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1 INTRODUCTION

This User's Guide has been written to aid users in the implementation of CGNS (CFD

General Notation System). It is intended as a tutorial: light in content, but heavy in

examples, advice, and guidelines. Readers interested in additional details are refbrred to

other documents, listed in the refbrences, which are available from the CGNS website

www.cgns.org.

1.1 What is CGNS?

CGNS (CFD General Notation System) originated in 1994 as a joint effort between Boe-

ing and NASA, and has since grown to include many other contributing organizations

worldwide. It is an effort to standardize CFD input and output, including grid (both

structured and unstructured), flow solution, connectivity, BCs, and auxiliary informa-

tion. CGNS is also easily extensible, and allows fbr file-stamping and user-inserted-

commenting. It employs ADF (Advanced Data Format), a system which creates binary

files that are portable across computer platforms. CGNS also includes a second layer of

software known as the mid-level library, or API (Application Programming Interface),

which eases the implementation of CGNS into existing CFD codes.

In 1999, control of CGNS was completely transfbrred to a public fbrum known as

the CGNS Steering Committee. This Steering Committee is made up of international

representatives from government and private industry. All CGNS software is completely

free and open to anyone (open source). The CGNS standard is also the object of an ISO

standardization effort fbr fluid dynamics data [6], fbr release some time in the early to
mid-2000's.

1.2 Why CGNS?

CGNS will eventually eliminate most of the translator programs now necessary when

working between machines and between CFD codes. Also, it eventually may allow tbr

the results from one code to be easily restarted using another code. It will hopefully

therefore save a lot of time and money. In particular, it is hoped that future grid-

generation software will generate grids with all connectivity and BC information included

as part of a CGNS database, saving time and avoiding potential costly errors in setting

up this infbrmation after-the-fact.

1.3 What is a CGNS File?

A CGNS file is an entity that is organized (inside the file itself) into a set of "nodes"

in a tree-like structure, in much the same way as directories are organized in the UNIX



environment. :_ The top-most node is referred to as the "root node." Each node below the

root node is defined by both a name and a label, and may or may not contain information

or data. Each node can also be a "parent" to one or more "child" nodes. A node can

also have as a child node a link to a node elsewhere in the file or to a node in a separate

CONS file altogether. Links are transparent to the user: the user "sees" linked children

nodes as if they truly exist in the current tree. An example of a CONS tree-like structure

is shown in Fig. 1.

Name
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J
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n_ Name
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• Data
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;ae'

Figure 1: Example CONS tree-like structure.

In order for any user to be able to interpret a CONS file, its nodes must be assembled

according to particular rules. For example, Fig. 2 shows a simple example of a tree-like

structure that organizes some animals into categories according to rules that most of us

are very familiar with. (Note that this figure is different from Fig. i in that no "Labels" or

"Data" are used, only "Names.") The categories get narrower and narrower in their scope

as you traverse lower in the tree. The broadest category here is "Animals," and the tree

narrows all the way down to particular dogs (two "Fido"s, a "Spot," and a "Ginger").

Knowing ahead of time how this tree is organized allows you to quickly and easily access

whatever particular information from the tree that you may be interested in. If someone

else were to organize these same animals in a completely different way, according to

different rules, then it would be difficult for you to access the desired information without

spending a lot of time searching and studying the tree.

The particular rules for organizing CONS files for aerodynamic data, which allow

users to easily access desired information, are described in the Standard Interface Data

Structures (SIDS) document [1]. Because CONS files are binary files, they cannot be

1Strictly speaking, because links may be used to store information in multiple files, there is no notion

of a CONS file, only of a CONS database implemented within one or more files. However, throughout

this document the two phrases are used interchangeably.
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Animals

Fish Mammals

=/ \\4

Dogs Cats

Collies Greyhounds I Beagles

/ \.

"Fido .... Spot .... Fido .... Ginger"

Figure 2: Simple tree-like structure that categorizes some animals.

viewed by the user with standard UNIX ASCII-editing tools. The utility adfbdit was

created to allow users to easily view CGNS files. It is briefly described in Appendix A.

1.4 How this User's Guide is Organized

The main content in this User's Guide is located in section 2, where several simple

examples are given for both structured and unstructured grids. This section covers the

basics that most users want or need to learn in order to get started using CGNS. It is

recommended that the section on structured grids be read first, in its entirety, even if the

user is only interested in unstructured grid applications. Some additional information

is covered in section 3; these issues are fblt to be important (i.e., most users will want

to eventually include them), but they are not as crucial as the basic items covered in

section 2. Finally, sections 4 and 5 briefly cover troubleshooting and frequently asked

questions, respectively.

Note that all of the codes and code segments given in this document are available

as complete codes from the CGNS website www.cgns.org (in the User's Guide section).

The names of these codes and their functions are listed in Appendix B. Also note that

not all CGNS capabilities are covered in this document. It is meant to be a fairly simple

introductory guide only.



2 GETTING STARTED

The rules and conventions governing how the nodes in a CGNS file are organized, includ-

ing their names and labels, are specified in the SIDS document [1], with additional details

in [2] [3]. These documents also specify in detail how CFD infbrmation is to be stored

within the nodes in a standardized fashion so that other users can easily access and read

it. When a CGNS file strictly adheres to the rules given in the SIDS document, it is said

to be "SIDS-compliant." A CGNS file must be SIDS-compliant in order for other users

to be able to properly interpret it. A brief overview of the most commonly used aspects

of the SIDS is given in Appendix C.

However, to get started with CGNS, it is not necessary fbr the user to fully understand

the SIDS document or Appendix C. The mid-level, or API calls have been created to

aid users in writing and reading CGNS files that are SIDS-compliant. 2 Using the API,

most CFD data of interest to the majority of users can be written into or read from a

CGNS file very easily with only an elementary understanding of the SIDS.

In the following sections, we give detailed instructions on how to create typical CGNS

files or portions of files. These instructions are given in the form of simple examples.

They make use of the mid-level API calls, although not all API calls are covered in this

document (a complete list of available API calls can be found in [5]). W_ recommend that

the user read through the examples in this section in order, because some infbrmation in

the later sections depends on being familiar with infbrmation given in the earlier ones.

Hopefully, users should be able to easily extend these simple examples to their own

applications. Additional applications are covered in section 3. For those users already

familiar with the PLOT3D fbrmat for CFD data [7], we include a detailed description on

reading and writing PLOT3D-type variables in a CGNS file in Appendix D.

Also note that we have delayed the discussion of units and nondimensionalization

until section 3. For now, all examples simply store and retrieve pure numbers, and it

is assumed that the user knows what the dimensions or nondimensionalizations of each

variable are.

2There are currently two levels of programming access to CGNS. The lowest level consists of ADF-

level calls. These calls perform the most basic functions, such as creating a child node, writing data,
reading data, etc. These functions always begin with the characters "ADF." However, these low-level

calls know nothing at all about the SIDS, so the user is responsible for putting data in the correct
place, to make the CGNS file SIDS-compliant. The nfid-level, or API calls, which always begin with the

characters "cg_", were written with knowledge of the SIDS. Therefore, it is easier to adhere to the SIDS
standards when writing a CGNS file using the API calls, and some checks for SIDS-compliance are also

made by the API calls when accessing a CGNS file (SIDS compliance is not guaranteed, but the API
calls go a long way toward facilitating it). The API calls also drastically shorten the calling sequences
necessai:/to perform many of the functions needed to create and read CGNS files.



2.1 Structured Grid

This first section gives several structured grid examples, whereas section 2.2 gives un-

structured grid examples. However, we recommend that section 2.1 be read first, in its

entirety, even if the user is only interested in unstructured grid applications. This is

because much of the organization of the CGNS files is identical fbr both grid types, and

later sections of this document assume that the user is familiar with infbrmation given
in earlier sections.

2.1.1 Single-Zone Structured Grid

This first example is fbr a very simple 3-D Cartesian grid of size 21 x 17 x 9. The grid

points themselves are created using the following FORTRAN code snippet:

do k=l, nk

do j=l,nj

do i=i,ni

x(i,j,k)=float (i-i)

y(i,j,k)=float (j-i)

z(i ,j,k)=float (k-i)

enddo

enddo

enddo

where ni=21, nj =17, and nk=9. A picture of the grid is shown in Fig. 3.

Y

Figure 3: Simple Cartesian structured grid.



A complete FORTRAN code that creates this grid and uses API calls to write it to

a CGNS file called grid. cgns is shown here (note that a FORTRAN line continuation

is denoted by a +). This (and all later) coded examples are available from the CGNS

website www.cgns.org (in the UseFs Guide section). See Appendix B.

program write_grid_sir

c

c Creates simple 3-D structured grid and writes it to a

c CGNS file.

c

c This program uses the fortran convention that all

c variables beginning with the letters i-n are integers,

c by default, and all others are real

c

c UNIX compilation (IRIX 5.3 or higher with mips4_64 option)

c for this program is:

c f90 -r8 -64 write_grid_str.f CGNSLib/lib/libcgns.mips4_64.a

c (CGNSLib/Iib/ is the location where the compiled

c library libcgns.mips4_64.a is located)

c (Note it is compiled double precision because RealDouble

c is used below)

c

c must include path to cgnslib_f.h file:

include _CGNSLib/cgnslib_f.h _

c dimension statements (note that tri-dimensional arrays

c x,y,z must be dimensioned exactly as (21,17,N) (N>=9)

c for this particular case or else they will be written to

c the CGNS file incorrectly! Other options are to use I-D

c arrays, use dynamic memory, or pass index values to a

c subroutine and dimension exactly there):

dimension x(21,17,9),y(21,17,9),z(21,17,9)

dimension isize(3,3)

character basename*S2,zonename*32

c

c create gridpoints for simple example:

ni=21

nj =17

nk=9

do k=l, nk

do j=l,nj

do i=l,ni

x(i,j ,k)=float (i-l)

y(i ,j,k) =float (j-l)

z(i ,j,k) =float (k-l)



enddo
enddo

enddo
write(6,_(_ created simple 3-D grid points _)_)

c
c WRITEX, Y, Z GRIDPOINTSTOCGNSFILE
c open CGNSfile for write

call cg_open_f( _grid. cgns_,MODE_WRITE,index_file, ier)
c create base (user can give any name)

basename=_Base
icelldim=3
iphysdim=3
call cg_base_write_f(index_f ile, basename,i celldim, iphysdim,

+ index_base,ier)
c define zone name (user can give any name)

zonename= _Zone 1
c vertex size

isize(l, i)=21
isize(2, i)=17
isize(3, i)=9

c cell size

isize ( i, 2) =isize ( i, i) -i

isize (2,2) =isize (2, i) -i

isize (3,2) =isize (3, i) -i

c boundary vertex size (always zero for structured grids)

isize(l,3)=O

isize(2,3)=O

isize(3,3)=O

c create zone

call cg_one_write_f (index_f ile, index_base, zonename, isize,

+ Structured, index_zone, ier)

c write grid coordinates (user must use SIDS-standard names here>

call cg_coord_write_f (index_file, index_base, index_zone,RealDouble,

+ _Coordinat eX _,x, index_coord, ier)

call cg_coord_write_f (index_file, index_base, index_zone,RealDouble,

+ _Coordinat eY _,y, index_coord, ier)

call cg_coord_write_f (index_file, index_base, index_zone,RealDouble,

+ _Coordinat eZ _,z, index_coord, ier)

c close CGNS file

call cg_close_f (index_file,ier)

write(6, _(_ Successfully wrote grid to file grid.cgns _)_)

stop

end



There are several items to note regarding this code. Whenever a new entity is created

using the API, an integer index is returned. This index is used in subsequent API calls

to ref%r to the entity. For example, the above call to cg_open_f, which opens the file

grid.cgns, assigns to this entity the index index_file. This same index_file is used

to identify this entity in subsequent calls. Similarly, cg_base_write_f assigns an index

index_base to the base, cg_zone_write_f assigns an index index_zone to the zone, and

cg_coord_write_f assigns an index index_coord to each coordinate.

For FORTRAN code, an include statement pointing to cgnslib_f, h must be present.

(The cgnslib_f.h file comes with the CGNS sof_ware.) Also, it is imperative that the x,

y, and z arrays be dimensioned ecaetly as (21,17,N), where N > 9 (or else as a one-

dimensional array of at least size 21 • 17 • 9) for this particular example; this is because

the cg_coord_write_f routine writes the first 21 • 17 • 9 values contained in the array

as it is stored i_ memor_q. If x, y, and z are tri-dimensional arrays and the first two

indices are dimensioned larger than 21 and 17, respectively, then incorrect values will

be placed in the CGNS file. In a real working code, one would probably either (a) use

one-dimensional arrays, (b) dynamically allocate appropriate memory for x, y, and z, or

else (c) pass the index values to a subroutine and write via an appropriately dimensioned

work array.

In this case, the cell dimension (icelldim) is 3 (because the grid is made up of

volume cells), and the physical dimension (iphysdim) is 3 (because 3 coordinates define

3-D). (Ref%r to Appendix C for a more detailed description.) The isize array contains

the vertex size, cell size, and boundary vertex size for each index direction. For a 3-

D structured grid, the index dimension is always the same as the cell dimension, so

this means there are 3 vertex sizes, 3 cell sizes, and 3 boundary vertex sizes (one each

for the f, j, and k directions). For structured grids, the cell size is always one less

than the corresponding vertex size, and the boundary vertex size has no meaning and is

always zero. When writing the grid coordinates, the user must use SIDS-standard names.

For example, x, y, and z coordinates must be named CoordinateX, CoordinateY, and

CoordinateZ, respectively. Other standard names exist for other possible choices (see

[1]). Finally, basename and zonename must be declared as character strings, and the

integer array isize must be dimensioned appropriately.

The grid coordinate arrays can be written in single or double precision. The desired

data type is communicated to the API using the keywords gealSingle or gealDouble.

The user must insure that the data type transmitted to the API is consistent with the

the one used in declaring the coordinates arrays. When it is compiled, the code must

also link to the compiled CGNS library libcgns .xxx.a, where xxx is set depending on

the computer system on which it is implemented. Instructions for compiling the CGNS

library are given in README files that come with the CGNS sof_ware, or a pre-compiled

libcgns, xxx. a library appropriate for a given system can be downloaded from the CGNS
website.

A complete code written in C that perfbrms the same task of creating grid coordinates

and writing them to a CGNS file is given here.



Creates simple 3-D structured grid and writes it to a

CGNS file.

UNIX compilation (IRIX 5.3 or higher with mips4_64 option)

for this program is:

cc -r8 -64 write_grid_str.c CGNSLib/lib/libcgns.mips4_64.a

(CGNSLib/Iib/ is the location where the compiled

library libcgns.mips4_64.a is located)

(Note it is compiled double precision because RealDouble

is used below)

#include <stdio.h>

/* must include path to cgnslib.h file:

#include "CGNSLib/cgnslib.h"

main()

{
/*

dimension statements (note that tri-dimensional arrays

x,y,z must be dimensioned exactly as [N] [17] [21] (N>=9)

for this particular case or else they will be written to

the CGNS file incorrectly! Other options are to use I-D

arrays, use dynamic memory, or pass index values to a

subroutine and dimension exactly there):

/_ create gridpoints for simple example:

ni=21;

nj=i7;

nk=9;

for (k=O; k < nk; ++k)

{
for (j=O; j < nj; ++j)

{
for (i=O; i < hi; ++i)

{
x[k] [3] [i]=i;

y[k] [j][i]=j ;

z[k] [j] [i]=k;

double x[9] [1V] [21],y[9] [1V] [21],z[9] [1V] [21];

int isize [3] [3] ;

int ni, nj, nk, i, j,k ;

int index_file,icelldim,iphysdim,index_base;

int index_zone,index_coord;

char ,basename,*zonename;

*/



}
}

}
printf("\ncreated simple 3-D grid points">;

/* WRITE X, Y, Z GRID POINTS TO CGNS FILE */

/* open CGNS file for write */

cg_open ("grid_c. cgns", MODE_WRITE, _index_file) ;

/* create base (user can give any name) */

basename =''Base'';

icelldim=3 ;

iphysdim=3 ;

cg_base_writ e (index_f ile, basename, icelldim, iphysdim, &index_base) ;

/* define zone name (user can give any name) */

zonename="Zone i";

/* vertex size */

isize [0] [0] =21;

isize [0] [i] =iY;

isize [0] [2] =9;

/* cell size */

isize [i] [0] =isize [0] [0]-i ;

isize [i] [i] =isize [0] [i]-i ;

isize [i] [2] =isize [0] [2]-i ;

/* boundary vertex size (always zero for structured grids> */

isize [2] [0] =0;

isize [2] [i] =0;

isize [2] [2] =0;

/* create zone */

cg_ one_wr it e (index_f ile, index_base, zonename, *i size, Structured,

_index_zone) ;

/* write grid coordinates (user must use SIDS-standard names here) */

cg_coord_write (index_file, index_base, index_zone, RealDouble, "Coordinat eX",

x,_index_coord) ;

cg_coord_write (index_file, index_base, index_zone, RealDouble, "Coordinat eY",

y,_index_coord) ;

cg_coord_write (index_file, index_base, index_zone, RealDouble, "Coordinat eZ",

z,_index_coord) ;

/* close CGNS file */

cg_close (index_f ile) ;

printf("\nSuccessfully wrote grid to file grid_c.cgns\n");

}

Note that in the C-code, the ".h" file that must be included is called cgnslib.h. From

now om all codes will be given in FORTRAN only. The C-equivalent calls are similar,

as demonstrated above. Also, from now om complete code will not be shown, but rather

l0



only code segments, in order to save space. However, complete codes can be accessed

from the CGNS website www.cgns.org (in the User's Guide section).

