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ABSTRACT

High-temperature superconducting (HTS) cables that typically operate at temperatures
below 80 kelvin (K) are being developed for power transmission. The practical application
of HTS power cables will require the use of flexible piping to contain the cable and the lig-
uid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was
conducted in geometries representing both rigid and flexible piping. This experimental
study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center pro-
vides a framework for the development of cost-effective, efficient thermal insulation sys-
tems that will support these long-distance flexible lines containing HTS power cables. The
overall thermal performance of the insulation system for a rigid configuration and for a
flexible configuration, simulating a flexible HTS power cable, was determined by the
steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two dif-
ferent cylindrically rolled material systems were tested: a standard MLI and a layered com-
posite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between
flexible piping are presented.

INTRODUCTION

Thermal losses are a key factor in the successful application of HTS power cables. Ex-
isting concepts and prototypes rely on the use of MLI that is subject to large variations in
actual performance. The small space available for the thermal insulation materials makes



the application even more difficult because of bending considerations, mechanical loading,
and the arrangement between the inner and outer piping. Each of these mechanical vari-
ables affects the heat leak rate. These factors of bending and spacing are examined in part
two of this study [1]. Furthermore, a maintenance-free insulation system (high-vacuum
level for 20 years or longer) is a practical requirement. A thermal insulation system simu-
lating a section of a flexible HTS power cable was constructed for test and evaluation on a
research cryostat. This paper gives experimental data for the comparison of ideal MLI,
MLI on rigid piping, and MLI between flexible piping. The section of flexible piping con-
sists of an inner and an outer corrugated metal hose (or bellows) with no spacers.

EXPERIMENTAL

The liquid nitrogen boiloff method utilizing a cylindrical cryostat was used for all
tests. This cryostat is a liquid nitrogen boiloff calorimeter apparatus for direct measure-
ment of the apparent thermal conductivity (k-value) of a material system at a fixed vacuum
level [2]. The configuration includes a 910-millimeter- (mm) long cylindrical cold mass
with liquid nitrogen guard chambers. Continuously rolled insulation materials are installed
onto the inner bellows or smooth sleeve using a custom wrapping machine. Sensors are
placed between layers of the insulation to obtain temperature-thickness profiles. The inner
bellows or smooth sleeve with insulation installed is slid onto the vertical cold mass of the
cryostat. The outer bellows is then put into place as depicted in FIGURE 1. The cold vac-
uum pressure (CVP) is adjusted for the desired vacuum level. Test articles are heated and
evacuated to below 10™ torr to begin a test series. The residual gas is nitrogen for all tests.

The temperatures of the cold mass, inner bellows [cold boundary temperature (CBT)],
insulation layers, outer bellows [warm boundary temperature (WBT)], and vacuum cham-
ber are measured as shown in FIGURE 1. When the vacuum level, all temperatures, and
the boiloff flow are stable, the k-value is determined from Fourier’s law of heat conduction
for a cylindrical wall as given by equation (1):

rhhfg In—2
k—value = g (1)
2”Le/f (To - 7"1)
where:
7,=WBT, K
7,=CBT, K

D, = outer bellows mean diameter, millimeter (mm)

D; = inner bellows mean diameter, mm

Ly = effective length of cold mass test chamber, meter (m)
m = boiloff flow rate, gram per second (g/s)

hy = heat of vaporization, joule per gram (J/g)

The k-value is the apparent thermal conductivity for the total insulation system, in milli-
watts per meter-kelvin (mW/m-K). A thermal shroud on the vacuum chamber kept the
WBT at approximately 293 K while the liquid nitrogen cold mass maintained the CBT at
approximately 90 K.
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FIGURE 1. (a) Diagram showing configuration of corrugated piping and location of temperature sensors. (b)
View of test apparatus with vacuum chamber removed showing outer corrugated pipe.

Both of the 900-mm-overall-length bellows are constructed from 0.51-mm-thick series
321 stainless steel. The convolutions are u-shaped with a 12.7-mm pitch and a depth of
12.7 mm (outer) and 15.9 mm (inner). The standard diameters for the bellows are: 254
mm by 279 mm (outer) and 168 mm by 200 mm (inner). The insulation space, or gap, be-
tween the inside diameter of the outer bellows and the outside diameter of the inner bellows
defines the geometry for the k-value calculation.

RESULTS AND DISCUSSION

Over 40 tests of 5 different thermal insulation systems were performed for this part of
the research study. TABLE 1 reports the key measurements and conditions for the insula-
tion test articles. The benchmark MLI systems (C108 with 40 layers and C123 with 60 lay-
ers) are in good agreement with the experimental data for similar systems as reported by
Kaganer [3], Hnilicka [4], and Black [5]. The Kaganer line is for the following system:
aluminum foil and fiberglass spacer, 1.5 layers per mm, 293 and 90 K boundary tempera-
tures, and air as residual gas. The overall summary graph of the apparent thermal conduc-
tivity as a function of CVP is presented in FIGURE 2.

