$	05:56:00	18.	110	53	
014	11°	$11^{\circ} 56.75$	11°	05:56:24	18.7	110	54	$00 \mathrm{m49.8s}$
$14^{\circ} 30.0{ }^{\text {P }} \mathrm{E}$	$11^{\circ} 40.1$	$12^{\circ} 14.40{ }^{\prime}$	$11^{\circ} 57.21$ '	05:56:49	19.	110	54	00 m 50.7 s
$015^{\circ} 00.0^{\prime} \mathrm{E}$								
015°	$12^{\circ} 14.86^{\prime}$	12	12	05:57:42	20.6	109	56	00 m 52.5 s
$016^{\circ} 00.0^{\prime} \mathrm{E}$	$12^{\circ} 32.44{ }^{\text {S }}$	$13^{\circ} 08.34^{\prime} \mathrm{S}$	$12^{\circ} 50.31 ' \mathrm{~S}$	05:58:09	21.3	109	56	00 m
$016^{\circ} 30.0^{\prime} \mathrm{E}$	$12^{\circ} 50.19$ 'S	$13^{\circ} 26.65{ }^{\prime} \mathrm{S}$	$13^{\circ} 08.33 ' S$	05:58:38	22.0	109	57	00 m
$017^{\circ} 00.0^{\prime}$	$13^{\circ} 08.09^{\prime} \mathrm{S}$	$13^{\circ} 45.13^{\prime} \mathrm{S}$	$13^{\circ} 26.52^{\prime}$	05:59:08	22.6	109	58	
$017{ }^{\circ} 30.0^{\prime} \mathrm{E}$	$13^{\circ} 26.16^{\prime} \mathrm{S}$	$14^{\circ} 03.77^{\prime} \mathrm{S}$	$13^{\circ} 44.87$ S	05:59:39	23.3	109	59	00 m
$018^{\circ} 00.0^{\prime} \mathrm{E}$	$13^{\circ} 44.39^{\prime} \mathrm{S}$	$14^{\circ} 22.57$ S	$14^{\circ} 03.38^{\prime} \mathrm{S}$	06:00:11	24.0	108	59	00 m 5
$018^{\circ} 30.0$	$14^{\circ} 02.77^{\prime} \mathrm{S}$	$14^{\circ} 41.52$	$14^{\circ} 22.05^{\prime} \mathrm{S}$	06:00:44	24.	108	60	00
$019^{\circ} 00.0^{\prime} \mathrm{E}$	$14^{\circ} 21.31{ }^{\prime}$	$15^{\circ} 00.6$	$14^{\circ} 40.88^{\prime}$	06:01:18	25.4	108	61	00 m
$019^{\circ} 30.0^{\prime}$	$14^{\circ} 40.01$	$15^{\circ} 19.9$	$14^{\circ} 59.86^{\prime}$	06:01:53	26.1	108	62	01 m 00.3 s
00.0	14°	15	$1519.00^{\prime} \mathrm{S}$	06:02:30	26.8	108	62	
$020^{\circ} 30.0^{\prime} \mathrm{E}$	$15^{\circ} 17.85^{\prime} \mathrm{S}$	$15^{\circ} 58.91$ 'S	$15^{\circ} 38.28^{\prime} \mathrm{S}$	06:03:07	27	107	63	
$021^{\circ} 00.0^{\prime} \mathrm{E}$	$15^{\circ} 37.00 \cdot \mathrm{~S}$	$16^{\circ} 18.63^{\prime} \mathrm{S}$	$15^{\circ} 57.72$ 'S	06:03:46	28.2	107	64	01
$021^{\circ} 30.0^{\prime} \mathrm{E}$	$15^{\circ} 56.29^{\prime} \mathrm{S}$	$16^{\circ} 38.50 ' \mathrm{~S}$	$16^{\circ} 17.30^{\prime} \mathrm{S}$	06:04:26	28.	107	64	01
$022^{\circ} 00.0^{\prime} \mathrm{E}$	$16^{\circ} 15.73$ 'S	$16^{\circ} 58.51$ 'S	$16^{\circ} 37.02$ 'S	06:05:06	29.6	107	65	
$022^{\circ} 30.0^{\prime} \mathrm{E}$	$16^{\circ} 35.31$ 'S	$17^{\circ} 18.66^{\prime} \mathrm{S}$	$16^{\circ} 56.88^{\prime} \mathrm{S}$	06:05:48	30.3	106	66	01
$023^{\circ} 00.0^{\prime} \mathrm{E}$	$16^{\circ} 55.02$ 'S	$17^{\circ} 38.94^{\prime} \mathrm{S}$	$17^{\circ} 16.87$ 'S	06:06:32	31.0	106	66	01.
$023^{\circ} 30.0^{\prime} \mathrm{E}$	$17^{\circ} 14.86^{\prime} \mathrm{S}$	$17^{\circ} 59.35^{\prime} \mathrm{S}$	$17^{\circ} 37.00{ }^{\prime} \mathrm{S}$	06:07:16	31.7	106	67	01
$024^{\circ} 00.0^{\prime} \mathrm{E}$	$17^{\circ} 34.84{ }^{\text {'S }}$	$18^{\circ} 19.88^{\prime} \mathrm{S}$	$17^{\circ} 57.25^{\prime} \mathrm{S}$	06:08:01	32.5	105	E8	
$024^{\circ} 30.0{ }^{\text {E }}$	$17^{\circ} 54$	18°	18°	06:08:48	33	105	68	
$025^{\circ} 00.0^{\prime} \mathrm{E}$	$18^{\circ} 15.15^{\prime} \mathrm{S}$	$19^{\circ} 01.31^{\prime} \mathrm{S}$	$18^{\circ} 38.12{ }^{\text {S }}$	06:09:36	33.	105	69	
$025^{\circ} 30.0^{\prime} \mathrm{E}$	$18^{\circ} 35.48^{\prime} \mathrm{S}$	$19^{\circ} 22.19^{\prime} \mathrm{S}$	$18^{\circ} 58.73{ }^{\text {'S }}$	06:10:25	34.6	104	70	
$026^{\circ} 00.0^{\prime} \mathrm{E}$	$18^{\circ} 55.92$ 'S	$19^{\circ} 43.17^{\prime} \mathrm{S}$	$19^{\circ} 19.44{ }^{\prime}$	06:11:15	35.4	104	70	01
$026^{\circ} 30.0^{\prime} \mathrm{E}$	$19^{\circ} 16.47$ 'S	$20^{\circ} 04.25^{\prime} \mathrm{S}$	$19^{\circ} 40.25^{\prime} \mathrm{S}$	06:12:06	36.1	104	71	01m
$027^{\circ} 00.0^{\prime} \mathrm{E}$	$19^{\circ} 37.12$ 'S	$20^{\circ} 25.42^{\prime} \mathrm{S}$	$20^{\circ} 01.16^{\prime} \mathrm{S}$	06:12:58	36.9	103	72	01 m
$027^{\circ} 30.0^{\prime} \mathrm{E}$	$19^{\circ} 57.85$ 'S	$20^{\circ} 46.67$ 'S	$20^{\circ} 22.15 \cdot \mathrm{~S}$	06:13:52	37.6	103	72	01m
$028^{\circ} 00.0^{\prime} \mathrm{E}$	$20^{\circ} 18.68{ }^{\prime} \mathrm{S}$	$21^{\circ} 08.00{ }^{\text {S }}$	$20^{\circ} 43.23 ' \mathrm{~S}$	06:14:47	38.3	102	73	01
$028^{\circ} 30.0^{\prime} \mathrm{E}$	$20^{\circ} 39.58 ' S$	$21^{\circ} 29.40{ }^{\text {S }}$	$21^{\circ} 04.38^{\prime} \mathrm{S}$	06:15:42	39.	102	73	
$029^{\circ} 00.0^{\prime} \mathrm{E}$	$21^{\circ} 00.55^{\prime} \mathrm{S}$	$21^{\circ} 50.87$ 'S	$21^{\circ} 25.60^{\prime} \mathrm{S}$	06:16:39	39.8	102	74	
$029{ }^{\circ} 30.0^{\prime}$	$21^{\circ} 21.59$	$22^{\circ} 12.38^{\prime} \mathrm{S}$	$21^{\circ} 46.88^{\prime}$	06:17:37	40	101	75	
$0^{\circ} 00.0^{\prime} \mathrm{E}$	$21^{\circ} 42.69$ 'S	$22^{\circ} 33.94{ }^{\prime} \mathrm{S}$	$22^{\circ} 08.21^{\prime}$	18:37	41.3	101	75	
$030^{\circ} 30.0{ }^{\text {E }}$	$22^{\circ} 03.83 '$ S	$22^{\circ} 55.54{ }^{\prime} \mathrm{S}$	$22^{\circ} 29.58^{\prime} \mathrm{S}$	06:19:37	42.	100	76	01
$031^{\circ} 00.0^{\prime} \mathrm{E}$	$22^{\circ} 25.02 \cdot \mathrm{~S}$	$23^{\circ} 17.16^{\prime} \mathrm{S}$	$22^{\circ} 50.99^{\prime} \mathrm{S}$	06:20:38	42.8	100	76	01
$031^{\circ} 30.0{ }^{\text {E }}$	$22^{\circ} 46.23$ S	$23^{\circ} 38.80^{\prime} \mathrm{S}$	$23^{\circ} 12.42$ 'S	06:21:40	43.6	99	77	01
$032^{\circ} 00.0^{\prime} \mathrm{E}$	$23^{\circ} 07.47^{\prime} \mathrm{S}$	$24^{\circ} 00.45^{\prime} \mathrm{S}$	$23^{\circ} 33.86^{\prime} \mathrm{S}$	06:22:44	44.3	99	77	01m2
$032^{\circ} 30.0{ }^{\text {E }}$	$23^{\circ} 28.73$ 'S	$24^{\circ} 22.10^{\prime} \mathrm{S}$	$23^{\circ} 55.31^{\prime} \mathrm{S}$	06:23:48	45.1	98	78	01m
$033^{\circ} 00.0^{\prime} \mathrm{E}$	$23^{\circ} 49.98^{\prime} \mathrm{S}$	$24^{\circ} 43.73$ S	$24^{\circ} 16.76^{\prime} \mathrm{S}$	06:24:53	45.8	98	78	01m2
$033^{\circ} 30.0{ }^{\text {E }}$	$24^{\circ} 11.24{ }^{\text {S }}$	$25^{\circ} 05.35^{\prime} \mathrm{S}$	$24^{\circ} 38.20^{\prime} \mathrm{S}$	06:25:59	46.5	97	79	01 m 30
$034^{\circ} 00.0^{\prime} \mathrm{E}$	$24^{\circ} 32.48^{\prime} \mathrm{S}$	$25^{\circ} 26.93$ 'S	$24^{\circ} 59.61$ 'S	06:27:06	47.3	96	79	01 m 3
$034^{\circ} 30.0{ }^{\text {E }}$	$24^{\circ} 53.69$ 'S	$25^{\circ} 48.47^{\prime} \mathrm{S}$	$25^{\circ} 20.99^{\prime} \mathrm{S}$	06:28:14	48.0	96	80	01 m

[^6]
Table 8
 Mapping Coordinates for the Umbral Path - Australia Total Solar Eclipse of 2002 December 04