The CGNS file grid. cgns that is created by the code above is a binary file that, inter-

nally, possesses the tree-like structure shown in Fig. 4. As mentioned in the Introduction,

each node has a name, a label, and may or may not contain data. In the example in the

figure, all the nodes contain data except tbr the GridCoordinates node, tbr which MT

indicates no data.

root node

/

Name=CG NS LibraryVersion
Label=CG NS LibraryVersion_t
Data=(version number)

Name=Zone 1
Label=Zone t

Name=Base
Label=CGNSBase t
Data=CellDimension=3,

PhysicalD imension=3

D ata=VertexS ize=(21,1 7,9),
CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=GridCoordinates I
Label=ZoneType_t Label=G ridCoordinates_t

Data=MT

Name=ZoneType

Data=Structured

/

Name=CoordinateX
Label= DataArray_t
Data=x(1,1,1 ) to x(21,17,9)

Name=CoordinateY Name=CoordinateZ
Label= DataArray_t Label= DataArray_t
Data=y(1,1,1) to y(21,17,9) Data=z(1,1,1) to z(21,17,9)

Figure 4: Layout of CGNS file for simple Cartesian structured grid.

However, the user really does not need to know the full details of the tree-like structure

in this case. The API has automatically created a SIDS-compliant CGNS file! Now, the

user can just as easily read the CGNS file using the API. The FORTRAN code segment

used to read the CGNS file grid. cgns that we just created is given here:

c READ X, Y, Z GRID POINTS FROM CGNS FILE

include 'cgnslib_f.h'

c open CGNS file for read

call cg_open_f(_grid.cgns_,MODE_READ,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

ii



c we know there is only one zone (real working code would check!)

index_zone=l

c get zone size (and name - although not needed here)

call cg_zone_read_f(index_file,index_base,index_zone,zonename,

+ isize,ier)

c lower range index

irmin(1)=l

irmin(2)=l

irmin(3)=l

c upper range index of vertices

irmax(1)=isize(l,l)

irmax(2)=isize(2,1)

irmax(3)=isize(3,1)

c read grid coordinates

call cg_coord_read_f(index_file,index_base,index_zone,

+ _CoordinateX_,RealSingle,irmin,irmax,x,ier)

call cg_coord_read_f(index_file,index_base,index_zone,

+ _CoordinateY_,RealSingle,irmin,irmax,y,ier)

call cg_coord_read_f(index_file,index_base,index_zone,

+ _CoordinateZ_,RealSingle,irmin,irmax,z,ier)

c close CGNS file

call cg_close_f(index_file,ier)

Note that this FORTRAN coding is very rudimentary. It assumes that we know that

there is only one base and one zone. In a real working code, one should check the

numbers in the file, and either allow fbr the possibility of multiple bases or zones, or

explicitly disallow it. Also, this coding implicitly assumes that the grid. cgns file is a

3-D structured grid (cell dimension physical dimension 3). In a real working code,

one should check to make sure that this is true, or else allow for other possibilities. One

should also check to make sure the zone type is Structured if this is the type expected.

As befbre, the x, y, and z arrays in this case must be dimensioned correctly: fbr a tri-

dimensional array, (21,17,N), where N _> 9. (In a real working code, one would probably

either (a) use one-dimensional arrays, (b) dynamically allocate appropriate memory fbr x,

y, and z after reading isize, or else (c) pass the isize values to a subroutine and dimension

a work array appropriately prior to reading.) Also note that, regardless of the precision

in which the grid coordinates were written to the CGNS file (single or double), one can

read them either way; the API automatically perfbrms the translation. (The arrays x,

y, and z in the code above must be declared as single precision if RealSingle is used

and as double precision if RealDouble is used.) Finally, isize should be dimensioned

appropriately, zonename should be declared as a character variable, and irmin and irmax

should be dimensioned appropriately.
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2.1.2 Single-Zone Structured Grid and Flow Solution

In this section, we now write a flow solution associated with the grid from section 2.1.1.

W_ assume that we have two flow solution arrays available: static density and static

pressure. To illustrate three important options, we will show how to write the flow

solution (a) at vertices, (b) at cell centers, and (c) at cell centers plus rind cells.

(a) Flow Solution at Vertices

The first option is illustrated schematically in 2-D in Fig. 5. Simply stated, a Vertex

flow solution is located at the same location as the grid points. Assuming that the grid

points have already been written to a CGNS file, the following FORTRAN code segment
adds the flow solution at vertices:

-h

\s

()

Sh

() (

fh f

Figure 5: Schematic showing location (circles) of Vertex flow solution relative to grid.

c WRITE FLOW SOLUTION TO EXISTING CGNS FILE

include 'cgnslib_f.h'

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base

index_base=l

c we know there is only one zone

index_zone=l

c define flow solution node name

solname = _FlowSolution _

c create flow solution node

(real working code would check!)

(real working code would check!)

(user can give any name)

call cg_sol_write_f(index_file,index_base,index_zone,solname,

+ Vertex,index_flow,ier)

c write flow solution (user must use SIDS-standard names here)

13



call cg_field_write_f (index_file, index_base, index_zone, index_flow,

+ RealDouble, _Density _,r, index_f ield, ier)

call cg_field_write_f (index_file, index_base, index_zone, index_flow,

+ RealDouble, _Pressure _,p, index_field, ier)

c close CGNS file

call cg_close_f (index_file,ier)

In this code, the density (r) and pressure (p) variables m_st be dimensioned correctly

for this particular case: fbr a tri-dimensional array, (21,17,N), where N _> 9 (see discus-

sion in section 2.1.1). Note that the API, knowing that the flow solution type is Vertex,

automatically writes out the correct index range, corresponding with the zone's grid index

range. Also note that we opened the existing CGNS file and modified it (MODE_NODIFY)

- we knew ahead of time that only one base and only one zone exist; a real working

code would make appropriate checks. Finally, solname should be declared as a character

variable and r and p must be declared as double precision variables when RealDouble

type is used.

The layout of the CGNS file with the flow solution at vertices included is shown in

Fig. 6. The three nodes under GridCoordinates_t have been lef_ out to conserve space

in the figure, but they exist as indicated by the three unconnected lines.

The vertex flow solution can be read in using the fbllowing FORTRAN code segment

(can read in as single or double precision see discussion in section 2.1.1):

c READ FLOW SOLUTION FROM CGNS FILE

include 'cgnslib_f.h'

c open CGNS file for read

call cg_open_f(_grid.cgns_,MODE_READ,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c we know there is only one FlowSolution_t (real working code would check!)

index_flow=l

c get zone size (and name - although not needed here)

call cg_zone_read_f(index_file,index_base,index_zone,zonename,

+ isize,ier)

c lower range index

irmin(1)=l

irmin(2)=l

irmin(3)=l

c upper range index - use vertex dimensions

c checking GridLocation first (real working code would check

c to make sure there are no Rind cells also!):

call cg_sol_info_f(index_file,index_base,index_zone,index_flow,
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Name=CG NS LibraryVersion
Label=CG NS LibraryVersion_t
Data=(version number)

Name=ZoneType
Label=ZoneType_t
Data=Structured

root node

Name=Base
Label=CGNSBase t
Data=CellDimension=3,

PhysicalD imension=3

Name=GridCoordinates
Label=G ridCoordinates_t
Data=MT

Name=Zone 1
Label=Zone t
D ata=VertexS ize=(21,1 7,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=Density
Label= DataArray_t
Data=r(1,1,1) to r(21,1 7,9)

Name=GridLocation
Label=GridLocation_t
Data=Vertex

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Name=Pressure
Label= DataArray_t
Data=p(1,1,1) to p(21,17,9)

Figure 6: Layout of CGNS file fbr simple Cartesian structured grid with flow solution at

vertices. (Note: because GridLocation Vertex is the default, it is not necessary to

specify it. In fact, the latest API software does not include this node in the file.)
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+ solname, loc, ier)

if (loc .ne. Vertex) then

write (6, _(__ Error, GridLocation must be Vertex! __)_)

stop

end if

irmax (i)=isize (i,i)

irmax (2)=isize (2,i)

irmax (3)=isize (3,i)

c read flow solution

call cg_field_read_f (index_f ile, index_base, index_zone, index_flow,

+ _Density _,RealSingle, irmin, irmax, r, ier)

call cg_field_read_f (index_f ile, index_base, index_zone, index_flow,

+ _Pressure _,RealSingle, irmin, irmax, p, ier)

c close CGNS file

call cg_close_f (index_file,ier)

Note that this code segment assumes that it is known that the flow solution contains

no rind data (to be covered in detail below). If rind data does exist, but the user does

not account fbr it, then the flow solution infbrmation will be read incorrectly. Hence, a

real working code would check fbr rind cells, and adjust the dimensions and index ranges

appropriately. Other similar cautions as those mentioned earlier regarding dimensioning

of variables, real working code checks, etc., apply here as well. These cautions will not

always be repeated from this point fbrward.

(b) Flow Solution at Cell Centers

The option fbr outputting the flow solution at cell centers is illustrated schematically

in 2-D in Fig. 7. The flow solutions are defined at the centers of the cells defined by the

four surrounding grid points. In 3-D, the cell centers are defined by eight surrounding

grid points. The code segment to write to cell centers is identical to that given above fbr

vertices, except that the call to cg_sol_write_f is replaced by:

c create flow solution node (NOTE USE OF CellCenter HERE)

call cg_sol_write_f(index_file,index_base,index_zone,solname,CellCenter,

+ index_flow,ier)

Also, now the density (r) and pressure (p) variables must be dimensioned correctly tbr

this particular case: tbr a tri-dimensional array, (20,16,N), where 2V > 8 (i.e., one less in

each index dimension than the grid itself). Again, the API, knowing that the flow solution

type is CellCenter, automatically writes out the correct index range, corresponding with

the zone's grid index range minus 1 in each index direction.

The layout of the CGNS file with the flow solution at cell centers is shown (below the
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Figure 7: Schematic showing location (circles) of CellCenter flOW solution relative to

grid.

FlowSolution_t node only) in Fig. 8. Note that the indices over which the flow solutions

are written are now from (1, 1, 1) to (20, 16, 8) (contrast with the FlowSolution part of

Fig. G).

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Name=Density Name=Pressure
Name--Gridkocation kabel--DataArray_t kabel--DataArray_t
kabel--Gridkocation_t Data--r(1,1,1) to r(20,16,8) Data--p(1,1,1) to p(20,16,8)
Data=CellCenter

Figure 8: Layout of CGNS file (under FlowSolution_t node) fbr simple Cartesian struc-

tured grid with flow solution at cell centers.

The FORTRAN code segment to read in the solution at cell centers is the same as

that given above fbr vertices, except that the section that defines irmax is replaced by:

c upper range index - use cell dimensions

c checking GridLocation first (real working code would check

c to make sure there are no Rind cells also!)"
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call cg_sol_info_f (index_f ile, index_base,index_zone,index_flow,
solname,loc, ier)

if (loc .ne. CellCenter) then
write (6,_(_ Error, GridLocation must be CellCenter!_)_)
stop

end if
irmax(1)=isize (i, 2)
irmax(2)=isize (2,2)
irmax(S)=isize (S,2)

and, as usual, the r and p arrays must be dimensioned appropriately.

(c) Flow Solution at Cell Centers With Additional Rind Data

Rind data is additional flow solution data ezte_'io_" to a structured grid, at "ghost
cell" locations. Rind data can be associated with other GridLocation values beside

CellCenter, although we only show an example using CellCenter here. The option

for outputting the flow solution at cell centers with additional rind data is illustrated

schematically in 2-D in Fig. 9. In this diagram, we show one layer of rind cell data in the

row below the grid itself. There could be rind data at other sides of the grid, or there

could be more than one row at a given side.

©

0

0

@

0

©

@

©

0

Figure 9: Schematic showing location (circles) of CellCenter flOW solution, including

rind cells, relative to grid.

In CGNS, the flow solution at rind cells is not stored as separate entities, but rather

the flow solution range is extended to ir_cl_de the rind cells. For example, in the 2-D

schematic of Fig. 9, instead of an index range of p(3,2) tbr pressures stored at the cell

centers, the flow solution would now have an index range of p(3,0:2) or p(3,3). See [1]
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for details.

For our 3-D example, we assume that we have one row of rind data at 4 faces of the

zone (ilo, ihi, jlo, jhi, where these represent the low and high ends of the i and j

directions, respectively), and no rind cells at klo or khi (at either end of the k direction).

The code segment to write the flow solution and rind data is as tbllows:

c WRITE FLOW SOLUTION TO EXISTING CGNS FILE

include 'cgnslib_f.h'

c open CGNS file for modify

call cg_open_f ('grid. cgns', MODE_MODIFY, index_file, ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c define flow solution node name (user can give any name)

solname = 'FlowSolution'

c create flow solution node

call cg_sol_write_f (index_file, index_base, index_zone, solname, CellCenter,

+ index_flow, ier)

c go to position within tree at FlowSolution_t node

call cg_goto_f (index_file, index_base, ier, 'Zone_t ',index_zone,

+ 'FlowSolution_t' ,index_flow, 'end')

c write rind information under FlowSolution_t node (ilo,ihi,jlo,jhi,klo,khi)

irinddat a (i)=i

irinddata(2) =i

irinddata(3) =i

irinddata(4) =i

irinddata(5) =0

irinddata(6) =0

call cg_rind_write_f (irinddata, ier)

c write flow solution (user must use SIDS-standard names here)

call cg_field_write_f (index_file, index_base, index_zone, index_flow,

+ RealDouble, 'Density ',r, index_f ield, ier)

call cg_field_write_f (index_file, index_base, index_zone, index_flow,

+ RealDouble, 'Pressure ',p, index_field, ier)

c close CGNS file

call cg_close_f (index_file,ier)

Note that in the case of rind data, the user must position the Rind_t node appropriately,

using the cg_goto_f call. In this case, the Rind_t node belongs under the FlowSolution_t

node.

For this case of cell center flow solution with rind data, the density (r) and pressure (p)

are written to the CGNS file with the tbllowing index ranges: fl'om i 0 to i 20+1 21
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(or a total i length of 22), fi"om j 0 to j 16 + 1 17 (or a total j length of 18), and

from k 1 to k 8. The variables r and p must be dimensioned appropriately to reflect

these index ranges modified by the rind values.

The layout of the CGNS file tbr this example (below the FlowSolution_t node only)

is shown in Fig. 10. Compare this figure with Figs. 6 and 8.

Name=FlowSolution
Label=FlowSolution_t
Data=MT

/

Name=GridLocation Name=Rind
Label=GridLocation_t Label=Rind_t
Data=CellCenter Data=(1,1,1,1,0,0)

Name=Density
Label= DataArray_t
Data=r(0,0,1) to r(21,1 7,8)

Name=Pressure
Label= DataArray_t
Data=p(0,0,1) to p(21,1 7,8)

Figure 10: Layout of CGNS file (under FlowSolution_t node) tbr simple Cartesian

structured grid with flow solution at cell centers plus rind data.

