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TIME-DEPENDENT SIMULATION OF INCOMPRESSIBLE FLOW IN A 

TURBOPUMP USING OVERSET GRID APPROACH 

ABSTRACT 

Cetin Kiris, and Dochan Kwak 
M.S. T27B, NAS Applications Branch 
NASA Advanced Supercomputing (NAS) Division 
NASA-Ames Research Center, Moffett Field, CA 94035 

This paper reports the progress being made towards complete unsteady turbo
pump simulation capability by using overset grid systems. A computational model 
of a turbo-pump impeller is used as a test case for the performance evaluation of 
the MPI, hybrid MPI/Open-MP, and MLP versions of the INS3D code. Relative 
motion of the grid system for rotor-stator interaction was obtained by employing 
overset grid techniques. Unsteady computations for a turbo-pump, which 
contains 114 zones with 34.3 Million grid points, are performed on Origin 2000 
systems at NASA Ames Research Center. The approach taken for these 
simulations, and the performance of the parallel versions of the code are 
presented. 

INTRODUCTION 

The motivation of this effort is based on two primary elements. First, the entire 
turbo pump simulation intends to provide a computationai framework for the 
design and analysis for the liquid rocket engine fuel supply system. This effort is 
part of the High Performance Computing and Communications (HPCC) 
advanced technology application projects. The second objective of this research 
is to support the design of liquid rocket systems for the space transportation. 
Since the space launch systems in the near future are likely to rely on liquid 
rocket engines, increasing the efficiency and reliability of the engine components 
is an important task. One of the major problems in the liquid rocket engine is to 
understand the fluid dynamics of fuel and oxidizer flows from the fuel tank to 
plume. Understanding the flow in the turbo pump through numerical simulation 
will be of significant value toward finding a better design that is simpler yet more 
efficient and robust with less manufacturing cost. Until recently, the pump design 
process was not significantly different from that of decades ago. The current 
semi-empirical turbomachinary design process does not account for the three
dimensional (3-D) viscous phenomena in the pump flows. Some of these 3-D 
viscous phenomena include wakes; the boundary layers in the hub, the shroud 



and the blades; junction flows; and tip clearance flows. Even though 
computational fluid dynamics (CFD) applications in turbines have been reported 
widely in the literature, the applications in entire-pump simulations are quite 
limited. The objective of this paper is to present, and evaluate a para"el 
computational procedure that simulates the incompressible flow through the 
entire turbo pump configuration. 

A substantial computational time reduction for these 3D unsteady flow 
simulations is required to reduce design cycle time of the pumps. Part of this 
speed up wi" be due to enhancements in computer hardware platforms. The 
remaining portion of the speed-up will be contributed by advances in algorithms 
and by efficient para"el implementations. The following section outlines the initial 
effort and steps taken in order to reach this speed-up. 

NUMERICAL METHOD 

The present computations are performed utilizing the INS3D computer code, 
which solves the incompressible Navier-Stokes equations for both steady-state 
and unsteady flows. The numerical solution of the incompressible Navier-Stokes 
equations requires special attention in order to satisfy the divergence-free 
constraint on the velocity field because the incompressible formulation does not 
yield the pressure field explicitly from the equation of state or through the 
continuity equation. One way to avoid the numerical difficulty originated by the 
elliptic nature of the problem is to use an artificial compressibility method, 
developed by Chorin 1. The artificial compressibility algorithm, which introduces a 
time-derivative of the pressure term into the continuity equation; the elliptic
parabolic type partial differential equations are transformed into the hyperbolic
parabolic type. A family of flow solvers has been developed 2-3 based on this 
algorithm. Since the convective terms of the resulting equations are hyperbolic, 
upwind differencing can be applied to these terms. The current versions, 
designated as INS3D code, use Roe's flux-difference splitting4. The third and 
fifth-order upwind differencing used here is an implementation of a class of high
accuracy flux-differencing schemes for the compressible flow equations. To 
obtain time-accurate solutions, the equations are iterated to convergence in 
pseudo-time for each physical time step until the divergence of the velocity field 
has been reduced below a specified tolerance value. The total number of sub
iteration required varies depending on the problem, time step size and the 
artificial compressibility parameter used, and typically ranges from 10 to 30 sub
iterations. The matrix equation is solved iteratively by using a non-factored 
Gauss-Seidel type line-relaxation scheme5

, which maintains stability and allows a 
large pseudo-time step to be taken. 