	Latitude of:			Circumstances on Center Line				
	Northern Limit	Southern Limit	Center Line	Universal Time h m s	$\begin{aligned} & \text { Sun } \\ & \text { Alt } \end{aligned}$		$\begin{aligned} & \text { ath } \\ & \text { ath } \end{aligned}$	Central Durat.
$110^{\circ} 00.0^{\prime} \mathrm{E}$	$39^{\circ} 49.15^{\prime} \mathrm{S}$	$40^{\circ} 23.72$ S	$40^{\circ} 06.40^{\prime} \mathrm{S}$	08	32.0	267	61	01m06.4s
$111^{\circ} 00.0^{\prime} \mathrm{E}$	$39^{\circ} 33.77^{\prime} \mathrm{S}$	$40^{\circ} 07.95^{\prime} \mathrm{S}$	$39^{\circ} 50.83 ' S$	08:55:43	31.0	266	60	01m04.9s
$112^{\circ} 00.0^{\prime} \mathrm{E}$	$39^{\circ} 17.91$ S	$39^{\circ} 51.68{ }^{\prime} \mathrm{S}$	$39^{\circ} 34.76^{\prime} \mathrm{S}$	08:56:42	30.0	265	59	$01 \mathrm{m03.3s}$
$113^{\circ} 00.0^{\prime} \mathrm{E}$	$39^{\circ} 01.57^{\prime} \mathrm{S}$	$39^{\circ} 34.92$ 'S	$39^{\circ} 18.20^{\prime} \mathrm{S}$	08:57:39	29.1	264	58	01 m 01.8 s
$114^{\circ} 00.0^{\prime} \mathrm{E}$	$38^{\circ} 44.76^{\prime} \mathrm{S}$	$39^{\circ} 17.67$ 'S	$39^{\circ} 01.17^{\prime} \mathrm{S}$	08:58:34	28.1	263	57	01 m 00.3 s
$115^{\circ} 00.0^{\prime} \mathrm{E}$	$38^{\circ} 27.48^{\prime} \mathrm{S}$	$38^{\circ} 59.95^{\prime} \mathrm{S}$	$38^{\circ} 43.68^{\prime} \mathrm{S}$	08:59:28	27.1	262	56	00 m 58.8 s
$116^{\circ} 00.0^{\prime} \mathrm{E}$	$38^{\circ} 09.76{ }^{\prime} \mathrm{S}$	$38^{\circ} 41.77^{\prime} \mathrm{S}$	$38^{\circ} 25.73$ 'S	09:00:19	26.1	261	55	00 m 57.3 s
$117^{\circ} 00.0^{\prime} \mathrm{E}$	$37^{\circ} 51.61$ 'S	$38^{\circ} 23.14{ }^{\text {'S }}$	$38^{\circ} 07.33^{\prime} \mathrm{S}$	09:01:10	25.1	261	54	00 m 55.8 s
$118^{\circ} 00.0^{\prime} \mathrm{E}$	$37^{\circ} 33.02{ }^{\text {S }}$	$38^{\circ} 04.08^{\prime} \mathrm{S}$	$37^{\circ} 48.51{ }^{\prime} \mathrm{S}$	09:01:58	24.2	260	53	00 m 54.3 s
$119^{\circ} 00.0^{\prime} \mathrm{E}$	$37^{\circ} 14.02{ }^{\prime} \mathrm{S}$	$37^{\circ} 44.58^{\prime} \mathrm{S}$	$37^{\circ} 29.26^{\prime} \mathrm{S}$	09:02:44	23.2	259	52	00m52.8s
$120^{\circ} 00.0^{\prime} \mathrm{E}$	$36^{\circ} 54.62^{\prime} \mathrm{S}$	$37^{\circ} 24.67{ }^{\prime} \mathrm{S}$	$37^{\circ} 09.60^{\prime} \mathrm{S}$	09:03:29	22.2	258	51	00 m 51.3 s
$121^{\circ} 00.0^{\prime} \mathrm{E}$	$36^{\circ} 34.83 ' \mathrm{~S}$	$37^{\circ} 04.35^{\prime} \mathrm{S}$	$36^{\circ} 49.55^{\prime} \mathrm{S}$	09:04:12	21.2	257	50	00 m 49.9 s
$122^{\circ} 00.0^{\prime} \mathrm{E}$	$36^{\circ} 14.66^{\prime} \mathrm{S}$	$36^{\circ} 43.65^{\prime} \mathrm{S}$	$36^{\circ} 29.11^{\prime} \mathrm{S}$	09:04:53	20.2	257	49	00 m 48.4 s
$123^{\circ} 00.0^{\prime} \mathrm{E}$	$35^{\circ} 54.12$ S	$36^{\circ} 22.56^{\prime} \mathrm{S}$	$36^{\circ} 08.30^{\prime} \mathrm{S}$	09:05:32	19.2	256	48	00 m 47.0 s
$124^{\circ} 00.0^{\prime} \mathrm{E}$	$35^{\circ} 33.24{ }^{\text {S }}$	$36^{\circ} 01.12 ' S$	$35^{\circ} 47.13^{\prime} \mathrm{S}$	09:06:09	18.2	255	47	00 m 45.5 s
$125^{\circ} 00.0{ }^{\prime} \mathrm{E}$	$35^{\circ} 12.01{ }^{\prime} \mathrm{S}$	$35^{\circ} 39.32 ' S$	$35^{\circ} 25.62 . \mathrm{S}$	09:06:45	17.2	25	46	00 m 44.2 s
$126^{\circ} 00.0^{\prime} \mathrm{E}$	$34^{\circ} 50.46^{\prime} \mathrm{S}$	$35^{\circ} 17.19^{\prime} \mathrm{S}$	$35^{\circ} 03.78{ }^{\prime} \mathrm{S}$	09:07:18	16.2	254	45	00 m 42.8 s
$127^{\circ} 00.0^{\prime} \mathrm{E}$	$34^{\circ} 28.60{ }^{\prime} \mathrm{S}$	$34^{\circ} 54.73$ 'S	$34^{\circ} 41.62{ }^{\prime} \mathrm{S}$	09:07:50	15.2	253	44	$00 \mathrm{m41} .4 \mathrm{~s}$
$128^{\circ} 00.0^{\prime} \mathrm{E}$	$34^{\circ} 06.44{ }^{\text {'S }}$	$34^{\circ} 31.97^{\prime} \mathrm{S}$	$34^{\circ} 19.16^{\prime} \mathrm{S}$	09:08:19	14.2	253	43	00 m 40.0 s
$129^{\circ} 00.0^{\prime} \mathrm{E}$	$33^{\circ} 43.99^{\prime} \mathrm{S}$	$34^{\circ} 08.91^{\prime} \mathrm{S}$	$33^{\circ} 56.41^{\prime} \mathrm{S}$	09:08:47	13.2	252	42	00 m 38.7 s
$130^{\circ} 00.0^{\prime} \mathrm{E}$	$33^{\circ} 21.28^{\prime} \mathrm{S}$	$33^{\circ} 45.58^{\prime} \mathrm{S}$	$33^{\circ} 33.38^{\prime} \mathrm{S}$	09:09:12	12.2	251	41	00 m 37.4 s
$131^{\circ} 00.0^{\prime} \mathrm{E}$	$32^{\circ} 58.31{ }^{\prime} \mathrm{S}$	$33^{\circ} 21.98^{\prime} \mathrm{S}$	$33^{\circ} 10.10^{\prime} \mathrm{S}$	09:09:36	11.3	251	40	00 m 36.0 s
$132^{\circ} 00.0^{\prime} \mathrm{E}$	$32^{\circ} 35.10$ 'S	$32^{\circ} 58.13$ 'S	$32^{\circ} 46.57^{\prime} \mathrm{S}$	09:09:57	10.3	250	39	00 m 34.7 s
		Begin 30^{\prime} step interval in longitude -						
$132^{\circ} 00.0^{\prime} \mathrm{E}$	$32^{\circ} 35.10^{\prime} \mathrm{S}$	$32^{\circ} 58.13 ' \mathrm{~S}$	$32^{\circ} 46.57{ }^{\prime} \mathrm{S}$	09:09:57	10.3	250	39	00 m 34.7 s
$132^{\circ} 30.0^{\prime} \mathrm{E}$	$32^{\circ} 23.41$ 'S	$32^{\circ} 46.11^{\prime} \mathrm{S}$	$32^{\circ} 34.72{ }^{\prime} \mathrm{S}$	09:10:07	9.8	250	38	00 m 34.1 s
$133^{\circ} 00.0^{\prime} \mathrm{E}$	$32^{\circ} 11.66^{\prime} \mathrm{S}$	$32^{\circ} 34.04{ }^{\prime} \mathrm{S}$	$32^{\circ} 22.81{ }^{\prime} \mathrm{S}$	09:10:17	9.3	249	37	00 m 33.5 s
$133^{\circ} 30.0^{\prime} \mathrm{E}$	$31^{\circ} 59.86^{\prime} \mathrm{S}$	$32^{\circ} 21.92^{\prime} \mathrm{S}$	$32^{\circ} 10.85{ }^{\prime} \mathrm{S}$	09:10:26	8.8	249	37	00 m 32.8 s
$134^{\circ} 00.0^{\prime} \mathrm{E}$	$31^{\circ} 48.01$ 'S	$32^{\circ} 09.74{ }^{\text {'S }}$	$31^{\circ} 58.84 \cdot \mathrm{~S}$	09:10:34	8.3	249	36	00 m 32.2 s
$134^{\circ} 30.0^{\prime} \mathrm{E}$	$31^{\circ} 36.11 ' \mathrm{~S}$	31057.51'S	$31^{\circ} 46.77$ 'S	09:10:42	7.8	249	36	00 m 31.6 s
$135^{\circ} 00.0^{\prime} \mathrm{E}$	$31^{\circ} 24.16^{\prime} \mathrm{S}$	$31^{\circ} 45.23$ 'S	$31^{\circ} 34.66^{\prime} \mathrm{S}$	09:10:50	7.3	248	35	00 m 30.9 s
$135^{\circ} 30.0^{\prime} \mathrm{E}$	$31^{\circ} 12.17^{\prime} \mathrm{S}$	$31^{\circ} 32.90$ 'S	$31^{\circ} 22.50$ S	09:10:57	6.8	248	35	00 m 30.3 s
$136^{\circ} 00.0^{\prime} \mathrm{E}$	$31^{\circ} 00.13$'s	$31^{\circ} 20.53$ 'S	$31^{\circ} 10.29^{\prime} \mathrm{S}$	09:11:03	6.3	248	34	00 m 29.7 s
$136^{\circ} 30.0^{\prime} \mathrm{E}$	$30^{\circ} 48.05{ }^{\prime} 5$	$31^{\circ} 08.11^{\prime} \mathrm{S}$	$30^{\circ} 58.04{ }^{\text {'S }}$	09:11:09	5.8	248	33	00 m 29.1 s
$137^{\circ} 00.0^{\prime} \mathrm{E}$	$30^{\circ} 35.92$ 'S	$30^{\circ} 55.66^{\prime} \mathrm{S}$	$30^{\circ} 45.75$ 'S	09:11:15	5.3	247	33	00 m 28.5 s
$137^{\circ} 30.0^{\prime} \mathrm{E}$	$30^{\circ} 23.76{ }^{\prime} \mathrm{S}$	$30^{\circ} 43.16^{\prime} \mathrm{S}$	$30^{\circ} 33.42$ S	09:11:20	4.8	247	32	00 m 27.9 s
$138^{\circ} 00.0^{\prime} \mathrm{E}$	$30^{\circ} 11.55^{\prime} \mathrm{S}$	$30^{\circ} 30.62 ' S$	$30^{\circ} 21.05$ 'S	09:11:25	4.3	247	32	00 m 27.3 s
$138^{\circ} 30.0^{\prime} \mathrm{E}$	$29^{\circ} 59.33^{\prime} \mathrm{S}$	$30^{\circ} 18.04{ }^{\prime} \mathrm{S}$	$30^{\circ} 08.65{ }^{\text {'S }}$	09:11:29	3.8	246	31	00 m 26.7 s
$139^{\circ} 00.0^{\prime} \mathrm{E}$	$29^{\circ} 47.06^{\prime} \mathrm{S}$	$30^{\circ} 05.44{ }^{\prime} \mathrm{S}$	$29^{\circ} 56.21$ S	09:11:32	3.3	246	31	00 m 26.1 s
$139^{\circ} 30.0^{\prime} \mathrm{E}$	$29^{\circ} 34.75^{\prime} \mathrm{S}$	$29^{\circ} 52.79^{\prime} \mathrm{S}$	$29^{\circ} 43.74$ 'S	09:11:35	2.9	246	30	00 m 25.6 s
$140^{\circ} 00.0^{\prime} \mathrm{E}$	$29^{\circ} 22.42^{\prime} \mathrm{S}$	$29^{\circ} 40.12$ 'S	$29^{\circ} 31.23$ 'S	09:11:38	2.4	246	29	00 m 25.0 s
$140^{\circ} 30.0^{\prime} \mathrm{E}$	29 ${ }^{\circ} 10.06^{\prime} \mathrm{S}$	$29^{\circ} 27.41^{\prime} \mathrm{S}$	$29^{\circ} 18.70$ 'S	09:11:40	1.9	245	29	00 m 24.4 s
$141^{\circ} 00.0^{\prime} \mathrm{E}$	$28^{\circ} 57.66^{\prime} \mathrm{S}$	$29^{\circ} 14.68^{\prime} \mathrm{S}$	$29^{\circ} 06.14{ }^{\text {'S }}$	09:11:42	1.4	245	28	00 m 23.8 s
$141^{\circ} 30.0^{\prime} \mathrm{E}$	$28^{\circ} 45.25^{\prime} \mathrm{S}$	$29^{\circ} 01.92^{\prime} \mathrm{S}$	$28^{\circ} 53.55^{\prime} \mathrm{S}$	09:11:43	0.9	245	28	00 m 23.3 s