A FORTRAN code segment to read the flow solution tbr this example is:

c READ FLOW SOLUTION FROM CGNS FILE

include 'cgnslib_f.h'

c open CGNS file for read

call cg_open_f(_grid.cgns_,MODE_READ,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c we know there is only one FlowSolution_t (real working code would check!)

index_flow=l

c get zone size (and name - although not needed here)

call cg_zone_read_f(index_file,index_base,index_zone,zonename,isize,ier)

c go to position within tree at FlowSolution_t node

call cg_goto_f(index_file,index_base,ier,_Zone_t_,index_zone,

+ _FlowSolution_t_,index_flow,_end _)

c read rind data

call cg_rind_read_f(irinddata, ier)

c lower range index

irmin(1)=l
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irmin(2) =i
irmin(3) =i

c upper range index - use cell dimensions and rind info
c checking GridLocation first:

call cg_sol_info_f (index_f ile, index_base,index_zone,index_flow,
+ + solname,loc,ier)

if (loc .ne. CellCenter) then
write (6,_(_ Error, GridLocation must be CellCenter!_)_)
stop

end if
irmax(i )=isize (i, 2)+irinddat a(i) +irinddat a(2)
irmax(2)=isize (2,2) +irinddata (3) +irinddat a(4)
irmax(3)=isize (3,2) +irinddata (5) +irinddat a(6)

c read flow solution
call cg_field_read_f (index_f ile, index_base,index_zone,index_flow,

+ _Density_,RealSingle, irmin, irmax, r, ier)
call cg_field_read_f (index_f ile, index_base,index_zone,index_flow,

+ _Pressure_,RealSingle, irmin, irmax, p, ier)
c close CGNSfile

call cg_close_f(index_file,ier)

2.1.3 Single-Zone Structured Grid with Boundary Conditions

To illustrate the use of boundary conditions, we again use the same single-zone Cartesian

grid from section 2.1.1. Ref5rring back to Fig. 3, we wish to apply the following:

ilo BCTunnellnflow

ihi BCExtrapolate

jlo BCWalllnviscid

jhi etc.

klo etc.

khi etc.

where BCTunnelInflow, BCExtrapolate, and BCWallInviscid are data-name identifiers

for boundary conditions. The complete list of boundary condition identifiers is found in

[1]. In this example, we take the approach of using the lowest-level BC implementation

allowed see Fig. 24 and the discussion in Appendix C.

In this section, we show two different approaches for defining the region over which

each boundary condition acts. The first is with type PointRange, meaning that we define

the minimum and maximum points on a face that define a logically rectangular region

(this method is usable only for faces that are capable of being defined in this way).

The second is with type PointList, which gives the list of all the points for which the

boundary condition applies. This latter method is generally used for unstructured zones

or for any zone whose defined region is not logically rectangular.
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(a) Boundary Conditions Specifying Range

A FORTRAN code segment to write the boundary condition intbrmation of type

PointRange to the existing CGNS file from section 2.] .1 or 2.1.2 is given here:

c WRITE BOUNDARY CONDITIONS TO EXISTING CGNS FILE

include _cgnslib_f.h _

c open CGNS file for modify

call cg_open_f (_grid. cgns _,MODE_MODIFY, index_file, ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c get zone size (and name - although not needed here)

call cg_zone_read_f (index_file, index_base, index_zone,zonename,

+ isize,ier)

ilo=l

ihi=isize (i, i)

jlo=l

jhi=isize (2, i)

klo=l

khi=isize (3, i)

c write boundary conditions for ilo face, defining range first

c (user can give any name)

c lower point of range

ipnts (i, i)=ilo

ipnts (2, i)=j io

ipnts (3, i)=klo

c upper point of range

ipnts(l,2)=ilo

ipnts(2,2)=jhi

ipnts (3,2) =khi

call cg_boco_write_f (index_file, index_base, index_zone, _Ilo _,

+ BCTunnelInflow, PointRange, 2, ipnt s, index_bc, ier)

c write boundary conditions for ihi face, defining range first

c (user can give any name)

c lower point of range

ipnts(l, i)=ihi

ipnts (2, i)=j io

ipnts (3, i)=klo

c upper point of range

ipnts (i ,2) =ihi

ipnts(2,2)=jhi
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ipnts (3,2) =khi
call cg_boco_write_f(index_f ile, index_base,index_zone,_lhi _,

+ BCExtrapolate,PointRange,2, ipnts, index_bc,ier)
c write boundary conditions for jlo face, defining range first
c (user can give any name)
c lower point of range

ipnts (i, i) =ilo
ipnts (2, i) =j io
ipnts (3, i) =klo

c upper point of range
ipnts (i ,2) =ihi
ipnts (2,2) =j io
ipnts (3,2) =khi
call cg_boco_write_f(index_f ile, index_base,index_zone,_Jlo _,

+ BCWallInviscid, PointRange,2, ipnt s, index_bc,ier)
• . . etc...

c close CGNS file

call cg_close_f (index_file,ier)

The zone names (e.g., Ilo) are arbitrary. Note that the variable zonename must be de-

clared as a character variable, and isize and ipnts must be dimensioned appropriately.

The layout of the CGNS file for this example is shown in Fig. 1 l. Four of the children

nodes of ZoneBC_t are left off for clarity.

Reading the boundary conditions can also be easily accomplished using API calls, but

we do not show an example of this here. Because there are multiple BC_t children nodes

under the ZoneBC_t node, the user must first read in the number of children nodes that

exist, then loop through them and retrieve the information from each.

(b) Boundary Conditions SpecifYing Points

The FORTRAN code segment to write the boundary conditions using PointList is

the same as that fbr PointRange except that the fbllowing segment, fbr example,

c write boundary conditions for ilo face, defining range first

c user can give any name)

z)nts(l,l)=ilo

i)nt s (2, i)=j io

i)nts (3, i)=klo

i)nts (i ,2)=ilo

i)nts(2,2)=jhi

i)nts (3,2) =khi

call cg_boco_write_f (index_file, index_base, index_zone, _Ilo _,

+ BCTunnelInflow, PointRange, 2, ipnt s, index_bc, ier)
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root node

Name=CG NS LibraryVersion
Label=CG NS LibraryVersion_t
Data=(version number)

Name=Zone 1
Label=Zone t

Name=Base
Label=CGNSBase t
Data=CellDimension=3,

PhysicalD imension=3

D ata=VertexS ize=(21,1 7,9),
CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates
Label=G ridCoordinates_t
Data=MT

Name=llo
Label=BC t
Data=BCT-unnellnflow

Name=FlowSolution Name=ZoneBC
Label=FlowSolution_t Label=ZoneBC_t
Data=MT Data=MT

_ /
Name=lhi
Label=BC t
Data= BC E_xtrapolate

i I
Name=PointRange
Label=lndexRange_t
Data=(1,1,1),(1,17,9)

Name=PointRange
Label=lndexRange_t
Data=(21,1,1),(21,1 7,9)

Figure 11: Layout of CGNS file for simple Cartesian structured grid with flow solution

and boundary conditions using PointRange.
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is replaced by:

c write boundary conditions for ilo face,

c (user can give any name)

icount=0

do j=jlo,jhi

do k=klo,khi

icount=icount+l

ipnts(l,icount)=ilo

ipnts(2,icount)=j

ipnts(3,icount)=k

enddo

enddo

defining pointlist first

call cg_boco_write_f(index_file,index_base,index_zone,_llo _,

BCTunnelInflow,PointList,icount,ipnts,index_bc,ier)

The layout of the CGNS file in this case is the same as Fig. 11, except that PointRange

(IndexRange_t) becomes Pointhist (IndexArray_t) and there is icount data in the

PointList nodes.

2.1.4 Multi-Zone Structured Grid with 1-to-1 Connectivity

For the case of a multi-zone structured grid, each zone is handled individually in the same

way as the examples in the preceding sections. However, multi-zone grids also require
additional infbrmation about how the zones are connected to one another. A discussion

of different types of zone-to-zone connectivity can be fbund in Appendix C. For the

example in this section, we show only a simple 1-to-1 connectivity example. W% assume

that we have a two-zone grid, each identical to the one showed in Fig. 3 (21 x 17 x 9),

except that zone 2 is offset in the ¢'-direction by 20 units. Thus, the flo face of zone 2

abuts the fhf face of zone 1, and each abutting point in the two zones touches a point

from the neighboring zone. A picture of the grid is shown in Fig. 12.

The overall layout of this two-zone CGNS file is not shown here. It is similar to those

shown earlier, except now there are two zones rather than one. See Appendix C fbr an

additional example.

Now, 1-to-1 connectivity infbrmation must be written into each of the zones. There

are two ways to record this 1-to-1 information. The first (specific) method is valid

only for 1-to-1 interfaces, and the regions _t be logically rectangular (because they

are recorded via PointRange and PointRangeDonor nodes, fbr which only two points

define the entire region). The second way is more general. It uses PointList nodes in

combination with PointListDonor. (A third method, used to describe interfaces that

are _ot point-matched such as mismatched or oversetzones employs CellListDonor
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Zone 2

Zone 1

Figure 12: 2-Zone Cartesian structured grid with 1-to-1 connectivity.

and InterpolantsDonor.) Refer to the SIDS document []] for details on the various

methods fbr describing connectivity.

(a) Connectivity Using Specific 1-to-1 Method

The 1-to-1 connectivity information for the current example can be written to a CGNS

file using the fbllowing FORTRAN code segment (assuming that all grid infbrmation has

already been written):

c WRITE I-T0-1 CONNECTIVITY INFORMATION TO EXISTING CGNS FILE

include _cgnslib_f.h _

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c get number of zones (should be 2 for our case)

call cg_nzones_f(index_file,index_base,nzone,ier)

c loop over zones to get zone sizes and names

do index_zone=l,nzone

call cg_zone_read_f(index_file,index_base,index_zone,

+ zonename(index_zone),isize,ier)

ilo(index_zone)=l

ihi(index_zone)=isize(l,l)
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jlo(index_zone)=l
jhi(index_zone)=isize(2,1)
klo(index_zone)=l
khi(index_zone)=isize(3,1)

enddo
c loop over zones again

do index_zone=l,nzone
c set up index ranges

if (index_zone .eq. i) then
donorname=zonename(2)

c lower point of receiver range
ipnts(l,l)=ihi(1)
ipnts(2,1)=jlo(1)
ipnts(3,1)=klo(1)

c upper point of receiver range
ipnts(l,2)=ihi(1)
ipnts(2,2)=jhi(1)
ipnts(3,2)=khi(1)

c lower point of donor range
ipntsdonor(l,l)=ilo(2)
ipntsdonor(2,1)=jlo(2)
ipntsdonor(3,1)=klo(2)

c upper point of donor range
ipntsdonor(l,2)=ilo(2)
ipntsdonor(2,2)=jhi(2)
ipntsdonor(3,2)=khi(2)

else
donorname=zonename(1)

c lower point of receiver range
ipnts(l,l)=ilo(2)
ipnts(2,1)=jlo(2)
ipnts(3,1)=klo(2)

c upper point of receiver range
ipnts(l,2)=ilo(2)
ipnts(2,2)=jhi(2)
ipnts(3,2)=khi(2)

c lower point of donor range
ipntsdonor(l,l)=ihi(l
ipntsdonor(2,1)=jlo(l
ipntsdonor(3,1)=klo(l

c upper point of donor range
ipntsdonor(l,2)=ihi(l
ipntsdonor(2,2)=jhi(l
ipntsdonor(3,2)=khi(l

end if
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c set up Transform

it ranfrm (1)=i

it ranf rm (2) =2

it ranf rm (3) =3

c write l-to-i info (user can give any name)

call cg_itol_write_f (index_file, index_base, index_zone,

+ _Interface _,donorname, ipnts, ipnt sdonor, itranfrm,

+ index_corm, ier)

enddo

c close CGNS file

call cg_close_f (index_file,ier)

Note that this code segment is geared very specifically toward our 2-zone example, i.e., it

relies on our knowledge of this particular case. Transform defines the relative orientation

of the i, j, and k indices of the abutting zones. Details concerning the values of Transform

are not given here; they can be tbund in [1]. However, note that Transform values of

(1,2,3) indicate that the i, j, k axes of both zones are oriented in the same directions.

Reading the connectivity intbrmation can also be easily accomplished using API calls,

but we do not show an example of this here. And finally, we do not show the layout

of the nodes associated with the connectivity here. The interested user is ret_rred to

Appendix C tbr an example figure.

(b) Connectivity Using General Method

Using a more general method, fbr which each connectivity pair is listed (rather than

ranges), the connectivity infbrmation fbr the current example can be written to a CGNS

file using the fbllowing FORTRAN code segment:

c WRITE GENERAL CONNECTIVITY INFORMATION TO EXISTING CGNS FILE

include _cgnslib_f.h _

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c get number of zones (should be 2 for our case)

call cg_nzones_f(index_file,index_base,nzone,ier)

c loop over zones to get zone sizes and names

do index_zone=l,nzone

call cg_zone_read_f(index_file,index_base,index_zone,

+ zonename(index_zone),isize,ier)

ilo(index_zone)=l

ihi(index_zone)=isize(l,l)

jlo(index_zone)=l
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jhi(index_zone)=isize(2,1)
klo(index_zone)=l
khi(index_zone)=isize(3,1)

enddo
loop over zones again
do index_zone=l,nzone

set up point lists
if (index_zone .eq. i) then

icount=O
do j=jlo(index_zone),jhi(index_zone)

do k=klo(index_zone),khi(index_zone)
icount=icount+l
ipnts(l,icount)=ihi(1)
ipnts(2,icount)=j
ipnts(3,icount)=k
ipntsdonor(l,icount)=ilo(2)
ipntsdonor(2,icount)=j
ipntsdonor(3,icount)=k

enddo
enddo
donorname=zonename(2)

else
icount=O
do j=jlo(index_zone),jhi(index_zone)

do k=klo(index_zone),khi(index_zone)
icount=icount+l
ipnts(l,icount)=ilo(2)
ipnts(2,icount)=j
ipnts(3,icount)=k
ipntsdonor(l,icount)=ihi(1)
ipntsdonor(2,icount)=j
ipntsdonor(3,icount)=k

enddo
enddo
donorname=zonename(1)

end if
write integer connectivity info (user can give any name)

call cg_conn_write_f(index_file,index_base,index_zone,
+ _GenInterface_,Vertex,Abuttingltol,PointList,icount,ipnts,
+ donorname,Structured,PointListDonor,Integer,icount,
+ ipntsdonor,index_conn,ier)
enddo

close CGNSfile
call cg_close_f(index_file,ier)
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W_ do not describe the method tbr recording mismatched (patched) or overset connec-

tivity intbrmation in this document; the user is retorted to [1] tbr details. However, note

that in such cases the use of CellListDonor (along with InterpolantsDonor) implies

the specification of cell center indices on the donor side (these would correspond to ele-

ment numbers in unstructured zones). The InterpolantsDonor intbrmation consists of

real-valued interpolants.
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2.2 Unstructured Grid

This sectiongivesseveralunstructuredgrid examples.The usershouldalreadybe fa-
miliar with the infbrmationcoveredin section2.], whichgivesstructuredgrid examples.
Becausemuchof theorganizationof the CGNSfilesis identicalfor bothgrid types,many
of the ideascoveredin the structuredgrid sectionarenot repeatedagainhere.

2.2.1 Single-Zone Unstructured Grid

This exampleusestheexactsamegrid shownearlierin Fig. 3. However,it is nowwritten
asan unstructured grid, which is made up of a series of 6-sided elements (cubes in this

case). A FORTRAN code segment that uses API calls to write this grid to a CCNS file

called grid. cgns is shown here (note that it does not matter how the nodes are ordered

in an unstructured zone, but in this example they are ordered sequentially for simplicity

of presentation):

c WRITE X, Y, Z GRID POINTS TO CGNS FILE

include 'cgnslib_f.h'

c open CGNS file for write

call cg_open_f(_grid.cgns_,MODE_WRITE,index_file,ier)

c create base (user can give any name)

basename=_Base _

icelldim=3

iphysdim=3

call cg_base_write_f(index_file,basename,icelldim,iphysdim,index_base,ier)

c define zone name (user can give any name)

zonename = _Zone 1 _

c We use the same grid as for the structured example with ni=21,

c nj=17, nk=9. The variables ni, nj, and nk are still used later,

c for convenience when numbering the unstructured grid elements.

ni=21

nj =17

nk=9

c vertex size (21.17.9 = 3213)

isize(1,1)=3213

c cell size (20.16.8 = 2560)

isize(1,2)=2560

c boundary vertex size (zero if elements not sorted)

isize(1,3)=O

c create zone

call cg_zone_write_f(index_file,index_base,zonename,isize,

+ Unstructured,index_zone,ier)

c write grid coordinates (user must use SIDS-standard names here)

call cg_coord_write_f(index_file,index_base,index_zone,RealDouble,
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+ _CoordinateX_,x,index_coord,ier)

call cg_coord_write_f(index_file,index_base,index_zone,RealDouble,

+ _CoordinateY_,y,index_coord,ier)

call cg_coord_write_f(index_file,index_base,index_zone,RealDouble,

+ _CoordinateZ_,z,index_coord,ier)

c set element connectivity:

c do all the HEXA_8 elements (this part is mandatory):

c maintain SIDS-standard ordering

ielem_no=O

c index no of first element

nelem_start=l

do k=l ,nk-i

do j=l,nj-i

do i=l,ni-i

ielem_no=ielem_no+l

c in this example, due to the order in the node numbering, the

c hexahedral elements can be reconstructed using the following

c relationships:

ifirstnode=i+(j-l)_ni+(k-l)_ni_nj

(i ielem_no)=ifirstnode

(2 ielem_no)=ifirstnode+l

(3 ielem_no)=ifirstnode+l+ni

(4 ielem_no)=ifirstnode+ni

(5 ielem_no)=ifirstnode+ni_nj

(6 ielem_no)=ifirstnode+ni_nj+l

(7 ielem_no)=ifirstnode+ni_nj+l+ni

(8 ielem_no)=ifirstnode+ni_nj+ni

ielem

ielem

ielem

ielem

ielem

ielem

ielem

ielem

enddo

enddo

enddo

c index no of last element (=2560)

nelem_end=ielem_no

c unsorted boundary elements

nbdyelem=O

c write HEXA_8 element connectivity (user can give any name)

call cg_section_write_f(index_file,index_base,index_zone,

+ _Elem_,HEXA_8,nelem_start,nelem_end,nbdyelem,ielem,

+ index_section,ier)

c close CGNS file

call cg_close_f(index_file,ier)

Note that fbr unstructured zones, the index dimension is always 1 (because only one

index value is required to identify a position in the mesh), so the isize array contains

the total vertex size, cell size, and boundary vertex size for the zone. In this example, the
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ielem array must be dimensioned exactly as (8,N), where N is greater than or equal to

the total number of elements. The node points that lie in the lower left corner of Fig. 3

are shown schematically for two elements in Fig. 13. Here it can be seen, for example,

that node numbers 1, 2, 23, 22, 358, 359, 380, and 379 make up element 1.