Details of the numerical method can be found in Refs. 2-3. The GMRES scheme 
has also been utilized for the solution of the resulting matrix equation6

. Computer 
memory requirement for the flow solver INS3D with line-relaxation is 35 times the 
number of grid points in words, and with GMRES-ILU(O) scheme is 220 times the 
number of grid points in words. When a fast converging scheme, such as a 
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GMRES-ILU(O) solver, was implemented into the artificial compressibility 
method, previous computations showed that reasonable agreement was 
obtained between computed results and experimental data. The line-relaxation 
scheme in artificial compressibility method could be very expensive for time 
accurate computations ano could lead to erroneous solutions if incompressibility 
is not enforced in each physical time step. 

Mass Row : 9093 GPM 
Re : 7.996+7 

Geometry 

TURBOPUMPINDUCER 

Surface Pressure 

Figure 1. Geometry and surface pressure for a pump inducer. 

APPROACH AND COMPUTATIONAL MODELS 

The geometry for the liquid oxygen pump has various rotating 'and stationary 
components, such as inducer, stators, kicker, and hydraulic turbine, where the 
flow is extremely unsteady. Figure 1 shows the geometry and computed surface 
pressure of the inducer from steady-state components analysis. When rotating 
and stationary parts are included, time-dependent simulations need to be carried 
out due to unsteady interactions. 

To handle the geometric complexity, an overset grid approach is used. The 
overset structured grid approach to flow simulation has been utilized to solve a 
variety of problems in aerospace, marine, biomedical and meteorological 
applications. Flow regimes can range from simple steady flows as that of a 
commercial aircraft, to unsteady three-dimensional flows with bodies in relative 
motion as in the case of turbopump configurations. A geometrically complex body 
is decomposed into a number of simple grid components, as shown in figure 2. 
The freedom to allow neighboring grids to overlap arbitrarily implies these grids 
can be created independently from each other and each grid is typically of high 
quality and nearly orthogonal. Connectivity between neighboring grids is 



established by interpolation at the grid outer boundaries. Addition of new 
components to the system and simulating arbitrary relative motion between 
multiple bodies are achieved by establishing new connectivity without disturbing 
the existing grids. Scalability on parallel compute platforms is naturally 
accomplished by the already decomposed grid system. For certain problems, it is 
more efficient to gather the grids into groups of approximately equal sizes for 
parallel processing. 
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Figure 2. Overset grid system for the impeller long blade section with tip 
clearance 
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Figure 3. A pump model and steps taken in the simulation procedure. 
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In order to compute the flow on grids with moving boundaries, the overset grid 
scheme in OVERFLOW-07 code is incorporated with the INS30 solver that new 
connectivity data is obtained at each time step. The overlapped grid scheme 
allows sub-domains move relative to each other, and provides a general flexibility 
when the boundary movement creates large displacements. Figure 3 shows the 
model for boost pump and 'the steps taken in the simulation procedure. The 
numbers in figure 3 indicate the number of the blades in each section. The 
computational grid has been generated by using the OVERGRI08 software. 
OVERGRIO is a unified graphical interface for performing overset grid 
generation. The software contains general grid manipulation capabilities as well 
as modules that are specifically targeted for efficient creation of overlapping 
grids. General grid utilities include functions 'for grid transformation, redistribution, 
smoothing, concatenation, extraction, extrapolation, projection, and many others. 
Functions especially useful for overset grids include feature curve extraction, 
hyperbolic and algebraic surface grid generation, hyperbolic volume grid 
generation, and Cartesian box grid generation. Visualization is achieved using 
OpenGL whi le widgets are constructed with TclfTk. The software is portable 
between various platforms from UNIX workstations to personal computers. 

In order to demonstrate the current unsteady solution capability, the SSME 
shuttle upgrade pump configuration has been selected. Figure 4 shows the 
geometry of the test rig for this pump being tested at NASA-MSFC facilities. In 
this particular configuration, the SSME impeller is unshrouded. 