Table 9

Mapping Coordinates for the Zones of Grazing Eclipse - Africa TOTAL SOlar Eclipse of 2002 December 04

Longitude

013 00.0E
013 30.0E
014 00.0E
014 30.0E
015 00.0E
015 30.0E
016 00.0E
016 30.0E
017 00.0E
017 30.0E
018 00.0E
018 30.0E
019 00.0E
019 30.0E
020 00.0E 020 30.0E 021 00.0E
021 30.0E 022 00.0E 022 30.0E 023 00.0E 023 30.0E 024 00.0E 024 30.0E

025 00.0E
025 30.0E
026 00.0E
026 30.0E
027 00.0E
027 30.0E
028 00.0E
028 30.0E
029 00.0E
029 30.0E
030 00.0E
030 30.0E
031 00.0E
031 30.0E
032 00.0E
032 30.0E
033 00.0E
033 30.0E
034 00.0E
034 30.0E
035 00.0E
035 30.0E
$\frac{\begin{array}{c}\text { North Graze Zone } \\ \text { Latitudes }\end{array}}{\begin{array}{c}\text { Northern } \\ \text { Limit } \\ \text { Limuthern } \\ \text { Limit }\end{array}} \begin{gathered}\text { Universal } \\ \text { Time }\end{gathered}$

10 48.07S 10 49.19S 05:55:20
11 04.86S 11 05.95S 05:55:42
11 21.81S 11 22.88S 05:56:06
11 38.93S 11 39.97S 05:56:30
11 56.21S 11 57.23S 05:56:55
12 13.66S 12 14.65S 05:57:21
12 31.28S 12 32.23S 05:57:49
12 49.06S 12 49.97S 05:58:17
13 07.00S 13 07.88S 05:58:46
13 25.11S 13 25.95S 05:59:16
13 43.38S 13 44.17S 05:59:48
14 01.80S 14 02.50S 06:00:20 14 20.39S 14 21.04S 06:00:54 14 39.13S 14 39.74S 06:01:28

14 58.02S 14 58.58S 06:02:04 15 17.07S 15 17.58S 06:02:41 15 36.27S 15 36.73S 06:03:19 15 55.61S 15 56.02S 06:03:58 16 15.10S 16 15.46S 06:04:38 16 34.67S 16 35.03S 06:05:19 16 54.36S 16 54.74S 06:06:02 17 14.17S 17 14.59S 06:06:45 17 34.12S 17 34.56S 06:07:30 17 54.20S 17 54.66S 06:08:16

18 14.39S 18 14.88S 06:09:03 18 34.71S 18 35.21S 06:09:51 18 55.13S 18 55.65S 06:10:40 19 15.66S 19 16.20S 06:11:31 19 36.29S 19 36.84S 06:12:22 19 57.01S 19 57.58S 06:13:15 20 17.83S 20 18.40S 06:14:09 20 38.72S 20 39.31S 06:15:04 20 59:68S 21 00.28S 06:16:00 21 20.72S 21 21.32S 06:16:58

21 41.81S 21 42.42S 06:17:56 22 02.94S 22 03.56S 06:18:56 22 24.12S 22 24.74S 06:19:56 22 45.34S 22 45.96S 06:20:58 23 06.57S 23 07.20S 06:22:01 23 27.83S 23 28.45S 06:23:04 23 49.06S 23 49.72S 06:24:09 24 10.31S 24 10.97S 06:25:15 24 31.55S 24 32.21S 06:26:21 24 52.77S 24 53.42S 06:27:29

25 13.96S 25 14.60S 06:28:37 25 35.10S 25 35.74S 06:29:46

$\frac{$| South Graze Zone |
| :---: |
| Latitudes |}{} | Northern |
| :---: |
| Limit |
| Southern |
| Limit |
| Limit |\quad| Universal |
| :---: |
| Time |

11 21.82S 11 24.29S 05:55:55
11 39.14S 11 41.60S 05:56:19
11 56.61S 11 59.07S 05:56:43
12 14.26S 12 16.71S 05:57:08
12 32.07S 12 34.51S 05:57:35 12 50.05S 12 52.48S 05:58:02
13 08.20S 13 10.61S 05:58:31
13 26.50S 13 28.90S 05:59:00
13 44.99S 13 47.38S 05:59:30
14 03.54S 14 06.03S 06:00:02
14 22.28S 14 24.86S 06:00:35
$1441.25 \mathrm{~S} 1443.87 \mathrm{~S} 06: 01: 08$
$1500.36 \mathrm{~S} 1503.03 \mathrm{~S} 06: 01: 43$
15 19.63S 15 22.34S 06:02:19
15 39.05S 15 41.80S 06:02:56 15 58.62S 16 01.42S 06:03:34 16 18.34S 16 21.17S 06:04:14 16 38.21S 16 41.07S 06:04:54 16 58.22S 17 01.11S 06:05:36 17 18.36S 17 21.29S 06:06:18 17 38.64S 17 41.59S 06:07:02 17 59.05S 18 02.03S 06:07:47 18 19.58S 18 22.58S 06:08:34 1840.23 S 1843.26 S 06:09:21

19 01.00S 19 04.05S 06:10:09
19 21.88S 19 24.94S 06:10:59
19 42.86S 19 45.94S 06:11:50
20 03.94S 20 07.03S 06:12:42
20 25.11S 20 28.21S 06:13:35
2046.36 S 2049.48 S 06:14:29

21 07.69S 21 10.82S 06:15:25
21 29.09S 21 32.23S 06:16:21
21 50.55S 21 53.69S 06:17:19
22 12.07S 22 15.21S 06:18:18
22 33.62S 22 36.78S 06:19:17
2255.22 S 2258.37 S 06:20:18

23 16.84S 23 20.00S 06:21:20
23 38.48S 23 41.64S 06:22:23
24 00.14S 24 03.29S 06:23:27
24 21.84S 24 24.92S 06:24:32
24 43.47S 24 46.55S 06:25:38
25 05.09S 25 08.16S 06:26:45
25 26.67S 25 29.74S 06:27:52
25 48.21S 25 51.28S 06:29:01
26 09.70S 26 12.76S 06:30:10
26 31.13S 26 34.17S 06:31:20

Path	Elev	Scale
Azm	Fact	Fact
o		$\mathrm{km} / \mathrm{\prime}$
119.9	0.55	2.02
120.2	0.55	2.02
120.5	0.55	2.02
120.7	0.55	2.02
121.0	0.55	2.02
121.3	0.55	2.02
121.5	0.55	2.02
121.8	0.55	2.02
122.0	0.55	2.02
122.3	0.55	2.02
122.6	0.55	2.02
122.8	0.55	2.02
123.1	0.55	2.02
123.3	0.55	2.02
123.6	0.55	2.02
123.8	0.55	2.02
124.1	0.55	2.02
124.3	0.55	2.02
124.5	0.55	2.02
124.8	0.54	2.01
125.0	0.54	2.01
125.2	0.54	2.01
125.4	0.54	2.01
125.7	0.54	2.01
125.9	0.54	2.01
126.1	0.53	2.01
126.3	0.53	2.01
126.4	0.53	2.00
126.6	0.53	2.00
126.8	0.53	2.00
127.0	0.52	2.00
128.3	0.48	1.96
127.1	0.52	2.00
128.0	0.50	0.49

Table 10

Mapping Coordinates for the Zones of Grazing Eclipse - Australia TOTAL SOLAR ECLIPSE OF 2002 DECEMbER 04

Lengitude	North Graze Zone\qquad Latitudes		Northern Limit	South Graze Zone Latitudes		Southern \qquad	Path Azm o	$\begin{aligned} & \text { Elev } \\ & \text { Fact } \end{aligned}$	Scale Fact km/"
	Northern Limit	Southern Limit	Universal Time	Northern Limit	Southern Limit	Universal Time			
-						h			
300.0E	3320.65 S	3321.5	09:09:23	3344.905	33 47.91S	09:09:01	65.1	0.49	1.98
13030.0 E	3309.23 S	3310.14 S	09:09:35	33 33.095	33 36.08S	09:09:13	65.1	0.50	1.98
131 00.0E	32 57.70s	3258.59 S	09:09:46	3321.26 S	3324.24 S	09:09:25	65.0	0.50	1.98
131 30.0E	3246.13 S	3247.02 S	09:09:57	3309.38 S	3312.35 S	09:09:36	64.9	0.50	1.98
132 00.0E	3234.515	32 35.39S	09:10:07	3257.435	3300.39 S	09:09:47	64.9	0.50	1.98
132 30.0E	3222.83 s	3223.71 S	09:10:17	32 45.41S	3248.37 S	09:09:57	64.8	0.50	1.98
133 00.0E	3211.10 S	3211.97 S	09:10:26	3233.34 S	32 36.28S	09:10:07	64.8	0.50	1.98
133 30.0E	3159.315	3200.17 S	09:10:35	32 21.21S	32 24.15S	09:10:16	64.7	0.51	1.98
134 00.0E	3147.47 S	31 48.33S	09:10:43	3209.03 S	3211.96 S	09:10:25	64.7	0.51	1.99
134 30.0E	31 35.58S	3136.435	09:10:51	3156.80 S	3159.72 S	09:10:33	64.	0.51	1.99
135 00.0E	3123.65 S	3124.495	09:10:59	3144.52 S	3147.43 S	09:10:41	64.6	0.51	1.99
135 30.0E	3111.66 S	3112.50 S	09:11:05	31 32.19S	31 35.10S	09:10:48	64.6	0.51	1.99
13600.0 E	3059.64 S	3100.465	09:11:12	3119.82 S	3122.715	09:10:55	64.5	0.52	1.99
13630.0 E	3047.57 S	3048.395	09:11:17	31 07.40S	3110.29 S	09:11:01	64.5	0.52	2.00
137 00.0E	3035.46 S	3036.27 S	09:11:23	3054.945	3057.82 S	09:11:07	64.5	0.52	2.00
137 30.0E	3023.31 S	3024.11 S	09:11:28	3042.44 S	3045.31 S	09:11:12	64.4	0.53	2.00
138 00.0E	3011.12 S	3011.92 S	09:11:32	3029.905	3032.77 S	09:11:17	64.4	0.53	2.00
13830.0 E	2958.90 S	2959.695	09:11:36	3017.32 S	3020.185	09:11:21	64.4	0.53	2.00
139 00.0E	2946.64 S	29 47.43S	09:11:39	30 04.71S	3007.56 S	09:11:25	64.4	0.53	2.01
13930.0 E	29 34.31S	2935.19 S	09:11:42	2952.07 S	29 54.915	09:11:29	64.4	0.53	2.01
14000.0 E	29 22.46S	29 22.46S	09:11:44	29 39.39S	29 42.23S	09:11:31	64.4	0.54	2.01
14030.0 E	2910.09 S	29 10.09S	09:11:46	29 26.67S	29 29.51S	09:11:34	64.4	0.55	2.02
14100.0 E	2857.70 S	2857.70 S	09:11:48	2913.93 S	2916.76 S	09:11:35	64.4	0.57	2.04
41 30.0E	2845.265	2845.265	09:11:49	29 01.12S	2903.955	09:11:37	64.4	0.60	2.07