I Element2
i \.. 24

Element1 i 23

22

Node 1

381

360

Figure 13: Schematic representation of nodes and elements of unstructured grid.

The overall layout of the CGNS file created by the above code segment is shown in

Fig. 14. The nodes for y and z are left off due to lack of space. Compare this figure with

the layout for the structured version of this grid in Fig. 4.

For unstructured zones, the user may also wish to separately list the boundary ele-

ments in the CGNS file. This may be useful for assigning boundary conditions, as we

will show in section 2.2.:3 below. In the current example, assume that the user wishes

to assign three diffbrent types of boundary conditions: inflow at one end, outflow at the

other end, and side walls on the four faces in-between. To accomplish this, it would be

helpful to have three additional Elements_t nodes in the CGNS file, each of which lists

the corresponding faces as elements (QUAD_4 in this case).

A FORTRAN code segment that accomplishes a part of this is given here. It may be

a part of the same code (above) that defined the grid and NEXA_8 connectivity.

c do boundary (QUAD) elements (this part is optional,

c but you must do it if you eventually want to define BCs

c at element faces rather than at nodes):

c INFLOW:

ielem_no=O

c index no of first element

nelem_start=nelem_end+l
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root node

Name=Base
Name=CG NS LibraryVersion
Label=CG NS LibraryVersion_t
Data=(version number)

Name=Zone 1
Label=Zone t

Label=CGNSBase t
Data=CellDimension=3,

PhysicalD imension=3

Data=VertexSize=3213,
CellSize=2560,
VertexSizeBoundary=0

Name=ZoneType Name=GridCoordinates Name=Elem
Label=ZoneType_t Label=GridCoordinates_t Label=Elements t
Data=Unstructured Data=MT Data= E lem e ntT_Tpe= H EXA_ 8,

ElementSizeBoundary=0

Name=CoordinateX Name=ElementRange Name=ElementConnectivity
Label=DataArray_t Label=lndexRange_t Label=DataArray_t
Data=x(1) to x(3213) Data=1,2560 Data=ielem(1,1) to ielem(8,2560)

Figure 14: Layout of CGNS file for unstructured grid.

34



i=l

do k=l ,nk-i

do j=l,nj-i

ielem_no=ielem_no+l

ifirstnode=i+(j-l)*ni+(k-l)*ni*nj

]elem(l,ielem_no)=ifirstnode

]elem(2,ielem_no)=ifirstnode+ni*nj

]elem(3,ielem_no)=ifirstnode+ni*nj+ni

ielem(4,ielem_no)=ifirstnode+ni
enddo

enddo

c index no of last element

nelem_end=nelem_start+ielem_no-i

c write QUAD element connectivity for inflow face (user can give any name)

call cg_section_write_f(index_file,index_ase,index_zone,

+ "InflowElem",QUAD_4,nelem_start,nelem_end,nbdyelem,

+ jelem,index_section,ier)
c OUTFLOW:

• . . etc...

In this example, the j elem array must be dimensioned exactly as (4,N), where N is

greater than or equal to the total number of elements. Note that the nelem_start and

nelem_end range is defined subsequent to the range of any other elements (i.e., the HEXA_8

elements) already defined in this zone. In other words, all elements in a given zone must
have a diffbrent number.

The layout of the CGNS file in this case is exactly the same as that shown in Fig. 14,

except that there are now three additional Elements_t nodes under Zone_t. These are

shown separately in Fig. 15.

2.2.2 Single-Zone Unstructured Grid and Flow Solution

To add a flow solution to an unstructured zone, the procedure is identical to that fbr

a structured zone. However, rind cells are not valid fbr unstructured zones and should

not be used. In other words, the code segments given in section 2.1.2 for vertex and

cell-center flow solutions (subsections (a) and (b)) are valid tbr unstructm'ed zones as

well, but the code segments that use rind cells (subsection (c)) are not. For the vertex

and cell-center examples, the only ditIbrence for unstructured zones is that all arrays are

one-dimensional (there is only one index), as opposed to three indices tbr 3-D structured

arrays. A vertex solution indicates that the solution is stored at vertices or nodes. In

the above example, there would be lists of 3213 data array items per solution variable.

A cell center solution implies that the solution is stored at the center of each element. In

the above example, there would be lists of 2560 data array items per solution variable.

The overall layout of the CGNS file is the same as that shown in Fig. 14, except that
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J

Name=lnflowElem Name=OutflowElem Name=SidewallElem
Label=Elements t Label=Elements t Label=Elements t

Data= E lementT_Fpe= Q UAD_4, Dats= E lementT_Fpe= Q UAD_4, D ata= E lementT_Fpe= Q UAD_4,
ElementSizeBoundary=0 ElementSizeBoundary=0 ElementSizeBoundary=0

/

Name= ElementRange
Label=lndexRange_t

Data=2561,2688

Name= ElementRangel
Label=lndexRange_t

Data=2689,2816

Name= ElementC onnectivity
Label= D ataArray_t
Data=jelem(1,1 ) to jelem(4,128)

Name= ElementRange
Label=lndexRange_t
Data=2817,3776

\\ \\
\\_ \ \\

Name= ElementConnectivity I I Name= ElementConnectivity
Label= DataArray_t Label= DataArray_t
Data=kelem(1,1) to kelem(4,128) Data=nelem(1,1) to nelem(4,960)

Figure 15: Layout of additional Elements_t boundary face nodes.

there would also be a FlowSolution_t node under Zone 1, and this node would have

the children nodes GridLocation, Density, and Pressure.

2.2.3 Single-Zone Unstructured Grid with Boundary Conditions

When writing boundary conditions to a CGNS file for an unstructured zone, one fbllows

the same general procedure outlined in section 2.1.3 fbr a structured zone. In other words,

the boundary conditions are defined fbr point ranges or fbr individual points, where the

points refSr to nodes (vertices) of the grid. Coding would be essentially the same as that

presented in section 2.1.3, except that the points and/or ranges are now one-dimensional

(there is only one index), as opposed to three indices fbr 3-D structured arrays.

However, one also has other options fbr unstructured zones. For example, if one

wishes to apply boundary conditions at face centers rather than at vertices, one can

create additional Elements_t nodes that define the boundary face elements, and then

point to these elements rather than to the nodes. By default, boundary conditions are

assumed to apply at vertices (nodes). But when GridLocation is something other than

Vertex, then the boundary conditions fbr an unstructured zone no longer refSr to nodes,
but to elements.

Because this concept is quite different from what was done with the structured zone

earlier, we illustrate it with an example. At the end of section 2.2.1, we showed how

to create the additional Elements_t nodes defining the boundary faces. The face-center

boundary conditions now can be written using the following code segment.

36



c WRITE BOUNDARY CONDITIONS TO EXISTING CGNS FILE

include _cgnslib_f.h _

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c we know that for the unstructured zone, the following face elements

c have been defined as inflow (real working code would check!):

nelem_start=2561

nelem_end=2688

icount=O

do n=nelem_start,nelem_end

icount=icount+l

ipnts(icount)=n

enddo

c write boundary conditions for ilo face

call cg_boco_write_f(index_file,index_base,index_zone,_Ilo _,

+ BCTunnelInflow,PointList,icount,ipnts,index_bc,ier)

c we know that for the unstructured zone, the following face elements

c have been defined as outflow (real working code would check!):

nelem_start=2689

nelem_end=2816

icount=O

do n=nelem_start,nelem_end

icount=icount+l

ipnts(icount)=n

enddo

c write boundary conditions for ihi face

call cg_boco_write_f(index_file,index_base,index_zone,_Ihi _,

+ BCExtrapolate,PointList,icount,ipnts,index_bc,ier)

c we know that for the unstructured zone, the following face elements

c have been defined as walls (real working code would check!):

nelem_start=2817

nelem_end=3776

icount=O

do n=nelem_start,nelem_end

icount=icount+l

ipnts(icount)=n

enddo

c write boundary conditions for wall faces

call cg_boco_write_f(index_file,index_base,index_zone,_Walls _,

+ BCWallInviscid,PointList,icount,ipnts,index_bc,ier)

c
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c the above are all face-center locations for the BCs - must indicate this,

c otherwise Vertices will be assumed!

do ibc=l,index_bc

c (the following call positions you in BC_t - it assumes there

c is only one Zone_t and one ZoneBC_t - real working code would check )

call cg_goto_f(index_file,index_base,ier,_Zone_t_,l,

+ _ZoneBC_t_,l,_BC_t_,ibc,_end _)

call cg_gridlocation_write_f(FaceCenter,ier)

enddo

c close CGNS file

call cg_close_f(index_file,ier)

Note that we assume here that we know in advance the element numbers associated

with each of the boundaries. Wb have written these element numbers as a PointList,

but, because they are in order, we could just as easily have used Pointgange instead. In

that case, only two ipnts values would be needed, equal to nelem_start and nelem_end,

and icount would be 2. Finally, note that the GridLocation_t node under BC_t must be

written using the API call cg_goto_f (which positions you correctly in the tree) fbllowed

by cg_gridlo cat ion_wr it e_f.

A portion of the layout of the CGNS file for the ZoneBC_t node and its children is

shown in Fig. 16. The ZoneBC_t node lies directly under Zone_t. The three figures,

Figs. 14, 15, and 16 taken together, constitute the entire layout of the file.

Name=llo
Label=BC t
Data=BCT-unnellnflow

Name=ZoneBC
Label=ZoneBC_t
Data=MT

Name=lhi Name=Walls
Label=BC t Label=BC t
Data= BC E_xtrapolate Data=BCVValllnviscid

\
/

Name=GridLocation I
Label= G rid Location_t
Data=FaeeCenter

\
\

Name=PointList
Label=lndexArray_t
Data=2561 to 2688

Name=GridLocation ]

Label= G rid Location_tl
Data=FaceCenter ]

Name=PointList

Label=lndexArray_t
Data=2689 to 2816

/

Name=GridLocation
Label= G rid Location_t
Data=FaceCenter

\,

Name=PointList
Label= IndexArray_t
Data=2817 to 3776

Figure 16: Layout of part of CGNS file tbr an unstructured zone with boundary conditions

defined at face-center elements.
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3 ADDITIONAL INFORMATION

This section introduces several additional types of data in CGNS. These items are by

no means necessary to include when getting started, but it is likely that most users will

eventually want to implement some of them into their CGNS files at some point in the

future. The section ends with a discussion on the usage of links.

3.1 Convergence History

The ConvergenceHistory_t node can be used to store data associated with the conver-

gence of a CFD solution. For example, one may wish to store the global coefficient of lift

as a function of iterations. In this case, this variable should be stored at the CGNSBase_t

level of the CGNS file. This is achieved using the API in the tbllowing FORTRAN code

segment:

c WRITE CONVERGENCE HISTORY INFORMATION TO EXISTING CGNS FILE

include _cgnslib_f.h _

c open CGNS file for modify

call cg_open_f (_grid. cgns _,MODE_MODIFY, index_file, ier)

c we know there is only one base (real working code would check!)

index_base=l

c go to base node

call cg_goto_f (index_file, index_base, ier, _end _)

c create history node (SIDS names it GlobalConvergenceHistory at base level)

c nit is the number of recorded iterations

call

c go to

call

+ i,

c write

call

c close

call

cg_convergence_write_f(ntt,_,ier)

new history node

cg_goto_f(index_file,index_base,ier,

_end _)

_ConvergenceHistory_t _,

lift coefficient array (user must use SIDS-standard name here)

cg_array_write_f(_CoefLift_,RealDouble,l,ntt,cl,ier)

CGNS file

cg_close_f(index_file,ier)

In this example, the array cl must be declared as an array of size ntt or larger. Additional

arrays of the same size may also be written under the ConvergenceHistory_t node. Note

that the call to cg_convergence_write_f includes a blank string in this case, because we

are not recording norm definitions.
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3.2 Descriptor Nodes

Descriptor nodes, which record character strings and can be inserted nearly everywhere in

a CGNS file, have many possible uses. Users can insert comments or descriptions to help

clarity the content of some data in the CGNS file. In Appendix C, we mention a possible

use tbr descriptor nodes to describe data that is UserDefined. Another potentially

desirable use of the descriptor node is to maintain copies of the entire input file(s) ti"om

the CFD application code. Because descriptor nodes can include carriage returns, entire

ASCII files can be "swallowed" into the CGNS file. In this way, a future user can see and

retrieve the exact input file(s) used by the CFD code to generate the data contained in

the CGNS file. The only ambiguity possible would be whether the CFD code itself has

changed since that time; but if the CFD code has strict version control, then complete

recoverability should be possible.

An example that writes a descriptor node at the CGNSBase_t level is given here:

c WRITE DESCRIPTOR NODE AT BASE LEVEL

include 'cgnslib_f.h'

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c go to base node

call cg_goto_f (index_file, index_base, ier, _end _)

c write descriptor node (user can give any name)

textl=_Supersonic vehicle with landing gear _

text2=_M=4.6, Re=6 million _

textstring=textl//char(lO)//text2

call cg_descriptor_write_f(_Information_,textstring,ier)

c close CGNS file

call cg_close_f(index_file,ier)

In this example, the Descriptor_t node is named Information and the character string

textstring (which is made up of textl and text2 with a line feed char(10) in-

between) is written there. All character strings must be declared appropriately.

3.3 Dimensional Data

The node DataClass_t denotes the class of the data. When data is dimensional, then

DataClass_t Dimensional. The DataClass_t node can appear at many levels in the

CGNS hierarchy; precedence rules dictate that a DataClass_t lower in the hierarchy

supersedes any higher up.