The curves for MLI on smooth-sleeve configurations are denoted by C108 and C123.
At the high-vacuum region of main interest, C108 is slightly better (lower k-value) than
C123, which can be attributed to its lower layer density. The net heat transfer through MLI
is known to increase with both layer density and the number of layers above a particular
lower limit. For example, Bapat et al. show this trend for similar materials and conditions
reporting a k-value of 0.0827 mW/m-K for 60 layers at a density of 2.810 layers per mm
[6]. The Kaganer line with a k-value of 0.05 mW/m-K represents the best possible thermal
performance under ideal laboratory conditions. The LCI system, C107, shows comparable
performance at high vacuum and superior performance at vacuum levels above 107 torr.
The data for C107 and C108, shown here for reference, were previously reported [7].
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TABLE 1. Summary of measurements and conditions for insulation test articles.

Description Total k-
0? Installed | Thick- Ccvp value
Test Insulation Densi}y ness (mil- | (mW/ CBT WBT

No. System (kg/m”)* | (mm) | liTorr) | m-K) (K) (K)
C107 | Smooth sleeve, 0.05 0.09 91 281
(ref.) | layered compos- 52 24.8 10 0.49 88 279

ite insulation, 1000 2.60 90 269
18 layers
C108 | Smooth sleeve, 0.2 0.08 87 281
(ref.) | MLI, aluminum 58 22.3 10 0.488 90 256
foil and fiber- 1000 9.49 92 196

lass paper, 40
ayers, 1.8 lay-

ers/mm

C123 | Smooth sleeve, 0.01 0.09
MLI, aluminum 79 245 10 0.48
foil and fiber- 1000 9.96

lass paper, 60
ayers, 2.4 lay-

ers/mm

C125 | Corrugated in- 0.01 17.7
ner pipe and N/A** N/A 10 225
corrugated outer 27.0
pipe, no insula- (gap)
tion material

C119 | Corrugated, 0.01 0.19
MLI, aluminum 82 23.8 10 0.72
foil and fiber- 27.0 1000 8.49

lass paper, 60 (gap)

ayers, 2.5 lay-
ers/mm

C131 | Corrugated, 0.01 0.12
MLI, aluminum 72 27.0 10 0.45
foil and fiber- 27.0 1000 8.06
Flass paper, 60 (gap)
ayers, 2.2 lay-
ers/mm

C127 | Corrugated, 0.02 0.20
layered compos- 78 23.0 10 0.59
ite insulation, 27.0 1000 3.05
30 layers (gap)

*kg/m’: kilogram per cubic meter

The curves for MLI between corrugated piping are denoted by C119 and C131. The k-
values are from 30 to 120 percent higher at high vacuum compared to the smooth sleeve
MLI of test series C123. Performance for all MLI types is shown to converge near 10
mW/m-K at soft vacuum (1 torr). Test series C127, which includes the LCI rather than
MLI between the corrugated piping, shows comparable performance at high vacuum and
about three times lower k-value (3 mW/m-K) at 1 torr CVP. In addition, test series C125
provides the reference case for the corrugated piping by itself with no insulation between
the inner and outer bellows. The high heat flux measured in this case shows the dramati-
cally poor insulation effect that vacuum alone can provide. Analysis of the radiation heat
transfer between concentric corrugated pipes to isolate the effect of the corrugations on the
overall thermal performance of the total insulation system is examined in the next section.



FIGURE 2. Variation of apparent thermal conductivity (k-value) with cold vacuum pressure (CVP).

ANALYSIS

The test geometry without any insulation, such as in test series C125, can be analyzed
as a four-surface enclosure consisting of a cold inner cylinder and a warm outer cylinder
that are closed off at the ends by annular rings. For high vacuum, the heat transfer is by
thermal radiation alone. The analysis has been performed using the unified method for ra-
diation calculations as described in Gebhart [8], which is sometimes referred to as
Gebhart’s method. In Gebhart’s method, absorption factors, B, are developed for each sur-
face based on the enclosure geometry and surface emissivity, which are the total fraction of
the thermal energy emitted from a given surface, i, that is absorbed by another surface, /, in
the enclosure. Equation (2) gives the net rate of radiation heat transfer from the jth surface:

4
9, = UAJEJT/4 - ZB:‘_/O-A:"E;Y?“ (2)
=]

In this equation, o is the Stefan-Boltzmann constant, 4 is the surface area, 7 is the surface
temperature, and ¢ is the surface emissivity.