TABLE 11
LOCAL CIRCUMSTANCES FOR AFRICA: ANGOLA - BENIN TOTAL SOLAR ECLIPSE OF 2002 DECEMBER 04

Location Name	Latitude Longitude			First Contact			Second contact			Thixe Contact		Fourth contact				Maximum Eclidse				$\begin{aligned} & \text { Eclip. } \\ & \text { Mag. } \end{aligned}$	$\begin{aligned} & \text { Eclip. } \\ & \text { Obs. } \end{aligned}$	Umbral Depth	Umbral Durat	
				P	Vo Alt	$\mathrm{h} \mathrm{U}_{\mathrm{m} \cdot \mathrm{~T} \cdot}$	P		$\begin{array}{lll} & \mathrm{U} \cdot \mathrm{~T} . & \mathrm{P} \\ \mathrm{~h} & \mathrm{~m} \end{array}$		$$	p			$\mathrm{h} \mathrm{U}_{\mathrm{m} . \mathrm{T} .}^{\mathrm{s}}$	P	$\mathrm{V}_{0} \mathrm{Alt}_{0}$							
Angola																								
Alto-Uama	$12^{\circ} 14.5$	$015^{\circ} 33^{\prime}$ E		-	04:58:48			-			-		07:03:05.9		206	36	05:57:21.1	205	30021	109	0.999	1.000		
Amboiva	$111^{\circ} 32$	$014{ }^{\circ} 44^{4}$ E		04:58:17	293							07:01:34.4	117	206	34	05:56:23.5		30019		0.993	0.994			
Bailundo	$12^{\circ} 12$	$015^{\circ} 52{ }^{\text {c }}$ E	-	04:58:43	293							07	17	206	36	05:57:23.2	205		109	0.994	0.995			
Balombo	$12^{\circ} 21^{\prime}$ S	$014{ }^{\circ} 46^{\text {' }}$ E	-	04:59:04.9	294	357	05:57:04.9	172	267	05:57:33.1 239	334	07:02:38.7	116	206	35	05:57:19.0		12120			1.000	0.166	00 m 28	
Bando	15900 ${ }^{\text {a }}$	$0^{020^{\circ} 0^{\prime} \mathrm{E}}$	-	05:01:12.7	294	3513						07:11:23.2	118	208	43	06:02:17.7	206	${ }^{302} 27$	108	${ }^{0.993}$	0.994			
Bela Vist	$12^{\circ} 3{ }^{\text {5 }}$ 'S	${ }^{011^{\circ} 113 \mathrm{E}}$		04:59:03	294		-					07:04:05.4	117	${ }_{205}^{206}$	34	05:57:54.8	25	12119	1109		-			
Benguela		013025'E	-	04:59:37.7	294		05:56:07.4	66	162	05:56:40.7 343	78	07:01:21.2	116	206	34	05:56:24.0	205	30019	110	1.002	1.000	0.252	00 m 3 s	
Caála	${ }_{12} 2^{\circ} 51$'s	$0^{015}{ }^{\circ} 33^{\prime}$ E		04:59:26.3	294							07:03:54.2	116	${ }^{206}$	36	05:58:03.7	25	12121	1109	1.000	1.000			
Cachingues	$13^{\circ} 05 \cdot \mathrm{~s}$	$016^{\circ} 43^{\prime} \mathrm{E}$		04:59:29	294		05:58:16	78	173	05:58:59.4 333	68	07:05:10.3	17	206	38	05:58:37.7	205	30122	2109	1.003	1.000	0.3	$00 \mathrm{m4} 4 \mathrm{~s}$	
Capuna	$15^{\circ} 38$'s	019 ${ }^{\circ} 3^{3}$ ' E		05:01:58		3713								207		06		12327		0.9	0.997			
Cassongue	11951's	$015{ }^{\text {a }} 03{ }^{\text {c }}$ E		04:58:31.8								07:02:		206		05:56:48.5	205							
Catota	$13^{\circ} 52$'s	$0^{017^{\circ} 15}{ }^{\text {b }}$ E		05:00:14.2	295	3610	05:59:29.4	176	272	05:59:56.9 235	331	07:06:41.4			39	05:59:43.1	25	${ }_{30121}^{122}$	4 108	-1.990	1.000	0.129	00 m 28	
Chá Pungana	${ }^{133^{\circ} 44}$'s	$0^{018^{\circ} 39^{\prime} \mathrm{E}}$	-	04:59:56.4	294	${ }_{35}^{34} 11$	05:56:33.5		236	05:57:19.3 270	5	$07: 07: 46.2$ $07: 02.04 .3$	118	${ }_{205}^{207}$	30	06:00:00.2	25	12019	${ }^{4} 110$	1.004	1.000	0.570	00 m 46 s	
Chinguar	${ }_{12} 2^{\circ} 36$'s	$016^{\circ} 2{ }^{\prime} \mathrm{E}$		04:59:03.0	294					-		07:04:12.4	117	206	37	05:57:57.7	205	30122	2109	0.997	0.998			
Chissilo	$13^{\circ} 34$'s	$016^{\circ} 30$ E		05:00:01.5	295					-		07:05:38.0	116	206	38	05:59:08.7	25	12122	2109	0.997	0.998			
Chiten	$13^{3} 34$	$01.6{ }^{\circ} 40$		05:00:00	95							07:05:46.6	11.6	206	38	05:59:11.4	$\begin{array}{r} 25 \\ 205 \end{array}$	12122	2109	1.000	1.000			
Chiumb	$12^{\circ} 2{ }^{\circ}$	016 ${ }^{\circ}{ }^{\circ} 8^{\prime}$ E		04:58:57	294							07:03:53.4			37	05:57:46.6	205	30221		0.997	0.998			
Ciuna	$13^{\circ} 14$'s	0159 ${ }^{\circ} 0^{\prime} \mathrm{E}$		04:59:48			-			-		07:04:29.9	115	206	36	05:58:32.2	25	1212	1109	0.993	0.994			
Covelo	$12^{\circ} 06$'s	$013^{\circ} 55{ }^{\text {' }}$		04:59:01	294							07:01:41.7		205		05:56:52.4		12119	9110	0.995	0.996			
cuando	$16^{\circ} 32$'s	022007'E		05:02:58	295	3716	06:04:33.9		186	06:05:32.5 323	60	07:15:23.9	117	208		06:05:03.1	206					0.550	${ }^{00 m 59 s}$	
cuang	$14^{\circ} 30$'s	018959'E		05:00:44	294	3512	06:00:39.1		180	06:01:29.5 327	63	07:09:09.9	117	207	41	06:01:04	206	302	5108	1.004	000	0.477		
Cuíto-	$15^{\circ} 10$	$0^{0199^{\circ} 10^{\prime} \mathrm{E}}$		05:01:28	295	3712						07:10:17.1	116	207	42	06:01:58.8	26	12226	6108	0.999	0.999			
Cuma	12°	$015{ }^{\circ} 05$		04:59:32	295					06.0315 .0291	28	07:03:33.2	115	205		05:57:58.5	25	12120	109	0.993	0.994			
${ }_{\text {Dima }}$	${ }_{11^{\circ}}^{1529}$			05:01:44.0	295	3613 3610	06:02:13.6	120	217	06:03:15.0 291	28	07:11:42.0 0710708.4		206	39	06:00:02.9	$\begin{aligned} & 26 \\ & 25 \end{aligned}$		$\begin{aligned} & 7107 \\ & 3108 \end{aligned}$	${ }_{0}^{1.998}$	${ }_{0}^{1.099}$			
Ebanga	122^{44}	014944.E		04:59:28.	295	367						07:03:06	115	205	35	05:57:44.8	25	12120	0109	0.991	0.992			
Gungo	$1^{11^{\circ} 48{ }^{\prime} \text { 'S }}$	${ }^{0144^{\circ} 08^{\prime}{ }^{\prime} \mathrm{E}}$		04:58:40.3	294		05:56:10.2	127	222	05:56:59.1283	18	07:01:28.6	116	205	34	05:56:34.6	25	12019	9110	1.005	1.000	0.791	${ }^{00 \mathrm{~m} 49 \mathrm{~s}}$	
Huambo	$12^{\circ} 44{ }^{\prime}$'s	$015{ }^{\circ} 47^{\prime} \mathrm{E}$		04:59:16			05:57:32.5		215	05:58:25.4 291	26	07:03:56.3		206	36	05:57:58.9	25	12121	1109	1.007	1.000		00 m 33 s	
Leppi	$12^{\circ} 52^{\prime}$ S	015		04:59:28	295							07:03:49		206		05:58:03.2		12121		0.998	0.999			
Litun	13°	$016^{\circ} 4$		04:59:41	294		05:58:24	118	14	05:59:19.4 293	28	07:05:26.4	116	206	38	05:58:52.0	25	12122	2109	1.007	1.000	0.956	00m55s	
Lobit		$013^{\circ} 34^{\text {c }}$ E	-	04:59:20.1	295	${ }^{36}$ 6						07:01:43.8	115	205	34	05:57:04.4	25	121. 129	9110	0.984	0.984			
${ }_{\text {Linga }}^{\text {Linanda }}$	$14^{14} 42$	${ }^{0188^{3} 321 \mathrm{E}}$	59	05:01:00.1						-		-06:57		206	${ }_{31}$	05:53:15.6	205	${ }_{298}^{122} 16$	1111	${ }_{0}^{1.946}$	${ }_{0}^{1.936}$			
Luatira	$12^{\circ} 52$'s	017014 ${ }^{1}$		04:59:11	293	349						07:05:18	117	207		05:58:31.0	205	301	3109	0.99	0.991			
Lubango	144055's	$0^{0133^{\circ} 30 \cdot \mathrm{E}}$		05:02:10.0	299							07:04:49.9	111	204	35	06:00:03.0	25	12320	109	0.922	0.905			
$\underset{\substack{\text { Luiana } \\ \text { Luimbal }}}{\text { a }}$	$17^{\circ 23} 23$			05:04:02.6	295	3717	06:06:08.5	127	224	06:07:15.0 285	23	07:17:45.9		209		06:06:41.7	26	124 300 30	11 106	l	${ }^{1.000}$	0.813 0.376	${ }^{01 \mathrm{~m} 07 \mathrm{~s}}$	
Luimbal	${ }^{122^{\circ}{ }^{\circ} 5^{\prime \prime}{ }^{\prime \prime} \mathrm{S}}$	O155099'E	-	04:58:52.4		34 3 8	05:56:58.8			05:57:39.5 334	69	07:02:56.3	117	206	63	05:57:26.3	205	30021	1109	${ }_{0}^{1.991}$	0.991			
Lupire	$14^{\circ} 36$'s	$01.9{ }^{\circ} 29^{\prime} \mathrm{E}$	-	05:00:48.9								07:09:47	117	207	42	06:01:22.8	206	30226	6108	0.999	0.999			
Mavinga	150 ${ }^{\circ} 50$	$020^{\circ}{ }^{\circ}{ }^{1} \mathrm{E}$		05:02:10.1	295	3714	06:03:02.6	175	271	06:03:35.0 237	334	07:12:26	116	207		06:03:18.8	26	12327	7107	1.001	1.000	0.147	00 m 32 s	
Menongue	$14^{\circ} 36{ }^{\text {'s }}$	$0^{017}{ }^{\circ} 48 \cdot \mathrm{E}$		05:00:58.2	295							07:08:11.	116	206		06:00:47	25	12224	108	0.992	0.993			
${ }_{\text {Missao Santa C }}$	$16^{9} 144^{\prime \prime}$ $15^{\circ} 10$	${ }^{\text {a }}$		05:02:37.1 05:02:50.6		361.5 44	06:04:29.4		131	06:04:38.8	14	$07: 14: 45.7$ $0704: 02.4$				06:04:34.0	25	30329 12419	19107	${ }_{\text {a }}^{1.897}$	${ }_{0}^{1.000}$	0.010	oomo	
Mutumbo	$13^{\circ} 1.4{ }^{\text {'s }}$	$017^{\circ 17}{ }^{\text { }}$ E	-	04:59:33.8	294	34				-		07:05:51.5	117	206	33	05:58:58.0	205	30123	3109	0.998	0.999			
Ngunza	$11^{\circ} 13^{\prime \prime}$	$0^{013} 3^{\circ} 50^{\prime} \mathrm{E}$		04:58:10.7		33	-					07:00:31.7	116		533	05:55:53.0	205	30018	18110	0.998	0.999			
Quinjenje Quipeio	${ }^{122^{\circ} 49}{ }_{12}{ }^{\text {c/ }}$	${ }^{0144^{\circ} 55^{\prime} \mathrm{E}}$		04:59:31.6			05:57:09.8			05:57:	52	07:03:21.5 $0703: 19.2$				05:57:52.9				1.005	0.993 1.000	0.635	$00 \mathrm{m49}$	
Samacimbo	$13^{\circ} 33 \cdot 5$	$016^{\circ} 59$ '	-	04:59:56.1	294		05:58:50.0		234	05:59:41.2 273	9	07:06:	16	206		05:59:15.5		12123	23109	1.005	1.000	0.618	00 ms 1 s	
Sambo	$12^{\circ} 57 \cdot \mathrm{~s}$	$016^{\circ}{ }^{\circ}{ }^{\text {' }} \mathrm{E}$		04:59:26.8	294		05:57:52.2		223	05:58:44.7 283	19	07:04:28.	116	206		05:58:18.4	25	12121	1.109	1.006	1.000	0.795	00 m 53 s	
Sandumba	$13^{\circ} 45$'s	$017^{\circ} 29^{\text {' }}$ E		05:00:04.9	294	3510	05:59:10.8	18	214	06:00:07.0 293	29	07:06:44.3	116	206		05:59:38.9	25	12123	3109	1.007	1.000	0.961		
Saupite	$13^{\circ} 54$'s	$017^{\circ} 43^{\text {' }}$ E		05:00:12.8		3510	05:59		215	06:00:22.5 292	28	07:07:09.	116	206		05:59:54.1	25	12124	4108	1.007	1.000	0.941	$00 \mathrm{m57}$	
vi la Nove	$12^{\circ} 38^{\prime}$ s	$015^{\circ} 03^{\prime} \mathrm{E}$	-	04:59:07.8	294		05:57:39.4		159	05:58:12.3 347	82	07:04:01.3	117	206	637	05:57:55.8	205	30121	1109	1.002	1.000	0.213	$00 \mathrm{m33s}$	
Benin																								
${ }_{\text {Abomey }}$	${ }^{07} 7^{\circ 11} 11^{\prime N}$	${ }^{0011^{\circ} 59}$	-	-			=					06:36:30.3				05:52 Rise 05.48 Rise		- 0	0 0 0 0 112	${ }_{0}^{0.623}$	0.532 0.579			
Cotonou Parakou	$0^{06}{ }^{\circ} 2^{1} \mathrm{~N}$	${ }^{0022^{\circ} 26 .}$										06:37:20	138	${ }_{214}^{212}$	2	05:48 Ri $05: 53 \mathrm{Ri}$	-	- 0	0112	${ }_{0} .544$	0.441			
${ }_{\text {Parakou }}$	${ }_{06} 6^{\circ} 29$ N	$002{ }^{\circ} 37$ E	-	-			-			-		06:37:10.2	133	212		05:48 Ri		- 0	112	0.658	0.574			