For dimensional data, one generally is expected to indicate the dimensionality of
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each particular variable through the use of DataClass_t_ DimensionalUnits_t_ and

DimensionalExponents_t. An example of this is shown in the %llowing code segment

in which units are added to the structured grid and cell center flow solution from sec-

tions 2.1.] and 2.1.2.

c WRITE DIMENSIONAL INF0 FOR GRID AND FLOW SOLN

include 'CGNSLib/cgnslib_f.h'

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c we know there is only one FlowSolution_t (real working code would check!)

index_flow=l

c we know there is only one GridCoordinates_t (real working code would check!)

index_grid=l

c put DataClass and DimensionalUnits under Base

call cg_goto_f(index_file,index_base,ier,_end _)

call cg_dataclass_write_f(Dimensional,ier)

call cg_units_write_f(Kilogram,Meter,Second,Kelvin,Degree,ier)

c read fields

call cg_nfields_f(index_file,index_base,index_zone,index_flow,

+ nfields,ier)

do if=l,nfields

call cg_field_info_f(index_file,index_base,index_zone,

+ index_flow,if,idatatype,fieldname,ier)

if (fieldname .eq. _Density _) then

exponents(1)=l.

exponents(2)=-3.

exponents(3)=O.

exponents(4)=O.

exponents(5)=O.

else if (fieldname .eq.

exponents(1)=l.

exponents(2)=-l.

exponents(3)=-2.

exponents(4)=O.

exponents(5)=O.

else

write(6,_( _ Error!

fieldname

stop

end if

'Pressure _) then

this fieldname not expected: '',a32)')
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c write DimensionalExponents

call cg_goto_f(index_file,index_base,ier,_Zone_t_,l,

+ _FlowSolution_t_,l,_DataArray_t_,if,_end _)

call cg_exponents_write_f(RealSingle,exponents,ier)

enddo

c read grid

call cg_ncoords_f(index_file,index_base,index_zone,ncoords,ier)

exponents(1)=O.

exponents(2)=l.

exponents(3)=O.

exponents(4)=O.

exponents(5)=O.

do ic=l,ncoords

c write DimensionalExponents

call cg_goto_f(index_file,index_base,ier,_Zone_t_,l,

+ _GridCoordinates_t_,l,_DataArray_t_,ic,_end _)

call cg_exponents_write_f(RealSingle,exponents,ier)

enddo

c close CGNS file

call cg_close_f(index_file,ier)

Notice in this example that a DataClass_t node and a DimensionalUnits_t node

are placed near tile top of tile hierarchy, under CGNSBase_t. DataClass_t is specified

as Dimensional, and DimensionalUnits_t are specified as (Kilogram, Meter, Second,

Kelvin, Degree). These specify that, by and large, the entire database is dimensional

with MKS units (anything that is not dimensional or not MKS units could be su-

perseded at lower levels). Then, for each variable locally, one need only specify the

DimensionalExponents, where one exponent is defined fbr each unit.

The layout of part of the resulting CGNS file from the above example is shown

in Fig. 17. The density has units of kilogram/meter 3, and the pressure has units of

kilogram/(meter-second2). The grid coordinates (not shown in the figure) have units of
meters.

3.4 Nondimensional Data

This example is fbr the relatively common occurrence of CFD data that is purely nondi-

mensional, fbr which the refbrence state is arbitrary (unknown). This type is refbrred to

as NormalizedByUnknownDimensional. Another nondimensional type, NormalizedBy-

Dimensional, for which the data is nondimensional but the refbrence state is _pecifically

known, is not covered here.

For a NormalizedByUnknownDimensional database, the DataClass is recorded as

such, but also a ReferenceState is necessary to define the nondimensionalizations used.

(A ReferenceState_t node can be used fbr any dataset to indicate the global reference
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Name=Base
Label=CGNSBase t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone t
Data=VertexS ize= (21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

_ame'_-- FlowSolution

Label=FlowSolution_t
Data=MT

Name=D imensionalU nits I
Label= D imensionalU nits_t I
Data=(Kilogram, Meter,

Second, Kelv n, Degree)

Name=GridLocation
Label=GridLocation_t
Data=CellCenter

Name=Density
Label= DataArray_t
Data=r(1,1,1 ) to r(20,16,8)

Name=Pressure
Label=DataArray_t
Data=p(1,1,1) to p(20,16,8)

Name= D imensionalExponents
Label= D imensionalExponents_t
Data=(+1 ,-1 ,-2,0,0)

Name=DimensionalExponents
Label= D imensionalExponents_t
Data=(+1,-3,0,0,0)

Figure 17: Layout of part of a CGNS file for flow solution at cell centers with dimensional
data.
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state (such as free stream), as well as quantities such as the reference Mach number and

Reynolds number. A ReferenceState_t node was not included in section I-L& but it

could have been.)

For the current example, we do not go into detail regarding the choices of the

items which should populate the reference state for a NormalizedByUnknownDimensional

database. W% simply show in the example some typical choices which very often would

likely be included. A detailed discussion of how the data in ReferenceState_t defines

the nondimensionalizations is given in the SIDS document [1 ].

c WRITE NONDIMENSIONAL INFO

include _CGNSLib/cgnslib_f.h _

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c put DataClass under Base

call cg_goto_f(index_file,index_base,ier,_end _)

call cg_dataclass_write_f(NormalizedByUnknownDimensional,ier)

c put ReferenceState under Base

call cg_state_write_f(_ReferenceQuantities_,ier)

c Go to ReferenceState node, write Mach array and its dataclass

call cg_goto_f(index_file,index_base,ier,_ReferenceState_t_,l,

+ _end _)

call cg_array_write_f(_Mach_,RealSingle,l,l,xmach,ier)

call cg_goto_f(index_file,index_base,ier,_ReferenceState_t_,l,

+ _DataArray_t_,l,_end _)

call cg_dataclass_write_f(NondimensionalParameter,ier)

c Go to ReferenceState node, write Reynolds array and its dataclass

call cg_goto_f(index_file,index_base,ier,_ReferenceState_t_,l,

+ _end _)

call cg_array_write_f(_Reynolds_,RealSingle,l,l,reue,ier)

call cg_goto_f(index_file,index_base,ier,_ReferenceState_t_,l,

+ _DataArray_t_,2,_end _)

call cg_dataclass_write_f(NondimensionalParameter,ier)

c Go to ReferenceState node to write reference quantities"

call cg_goto_f(index_file,index_base,ier,_ReferenceState_t_,l,

+ _end _)

c First, write reference quantities that make up Mach and Reynolds:

c Mach_Velocity

call cg_array_write_f(_Mach_Velocity_,RealSingle,l,l,xmv,ier)

c Mach_VelocitySound

call cg_array_write_f(_Mach_VelocitySound_,RealSingle,

+ l,l,xmc,ier)

c Reynolds_Velocity
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call cg_array_write_f(_Reynolds_Velocity_,RealSingle,
+ l,l,rev,ier)
c Reynolds_Length

call cg_array_write_f(_Reynolds_Length_,RealSingle,
+ l,l,rel,ier)
c Reynolds_ViscosityKinematic

call cg_array_write_f(_Reynolds_ViscosityKinematic_,RealSingle,
+ l,l,renu,ier)
c

c Next, write flow field reference quantities:

c Density

call cg_array_write_f(_Density_,RealSingle,l,l,rho0,ier)

c Pressure

call cg_array_write_f(_Pressure_,RealSingle,l,l,p0,ier)

c VelocitySound

call cg_array_write_f

c ViscosityMolecular

call cg_array_write_f

+ l,l,vm0,ier)

c LengthReference

call cg_array_write_f

+ l,l,xlength0,ier)

c VelocityX

call cg_array_write_f

c VelocityY

call cg_array_write_f

c VelocityZ

call cg_array_write_f

c close CGNS file

call cg_close_f(index_file,ier)

_VelocitySound_,RealSingle,l,l,c0,ier)

_ViscosityMolecular_,RealSingle,

_LengthReference_,RealSingle,

_VelocityX_,RealSingle,l,l,vx,ier)

_VelocityY_,RealSingle,l,l,vy,ier)

_VelocityZ_,RealSingle,l,l,vz,ier)

In this case, the only infbrmation added to the CGNS file is at the CGNSBase_t

level. Note that Mach and Reynolds (which are stored under ReferenceState) are

variables that are known as _NondimensionalParameter"s, so they must each contain

a DataClass child node stating this (the local DataClass nodes supersede the overall

NormalizedByUnknownDimensional data class that holds tbr everything else).

The layout of the relevant portion of the resulting CGNS file tYom the above example is

shown in Fig. 18. Many of the reference quantities that appear under ReferenceState_t

have been left out of the figure to conserve space.
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Name=Base
Label=CGNSBase t
Data=CellDimension=3,

PhysicalDimension=3

Name=ReferenceState Name=DataClass
Label= ReferenceState_t Label=DataClass t
Data= MT Data= Normalized-ByU nknownD imensional

J
/J "_

Name=ReferenzeStateDeseription Name=Maeh Name=Density
kabel=Deseriptor_t kabel=DataArray_t kabel=DataArray_t
Data= ReferenzeQuantities Data=4.6 Data=1.0

Name=DataClass
Label=DataClass t
Data= NondimensionalParameter

Figure 18: Layout of part of a CGNS file with purely nondimensional data (reference

state unknown).

3.5 Flow Equation Sets

The FlowEquationSet_t node is useful tbr describing how a flow solution was generated.

This is one of the usethl self-descriptive aspects of CGNS that may improve the usethlness

and longevity of a CFD dataset. For example, under this node, intbrmation such as the

following may be recorded: the flow field was obtained by solving the thin-layer Navier-

Stokes equations (with ditIusion only in the j-coordinate direction); the Spalart-Allmaras

turbulence model was employed, and an ideal gas assumption was made with _ 1.4.

The following FORTRAN code segment writes some of the above example flow equa-

tion set intbrmation under the Zone_t node from our earlier single-zone structured grid

example from section 2.1. (Note that a FlowEquationSet_t node can also be placed at

a higher level, under the CgNSBase_t node. The usual precedence rules apply).

c WRITE FLOW EQUATION SET INFO

include 'CGNSLib/cgnslib_f.h'

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c existing file must be 3D structured (real working code would check!)
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c Create _FlowEquationSet _ node under _Zone_ _

call cg_goto_f(index_file,index_base,ier,_Zone_t_,index_zone,

+ _end _)

c equation dimension = 3

ieq_dim=3

call cg_equationset_write_f(ieq_dim,ier)

Create _GoverningEquations _ node under _FlowEquationSet _

call cg_goto_f(index_file,index_base,ier,_Zone_t_,index_zone,

_FlowEquationSet_t _,l,_end _)

call cg_governing_write_f(NSTurbulent,ier)

Create _DiffusionModel _ node under _GoverningEquations _

call cg_goto_f(index_file,index_base,ier,_Zone_t_,index_zone,

_FlowEquationSet_t_,l,_GoverningEquations_t_,l,_end _)

idat a (1)=0

idata(2) =i

idata(3) =0

idata(4) =0

idata(5) =0

idata(6) =0

call cg_diffusion_write_f(idata,ier)

Create _GasModel _ under _FlowEquationSet _

call cg_goto_f(index_file,index_base,ier,_Zone_t_,index_zone,

+ _FlowEquationSet_t_,l,_end _)

call cg_model_write_f(_GasModel_t_,Ideal,ier)

c Create _SpecificHeatRatio _ under GasModel

call cg_goto_f(index_file,index_base,ier,_Zone_t_,index_zone,

+ _FlowEquationSet_t_,l,_GasModel_t_,l,_end _)

call cg_array_write_f(_SpecificHeatRatio_,RealSingle,l,l,

+ gamma,ier)

c Create _DataClass _ under _SpecificHeatRatio _

call cg_goto_f(index_file,index_base,ier,_Zone_t_,index_zone,

+ _FlowEquationSet_t_,l,_GasModel_t_,l,_DataArray_t _,

+ l,_end _)

call cg_dataclass_write_f(NondimensionalParameter,ier)

c close CGNS file

call cg_close_f(index_file,ier)

This particular example is specific to a 3-D structured zone. In an unstructured zone_

the use of DiffusionModel is not valid. The layout of the relevant portion of the resulting

CGNS file from the above example is shown in Fig. 19.
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Name=Zone 1
Label=Zone t
D ata=VertexS ize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType Name=FlowEquationSet
Label=ZoneType_t Label=FlowEquationSet_t
Data=Structured Data=MT

Name= EquationD imension Name=GoverningEquations Name=GasModel
Label="int" Label=GoverningEquations_t Label=GasModel_t
Data=3 Data=NSTurbulent Data=Ideal

Name D iffuslonModel

Labe/(0i_t!l,_'_)+/r_ dex Dim e nsi° n]"

Name=SpecificH eatRatio
Label=DataArray_t
Data=1.4

Name=DataClass
Label=DataClass t
D ata=NondimensionalParameter

Figure 19: Layout of part of a CGNS file with flow equation set infbrmation.
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3.6 Time-Dependent Data

Time-dependentdata (data with multiple flowsolutions)can alsobe storedin a CGNS
file. Ditibrentcircumstancesmayproducedatawith multiple flowsolutions;for example:

1. Non-movinggrid

2. Rigidly-movinggrid

3. Defbrmingor changinggrid

Eachof thesemay either be the result of a time-accuraterun, or elsemay simply be
multiple snapshotsof a non-time-accuraterun asit iteratestowardconvergence.

This sectiongivesan examplefor type 1 only. Readersinterestedin the two other
types shouldrefbr to the SIDSdocument [1]. For a non-movinggrid, the methodfbr
storing the multiple flow solutionsis relatively simple:multiple FlowSolution_t nodes,
eachwith a differentname,are placedunder eachZone_tnode. However,there also
needsto be a mechanismtbr associatingeachFlowSolution_t with a particular time
and/or iteration. This is accomplishedthroughthe useof BaseIterativeData_t (under
CGNSBase_t)and ZonelterativeData_t (under eachZone_t). BaselterativeData_t
containsNumber0fSteps,the numberof times and/or iterations stored,and their val-
ues. ZonelterativeData_t containsFlowSolutionPointers asa characterdata array.
FlowSolutionPointers is dimensionedto be of sizeNumber0fSteps,and containsthe
names of the FlowSolution_t nodes within the current zone that correspond with the

respective times and/or iterations. Finally, a SimulationType_t node is placed under

CGNSBas e_t to designate what type of simulation (e.g., T imeAc cur at e, NonT imeAc curat e)

produced the data. (Note: the SimulationType_t node is not restricted for use with

time-dependent data; arty CGNS dataset can employ it!)

The fbllowing FORTRAN code segment writes some of the above infbrmation, using

our earlier single-zone structured grid example from section 2.1. For the purposes of this

example, it is assumed that there are 3 flow solutions from a time-accurate simulation,

to be output as a function of time to the CGNS file. The variables rl and pl represent

the density and pressure at time 1, r2 and p2 are at time 2, and r3 and p3 are at time 3.

c WRITE FLOW SOLUTION TO EXISTING CGNS FILE

include 'CGNSLib/cgnslib_f.h'

c open CGNS file for modify

call cg_open_f(_grid.cgns_,MODE_MODIFY,index_file,ier)

c we know there is only one base (real working code would check!)

index_base=l

c we know there is only one zone (real working code would check!)

index_zone=l

c set up the times corresponding to the 3 solutions to be

c stored:
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time(1)=lO.

time(2)=20.

time(3)=50.

c define 3 different solution names (user can give any names)

solname(1) = _FlowSolutionl _

solname(2) = _FlowSolution2 _

solname(3) = _FlowSolution3 _

c do loop for the 3 solutions:

don=l,3

c create flow solution node

call cg_sol_write_f(index_file,index_base,index_zone,solname(n),

+ Vertex,index_flow,ier)

c write flow solution (user must use SIDS-standard names here)

if (n .eq. i) then

call cg_field_write_f(index_file,index_base,index_zone,index_flow,

+ RealDouble,_Density_,rl,index_field,ier)

call cg_field_write_f(index_file,index_base,index_zone,index_flow,

+ RealDouble,_Pressure_,pl,index_field,ier)

else if (n .eq. 2) then

call cg_field_write_f(index_file,index_base,index_zone,index_flow,

+ RealDouble,_Density_,r2,index_field,ier)

call cg_field_write_f(index_file,index_base,index_zone,index_flow,

+ RealDouble,_Pressure_,p2,index_field,ier)

else

call cg_field_write_f(index_file,index_base,index_zone,index_flow,

+ RealDouble,_Density_,r3,index_field,ier)

call cg_field_write_f(index_file,index_base,index_zone,index_flow,

+ RealDouble,_Pressure_,p3,index_field,ier)

end if

enddo

c create BaselterativeData

nsteps=3

call cg_biter_write_f(index_file,index_base,_TimeIterValues _,

+ nsteps,ier)

c go to BaseIterativeData level and write time values

call cg_goto_f(index_file,index_base,ier,_BaseIterativeData_t _,

+ l,_end _ )

call cg_array_write_f('TimeValues',RealDouble,l,3,time,ier)

c create ZoneIterativeData

call cg_ziter_write_f(index_file,index_base,index_zone,

+ _ZoneIterativeData_,ier)

c go to ZoneIterativeData level and give info telling which

c flow solution corresponds with which time (solname(1) corresponds

c with time(1), solname(2) with time(2), and solname(3) with time(3))

call cg_goto_f(index_file,index_base,ier,_Zone_t _ ,
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+ index_zone, _ZonelterativeData_t _ ,i, _end _)

idat a (i )=32

idata(2) =3

call cg_array_write_f ( _FlowSolutionPointers _, Character, 2, idata,

+ solname, ier)

c add SimulationType

call cg_simulation_type_write_f (index_file,index_base,

+ TimeAccurate, ier)

c close CGNS file

call cg_close_f (index_file,ier)

As cautioned for earlier coding snippets, dimensions must be set appropriately tbr

all variables. The variable time (which is an array dimensioned size 3 in this case)

contains the time values stored under BaselterativeData_t+ The layout of the result-

ing CGNS file from the above example is shown in Fig+ 20+ Compare this figure with

Fig+ 6+ To conserve space, the GridCoordinates_t, ZoneType_t, and all nodes under-
neath FlowSolution_t have been left off+

root node

Name=Base
Name=CG NS LibraryVersion
Label=CG NS LibraryVersion_t
Data=(version number)

Name=Zone 1
Label=Zone t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),

Label=CGNSBase t
Data=CellDimension=3,

PhysicalD imension=3

Y
Name=SimulationType Name=TimelterValues
Label=Sim ulationType_t Label=BaselterativeD ata_t
Data=TimeAccurate Data=Number of Steps = 3

VertexSizeBoundary=(0,0,0) I
I

__ N ame=T JlmeVa lues

• Label=DataArray tName=FlowSolutionl J \ _
Data 10, 20, 50Label= F I'ow'S_u-t'i'on-'t / _ _ uam=, u, zu.