The method has been applied to measured data from test of the stainless-steel (SST)
vacuum chamber (the warm outer surface), the bare SST cold mass, and the cold mass with
a copper sleeve. The measured parameters are the temperatures of the inner and outer sur-
faces and the heat load. The unknown quantities to the heat transfer analysis are the surface
emissivities obtained by trial and error through successive application of the four-surface
enclosure analysis. Results are shown in FIGURE 3 for the surface emissivities determined
here, which are in agreement with other published emissivity data for the same materials.
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FIGURE 3 - Comparison of emissivities from handbook values for SST (4 } and copper () with those from
experiments with insulation test cryostat for SST vacuum chamber, SST cold mass, and cold mass copper
sleeve.

For corrugated pipe, the Gebhart enclosure thermal radiation method shows enhanced
heat transfer due to the larger surface area. An enclosure is assumed to be formed from a
single corrugation and an imaginary cylindrical surface with a diameter equal to the inside
of the corrugated cylinder. A single corrugation and the cylinder are illustrated in FIGURE
4. The corrugation, surface 1, has an area larger than the cylindrical surface 2. The corru-
gation radiates to itself and the cylinder, while the cylinder radiates only to the corrugation.
Hence the view factor of the cylinder to the corrugation is unity, and all others can be de-
termined by view factor algebra. From the view factors and assuming reasonable values for
the surface emissivity, the four necessary absorption factors can be obtained. This ar-
rangement resembles the ideal use of MLI that completely fills the gap between a double-
walled, flexible pipe.

Surface 1
(Corrugation) \
Surface 2\
(Cylinder)
Pitch

FIGURE 4. Typical geometry of corrugation surface.

Three cases were analyzed to show the effect of corrugation size on heat transfer: (1)
both surfaces are highly emitting, (2) the corrugation is highly emitting and the cylinder
representing the outer reflector layer is highly reflecting, and (3) both surfaces are highly
reflecting. Case 2 represents the most common situation with a stainless-steel corrugated
outer pipe, with no special surface treatment or polishing, next to a reflective layer. Case 3
represents a corrugated pipe that is polished on the inside to increase its surface reflectance.
The analysis was conducted by calculating the ratio of heat flux of the cylinder with the
area of surface 1 greater than the area of surface 2 (or Jeornig) to the heat transfer when they
are both equal in area (or qrf). The ratio depends only on the geometry and surface emis-



sivity. TABLE 2 provides results for A;/A;=2.0 using heat fluxes based on the corruga-
tions at 300 K and the cylinder at 290 K. An order of magnitude reduction in heat transfer
by having a reflective cylindrical surface is shown in TABLE 2. An additional 30-percent
reduction in heat transfer can be obtained by polishing the inner surface of the corrugated
outer tube. The variation of the thermal radiation factor with area ratio is provided in FIG-
URE 5 for the same three cases. The results show the emitting corrugation does not sig-
nificantly enhance the thermal radiation to a reflecting inner surface. However, when both
surfaces are either emitting or reflecting, there is a greater dependence of the thermal radia-
tion heat transfer on the surface area.

Table 2. Predicted heat flux for three different cases of surfaces.

qref 5 qcorru§
Type of Surface €1 € (W/m”) Factor | (W/m®)
Both highly emitting 0.70 1 0.70 31.38 1.13 3545
Corrugation emitting to reflecting 0.70 | 0.07 3.96 1.01 4.00
surface
Both highly reflecting 0.07 | 0.07 2.11 1.32 2.79
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FIGURE 5. The effect of corrugation geometry on the radiation heat transfer for three cases.

CONCLUSIONS

The results of this experimental research study of flexible piping for HTS power cables
show three basic levels of thermal performance: ideal MLI, MLI on rigid piping, and MLI
between flexible piping. Standard diameters of the inner and outer flexible piping were
used to compute the apparent thermal conductivity (k-value) so that reasonable compari-
sons of different pipelines under similar cryogenic conditions can be made.

The performance of ideal MLI is defined as a k-value of 0.05 mW/m-K, for a vacuum
level below 0.1 micron and boundary temperatures of approximately 80 K and 293 K,
based on experimental results from the literature. At a high vacuum level, the k-values of
MLI on rigid piping were about 0.09 mW/m-K (80 percent higher than the ideal MLI). Un-
der similar conditions, the k-values of MLI between flexible piping were 0.12 to 0.20



mW/m-K (from 30 to 120 percent higher than the k-values for MLI on rigid piping). The
new layered composite insulation, on the smooth sleeve or between the corrugated piping,
performed as well as MLI at high vacuum and much better than MLI at soft vacuum.

Analysis of radiation effects showed the corrugations could be a source of an increased
rate of heat transfer relative to the rigid piping. Polishing the inner wall can make signifi-
cant reductions to the heat transfer in vacuum insulated lines. Work on material optimiza-
tion and application design is currently planned for the Cryogenics Test Laboratory at
NASA Kennedy Space Center. The target is to be able to make flexible piping with ther-
mal performance approaching that of rigid piping to help make energy-efficient HTS power
cables become an industrial reality.
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