	－	「Mg 0.00°	$\stackrel{\square}{7}$		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	～2ng 000°	000000
Ew 000	－	0000°	－	哥第哥	$\stackrel{\infty}{\stackrel{\infty}{\tilde{c}}}$	－ 0.0	000000
	$\stackrel{\text { a }}{ }$		$\stackrel{3}{7}$	可可咢	8		ज才
000	$\stackrel{\sim}{\sim}$	orrm	\pm	arg	\pm		
111	嵒		$\stackrel{\sim}{\sim}$		9	¢ ${ }_{\text {¢ }}^{\text {¢ }}$	manising
111	－		会	会苞吕	$\stackrel{\sim}{\sim}$	哭第答	
\％\％	\cdots	NOHO	9	$0 \times$－	$\stackrel{\infty}{\infty}$	\bigcirc	－¢00ヶ下
	$\stackrel{\text { ®̈ }}{0}$	¢9ㅜㅐㅇㅠ	$\stackrel{\%}{\circ}$	$\stackrel{\sim}{0} \sim$	$\stackrel{\text { ® }}{ }$	Fin	
M゙F	\％	¢\％\％¢\％	\％	\％\％쓔융	号	\％\％	¢\％\％
¢ัٌ	$\stackrel{\square}{\circ}$		$\stackrel{\square}{\circ}$	แั่อ้ี่	\％	合范合	
cm＊	\％	のロロット	N	べッ	$\stackrel{\text { in }}{\sim}$	¢¢¢	
สี゙き	\％		$\stackrel{\sim}{\sim}$	శ్入入ّ	－		ज
¢	$\stackrel{4}{7}$	\％9\％	$\stackrel{\square}{3}$	O¢\％	$\stackrel{\square}{7}$		
？	\because	muag	\checkmark	Orr	\bigcirc	∞ ¢．	u－mentw
ชigis	¢	लिल⿰习习	$\stackrel{\sim}{\sim}$	－¢ ¢	$\stackrel{\text { m }}{\text { ¢ }}$	ธing	
	\％		$\stackrel{\sim}{0}$		$\stackrel{\square}{8}$		\％
\％\％\％	$\ddot{\square}$	¢\％\％	\％	¢ٌ̈\％	$\stackrel{\square}{\circ}$	¢ٌ̈̈̈	

Menm	\％${ }_{\text {\％}}$
¢	占嵒
¢ M M	
¢\％\％ö̀	
¢	$\stackrel{\circ}{\circ}$
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	－¢ ¢
	$\stackrel{\circ}{\square}$
¢ \％	
909\％\％	
	－
	ォงन
¢mposmim	¢ัプ
「̌åo	\％\％\％eãa
	¢¢
\％	\％\％์¢\％
	8．

11
3
33
0
0
0
0
0
0
0
0
0
111110 $\underset{m}{\infty}$ $03^{\circ} 23^{\circ} \mathrm{S} \quad 029^{\circ} 22^{\prime} \mathrm{E}$
 BURKINA FASO Bobo Dioulasso
Koudougou
Ouagadougou BURUNDI CAMEROON

22 .7283 13：06．

$\overline{-}$
-
$04: 55: 40.3$

TABLE 13

荷	 $00^{\circ 00} 0^{\circ}$	ging y 000	かinn in 0000	$\begin{aligned} & \stackrel{\pi}{6} \\ & \dot{0} \end{aligned}$	mNन 00000	NNMNNT 0000000	$\begin{aligned} & \text { No } \\ & \stackrel{C}{\sim} \end{aligned}$	があNMME ～MModr 0000000	엉쿵 00°	$\dot{0}$
$\begin{aligned} & \dot{9} \\ & \stackrel{9}{3} \\ & \text { 雷 } \end{aligned}$	00000°		00°	$\begin{aligned} & \mathbb{N} \\ & \vdots \\ & 0 \end{aligned}$	象侖可品 0000	ふO～0000	$\begin{aligned} & \infty \\ & \stackrel{0}{\infty} \\ & \dot{0} \end{aligned}$	0000000		（1）
		जૈञ入入	त⿹弋工二⿰习习	$\stackrel{\mathrm{N}}{-}$			ず		¢0유유융	永示
	－mpminm	$\cdots \infty$	0000	－	00000	लmonjomm	\％			000
	NNONTNN		1111	1	11111	N M M M 	$\stackrel{\sim}{7}$			111
			1111	1	11111	लNतNNN	$\stackrel{\sim}{\sim}$		©	111
		$\xrightarrow{+N \mathrm{~N}}$	导曷曷异	$\stackrel{\text { 菏 }}{ }$			$\begin{aligned} & 0 \\ & \dot{Q} \end{aligned}$	－m m－fo $\dot{\circ}$－in		$\begin{gathered} 0 \\ 0 \\ 9 \end{gathered}$
				वे	से		$\stackrel{\sim}{\sim}$	Moninixy	NMO	
	の吹 0	¢ing	¢¢¢ ${ }^{\text {¢ }}$	$\stackrel{0}{0}$			$\stackrel{\sim}{\sim}$		7\％\％	$\xrightarrow[\sim]{\sim}$
	号号合合合号	会号号		$\ddot{\circ}$			$\ddot{\circ}$	\％\％8\％888	¢8\％	\％\％\％
	¢0．minn	$\stackrel{N}{N N}$	arioa	\cdots	6ロMNT		呙		T－m	No
		구우N웅	우NㅋNNㅜN	$\stackrel{\text { ¢ }}{\sim}$	우NㅇN우NㄱNㅇN	かMNペNㅓNM NNNNNNNN	$\stackrel{n}{\sim}$	mNNNNNA	ベ入入	
		유구국		$\stackrel{\text { İ }}{ }$	－		$\stackrel{\text { in }}{\text { a }}$		フึ9⿵入	
		「－7	－r¢os．	\bigcirc	Frour		\square		「「ペ	$\stackrel{\text { m }}{\substack{\text { ¢ }}}$
	¢ \sim_{0}^{0}	－i¢	Mng	\％	¢	¢ ¢ ¢	$\stackrel{9}{7}$	¢	ザべ0	${ }_{\sim}^{\text {－}}$
		亏゙ずひ		\％	¢ั¢		7	品	엒귝	¢
		\％̈̈̆	\％0̈\％	$\ddot{\circ}$	¢8080	\％88050\％	5		¢5\％	888

LOCAL CIRCUMSTANCES FOR AFRICA：ETHIOPIA－MALI
TOTAL SOLAR ECLIPSE OF 2002 DECEMBER 04

111 11！1 11
 $111+11$
－
1111 1
1
1 Ninninive o
$\frac{\text { First }}{\frac{\text { Contact }}{}}$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad1 ।
\qquad
\qquad