0ata= / \
. .... o..... \ ,ame= one,,era,, 
Name FlowSolut=on2Name=FlowSolution2 \ La be I=Zone Ite rativel_ata- t
Label=FlowSolution t ^,^-R,-r ..........

wSolution_t \ D ....... i _
La_ I__--F/o . _.1. ,._^ I Name= FlowSolutionPointers

Name=t-=ow_o=ut.=on_ I Label=DataArray t
Label=FlowSolut=on_t Data=FlowSolutionl
Data-MT- I FlowSolution2,

F IowSolution3

Figure 20: Layout of CGNS file for simple Cartesian structured grid with multiple time-

accurate flow solutions (non-moving grid coordinates).
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3.7 Using Links

A link associatesonenodeto anotherwithin aCGNStree,or evenonenodeto anotherin
a separateCGNSfile altogether.This canbeusefulwhenthere is repeateddata; rather
than write the samedata multiple times,links canpoint to the data written only once.

Oneveryimportant useof links that mayberequiredby manyusersis to point to grid
coordinates.This usagecomesabout in the tbllowingway.Supposea useris planningto
usea particular grid tbr multiple cases.Thereareseveraloptionstbr how to storethe
data. Amongtheseare:

1. Keepa copyof the grid with eachflow solutionin separateCGNSfiles.

2. Keepjust oneCGNSfile, with the grid and multiple FlowSolution_t nodes;each
FlowSolution_t nodecorrespondswith a differentcase.

3. Keepjust oneCGNSfile, with multiple CGNSBase_tnodes.Thegrid and oneflow
solutionwouldbestoredunderonebase.Otherbaseswouldeachcontaina separate
flow solution,plus a link to the grid coordinatesin the first base.

4. KeeponeCGNSfile with the grid coordinatesdefined,and storethe flowsolution
for eachcasein its ownseparateCGNSfile, with a link to the grid coordinates.

Item 1 is conceptuallythe most direct, and is certainly the recommendedmethod
in general(this is the way all exampleCGNSfiles havebeenportrayed sofar in this
document). However,if the grid is very large,then this methodcausesa lot of storage
spaceto beunnecessarilyusedto storethe samegrid pointsmultiple times. Item 2may
or maynot bea viableoption. If the useris striving to havethe CGNSfilebecompletely
selfdescriptive,with ReferenceStat eandFlowEquationSet describingtherelevantcon-
ditions, then this methodcannotbeusedif the ReferenceState or FlowEquationSetis
differentbetweenthe cases(tbr example,diti_rentMachnumbers,Reynoldsnumbers,or
anglesof attack). Item 3 removesthis restriction. It useslinks to the grid coordinates
within the samefile. Item 4 is similar to item 3, exceptthat the grid coordinatesand
eachflow solutionarestoredin separatefilesaltogether.

A samplelayout showingthe relevantportions of two separateCGNS files for an
exampleof item 4 is shownin Fig. 21. Note that tbr multiple-zonegrids, eachzone
in FILE 1 in this examplewould have a separatelink to the appropriatezone'sgrid
coordinatesin FILE 2.

At the time of this publication,thereis currentlynocapabilityin the API tbr creating
links within a CGNSfile; instead,a usermust employthe ADF core library software
(specificallyADFLINK).However,reading a linked CGNS file presents no difficulties tbr

the API, because links are "transparent." As long as any separate linked files keep their

name unchanged, and maintain the same position (within the Unix-directory) relative to

the parent file, opening the parent file will automatically access the linked ones.
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FILE 1 :

root node 1

FILE 2:

root node

Name= FlowSolutionBase
Label=CGNSBase t
Data=CellDimension=3,

PhysicalDimension=3

Name=GridBase
Label=CGNSBase t
Data=CellDimension=3,

PhysicalD imension=3

Name=Zone 1
Label=Zone t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType Name=FlowSolution
Label=ZoneType_t Label=FlowSolution_t
Data=Structured Data=MT

(link)

Name=GridCoordinates
Label=G ridCoordinates_t
Data=MT

Name=Zone 1
Label=Zone t
D ata=VertexS ize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Figure 21: Layout of part of two CGNS files with a link from one to the grid coordinates
of the other.
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4 TROUBLESHOOTING

4.1 Handling Errors

The API has an extensive number of checks for errors, relating both to illegal usage of

ADF as well as relating to SIDS-noncompliance. However, it is not guaranteed that the

API will catch all problems prior to reaching the core level. The list of errors that can

arise in the ADF core routines themselves are not listed here; they can be tbund in the

file ADF_interface. c under "Error strings," and in the ADF User's Guide [2].

If an error occurs, the message given by the ADF or the API routine should hopefully

be descriptive enough to point to the source of the error.

4.2 Known Problems

One known problem that can occur, which is not so much a problem as it is a restriction,

relates to links. If a user makes a link from one CGNS file to another, then the linked file

m_tst have write permission if the user wishes to open the linking file in MODE_MODIFYor

MODE_WRITE mode. In other words, opening a CGNS filein MODE_MODIFY or MODE_WRITE

mode implies that the entire CGNS hierarchy, including links (since they are transparent),
is accessible in that mode.
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5 FREQUENTLY ASKED QUESTIONS

Q: Does CONS support solution array names that are not listed in the SIDS?

A: You can use any data-name that you want fbr solution arrays. However, if you

create a new name not listed in the SIDS, it may not be understood by other applications

reading your file.

Q: What is a Family in CONS?

A: The families are used to link the mesh to the geometry. The data structure Family_t

is optional and can be used to define the geometry of boundary patches by referencing

CAD entities. In turn, mesh patches can reference family, so we get: mesh -> family ->

geometry.

Q: What are DiscreteData_t and IntegralData_t used for?

A: DiscreteData_t can be used to store field data that is not typically considered part

of the flow solution FlowSolution_t. IntegralData_t can be used to store generic global

or integral data (a single integer or floating point number is allowed in each DataArray_t

node under IntegralData_t).

Q: What are some good programming practices that will help me avoid problems

when implementing CONS in my code?

A: The usual good programming standards apply: use plenty of comments, use logical

indentation to make the code more readable, etc. In addition, the API returns an error

code fl'om each of its calls; it is a good idea to check this regularly and gracefully exit

the program with an error message when it is not zero. In FORTRAN, you can use:

if (ier .ne. O) call cg_error_exit_f

Q: How can I look at what is in a CONS file?

A: At the time of this publication, the utility adfedit is the best way to look at a

CONS file. This utility allows you to view the entire tree structure, or look at individual

nodes of data. A brief summary of adfedit is given in Appendix A.

Q: How can I tell if I have created a truly SIDS-compliant CONS file?

A: It is currently very difficult to guarantee that a user has created a SIDS-compliant

CONS file, that others can read and understand. But because the API (mid-level-library)

has many checks tbr non-compliance, it is much more difficult for you to make a mistake

when using it than if you utilize ADF (core-level) calls.
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Appendix A. THE ADFEDIT UTILITY

The utility adf_dit can be used to view (and edit) CGNS files. It is currently included

with the CGNS software, although it is possible that in the future it may be superseded

by a more advanced utility.

The following is a brief description of the most basic capabilities of the adf_dit utility.

A typical adf_dit session might go like this:

adfSdit

ADFmain> br

ADFbrowse> o cgns.file
ADFbrowse> t

ADFtools> pt

ADFtools> pt -1

ADFtools> br

ADFbrowse> ls

ADFbrowse> cd Base

ADFbrowse> dd

ADFbrowse> pd
ADFbrowse> cd ..

ADFbrowse> cd

ADFbrowse> ?

ADFbrowse> quit

go to "browse"

open file cgns.file

gO to %ools _

print out entire directory tree structure

same, but include node label info

go to "browse"

list children (sub-nodes) of current node

go down one level to the node named "Base"

give description of node data

print node data

go up one level in the tree

go to the top of the tree (to root node)

help

exits program
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Appendix B. EXAMPLE COMPUTER CODES

The fbllowing computer codes are complete, workable versions of the codes mentioned

in the text of this User's Guide (plus some that are not mentioned). They can be obtained

from the CGNS website www.cgns.org (in the User's Guide section). They read and write

very simple example CGNS files, in order to help the user understand the CGNS concepts

as well as the usage of the API calls. Instructions for compiling them on UNIX systems is

contained in comment lines in each program. These assume that the user has obtained the

CGNS libraries (from the same website) and placed it locally as subdirectory/CGNSLib.

Most of the following codes are written in FORTRAN.

Note that these programs are very unsophisticated, purposefully fbr ease of readability.

Real working codes would be written more generally, with more checks, and would not

be as hardwired for particular cases. The codes are listed here by corresponding section.

STRUCTURED GRID

Section 2.1.1 :

write_grid_str.f writes grid

write_grid_str.c writes grid (C-program example)

read_grid_str.f reads grid

Section 2.1.2:

write_flowvert_str.f writes vertex-based flow solution

read_flowvert_str.f reads vertex-based flow solution

writeJlowcent_str.f writes cell centered flow solution

read_flowcent_str.f reads cell centered flow solution

write_flowcentrind_str.f writes cell centered flow solution with rind cells

read_flowcentrind_str.f reads cell centered flow solution with rind cells

Section 2.1.3:

write_bc_str.f writes PointRange boundary condition patches

read_bc_str.f reads PointRange boundary condition patches

write_bcpnts_str.f writes PointList boundary condition patches

read_bcpnts_str.f reads PointList boundary condition patches

Section 2.1.4:

write_grid2zn_str.f writes 2-zone grid

read_grid2zn_str.f reads 2-zone grid

write_con2zn_str.f writes 1-to-1 connectivity for 2-zone example

read_con2zn_str.f reads 1-to-1 connectivity fbr 2-zone example

write_con2zn_genrl_str.f writes general 1-to-1 connectivity for 2-zone example

read_con2zn_genrl_str.f reads general 1-to-1 connectivity fbr 2-zone example
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UNSTRUCTURED GRID

Section 2.2.1 :

write_grid_unst.f writes grid

read_grid_unst.f reads grid

Section 2.2.2:

writeJlowvert_unst.f writes vertex-based flow solution

read_flowvert_unst.f reads vertex-based flow solution

Section 2.2.3:

write_bcpnts_unst.f writes PointList boundary condition patches (FaceCenter)

read_bcpnts_unst.f reads PointList boundary condition patches (FaceCenter)

GENERAL

Section 3.1:

write_convergence.f writes convergence history

read_convergence.f reads convergence history

Section 3.2:

write_descriptor.f writes descriptor node under CGNSBase_t

read_descriptor.f reads descriptor node under CGNSBase_t

Section 3.3:

write_dimensional.f writes dimensional data to an existing grid + flow solution

read_dimensional.f reads dimensional data from an existing grid + flow solution

Section 3.4:

writemondimensional.f writes nondimensional data to an existing CGNS file

read_nondimensional.f reads nondimensional data from an existing CGNS file

Section 3.5:

writeJloweqn_str.f

read_floweqn_str.f

Section 3.6:

writes flow equation infbrmation fbr structured example

reads flow equation infbrmation for structured example

write_timevert_str.f writes time-dependent flow soln (as Vertex) fbr structured example

read_timevert_str.f reads time-dependent flow soln (as Vertex) for structured example
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Appendix C. OVERVIEW OF THE SIDS

C.1 The Big Picture

As mentioned in the Introduction, a CGNS file is organized into a set of "nodes" in

a tree-like structure, in much the same way as directories are organized in the UNIX

environment. Each node is identified by both a label and a name. Most node labels are

given by a series of characters tbllowed by "_t". There are generally very strict rules

governing the labeling conventions in a CGNS file. Node names are sometimes user-

defined, but sometimes must also tbllow strict naming conventions. The label identifies

a "type." For example, Zone_t identifies a Zone-type node, and DataArray_t identifies a

type of node that contains a data array. The name identifies a specific instance of the

particular node type. For example, Density is the name of a node of type DataArray_t

that contains an array of densities.

As you become more familiar with how CGNS files are organized, you will notice

that, generally, the higher you are in the CGNS hierarchy, the more important the label

is (names tend to be user-defined); whereas the lower you are in the hierarchy, the more

important the name is. This convention arises because at the higher levels, the broader

categories are established, and are used to determine "where to go" in the hierarchy. At

the lower levels, the category becomes less important because this is the region where

you are searching tbr specific items.

Throughout the remainder of this first section, we will primarily be retSrring to the

nodes by their label, because we are focusing on the "big picture." In later sections, as

we get into specific examples, both names and labels will be retSrred to.

It is important to note at this point that the SIDS document specifies the layout of the

CGNS file, in terms of parents and children. However, when a given piece of information

is listed as being "under" a node, there are actually two possibilities: the information

can be stored as data in the c_trrent node, or it can be stored as data in or _mder a

separate child node. This distinction is illustrated in Fig. 22. The SIDS-to-ADF mapping

document [3] determines which of the two possibilities are used tbr each situation, and

must always be consulted along with the SIDS document. Throughout the remainder of

this appendix, the location of intbrmation (whether as data or as a separate child node)

will always be explicitly specified, according to the SIDS-to-ADF mapping document.

The remainder of this appendix attempts to summarize the most important and most

commonly-used aspects of the SIDS. It does not cover all possible nodes or situations. It

is intended as a general overview only. It is also likely that future extensions to the SIDS

will add additional capabilities beyond what we cover here.

The top, or entry-level, of the CGNS file is always what is ret_rred to as the "root

node." Children to be tbund directly under this node are the node CGNSLibraryVersion_t

and one or more CGNSBase_t nodes. The CGNSLibraryVersion_t node has, as its data,

the library version (release) number. The CGNSBase_t node represents the top level
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Parent node
(data1 stored here)

Child node
(data2 stored here)

Parent node here)(no data stored

Child node Child node
(data1 stored here) (data2 stored here)

(a) one set of data stored in parent node (b) all data stored in children nodes

Figure 22: Two possible treatments of a parent node with sets of data "under" it.

for a given database, or "case." Most CGNS files will only have one CGNSBase_t node,

although the SIDS allows tbr any number in order to remain extensible and to allow tbr

the possibility of having more than one "case" in a single file. Here, the definition of

"case" is left open. For the remainder of this appendix, we assume that there is only one

CGNSBase_t node within a given CGNS file.

The CGNSBase_t node may have, as its children, the tbllowing nodes: Zone_t,

ConvergenceHistory_t, BaselterativeData_t, SimulationType_t, Family_t, IntegralData_t,

DataClass_t, FlowEquationSet_t, DimensionalUnits_t, ReferenceState_t, and Descriptor_t.

The Zone_t node gives intbrmation about a particular zone of the grid; most of

the data in the CGNS file is usually tbund under this node. Any number of Zone_t

nodes is allowed at this level. Its children will be described in greater detail below.

ConvergenceHistory_t contains solution history intbrmation typically output by many

CFD codes, such as residual, lift, drag, etc. as a function of iteration number. By conven-

tion, its name is GlobalConvergenceHistory. A ConvergenceHistory_t node can exist

under the Zone_t node as well, but there, its name is by convention ZoneConvergenceHistory.

BaselterativeData_t stores intbrmation relating to the times and/or iteration num-

bers tbr a database in which flow solutions and/or grids at multiple times are stored.

SimulationType_t describes the type of simulation stored (i.e., TimeAccurate or NonTimeAccurate).

Family_t is generally used to tie the grid to geometric CAD data, or to link certain en-

tities together as a common part (e.g., "wing," %trut," etc.). Any number of Family_t
nodes is allowed.