Figure 4. Geometry of SSME-rig1 shuttle upgrade pump impeller 

The computational grid for the inlet guide vanes, impeller and diffuser sections of 
the SSME-rig1 configuration are shown in figures 5,6 and 7, respectively. 
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Figure 5. Computational grid of SSME-rig1 inlet guide vanes with 17 zones, and 
5.5 Million grid points. 

Figure 6. Computational grid of SSME impeller with 60 zones, and 19.2 Million 
grid points. 

Figure 7. Computational grid of SSME-rig1 diffuser with 24 zones, and 6.5 
Million grid points. 
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Figure 8. Computed surface pressure for SSME-HPFT impeller. 

COMPUTED RESULTS 

Computed results are obtained for 2.8 Million and 19.2 Million grid points SSME 
impeller models. Figure 8 shows computed surface pressure of the shrouded 
SSME impeller. The performance of the two approaches in obtaining multi-level 
parallelism of the INS3D code is reported in this section. The first approach is 
hybrid MPI/OpenMP and the second approach is Multi Level Parallelism (MLP) 
developed at NASA-Ames Research Center. The first approach is obtained by 
using massage-passing interface (MPI) for inter-zone parallelism, and by using 
OpenMP directives for intra-zone parallelism. INS3D-MPI9 is based on the 
explicit massage-passing interface across MPI groups and is designed for coarse 
grain parallelism. The primary strategy is to distribute the zones across a set of 
processors. During the iteration, all the processors would exchange boundary 
condition data between processors whose zones shared interfaces with zones on 
other processors. A simple master-worker architecture was selected because it is 
relatively simple to implement and it is a common architecture for parallel CFD 
applications. All 1/0 was performed by master MPI process and data was 
distributed to the workers. After the initialization phase is complete, the program 
begins its main iteration loop. 

l 



.' 

.. __ . _ - ---

The SSME impeller model with 24 zones, and total grid points of 2.8 Million is 
used as a test case for the coarse grain INS3D-MPI code. For this version of the 
code, the number of zones in the computational model limits the maximum 
number of CPU count. Figure 9 shows floating point counts per second for this 
computation on SGI Origin 2000 platform. The average speedup, as compared to 
the linear speedup, is about 65% for 24 processors. It should be noted that the 
number of MPI groups reported in this paper always include the master MPI 
process. For the first four processors, very good performance is obtained. When 
the number of CPU count is increased further, the performance of the code is 
decreased due to the load balancing issues. In order to obtain fine grain 
parallelism, OpenMP directives are utilized 10. Figure 10 shows time (in seconds) 
required per time integration step versus number of processors from the hybrid 
parallel code. It should be noted that the "time per iteration" reported in this paper 
includes the time obtaining Ax=b linear system of equations and the time solving 
this particular system of equations for the entire grid system. In other words, the 
iteration term is used for the physical time step, not for the iteration of linear 
equation solver. It also should be noted that the number of implicit line relaxation 
sweeps is kept same at each time step. The cases for 4, 12, and 24 MPI groups 
were plotted in figure 10. For each MPI group, various numbers of threads, such 
as 1, 2, 4, 8, and 16, were used. The number of CPU count is equal the number 
of threads multiplied by the number of MPI groups. When number of threads is 
increased, the performance of the code slows down because the grid size for 
each zone is relatively small for higher number of threads. This is shown in figure 
12. 

INS3D-MPI 
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Figure 9. INS3D-MPI performance on the SGI 02K, SSME-HPFT Impeller. 

When the problem size is increased from 2. 8 Million grid points to 19.2 Million 
grid points, the SSME impeller has 60 zones where the smallest zone has 74K 
grid points and the largest zone has 996K grid pOints. Figure 12 shows the effect 
of MPI groups on the performance of the code when one OpenMP thread is 
used. A good load balancing is obtained up to 20 MPI groups. When more than 
20 MPI groups are employed, no more improvements in the performance of the 
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code is observed. The number of OpenMP threads is increased to 2, 4, 6, 10, 
and 15 for the same MPI groups. These cases are plotted in figure 13 and figure 
15. Figure 14 shows time per iteration versus total CPU count, and figure 14 
shows the cases for various OpenMP threads. The best performance was 
obtained for 20 MPI groups. In figure 13, the effect of load balancing can be seen 
for 30 MPI groups. The OpenMP directives show very similar speed-up for 20 
and 30 MPI groups (see figure 14). 
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Figure 10. Time per iteration step for various MPI groups (INS3D MPI/OpenMP). 
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Figure 11. Time per iteration step versus OpenMP threads per MPI group. 
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Figure 12. Performance for various MPI groups when one OpenMP thread is 
used (SSME impeller 19.2 Million grid). 
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Figure 13. INS3D-MPI/OpenMP performance versus CPU counts for Origin 
2000. 
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Figure 14. INS3D-MPI/OpenMP performance versus OpenMP threads for 
,various MPI groups. 
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Figure 15. OpenMP performance for two different linear solvers. 
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300 