\qquad
\square － 111 \qquad
 $+$

$$
\underset{\sim}{\infty}
$$

N゙オ	$\stackrel{\infty}{\sim}$	ずずずずずずす	N＊＊	
लिल	in		穴だ	
जNतNNN	¢	NANNNN	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{N}$	
ounumum	5	m「ommom．	Nus．	
	잉			
	ल̈		¢\％\％	！1 1
	ٌ̈		䒓䒓号	
$\stackrel{\infty}{\sim}$				
 in in inioio	Q			333
	－			응웅
	$\stackrel{i}{N}$	F「otyo	in	응응
	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \text { N } \\ & \text { on } \end{aligned}$			
				$2 z z$ 006 0060
		的		
				－न

local Circumstances for africa: Mayotte - Somalia TOTAL SOLAR ECLIPSE OF 2002 DECEMBER 04																			
Location Name	Latitude	Longitude	Elev.	First Contact			Second contact	Third contact		Fourth contact		Maximum Eclidse				$\begin{aligned} & \text { Eclip. } \\ & \text { Mag. } \end{aligned}$	Eclip.Obs.	Umbral Depth	Umbral
				$\mathrm{m}_{\mathrm{m}}^{\mathrm{u} \cdot \mathrm{~T}} \mathrm{~s}$	。	${ }_{0}^{\mathrm{V}} \mathrm{S}_{0}^{\text {Alt }}$	$\mathrm{h} \underset{\mathrm{~m} \cdot \mathrm{~T}}{\mathrm{~s}} \mathrm{P}$	$\begin{aligned} & \mathrm{O} \cdot \mathrm{~T} . \\ & \mathrm{m} \end{aligned}$		$\underset{\mathrm{m}}{\mathrm{U} \cdot \mathrm{~T} .}$	P. V ${ }_{0}^{\text {Alt }}$	$0 . T \mathrm{~T}$	${ }^{\text {P }}$	V	${ }_{0}^{\text {Alt }}$ Azm				
Mayotte																			
Dzaoudzi	$12^{\circ} 47 \cdot \mathrm{~S}$	$045^{\circ} 17{ }^{\prime} \mathrm{E}$	-	05:15:04.1	269	935838		-		07:37:42.5	514821171	06:21:34.1	209	290	54110	0.514	0.409		
Mozambique																			
Beira	$19^{\circ} 49$! ${ }^{\text {S }}$	${ }^{0344^{\circ} 52^{\prime} \mathrm{E}}$	9	05:10:39.3	289	93030				07:38:33.2	12521564	06:19:32.5				0.875	0.846		
${ }^{\text {Chibuto }}$ Chidenguele	${ }^{244^{\circ} 444.5}$	${ }_{0}^{033^{\circ} 3^{\circ} 3^{\prime} \mathrm{E} \text { E }}$	-	05:16:52.1	296	6 643121	06:25:27.1 $125 \quad 227$	06:26:57.2 289	32	07:45:12.1	111721865	06:26:12.1	27	130	4797	1.009	1.000	0.865	01 m 30 s
Chongoene	$25^{\circ} 00 \cdot \mathrm{~s}$	$033^{\circ} 47 / \mathrm{E}$	-	05:17:23.4	296	664 43	$\begin{array}{llll}06: 26: 32.3 & 84 & 187 \\ 06: 26: 10.7 & 138 & 181\end{array}$	$06: 27: 49.6$ $06: 27: 36.2$ 076 $06: 276$	73	07:46:39.6	611721865 117 18 18	06:27:10	207	310	4896	1.005	1.000	0.454	${ }^{01 \mathrm{ml17}}$
Guiga	$24^{\circ} 29 \cdot 5$	${ }^{033^{\circ} 00}{ }^{\prime} \mathrm{E}$	-	05:16:14.5	296	$6 \quad 4230$	06:24:33.4 144 246	06:25:53.4 270	1.2	07:43:49.5	511721764	-66:25:13.3	27	130 129	47 469 97	${ }_{1}^{1.006}$	${ }_{1}^{1.000}$	0.645 0.545	${ }^{01 \mathrm{~m} 268}$
Inhanbane	${ }^{233^{\circ} 51}$'s	${ }^{033^{\circ} 2}{ }^{\circ} \mathrm{E}$ E	-	05:16:30.6	293	3833	-25:3.4 134	-2.5.514 2		07:47:06.0	120 21967	06:23:48.5	207	${ }_{3} 1.29$	4897	${ }_{0}^{1.959}$	${ }_{0}^{1.954}$		
$\underset{\text { Macalane }}{ }$	${ }^{235^{\circ} 37 \cdot 9}$		-	05:14:43.2 05:17:11.7	${ }_{297}^{296}$	6 7 41 43 43	06:22:47.9 71173	06:23:49.8 342	84	07:41:32.5	5 1128181663	06:23:18.8	207	308	4598	1.003	1.000	0.285	01m02s
Manjacaze	$24^{\circ} 44 \cdot 5$	${ }_{033^{\circ} 53^{\prime} \text { ' } \mathrm{E}}$	-	05:17:01.3	296	64231	06:25:50.9 94197	06:27:15.2 320	63	-7:45:03.3	(06:26:20.0	207			${ }^{0.995}$	0.997		
Mapulanguene	$24^{\circ} 29$'s	$0^{032^{\circ} 06^{\prime} \mathrm{E}}$	-	05:15:52.6	297	7430	06.25:50.9 94 197	06:27:15.2 320		07:42:16.6	5116 216 63	-6:26:33.0	27	129	45 48	${ }_{0}^{1.991}$	$\begin{aligned} & 1.000 \\ & 0.992 \end{aligned}$	0.609	01 m 24 s
Maputo	$25^{\circ} 58$'s	${ }^{032^{\circ} 35^{\prime} \text { ' } \mathrm{E}}$	59	05:18:25.2	298	84631				07:45:30.7	711421864	06:27:16.2		131					
Massingir	${ }^{23} 3^{\circ} 51$'s	${ }^{032^{\text {a }} \text { a }}{ }^{\text {P }}$ E		05:14:53.6	296	64229	06:22:38.5 149251	06:23:52.5 264	6	07:41:10.4	411721662	06:23:15.4	27	129	4598	1.005	1.000	0.463	01m14s
Natuba	$24^{\circ}{ }^{27}$'s $14^{3} 34$	${ }^{0320^{\circ} 55^{\circ} 5^{\prime} \mathrm{E}} \mathrm{E}$	-	05:16:09.3	296	6 6 1230 9 94	06:24:26.6 148250	06:25:43.5 266	8	07:43:37.5	511721764	06:25:05.0	27		4697	1.005	1.000	0.486	01 ml 7 s
Nampula	$15^{\circ} 07$'s	${ }^{039}{ }^{\circ} 15$ ' E	-	05:09:03.5	279	1332	-			07:35:00.0	137 21466	06:17:57.8	${ }_{208}^{208}$			${ }_{0}^{0.644}$	0.560 0.607		
Pafúri.	${ }^{22^{\circ} 27}$	${ }^{0311^{\circ} 211^{\circ} \mathrm{E}}$	-	05:12:32.8	295	54028		-		07:37:38.1	111921461	06:20:19.6	207		43100	0.995	0.996		
Porto Amélia	${ }^{12}$	${ }^{040} 0^{\circ} 30 \mathrm{E}$	-	05:08:47.0	274	$4{ }^{4} 583$				07:31:39.5	514221465	06:15:16.7	208	293	48109	0.607	0.516		
Quelimane	$17{ }^{1 / 53}$'s	${ }^{036351 \mathrm{E}}$	-	05:09:42.1	225	$5{ }^{5} 5231$				07:37:48.1	113221565	06:18:36.5	208	300		0.794	0.744		
Tete Vila gomes da C ..		${ }^{0}$	-	05:05:48.1 05:16:16.0	${ }_{296}^{285}$		06:25:19.2 491.52	06:25:53.3	106	07:29:27.8 $07: 44: 38.7$	8112921360 7118 217 64	$06: 12: 41.4$ $06: 25: 35.7$	${ }_{207}^{208}$	300 309	42106 47 97	0.810 1.001	0.764 1.000		
vila Pery	$19^{\circ} 08 \cdot \mathrm{~s}$	$033^{\circ} 29$ E	-	05:09:02.8	289	93028													
Vila trigo de M..	$24^{\circ} 36$'s	${ }^{033^{\circ} 00}{ }^{\text {c }}$	-	05:16:25.3	296	64331	06:24:53.6 162265	06:25:56.5 251		9:35:03.0	12521462	. 0	207	303	44103	0.882	0.855		
Xai-xai	$25^{\circ} 02$'s	$033^{\circ} 34^{\prime} \mathrm{E}$	-	05:17:20.6	297	74331	06:26:14.2 167271	06:27:12.2 246	350	07:45:43.8	8116 21865	06:26:43.1	27	129	${ }_{47}^{46} 97$	1.003	1.000	0.286	$01 \mathrm{m03s}$
Namibia																			
Chefuzwe	$17^{\circ} 3815$	$024^{\circ} 30 \cdot \mathrm{E}$	-	05:04:28.0	294	3618	-	-		97:19:54.6	511820949	06:07:51.7	206		33105	0.993			
Linyanti	$18^{1804}{ }^{\text {' }}$ S	$0^{0249^{\circ} 01 \mathrm{E}}$		05:04:57.8	295	${ }^{38} 18$	06:07:38.0132 230	06:08:45.2 281	18	07:19:59.3	311720949	06:08:11.5	26		33105		1.000	0.731	\%
$\underset{\text { Katima Mulile }}{\text { Sikosi }}$	${ }^{17} 7^{\circ} 28.5$	${ }^{0242^{\circ} 10} 1 \mathrm{E}^{\prime}$	-	05:04:13.6	294	4318	-			07:19:14.3	311820949	06:07:26.0	206	303	32106	0.995	0.996		s
$\stackrel{\text { Sikosi }}{\text { Singalamwe }}$	17049's		-	05:04:49.5 05:04:26.1	${ }_{295}^{296}$	6-3818	06:06:46.2 139237	06:07:49.2 273		07:19:00.0 $07: 18: 37.4$	(116 20948	06:07:40.6 $06: 07: 17.6$	26	124	32105 32106	${ }^{0.997}$	0.998		
wirdhoek	$22^{\circ} 34$'s	$0^{017^{\circ} 06^{\prime} \mathrm{E}}$	1728	05:11:44.4	306	65515		06:07:49.2 273		07:17:46.5	510420543	$06: 11: 12: 1$	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & 124 \\ & 130 \end{aligned}$	$\begin{array}{ll} 32 & 106 \\ 28 & 104 \end{array}$	$\begin{aligned} & 1.005 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 0.751 \end{aligned}$	0.608	01m03s
Niger																			
Maradi	${ }^{13^{\circ} 29}{ }^{\prime} \mathrm{N}$			-			-	-		06:26:52.0	15022110	05:42 Rise	-	-		0.413	0.299		
${ }^{\text {Niamey }}$	${ }^{133^{\circ} 31}$	${ }^{0029}{ }^{\circ}{ }^{\circ} 7 \mathrm{E}$ E	${ }^{216}$	-						06:28:53.3	31452196			-		0.374	0.259		
zinder	$13^{\circ} 48^{\prime} \mathrm{N}$	008959 'E		-			-	-		06:25:32.8	15322311	05:39:29.9	203	278	1113	0.382	0.267		
Nigeria																			
Enugu	$0^{062} 7^{\prime} \mathrm{N}$	${ }^{0077277 \mathrm{E}}$	233	-			-	-		06:36:35.7	713821415	05:42:15.5	203	285			0.520		
${ }_{\text {I }}^{\text {I madan }}$	$07^{017} 1{ }^{\text {N }}$	${ }^{003} 3^{\circ} 3{ }^{\prime} \mathrm{E}$	-	-			-			06:36:07.4	13521311	05:46 Rise			0112	0.631	0.543		
${ }_{\text {Kactura }}^{\text {Iwo }}$	073 ${ }^{0738}$		-	-			-	-		06:35:35.7	713721411		203		0112	0.617	0.526		
Kano	$12^{\circ} 00^{\prime} \mathrm{N}$	$008^{\circ} 30 \cdot \mathrm{E}$	--							06:28:36.7	${ }_{149} 142012$	55:40:39.6 05:40:01.7	203	280		0.495 0.440	${ }^{0} .386$		
Lagos	$06^{\circ} 27^{\prime} \mathrm{N}$	$003^{\circ} 24^{\prime \prime} \mathrm{E}$	3	-			-	-		06:37:05.5	5134212 12	05:45 Rise	203		${ }_{0}^{1} 112$	0.659	${ }_{0}^{0.576}$		
Ogbomosho			-	-						06:34.59.1	13821411		-						
onitsha	$06^{\circ} 09 \cdot \mathrm{~N}$	$006^{\circ} 47$ 'E	-	-			-			06:37:02.7		05:42:31.2					0.507		
Oshogbo	$0^{00^{\circ} 47}$ 'N	$0^{0049} 34^{\text {' }}$ E								06:35:20.8	8 13721412					0.629	+.540		
zaria	$11^{\circ} 07$ '	$007^{\circ} 44^{\prime}$ E	-	-			-	-		06:30:10.9	914621912	$05: 40: 25.7$	203	281	1113	0.475	0.365		
Rwanda																			
Kigali	01057's	030004'E	-	04:56:04.0	267	735216	-	-		06:55:12.8	148 21843	05:52:05.0	207	287	29114	0.510	0.404		
Somalia																			
${ }_{\text {Kismaayo }}$	$0^{00} 22^{\prime} \mathrm{S}$	${ }^{042^{\circ} 32^{\prime} \mathrm{E}}$		05:13:16.0	249	32531	-			06:53:57.6									
Marka	$0^{011^{\circ} 43^{\prime} \mathrm{N}}$	${ }^{044^{\circ} 53^{\prime} \mathrm{E}}$		05:22:36.0	240	[171 34				06:43:58.5	517823451	06:01:38.6	209	274	421.23	0.145	0.065		
Mugdi sho	$02^{\circ} 04$ ' N	$045^{\circ} 22^{\prime} \mathrm{E}$	12	05:24:57.8		830835				06:41:43.7	18023651	06:01:53.6	209	273	43123	0.127	0.054		