The remaining nodes allowed under CGNSBase_t are somewhat more generic, and
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can exist at other levels in the hierarchybesidethis one. They are briefly described
here. IntegralData_t is a %arch-all" node tbr storing any desiredsets of generic
data. Any numberof IntegralData_t nodesis allowedat this level. DataClass_t
(which, by convention,has the nameDataClass) indicatesthe tbrm that the data in
the CGNSBase_tis stored, tbr example: Dimensional, NormalizedByDimensional,or
NormalizedBygnknownDimensional.FlowEquationSet_t(which,byconvention,hasthe
nameFlowEquationSet)definestheequationsusedin theCFD simulation.Dimensionalgnits_t
(which,by convention,hasthe nameDimensionalUnits) definesthe dimensionalunits
used(if any). ReferenceState_t (which,by convention,hasthe nameReferenceState)
definesa retSrencestate. This nodeis wherequantitiessuchasReynoldsnumber,Mach
number,and other retSrencequantitiesthat definethe flow field conditionsand/or the
nondimensionalizationsare stored. Finally, Descriptor_t is usedto store descriptor
strings. Any numberof Descriptor_t nodesis allowedat this level.

The data storedwithin the CGNSBase_tnodeitself are the CellDimension and the
PhysicalDimension. The CellDimension is the dimensionalityof the cellsin the mesh
(e.g., 3 for volumecell, 2 for face cell). The PhysicalDimension is the number of
coordinatesrequiredto definea nodeposition (e.g.,1 for l-D, 2 tbr 2-D, 3 tbr 3-D). The
index dimension,which is the numberof different indicesrequiredto retSrencea node
(e.g.,1 i, 2 i,j, 3 i,j,k), is not stored,but canbedeterminedtbr eachzonebasedon its
type (Structured or Unstructured). If Structured, the index dimensionis the same
asCellDimension. If Unstructured, the index dimensionis 1.

Much informationcanbe storedunder Zone_t. Becausethis is an overview,wedo
not go through it all here. Instead,weonly highlight the tSaturesthat most usersare
likely to use. ZoneType_t(which, by convention,has the nameZoneType)storesthe
nameStructured or Unstructured. GridCoordinates_t is the parentnodeof the grid
coordinatesarrays,suchasCoordinateX,CoordinateY, and CoordinateZ.Any number
of GridCoordinates_t nodesare allowedat this level (to handlethe caseof detbrming
grids). By convention,the original grid coordinateshas the name GridCoordinates.
FlowSolution_t storesunder it nodeswhich contain the flow solution; tbr example,
Density, VelocityX, VelocityY, VelocityZ, and Pressure. It alsogivesthe location
at which the solutionis stored (e.g.,CellCenter, Vertex), and includesthe possibility
for includingRind (ghostcell) intbrmation. Any numberof FlowSolution_t nodesare
allowedat this level. The Elements_tdata structureholdsunstructuredelementdata
suchas connectivity,neighbors,etc. Any numberof Elements_t nodesareallowedat
this level. ZoneIterativeData_t storesintbrmation necessarytbr a databasein which
flow solutionsat multiple times are stored. Other important nodesunder Zone_tare
ZoneBC_t(which, by convention,has the nameZoneBC)and ZoneGridConnectivity_t
(which,byconvention,hasthenameZoneGridConnectivity). Thesestoretheboundary
conditionsand the grid connectivity intbrmation, respectively.Morewill be said about
thesenodeslater.

Thedatastoredwithin the Zone_tnodeitself aretheVertexSize, the CellSize, and
the VertexSizeBoundary. Thesearedimensionedby the indexdimension,and givethe
numberof vertices,the numberof cells,and the numberof boundaryvertices(usedtbr
sortedelementsin unstructuredzonesonly), respectively.
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L root nod<

I C G NSLibraryVersio n tl CGNSBase t(data=version number) (data=CellDimension, & PhysicalDimension)

_ ] .en_-ceState_t ]LZone t
ConvergenceHistory t I _(data-VertexSize,

/ (data=no of iterations) I /CellSize, &

__/_ IDataArray-t ] _)?"'a'_aArray t

(data=ref info) / - 1,

GridCo_ _ZoneType_t _ -- ZoneGridConnectivity t]_ L(data=type)] FlowSolution t] ZoneBC tl I

_dridLocation t ] _ ID ataArray-t I_.a_aArray_
ata=location)_ lidata=rind inf°) 1l(data=s°luti°n) 1

 .taArr.,t l I0"taA a't

Figure 23: Hierarchical structure of a typical CGNS file (structured grid type).
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An important point to note here is that the API sorts the Zone_t nodes alphanumer-

ically according to their name when it reads them. This was deemed necessary because

most CFD codes currently perform operations on the zones of multiple-zone grids in a

certain order. To duplicate existing non-CGNS applications, it is necessary to insure that

zones can be read in the desired sequence. (ADF does not necessarily retrieve data in

the same order in which it was stored, so the API reader tbr zones was built to do this.)

Hence, when naming zones, the user should make sure they are named alphanumerically

(if an ordering is desired).

For example, the naming convention ZoneN, where N is the zone number, is alphanu-

meric only up to Zoneg. Zonel0 through Zonel9 would get sorted between Zonel and

Zone2, and so on. Spaces are allowed in names, so Zone N, with two spaces, (e.g.,

Zone i, Zone 2,... Zone 99, ZonelO0,...) is alphanumeric up to Zone999. Other zone

naming conventions are certainly possible, and are completely up to the user to define

appropriately.

A summary graphic of the overall layout of a typical CGNS file is given in Fig. 23.

This figure shows the hierarchical data structure, and the relative locations of the nodes.

It also indicates (infbrmally) what data, if any, is stored within each node. Note that all

possible nodes are not included here. In particular, note that Elements_t nodes are not

shown under Zone_t; the Elements_t nodes would be present fbr an unstructured zone.

Also note that nodes that occur under ZoneBC_t and ZoneGridConnectivity_t have

been omitted; these will also be covered below. The optional node SimulationType_t

(under CGNSBase_t) is not included. And finally, note that multiple GridCoordinates_t

and FlowSolution_t nodes are allowed, but we show in the figure only one of each.

Multiple FlowSolution_t nodes are usually only used in the situation when multiple

times of time-accurate data are stored, and multiple GridCoordinates_t nodes are used

for defbrming grids.

C.2 Implementation at the Lower Levels of the Hierarchy

Most of the actual data is at the lower levels of the CGNS hierarchy. W_ do not go into

great detail here; the examples in the main body of this document serve as instruction

for this. However, there are several general items of importance related to the storage of

data that are appropriate to mention here.

Many specific items, variables, and conditions that relate to CFD data are specified in
the RIDS. These are standardized names that must be used in order that other users will

understand what is in your CGNS file. For example, the static density must be called

Density. Any other name may not be recognized by other users. In fact, if another

application code expects "Density," but you name it "density" (lower case "d"), then

chances are the other code's search will fail.

Naturally, the items listed in the SIDS cannot cover all possible items required by

users. Hence, the RIDS allows for the use of the type UserDefined tbr any special type
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not covered.For example,therearecurrently only a limited numberof definednames
for turbulencemodelsin the SIDS(e.g.,0neEquation_SpalartAllmaras). As everyone
knows,therearea h_ge number of turbulence models and turbulence model variants that

exist, so that the SIDS cannot hope to define standardized names fbr all of them. The

type UserDefined covers this situation.

When UserDefined is used, however, the user runs the risk that others will be unable

to interpret the CGNS file. W_ therefbre recommend that whenever a UserDefined type

is unavoidable, the user also include a companion Descriptor_t node to specify what
was done.

It is possible that, if certain items are tbund to be used more heavily as time goes on,

that standardized names may be created and added to the SIDS in the future.

C.3 Boundary Conditions

The boundary conditions hierarchical structure in CGNS can appear to be somewhat

daunting at first. Because the CGNS team decided to make the boundary condition

information as descriptive as possible and easily extensible to complex situations, there

are many layers possible in the hierarchy, and the usage rules can become complex.

However, the SIDS allows for use of simplified versions of the ZoneBC_t node, which

are easier to understand and adopt. Essentially, the simplified versions "cut off" the

hierarchy at a higher level than the full-blown SIDS boundary condition description. The

implication of this is that application codes that use a simplified version must interpret

what is meant by each particular boundary condition type, without the help of the CGNS
file.

For example, the boundary condition type BCFarfield indicates a boundary condition

applied to a far field boundary. Most CFD codes have this type, which pertbrms ditiSrent

functions depending upon whether the local flow field is inflow or outflow, subsonic or

supersonic. The full-blown SIDS description of BCFarfield attempts to describe in some

detail the methodology involved in this boundary condition. However, if the user chooses

to use the minimal "cut off" version, the only intbrmation regarding the function of

the boundary condition that is stored in the CGNS file is the name BCFarfield. An

application code must determine fl'om this name alone what is meant.

Example hierarchical structures tbr both the simplest implementation as well as the

full-blown implementation of the ZoneBC_t node are shown in Fig. 24. (These hierarchies

make use of an IndexRange_t node. It is also possible to use an IndexArray_t, which

gives a complete list of boundary indices or elements, rather than a range.) Note that

an intermediate structure, where BCDataSet_t and BCTypeSimple_t are both given but

DirichletData and NeumannData are not, is also allowed.

Many boundary condition types are currently defined in the SIDS, but they by no

means cover all possible boundary conditions. The type UserDefined can be used tbr
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ZoneBC_t ZoneBC_t

BC t
(data= BCType)

IndexRange_t(data=index range)

BC t
(dat-a=BCType)

1
IndexRange_t BCDataSet t / BCDataSet_t
(data= ndex range) (data=BCTypeSimple) / (data=BCTypeS mp e)

_);_/_tD_ _)ta _lBe(_nat_n _ a ta

DataArray_t DataArray_t(data=BC quantities) (data=BC quantities)

(a) lowest-level BC implementation
allowed (application code
interprets meaning of BCType)

(b) fully SIDS-compliant BC implementation

Figure 24: General hierarchical structure of ZoneBC_t.

any special type not covered that the user finds impossible to describe using the existing

SIDS. When UserDefined is used, a companion descriptor node is helpful to describe
what was done.

C.4 Zone Connectivity

It is often desirable to specify zone connectivity information when parts of a zone

connect with parts of another zone or itself. The connectivity information tells how

zones fit together or how a zone twists to reconnect with itself; the infbrmation is needed

by most CFD flow solvers.

There are three types of connectivity that can occur: point-by-point, patched, and

overset. The point-by-point, or 1-to-1, type occurs when the edges of zones abut, and

grid vertices from one patch exactly correspond with grid vertices from the other, with

no points missing a partner. The patched type occurs when the edges of zones abut, but

there is not a correspondence of the points, or they are not partnered with another point.

The overset type occurs when zones overlap one another (or a zone overlaps itself).

The SIDS allows for the specification of each of these types of zone connectivity under

the ZoneGridConnectivity_t node. All three types can be implemented through the
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general GridConnectivity_t subnode (overset also requires the use of OversetHoles_t

nodes). However, the 1-to-1 type can also utilize, in certain circumstances, the more

specificGridConnectivityltol_t subnode.

Fig. 25 shows a sample hierarchy starting at the ZoneGridConnectivity_t node,

for a l-to-i type of interface using a GridConnectivityltol_t subnode. Note in this

figure that we now list the name, label, and data within each node. For this structure,

the naming convention at the bottom level is particularly important, and is actually

more descriptive than the labels. In fact, the label for the Transform node is very

strange, and does not even fbllow the usual "_t" convention. As can be seen in the figure,

multiple nodes are allowed under the ZoneGridConnectivity_t node. These can be

any combination of GridConnectivityltol_t, GridConnectivity_t, 0versetHoles_t,

or Descriptor_t nodes.

Name=ZoneG ridConnectivity
Label=ZoneG ridConnectivity_t
Data=<None>

Name=<User defined>
Label=GridConnectivityltol_t
Data=ZoneDonorName

Name=Transform Name=PointRange
Label="int[IndexD ime nsion]" Label=lndexRange_t
Data=transform values Data=index range

Name=PointRangeDonor
Label=lndexRange_t
Data=index range

Figure 25: Hierarchical structure of ZoneGridConnectivity_t Ibr a l-to-i interface.

A sample hierarchy (again starting at the ZonegridConnectivity_t node) is shown

in Fig. 2(5 fbr an overset interface using a GridConnectivity_t subnode. The case tbr a

patched interface would look the same, except there would be no 0versetHoles_t node or

its children and GridConnectivityType would be Abutting. Note that CellListDonor

and InterpolantsDonor are used tbr patched or overset interfaces. (PointListDonor

can be used in their place if the interface is 1-to-1.) See [1] [3] for details.)
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Name=<User defined>

Label=OversetHoles_t
Oata=<none>

Name=GridLocation 1
Label=GridLocation_t _ Name=PointList
Data=location of hole _ Label=lndexArray_t

pts relative to grid] Data=vector of points

Name=ZoneG ridConnectivity
Label=ZoneG ridConnectivity_t
Data=<None>

Name=<User defined>
Label=G ridConnectivity_t
Data=ZoneDonorName

Name= G ridConnectivityType
Label= G ridConne ctivityType_t
Data=Overset

\
\\\

N ame= G rid Location
Label=G ridLocation t
Data=location of receiver

pts relative to grid

Name=lnterpolantsDonor]
Label=DataArray_t

Data=donor nterpo ants

Name=PointList I
Label=lndexArray_t
Data=rece ver po nts

Name=CellListDonor

Label=lndexArray_t
Data=donor cells

Figure 26: Hierarchical structure of ZoneGridConnectivity_t fbr an overset interface.

C.5 Structured Zone Example

The fbllowing is an example fbr a structured grid. It corresponds with example 8-A

in the SIDS document []]. It is a 3-D two-zone case_ where the two zones are connected
in a 1-to-1 fashion at one of each of their faces. Zone 1 is 9 x 17 x 11 and zone 2 is

9 x 17 x 21. The k-max face of zone 1 abuts the k-rain face of zone 2.

The hierarchy is shown in Figs. 27 through 30. Only directly relevant parts of the

hierarchy are shown here fbr clarity. For example_ DataClass_t_ ReferenceState_t_

ConvergenceHistory_t_ FlowEquationSet_t_ and ZoneBC_t have all been left off. How-

ever_ these (and other) items are not required_ and the figure still represents a valid

SIDS-compliant CCNS file. Note that a data type of MT indicates that there is no data
stored in the node.

In this example_ the flow solution in zone 1 is given at cell centers_ whereas the flow

solution in zone 2 is given at the vertices (see Fig. 29). In other words_ the zone 1 solution

points do not correspond with the grid points (as they do in zone 2). They are defined

within the volumes surrounded by the grid points. This example is constructed this way

for the purpose of illustration_ but it is unusual; typically one would use only a single
flow solution data location fbr the entire file.

This example also illustrates the use of the Rind_t node_ and how it affects the data

arrays under a FlowSolution_t. A rind node under FlowSolution_t is used to indicate

that the flow solution is outputting additional rind or "ghost" data outside one or more
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I root node 1

Name=Flat Plate (user defined)
Name=CG NSLibraryVersion Label=CGNSBase_t
Label=CG NS LibraryVersion_t Data=CellD imension=3,
Data=(version number) PhysicalDimension=3

Name=Zone1 (user defined)
Label=Zone t
D ata=VertexSize=(9,17,11 ),

CellSize=(8,16,10),
VertexSizeBoundary= (0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

_ Name=G ridCoordinatesLabel= G ridC oordinates t_
Data=MT

@_ Name=My Soln (user defined)
Label=FlowSolution_t
Data=MT

@_ N ame=ZoneG ridC onnectiwity
Label=ZoneG ridConnectivity_t

Data=MT

Name=Zone2 (user defined)
Label=Zone t
Data=VertexSize=(9,17,21 ),

CellSize=(8,16,20),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates 1_ @
Label=GridCoordinates_t
Data=MT

Name=My Soln (user defined)
Label=FlowSolution_t
Data=MT

Label=ZoneG ridConnectivity_t 1@

Name=ZoneGridConnectivity

Data=MT

Figure 27: CGNS top levels for a case composed of 2 structured zones.

Name=CoordinateX
Label= DataArray_t
Data=x1 (1,1,1) to xl (9,17,11)

Name=CoordinateY
Label=DataArray_t
Data=y1 (1,1,1) to yl (9,17,11 )

Name=CoordinateZ
Label=DataArray_t
Data=z1 (1,1,1) to zl (9,17,11 )

Name=CoordinateX
Label= DataArray_t
Data=x2(1,1,1) to x2(9,17,21)

Name=CoordinateY
Label=DataArray_t
Data=y2(1,1,1 ) to y2(9,17,21 )

Name=CoordinateZ
Label=DataArray_t
Data=z2(1,1,1 ) to z2(9,17,21 )

Figure 28: GridCoordinate_t nodes of structured zone example.
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/

Name=GridLocation
Label=G ridLocation_t
Data=CellCenter

Name=Rind
Label=Rind_t
Data=(0,0,1,1,3,2)

Name=Pressure
Label=DataArray_t
Data=p1 (1,0,-2) to p(8,17,12)

J

Name=GridLocation Name=Pressure
Label=GridLocation_t Label=DataArray_t
Data=Vertex Data=p2(1,1,1 ) to p2(9,17,21 )

Figure 29: FlowSolution_t nodes of structuredzone example.