c 200 0 
~ cv .... 
$ 
.... 100 II 
D.. -0 
II 60 !!,.. 
II 50 
E 40 
i= 

30 

A'-.. 

~~I I I 
I ~0, 
' r': ~ 
I I ~ ~ 
I I .... "'- I 
I '" "'A I .... -, 
i i ........ " I 

,,~ ! 
I 

'" ~1-- 19.2M Points/GM RES 
-- LINEAR SPEED-UP .... '"' I -

"--A- INS3D-MLP 

20 1 I I I I 1 

20 30 40 100 200 300 

Number 01 CPUs 

Figure 17. INS3D-MLP performance versus CPU counts for Origin 2000. 

Figure 15 shows the effect of OpenMP threads for implicit Gauss-Seidel line
relaxation scheme and GMRES-ILU(O) scheme. Four Gauss-Seidel sweeps were 
performed for line-relaxation scheme, and 20 directional searches were 
performed for GMRES solver. The OpenMP directives show better speed-up for 
GMRES solver due to nested loop effect in oblique planes. 

The second approach in Multi-Level Parallelism (MLP) is obtained by using NAS
MLP11 routines developed by Taft for the OVERFLOW code. The shared memory 



.' w . .. .. MLP technique developed at NASA Ames Research Center has been 
incorporated into the INS3D code. This approach differs from the MPI/OpenMP 
approach in a fundamental way in that it does not use messaging at all. All data 
communication at the coarsest and finest level is accomplished via direct 
memory referencing instructions. This approach also provides a simpler 
mechanism for converting ·Iegacy code, such as INS3D, then MPI. For shared 
memory MLP, the coarsest level parallelism is supplied by spawning of 
independent processes via the standard UNIX fork. The advantage of the UNIX 
fork over MPI procedure is that the user does not have to change the initialization 
section of the large production code. Shared memory MLP is inserted into INS3D 
in a very similar way that Taft inserts MLP into OVERFLOW code. Library of 
routines are used to initiate forks, to establish shared memory arenas, and to 
provide synchronization primitives. The shared memory organization for INS3D is 
shown in figure 16. The boundary data for the overset grid system is archived in 
the shared memory arena by each process. Other processes access the data 
from the arena as needed. Figure 17 shows INS3D-MLP performance versus 
CPU count for 19.2 Million-grid pOints SSME impeller model. GMRES-ILU(O) 
linear solver was used for these computations. The MLP version of code shows 
73% of the linear speed-up performance. When MLP performance is compared 
with MPIiOpenMP performance (figure 13, 20 MPI groups), 19% more speed up 
is observed by using MLP version of the code. This comparison can be seen in 
figure 18. It should be noted that this comparison is preliminary since the further 
improvements in the fine-grain parallelization of the MLP code are currently 
underway. 
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Figure 18. Comparison of INS3D-MPI/OpenMP and INS3D-MLP performance. 
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SUMMARY 

An incompressible flow solver in steady and time-accurate formulations has been 
utilized for parallel turbo-pump computations. Grid systems and numerical 
procedures are outlined for unsteady turbo pump simulations. Results from 2.8 
Million and 19.2 Million grid points SSME impeller models are presented for the 
performance evaluations of the INS3D-MPI/OpenMP and INS3D-MLP versions of 
the code. SSME impeller model with 60 zones showed that up to 20 MPI groups 
hybrid code showed good scalability. OpenMP directives were more effective for 
GMRES(ILU) solver than line-relaxation scheme. Shared memory MLP version of 
the code was developed by using NAS-MLP routines. The SSME impeller 
computations showed very good scalability for the MLP version. 
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