Table 15 St

LOCAL CIRCUMSTANCES FOR AFRICA：SOUTH AFRICA LOCAL CIRCUMSTANCES
TOTAL SOLAR ECLIPSE OF 2002 DECEMBER 04

				告
			$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	∞
00°	0	－0	－0	

 영용ㅇㅇㅇㅇㅇㅁ

 －ウウoonनorन oननoन

 ©

ちたぢ

TABLE 17

Local CIRCUMSTANCES FOR ANTARCTICA，indonesia \＆INDIAN OCEAN
TOTAL SOLAR ECLIPSE OF 2002 DECEMBER 04

$$
\mathrm{t} \quad \mathrm{~h}
$$

TABLE 17

かmonm゙rnory
¢n ¢ M－

	N
	\cdots－n
	\％ogoso

mix mix m	囚
Bon ing in io	\cdots
¢ ¢ ¢ ¢ ¢	$\stackrel{O}{\sim}$
ヘNON	\sim
8或罗尔	\cdots
M ¢ ¢ \％y	$\stackrel{\infty}{m}$
	$\stackrel{\square}{8}$
1 m 11	$\stackrel{\circ}{\%}$
	（
－ion	∞
${ }^{\circ}{ }^{\circ}{ }^{\circ}{ }^{\circ}$	－
	8
uncos	\bigcirc
	ก๊
Noibo	$\stackrel{\circ}{\sim}$

111111111111111

			（1）
		Hop	$\underset{\substack{\infty \\ \hline \\ \hline}}{ }$
			䁍
n	asosencosesos	$\cos \cos \cos$	$\stackrel{\sim}{0}$
Ngynomonyo		90\％	0
Bo	O00	ロ．8．5	$\stackrel{\circ}{\circ}$

000000000 o000000保

Table 19

Solar Eclipses of Saros Series 142

Note: Mag./Width column gives either the eclipse magnitude (for partial eclipses) or the umbral path width in kilometers (for total and annular eclipses).

Table 20
African and Australian Weather Statistics for the 2002 Total Solar Eclipse

Location	Lat	Long	Sunshine (hours)	$\begin{aligned} & \text { Percent } \\ & \text { of } \\ & \text { possible } \\ & \text { sunshine } \end{aligned}$	Mean Cloud Cover	Pcpn Amount (mm)	Mean Days with rain	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\mathrm{T} \max ^{2}}$	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\mathrm{Tmin}}$	Days with TRW	Clear (\%)	Scattered (\%)	Broken (\%)	Overcast (\%)	Clear and Scattered (\%)	Days with Sky $<3 / 10$ \& good visibility at eclipse time
Angola																
Lubango	-14.77	13.57	6.5	50	0.63	153.0	14.0	25.0	13.0	8						3.9
Lobito	-12.37	13.53				61.0	5.3	31.9	25.0	1						7.8
Cuima	-13.25	15.65			0.63											
Chitembo	-13.52	16.77			0.75											
Huambo	-12.80	15.75	4.5	35	0.75	233.0	17.0	25.6	14.4	11						1.1
Namibla																
Rundu	-17.95	19.72				84.7	5.0	34.4	24.4	5	5.9	34.4	44.6	15.2	40.3	
Gobabeb	-23.55	15.03	10.9	80												
Grootfontein	-19.57	18.12	10.7	76	0.30	81.3	7.0	34.4	22.5	8	7.2	41.8	43.6	7.4	49.0	
Tsumeb	-19.23	17.72	9.5	72	0.40	97.0	11.0	32.0	18.0							
Botswana																
Francistown	-21.17	27.52				89.7	6.0	33.8	22.5	6	12.9	34.8	28.7	23.5	47.7	
Maun	-19.98	23.42	6.9	52	0.63	79.9	6.1	32.8	18.9							4.9
Kasane	-17.82	25.15				146.3										
Shakawe	-18.38	21.85				98.5										
Zambia																
Livingstone	-17.82	29.82	6.7	37	0.75	169.1	12.0	30.4	18.9	21						0.8
Mongu	-15.25	23.17	6.3	48	0.78	192.8	17.0	29.3	18.6	23						0.7
Lusaka	-15.42	28.32	5.6	43	0.75	186.0	16.0	27.0	17.0	21	1	15.1	61	22.7	16.1	0.6
Zimbabwe																
Bulawayo	-20.15 -2222	28.62 30.00	6.9 8.0	52 59	0.63 0.58	128.0 58.7	10.0 5.0	27.0 33.0	16.0	$\begin{gathered} 12 \\ 7 \end{gathered}$	1.9	30	58.6	8.5	31.9	3.6
Beitbridge	-22.22	30.00	8.0	59	0.58	58.7	5.0									
Hwange	-18.37	26.48			0.69	129.8										
Victoria Falls Airport	-18.10	25.85	6.9	52		168.5										
Plumtree	-20.48	27.82				119.8										
Gweru	-19.45	29.85				157.5	16.0	29.4	18.1	10	1.2	41.7	44.8	12.4	42.9	
South Africa																
Johannesburg	-26.13	28.23	8.5	62		105.0	14.0	25.2	13.9	12	7.5	40.3	41.5	10.4	47.8	10.5
Durban	-29.97	30.95	6.1	43	0.60	102.0	17.0	26.9	20.0	4	5.1	28.6	41.3	24.8	33.7	7.0
Skukuza	-24.98	31.60	6.7	49	0.64	92.0		31.9	19.7	3.3						
Ellisras	-24.68	27.68	7.6	56	0.56	80.0		32.2	19.5							
Pietersburg	-24.87	29.45	7.9	58	0.64	81.0	8.0	27.4	16.4	7.8	5.1	27.4	46.2	21.3	32.5	10.3
Tzaneen	-24.83	30.15	6.4	47	0.69	147.0		28.7	18.4	2.2						
Phalaborwa	-24.93	31.15			0.68	99.0		31.1	19.9	1.2						
Marnitz	-24.15	28.22	8.2	60	0.51	56.0		30.8	18.7	7.4						
Mara	-24.15	29.57	7.4	54	0.66	78.0		29.6	17.3	5.3						
Levubu	-24.08	30.28	6.7	49	0.70	136.0		28.7	18.5	3.5						
Messina	-24.27	29.90	8.5	62	0.58	57.0		32.9	20.4	3.1						
Mopani, KNP	-22.60	29.85			0.61	84.7	7.4				19.6	20.1	26.8	33.5	39.7	
Shingwedzi, KNP	-23.12	31.43			0.51	88.3	6.5				18.5	34.5	28.2	18.8	53.0	
Punda Maria, KNP	-22.68	31.02			0.66	92.5	7.6				28.0	12.2	17.3	42.4	40.2	
Pretoria	-25.73	28.18	9.0	66	0.50	111.8	8.0	30.6	20.6	8	9.5	37.9	35.8	16.8	47.4	10.5
Mozambique 25.73 28.18 9.0 0.50																
Beira	-19.83	34.85	7.6	58	0.75	234.0	10.0	31.0	23.0	5	1.4	25.2	57.3	16	26.6	7.1
Pafuri	-22.43	31.33	7.0	52	0.63	380.0	7.0	35.0	21.0							
Panda	-24.05	34.72			0.63	108.0	6.0	33.0	19.0							
Inhambane	-23.87	35.38				107.7	8.5	30.6	22.2	6.8						6.6
MapursOthers																
Alfred Faure/Crazet	-46.43	51.87									0.2	15.9	51.1	27	16.1	
Martin de Vivies	-37.80	77.80	\because								0	24.1	52.5	22.9	24.1	
Port aux Francais	-49.35	70.25									0	19	66.2	14.6	19.0	
Australia																
Biloela	-24.38	150.52	8.9	65		98.6	8.4	32.9	18.4							
Broken Hill	-31.98	141.47				21.9	3.4	31.3	17.0	2	34.3	29.1	30.1	6.5	63.4	
Bundaberg Aero	-24.91	152.32				127.0	10.1	29.1	20.3	3	11.8	37.9	29.9	20.5	49.7	
Bundaberg PO	-24.87	152.35				131.0	9.6	29.8	20.6	2	19.8	33.3	26.2	20.7	53.1	
Ceduna AMO	-32.13	133.71	9.5	67	0.45	20.5	5.2	27.2	13.9	2	25.1	33.1	29.7	12.1	58.2	13.3
Charleville Aero	-26.41	146.26				53.0	7.0	34.7	20.2	5	16.4	39.6	30.1	13.8	56.0	12.3
Kyancutta	-33.13	135.56	9.1	64		20.5	5.0	30.8	12.8							
Leigh Creek Aero	-30.47	138.41			0.36	21.5	3.0	33.3	18.7	1	37.7	28.9	23.6	9.8	66.6	18.2
Minnipa	-32.84	135.15	9.2	64		19.7	3.9	29.3	13.9							
Marree	-28.65	138.06			0.33	16.5	2.4	36.0	19.4	1						
Oodnadatta	-27.58	135.45	11.0	79	0.30	14.7	3.0	36.3	21.1	1.5	31.4	39.2	26.2	3.2	70.6	16.8
Theodore	-24.84	149.80	7.9	58		104.7	7.5	33.1	19.8							
Todd River	-34.49	135.85	8.9	62		24.7	6.3	25	12.4							
Woomera	-31.15	136.82	10.5	74	0.39	13.7	3.3	32.2	17.5	2	32.7	29.1	29.8	8.4	61.8	16

Key to Table 20 appears on following page...

Key to Table 20

African and Australian Weather Statistics

for the 2002 Total Solar Eclipse

Latitude

Longitude

Sunshine (hours)

Mean daily sunshine for December.

Percent of Possible Sunshine

The ratio of mean daily sunshine hours to the length of the day from sunrise to sunset in mid December. This statistic is one of the most suitable for assessing the chances of seeing the eclipse.

Mean Cloud Cover

Mean cloudiness as measured from ground-based stations. For Australian stations this is the value at 6 PM local time. For other sites, it is the mean cloudiness through the day.

Precipitation Amount (mm)

Average precipitation in mm for December.
Mean days with rain
Average number of days in December with 0.2 mm of rain or greater.

Tmax

Mean daily high temperature for December

Tmin

Mean daily minimum temperature for December

Days with TRW

Average number of days in December with thunderstorms.

Clear, scattered, broken, overcast
Percent frequency of days in December with each category of cloud cover at or close to eclipse time (within 2 hours). Scattered cloud refers to 1-4 tenths and broken to 5-9 tenths.

Clear and scattered cloud

The sum of the percent number of days with clear and scattered cloud. Observers may observe thin clouds as either clear or scattered. Combining the categories reduces individual differences and affords a better comparison between stations.

Days with Sky <3/10 and good visibility at eclipse time
The number of days in December at or close to eclipse time with less than 3-10 ${ }^{\text {th }} \mathrm{s}$ cloud cover and visibilities better than 3 miles. This statistic is also a good measure of the relative cloudiness between stations.