Name=KMax (user defined)
Label=G ridConnectivityl to1 _t
Data=Zone2

Name=Transform
Label="intD ndexDimension]"
Data=(1,2,3)

Name=PointRange
Label=lndexRange_t
Data=(1,1,11 )(9,17,11)

Name=PointRangeDonor
Label=lndexRange_t
Data=(1,1,1 )(9,17,1 )

Name=Transform
Label="int[IndexDimension]"
Data=(1,2,3)

Name=KMin (user defined)
Label=G ridConnectivityl to1 _t
Data=Zone1

Name=PointRange
Label=lndexRange_t
Data=(1,1,1 )(9,17,1 )

Name=PointRangeDonor
Label=lndexRange_t
Data=(1,1,11 )(9,17,11 )

Figure 30: ZoneGridConnectivity_t nodes of structuredzone example.
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boundaries of the zone. (A rind node can also be used under GridCoordinates_t and

DiscreteData_t.) It is only applicable %r use with structured zones. See the SIDS

document [1] %r a more complete description. In zone 1 in this example, there are no

additional ghost cell data in the #direction, there is one ghost cell next to each of j-min

and j-max, and there are 3 ghost cells next to k-min and 2 next to k-max. (Admittedly,

this example is very contrived - most applications would be more consistent in their use

of rind cells.) Because of the rind cells, the {, j, and k ranges of all flow solution data

arrays in zone 1 are extended appropriately.

It is very important tbr the user to realize that including rind cells atI_cts how the data

is stored in the DataArray_t's. In other words, when reading a CGNS file one cannot

ignore Rind_t nodes if they are present, and attempting to read the DataArray_t's using
unmodified VertexSize or CellSize dimensions will result in the retrieval of nonsensical

data.

Note that the SIDS specifies many defaults. For example, the default Transform

values are (1,2,3), and the default GridLocation is Vertex. Hence, the nodes that contain

these particular values in the example are not strictly necessary. The API sometimes
leaves out default intbrmation.

Another important fact is illustrated in this example. When the names of a type of

node (of given label) are user defined, the names must be dif]erent if they have the same

parent node. For example, the two Zone_t nodes in this example must have ditI_rent

names (recall the earlier discussion of zone naming). However, if they are located in

different places in the hierarchy, two nodes with the same label can have the same name.

For example, both of the FlowSolution_t nodes, located in two ditI_rent zones, have

been given the same user-defined name: "My Soln" in the example.

Finally, although the ZoneBC_t nodes were not included in this example, note that if

they were, they should describe the boundary conditions on all boundary faces ezcept the
k-max face of zone 1 and the k-min face of zone 2. These two faces would not be included

in the boundary conditions because they are already defined as connectivity interfaces.
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Appendix D. GUIDELINE FOR PLOT3D VARIABLES

The broad scope of CGNS allows users to essentially put anything into a CGNS file.

While this is useful from the perspective of extensibility, it also makes it more difficult

to read someone else's CGNS file without an elaborate array of checks and translators.

This is true not only because of the many choices of variables to output, but also because

CGNS allows many fbrms of dimensional and nondimensional data.

Many people in the CFD community currently output flow field data in PLOT3D

format [7], particularly for use in postprocessing visualization programs. It has, in some

sense, become a de facto standard for sharing CFD data. Because this fbrmat is so widely

used, we give a guideline in this appendix for outputting and reading this type of data

in a CGNS file. If you fbllow this guideline, then it is more likely that other users will be

able to easily read and interpret your CGNS files.

The PLOT3D standard grid variables are (in 3-D) z', y, and z. These coordinates

may be dimensional or nondimensional. To follow this guideline, the three coordinates

CoordinateX, CoordinateY, and CoordinateZ (either dimensional or nondimensional)

must be given. There also may be "iblank" infbrmation, associated with overset grids.

If used, the list of overset holes is stored under 0versetgoles_t nodes (see the RIDS

document []]). This appendix does not cover the various dimensionalization and nondi-

mensionalization options for the grid coordinates. By and large, from the point of view

of portability, the issue of units and/or nondimensionalization fbr grid coordinates is not

as crucial as it is fbr the "Q" variables, which is covered in great detail below. However,

one should follow the SIDS standard and appropriately define within the CGNS file the

grid's units or nondimensionalizations used.

The PLOT3D standard "Q" variables are (in 3-D):

P/PT_/ nondimensional density

pu / (pT_/a_/ ) nondimensional x-momentum

pv/(p_/a_/) nondimensional y-momentum

pw/(p_/aT_/) nondimensional z-momentum

peo/(p_/a_/) nondimensional total energy per unit volume

where a is the speed of sound and _f indicates a reference state. Standard PLOT3D

Q files also specify a reference Mach number, Reynolds nmnber, angle of attack, and

time value. For the purposes of this discussion, the time value will not be addressed.

CGNS does have the capability for storing time-accurate data if needed (see section 3.6),

but time-accurate data is not covered in this PLOT3D guideline. W% include below the

CGNS convention for storing Mach number, Reynolds nmnber, and (indirectly) angle of
attack.

Each of the 5 flow field variables above has a standard name, defined in the RIDS. They

are, respectively: Density, MomentumX, MomentumY, MomentumZ, and EnergyStagnationDensity.

To follow this guideline, these are the 5 variables that should be output to your CGNS

file (in 3-D), and are also the ones that you should expect to read, given someone else's
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CGNS file, if they are following this guideline.

Multiple bases are allowed in CGNS, but, to further enhance portability of PLOT3D-

like datasets, only one CGNSBase_t node is recommended under this guideline. In other

words, multiple cases (such as ditibrent angles of attack) should be stored in separate

CGNS files with single bases, rather than in a single file with multiple bases.

The three most common types of data that one may output in a CGNS file are:

DataClass = Dimensional

DataClass = NormalizedByDimensional

DataClass = NormalizedByUnknownDimensional

The first category indicates that the data has dimensional units. The second category

indicates that the data has been nondimensionalized by known refbrence values, which are

specified in the CGNS file. The third category indicates that the data is nondimensional,

but the reference values are unspecified or unknown. Because CGNS deals with each of

these in a slightly ditIbrent way, we will give the guideline for each of these three classes

in separate subsections.

D.1 Dimensional Data

To output dimensional data:

i. Under CGNSBase_t, set DataClass = Dimensional.

. Under CGNSBase_t, put a ReferenceState; and under ReferenceState, put the

dimensional refbrencevaluesof Density and VelocitySound. Under thisguide-

line, the units of these must be consistent with one another and with the units

of Density, MomentumX, MomentumY, MomentumZ, and EnergyStagnationDensity

given under FlowSolution (e.g., all MKS units). Also under ReferenceState, put

Mach, Reynolds, VelocityX, VelocityY, and VelocityZ.

. Under FlowSolution, put the dimensional variables Density, MomentumX, MomentumY,

MomentumZ, and EnergyStagnationDensity. Under this guideline,the units of

these 5 variables must be consistent with one another and with the units of Density

and VelocitySound in ReferenceState.

To read dimensional data (i.e., if DataClass = Dimensional under CGNSBase_t):

i. Under ReferenceState (directlyunder CGNSBase_t), readDensity, VelocitySound,

Mach, and Reynolds. Also read VelocityX, VelocityY, and VelocityZ ifan angle

of attack of the retbrence state is needed.

2. Under FlowSolution, read Density, MomentumX, MomentumY, MomentumZ, and

EnergySt agnat ionDensity.
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. To obtain the PLOT3D Q variables, do the %llowing:

P/Pref Density / Density(ref)

P_/(Pref_ref) MomentumX / (Density(ref) * VelocitySound(ref))

pV/(Pref_ref) MomentumY / (Density(ref) * VelocitySound(ref))

pW/(Pref_ref) MomentumZ / (Density(ref) _ VelocitySound(ref))

P60/(Pref_ef) EnergyStagnationDensity/(Density(ref) _ VelocitySound(ref) 2)

D.2 NormalizedByDimensional Data

To output nondimensional data with known normalizations:

1. Under CGNSBase_t, set DataClass = NormalizedByDimensional.

2. Under CGNSBase_t, put a ReferenceState; and under ReferenceState, put Mach,

Reynolds, VelocityX, VelocityY, and VelocityZ. Then put either:

The dimensionalreferencevaluesofDensity and VelocitySound. Under this

guideline, the units of these must be consistent with one another and with

the units of the raw (dimensional) data Density, MomentumX, MomentumY,

MomentumZ, and EnergyStagnationDensity givenunder FlowSolution, prior

to normalization.

The nondimensional reference values of Density and VelocitySound, along

with their corresponding ConversionScale and Conversion0ffset values.

Under this guideline, the units of the raw (dimensional) Density and Veloc itySound,

prior to normalization using ConversionScale and Conversion0ffse% must

be consistent with one another and with the units of the raw (dimensional) data

Density, MomentumX, MomentumY, MomentumZ, and EnergyStagnationDensity

given under FlowSolution, priorto normalization.

3. Under FlowSolution, put the nondimensional variables Density, MomentumX, MomentumY,

MomentumZ, and EnergySt agnat ionDens ity, along with theircorrespondingConvers i onS cale

and Conversion0ffset values. Under this guideline, the units of the raw (dimen-

sional) variables, prior to normalization using ConversionScale and Conversion0ffset,

must be consistent with one another and with the units of the raw (dimensional)

Density and VelocitySound in ReferenceState.

To read nondimensional data with known normalizations (i.e., if DataClass =

Normal izedByD imens i onal under CgNSBase_t):

i. Under ReferenceState (directlyunder CGNSBase_t), readDensity and VelocitySound.

Also read theirConversionScale and Conversion0ffset valuesifthey arepresent.

Additionally,read Mach and Reynolds. Also read VelocityX, VelocityY, and

VelocityZ if an angle of attack of the reference state is needed.

73



.

.

Under FlowSolution, read Density, MomentumX, MomentumY, MomentumZ, and

EnergyStagnationDensity. Also read each ConversionScale and ConversionOffset.

To obtain the PLOT3D Q variables, do the fbllowing. First, only if they were given

a_ nondimen_ional quantitie_ (indicated by a ' below), recover the raw (dimen-

sional) refbrencevaluesof Density and VelocitySound, via:

Density(ref) Density _(ref)*ConversionScale + Conversion0ffset

VelocitySound(ref) VelocitySound _(ref)*ConversionScale + Conversion0ffset

Then do:

P/PT_/ (Density*ConversionScale + ConversionOffset) / Density(ref)

pu/(pT_/a_/) (MomentumX*ConversionScale + ConversionOffset) / (Density(ref)

VelocitySound (ref))

pv/(p_/a_/) (MomentumY*ConversionScale + ConversionOffset) / (Density(ref)

VelocitySound (ref))

pw/(p_/aT_/) (MomentumZ*ConversionScale + ConversionOffset) / (Density(ref)

VelocitySound (ref))

peo/(p_/a_/) (EnergyStagnationDensity ConversionScale + ConversionOffset)

/ (Density(ref) * VelocitySound(ref) 2)

Note that it is possible that the conversion scale and offset tbr the PLOT3D Q variables

may correspond to the refbrence conditions. This would imply that the variables could

be directly output, without the above conversions needed. However, CGNS allows the

variables to be normalized by properties independent of the refbrence conditions, so the

above procedure is recommended to avoid ambiguity.

D.3 NormalizedByUnknownDimensional Data

To output nondimensional data with unknown normalizations:

1. Under CGNSBase_t, set DataClass = NormalizedByUnknownDimensional.

. Under CGNSBase_t, put a ReferenceState; and under ReferenceState, put Density

i and VelocitySound 1. Also,put Mach, Reynolds, VelocityX, VelocityY,

and VelocityZ.

. Under FlowSolution, put the nondimensional variables Density, MomentumX, MomentumY,

MomentumZ, and EnergyStagnationDensity. These must be nondimensionalized

as: p/p_, pu/(p_a_), pv/(pT_a_), pw/(p_a_), pe0/(p_a_).

(Setting Density 1 and VelocitySound 1 in the ReferenceState defines the par-

ticular nondimensionalization defined above for the PLOT3D variables; see the SIDS
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document [1] tbr details and other examples.) To read nondimensionaldata with un-
known normalizations(i.e.,ifDataClass = NormalizedByUnknownDimensional under

CGNSBase_t):

i. Check under ReferenceState (directlyunder CGNSBase_t), to be surethatDensity

i and VelocitySound i. Then, read Mach and Reynolds. Also read VelocityX,

VelocityY, and VelocityZ if an angle of attack of the reference state is needed.

2. Under FlowSolution, read Density, MomentumX, MomentumY, MomentumZ, and

EnergySt agnat ionDensity.

Nothing needs to be done in this case to obtain the PLOT3D Q variables. They are

already in the correct form.

D.4 Notes

.

.

.

4.

In addition to the flow field variables Density, MomentumX, MomentumY, MomentumZ,

and EnergyStagnationDensity (under FlowSolution), you may alsooutput ad-

ditionalvariables if desired, but be sure these 5 are present.

Other reference values may also be placed under ReferenceState (for example,

LengthReference may be needed to define the reference length associated with the

grid coordinates), but the use of Density and VelociWSound is sufficient to define

the nondimensionalizations of the PLOT3D Q variables.

The quantitiesMach, Reynolds, VelocityX, VelocityY, VelocityZ, Density, and

VelocitySound (plusanything else)under ReferenceState must allrepresentthe

same reference state of the flow. For external aerodynamics, this is usually taken

to be the free stream, but it does not have to be.

The velocity components are used, in the PLOT3D sense, solely to provide an

angle of attack of the flow field at the reference state. The definition of angle of

attack itself is non-unique in 3-D, so there is therefore no SIDS standard for it. For

example, one possible set of angle definitions assumes that the z-direction is "up,"
and uses:

u gcost3cos_

v - Vsim3

w Vcost3sin_

where V v/u 2 + v 2 + w 2, _ is angle of attack, and/3 is angle of sideslip. Thus,

an angle of attack can be obtained using _ tan l(w/u), where u VelocityX

and w VelocityZ.
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. When reading someone else's CGNS file, a low-level approach to interpret and/or

use it appropriately would be the fbllowing. First, check to see that there is only

one CGNSBase_t node. (As discussed above, multiple bases are allowed in gen-

eral, but under this guideline only one base should exist.) Second, insure that the

variables CoordinateX, CoordinateY, and CoordinateZ exist under each zone's

GridCoordinates_t node, and that the variables Density, MomentumX, MomentumY,

MomentumZ, and EnergyStagnationDensity exist under each zone's FlowSolution_t

node. (Note: for time-accurate datasets there may be multiple GridCoordinates_t

and FlowSolution_t nodes under each zone see section 3.6 but this situation is

not covered under the current PLOT3D guideline.) Then, search for the tbllowing
characteristics in the file:

• If DataClass = Dimensional, thenReferenceState (directly under CGNSBase_t)

rrmst contain Density, VelocitySound, Mach, and Reynolds. VelocityX,

VelocityY, and VelocityZ are needed under ReferenceState only if a ret_r-

ence angle of attack is required.

• If DataClass = NormalizedByDimensional, then ReferenceState (directly

under CGNSBase_t) m_tst contain Density, VelocitySound, Mach, and Reynolds.

VelocityX, VelocityY, and VelocityZ are needed under ReferenceState

only if a ret_rence angle of attack is required. Furthermore, a ConversionScale
and Conversion0ffset must exist tbr each of the 5 flow field variables under

FlowSolution. ConversionScale and Conversion0ffset may or may not

exist tbr the variables under ReferenceState.

• If DataClass = NormalizedByUnknownDimensional, then ReferenceState

(directly under CGNSBase_t) rn_tst contain Density 1, VelocitySound 1,

as well as Mach, and Reynolds. VelocityX, VelocityY, and VelocityZ are

needed under ReferenceState only if a ret_rence angle of attack is required.

If these conditions are met, then a low-level reader could assume that the guidelines

outlined in the above subsections were tbllowed, and the PLOT3D variables could

easily be obtained using the procedures given. A more advanced reader would

probably check tbr consistency in the dimensions and conversion scales, to ensure

compliance with the guidelines.
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