TAbLE 21

35 MM FIELD OF VIEW AND SIZE OF SUN'S IMAGE FOR VARIOUS PHOTOGRAPHIC FOCAL LENGTHS

Focal Length		Field of View	
		Size of Sun	
28 mm		$49^{\circ} \times 74^{\circ}$	0.2 mm
35 mm	$39^{\circ} \times 59^{\circ}$	0.3 mm	
50 mm	$27^{\circ} \times 40^{\circ}$	0.5 mm	
105 mm	$13^{\circ} \times 19^{\circ}$	1.0 mm	
200 mm	$7^{\circ} \times 10^{\circ}$	1.8 mm	
400 mm	$3.4^{\circ} \times 5.1^{\circ}$	3.7 mm	
500 mm	$2.7^{\circ} \times 4.1^{\circ}$	4.6 mm	
1000 mm	$1.4^{\circ} \times 2.1^{\circ}$	9.2 mm	
1500 mm	$0.9^{\circ} \times 1.4^{\circ}$	13.8 mm	
2000 mm	$0.7^{\circ} \times 1.0^{\circ}$	18.4 mm	
2500 mm	$0.6^{\circ} \times 0.8^{\circ}$	22.9 mm	
Image Size of Sun $(\mathrm{mm})=$ Focal Length $(\mathrm{mm}) / 109$			

Table 22

SOLAR ECLIPSE EXPOSURE GUIDE

$1 S O$
25
50
100
200
400
800
1600

1.4	2	2.8	4
2	2.8	4	5.6
2.8	4	5.6	8
4	5.6	8	11
5.6	8	11	16
8	11	16	22
11	16	22	32

f/Number

-8	11	16	22
11	16	22	32
16	22	32	44
22	32	44	64
32	44	64	88
44	64	88	128
64	88	128	176

\qquad Q \qquad Shutter Speed \qquad
Solar Eclipse

Solar Eclipse					$1 / 4000$	$1 / 2000$	$1 / 1000$	$1 / 500$	$1 / 250$	$1 / 125$
Partial $^{1}-4.0 \mathrm{ND}$	$\mathbf{1 1}$	-	-	-	$1 / 1 / 25$					
Partial $^{1}-5.0 \mathrm{ND}$	$\mathbf{8}$	$1 / 4000$	$1 / 2000$	$1 / 1000$	$1 / 500$	$1 / 250$	$1 / 125$	$1 / 60$	$1 / 30$	$1 / 15$
Baily's Beads 2	$\mathbf{1 1}$	-	-	-	$1 / 4000$	$1 / 2000$	$1 / 1000$	$1 / 500$	$1 / 250$	$1 / 125$
Chromosphere	$\mathbf{1 0}$	-	-	$1 / 4000$	$1 / 2000$	$1 / 1000$	$1 / 500$	$1 / 250$	$1 / 125$	$1 / 60$
Prominences	$\mathbf{9}$	-	$1 / 4000$	$1 / 2000$	$1 / 1000$	$1 / 500$	$1 / 250$	$1 / 125$	$1 / 60$	$1 / 30$
Corona-0.1 Rs	$\mathbf{7}$	$1 / 2000$	$1 / 1000$	$1 / 500$	$1 / 250$	$1 / 125$	$1 / 60$	$1 / 30$	$1 / 15$	$1 / 8$
Corona-0.2 Rs	$\mathbf{5}$	$1 / 500$	$1 / 250$	$1 / 125$	$1 / 60$	$1 / 30$	$1 / 15$	$1 / 8$	$1 / 4$	$1 / 2$
Corona-0.5 Rs	$\mathbf{3}$	$1 / 125$	$1 / 60$	$1 / 30$	$1 / 15$	$1 / 8$	$1 / 4$	$1 / 2$	1 sec	2 sec
Corona-1.0 Rs	$\mathbf{1}$	$1 / 30$	$1 / 15$	$1 / 8$	$1 / 4$	$1 / 2$	1 sec	2 sec	4 sec	8 sec
Corona-2.0 Rs	$\mathbf{0}$	$1 / 15$	$1 / 8$	$1 / 4$	$1 / 2$	$1 / \mathrm{sec}$	2 sec	4 sec	8 sec	15 sec
Corona-4.0 Rs	$\mathbf{- 1}$	$1 / 8$	$1 / 4$	$1 / 2$	1 sec	2 sec	4 sec	8 sec	15 sec	30 sec
Corona -8.0 Rs	$\mathbf{- 3}$	$1 / 2$	1 sec	2 sec	4 sec	8 sec	15 sec	30 sec	1 min	2 min

Exposure Formula: $\quad t=f^{2} /(\mathrm{I} \times 2 \mathrm{Q})$
where: $\mathrm{t}=$ exposure time (sec)
$f=f /$ number or focal ratio
$\mathrm{I}=\mathrm{ISO}$ film speed
$Q=$ brightness exponent
Abbreviations: \quad ND $=$ Neutral Density Filter.
Rs = Solar Radii.
Notes: ${ }^{1}$ Exposures for partial phases are also good for annular eclipses.
${ }^{2}$ Baily's Beads are extremely bright and change rapidly.
${ }^{3}$ This exposure also recommended for the 'Diamond Ring' effect.

Request Form for NASA Eclipse Bulletins

NASA eclipse bulletins contain detailed predictions, maps and meteorology for future central solar eclipses of interest. Published as part of NASA's Technical Publication (TP) series, the bulletins are prepared in cooperation with the Working Group on Eclipses of the International Astronomical Union and are provided as a public service to both the professional and lay communities, including educators and the media In order to allow a reasonable lead time for planning purposes, subsequent bulletins will be published 18 to 24 months before each event. Comments, suggestions and corrections are solicited to improve the content and layout in subsequent editions of this publication series.

Single copies of the bulletins are available at no cost and may be ordered by sending a 9×12 inch SASE (self addressed stamped envelope) with sufficient postage for each bulletin ($\mathbf{1 2} \mathbf{~ o z}$. or $\mathbf{3 4 0} \mathbf{g}$). Use stamps only since cash or checks cannot be accepted. Requests within the U. S. may use the Postal Service's Priority Mail for $\$ 3.95$. Please print either the eclipse date (year \& month) or NASA publication number in the lower left corner of the SASE and return with this completed form to either of the authors. Requests from outside the U. S. and Canada may use ten international postal coupons to cover postage. Exceptions to the postage requirements will be made for international requests where political or economic restraints prevent the transfer of funds to other countries. Professional researchers and scientists are exempt from the SASE requirements provided the request comes on their official or institutional stationary.

Permission is freely granted to reproduce any portion of this NASA Reference Publication All uses and/or publication of this material should be accompanied by an appropriate acknowledgment of the source.

Request for: \quad NASA TP-2001-209990 - Total Solar Eclipse of 2002 December 04

Name of Organization:
(in English, if necessary):
Address:

City/State/ZIP:
Country: \qquad
E-mail:
Type of organization: (check all that apply)
_U
-P
\square

University/College \qquad Observatory
Library Planetarium Publication Media Professional - Amateur __ Individual

Size of Organization: \qquad (Number of Members)

Activities: \qquad
$* ~$

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
1. AGENCY USE ONLY (Leave blank)	k)2. REPORT DATE \quad September 2001	3. REPORT TYPE AND DATES COVERED Technical Paper	
4. TITLE AND SUBTITLE Total Solar Eclipse of 2002 December 04			$\begin{aligned} & \text { 5. FUNDING NUMBERS } \\ & 2001-03710-0 \end{aligned}$
6. AUTHOR(S) Fred Espenak and Jay Anderson			
7. PERFORMIING ORGANIZATION NAME(S) AND ADDRESS (ES) Goddard Space Flight Center Greenbelt, Maryland 20771			8. PEFORMING ORGANIZATION REPORT NUMBER 693
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES) National Aeronautics and Space Administration Washington, DC 20546-0001			10. SPONSORING / MONITORING AGENCY REPORT NUMBER TP-2001-209990
11. SUPPLEMENTARY NOTES J. Anderson: Environment Canada, Winnipeg, Manitoba			
12a. DISTRIBUTION / AVAILABILITY STATEMENT Unclassified-Unlimited Subject Category: 89 Report available from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.			12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse view ing and eclipse photography is included.			
14. SUBJECT TERMS Solar eclipse, celestial mechanics, ephemeris, Sun, Moon.			$\begin{gathered} \text { 15. NUMBER OF PAGES } \\ 77 \\ \hline \end{gathered}$
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION of ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL
NSN 7540-01-280-5500			tandard Form 298 (Rev. 2-89) rescribed by ANSI Std. Z39. I8 98-102

[^0]: ${ }^{1}$ The instant of greatest eclipse occurs when the distance between the Moon's shadow axis and Earth's geocenter reaches a minimum. Although greatest eclipse differs slightly from the instants of greatest magnitude and greatest duration (for total eclipses), the differences are usually quite small.
 ${ }^{2}$ Minimum distance of the Moon's shadow axis from Earth's center in units of equatorial Earth radii.

[^1]: ${ }^{3}$ Eclipse magnitude is defined as the fraction of the Sun's diameter occulted by the Moon. It is strictly a ratio of diameters and should not be confused with eclipse obscuration, which is a measure of the Sun's surface area occulted by the Moon. Eclipse magnitude may be expressed as either a percentage or a decimal fraction (e.g.: 50% or 0.50).

[^2]: ${ }^{4}$ The primary effect of refraction is to shift the path opposite to that of the Sun's local azimuth. This amounts to approximately 0.5° at the extreme ends (i.e. - sunrise and sunset) of the umbral path.
 ${ }^{5} \Delta \mathrm{~T}$ is the difference between Terrestrial Dynamical Time and Universal Time.

[^3]: ${ }^{6}$ Eclipse obscuration is defined as the fraction of the Sun's surface area occulted by the Moon.
 ${ }^{7} \mathrm{P}$ is defined as the contact angle measured counter-clockwise from the north point of the Sun's disk. V is defined as the contact angle measured counter-clockwise from the zenith point of the Sun's disk.

[^4]: ${ }^{8}$ For partial eclipses, maximum eclipse is the instant when the greatest fraction of the Sun's diameter is occulted. For total eclipses, maximum eclipse is the instant of mid-totality.

[^5]: ${ }^{9}$ The elevation factor is the product, $\tan (90-\mathrm{A}) * \sin (\mathrm{D})$, where A is the altitude of the Sun and D is the difference between the azimuth of the Sun and the azimuth of the limit line, with the sign selected to be positive if the path should be shifted north with positive elevations above sea level.
 ${ }^{10}$ Minimum distance of the Moon's shadow axis from Earth's center in units of equatorial Earth radii. Gamma defines the instant of greatest eclipse and takes on negative values south of the Earth's center

[^6]: $035^{\circ} 00.0^{\prime} \mathrm{E} \quad 25^{\circ} 14.87^{\prime} \mathrm{S} \quad 26^{\circ} 09.96^{\prime} \mathrm{S} \quad 25^{\circ} 42.33^{\prime} \mathrm{S}$
 $036^{\circ} 00.0^{\prime} \mathrm{E} \quad 25^{\circ} 57.09^{\prime} \mathrm{S} \quad 26^{\circ} 52.73^{\prime} \mathrm{S} \quad 26^{\circ} 24.83^{\prime} \mathrm{S}$
 $037^{\circ} 00.0^{\prime} \mathrm{E} \quad 26^{\circ} 39.05^{\prime} \mathrm{S} \quad 27^{\circ} 35.17^{\prime} \mathrm{S} \quad 27^{\circ} 07.04$ ' S
 $038^{\circ} 00.0^{\prime} \mathrm{E} \quad 27^{\circ} 20.66^{\prime} \mathrm{S} \quad 28^{\circ} 17.19^{\prime} \mathrm{S} \quad 27^{\circ} 48.86^{\prime} \mathrm{S}$
 $039^{\circ} 00.0^{\prime} \mathrm{E} \quad 28^{\circ} 01.86^{\prime} \mathrm{S} \quad 28^{\circ} 58.71^{\prime} \mathrm{S} \quad 28^{\circ} 30.23^{\prime} \mathrm{S}$

 | $06: 29: 23$ | 48.8 | 95 | 80 | 01 m 34.1 s |
 | :--- | :--- | :--- | :--- | :--- |
 | $06: 31: 44$ | 50.2 | 94 | 81 | 01 m 36.3 s |
 | $06: 34: 07$ | 51.7 | 92 | 82 | 01 m 38.4 s |
 | $06: 36: 33$ | 53.2 | 91 | 82 | 01 m 40.4 s |
 | $06: 39: 01$ | 54.6 | 89 | 83 | 01 m 42.4 s |

