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Abstract. Yagi-Uda antennas are known to be difficult to design and

optimize due to their sensitivity at high gain, and the inclusion of nu-

merous parasitic elements. We present a genetic algorithm-based auto-

mated antenna optimization system that uses a fixed Yagi-Uda topology

and a byte-encoded antemm representation. The fitness calculation al-

lows the implicit relationship between power gain and sidelobe/bacldobe
loss to emerge naturally, a technique that is le_ complex than previous

approaches. The genetic operators used axe also simpler. Our result-

s include Yagi-Uda antennas that have excellent bandwidth and gain

properties with very good impedance characteristics. Results exceeded

previous Yagi-Uda antennas produced via evolutionary algorithms by at

least 7.8% in malnlobe gain. We also present encouraging preliminary

results where a coevolutionary genetic algorithm is used.

1 Introduction

Automated antenna synthesis via evolutionary design has recently garnered

much attention in the research literature [12]. Underlying this enthusiasm is an

issue that many designers readily acknowledge - good antenna design requires

not only knowledge and intelligence, but experience and artistry. Thus automat-

ed design techniques and tools have been lacking. Evolutionary algorithms show

promise because, among search algorithms, they are able to effectively search

large, unknown design spaces.

The particular antenna we study in this paper is the Yagi, Uda, first proposed

in 1926 [14]. We chose this type of antenna because it presents difficult design

and optimization challenges, and because it was previously studied with respect

to.evolutionary design [7]. The Yagi-Uda antenna is comprised of a set of parallel

elements with one reflector element, one driven element (driven fi'om its center),

and one or more director elements (see Fig. 1). The highest gain can be achieved

along the axis and on the side with the directors. The reflector element reflects

power forwards and thus acts like a small ground plane. The design parameters

consist of element lengths, inter-element spacings, and element diameters.
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Fig.I.TypicalYagi-Udaantenna.

The application that we use is taken from [7]. It involves designing a spe-
cial feed for the Arecibo 305-meter spherical reflector in Puerto Rico [3]. The

antenna was to be used to search for primeval hydrogen having a redshift of

approximately 5. Neutral hydrogen line emission is at a frequency of 1420 MI'Iz;

thus the frequency region of interest was about 235 MHz. Preliminary studies
indicated that the band from 219 to 251 MHz was of the greatest interest, par-

ticularly from 223 to 243 MHz. The most important design goal was for the

feed to have sidelobes/bacldobes at least 25 dB down from the mainbeam gain
in the region from 70 ° < ¢ < 290 °, due to the interference which came from

surrounding radio and TV towers. Of lesser importance was that the E-plane

(the plane parallel to the plane of the antenna) and H-plane (perpendicular to
the E-plane) beamwidths be about 50°.

Voltage Standing Wave Ratio, or VSWR, is a way to quantify reflected-
wave interference, and thus the amount of impedance mismatch at the junction.
VSWR is the ratio between the highest voltage and the lowest voltage in the

signal envelope along a transmission line [13]. The VSWR was desired to be less
than 3 and the gain was to be maximized, limited by the wide beamwidth. The

feed would be mounted over a 1.17 meter square ground plane-that is, a ground

plane only 0.92A in size.

2 Antenna Representation and Operators

The representational scheme used is similar to that taken from [7]. As shown in

Fig. 2, this scheme is comprised of 14 elements, each one encoding a length and
spacing value. Each floating point value was encoded as three bytes, yielding
a resolution of 1/224 per value. The first pair of values encoded the reflector
element, the second pair encoded the driven element, and the remaining 12 pairs

encoded the directors. One point crossover was used with cut points allowed

between bytes. Mutation was applied on individual bytes.
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Fig. 2. Genetic representation of a 14-element Yagi-Uda antenna.

Radius values were constrained to 2, 3, 4, 5, or 6 ram. All elements within

a given individual were assigned the same radius value. Element lengths were

constrained r,o be symmetric around the x-axis and between 0 and 1.5A. Ele-

ments having zero length were removed from the antenna; as a consequence, a

constructed antenna could have less than 14 elements. Spacing between adjacent

elements (Mong the z axis) was constrained to be between 0.05A and 0.75A. The

wavelength A was 1.195 meters, the wavelength of 235 MHz.

3 Experimental Setup

Experiments were set up as follows. The NEC2 simulation program [4] was used

to evaluate all antenna designs. We used a parallel master/slave generational

genetic algorithm with a population size of 6000. One point crossover across

byte boundaries was used at a rate of 80%. Mutation was uniform across bytes

at a rate of 1%. Runs were executed on a 32-node Beowulf computing cluster [1 I].

The wire geometry encoded by each individual chromosome _ first translat-

ed into a NEC input deck, which was subsequently sent to the NEC2 simulator.

The segment size for all elements was fixed at 0.1A, where A was the wavelength

corresponding to 235 MHz. The source element for excitation was specified to be

the middle segment of the driven element. The z location of the reflector element

was always set to 0. The antenna was analyzed in free space.

: The simulator was instructed to sample the radiation pattern of each indi-

vidual at three different frequency values: 219, 235, and 251 MHz, representing

a 13.6% bandwidth. Each radiation pattern was calculated at _ set to 0 ° and 0

varying between 0 ° and 355 °, the latter sampled at 5 ° increments. VSWR values

were also calculated for each of the three frequencies.

Fitness was expressed as a cost function to be minimized. The calculation

was as follows:

F = -C,. + _ (C * K) (*)

where: GL = lowest gain of all frequencies measured at 8 = 0 ° and _b = 0 °, V/ =

VSWR at the ith frequency, and

C={_ "lifv, <- 3ifV, >3
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gain lncr_L_d, tlttr _id4qt_hq_s/l_;ukh_l_!s wr_|tht _h,_'r_,;L_o in _iz_.

4 Experimental Results

Thirteen runs were executed under ,liffering random number streams for com-

parison purposes. Table I. summarizes the run data for the best antenna found

in each run of 100 generations. Fig. 3 shows the radiation pattern from the best

antenna fo,md (run t3). [t exhibits 10.58 dB and has a VSWR of 2.02 at its

center frequency. Its sidelobe/bacldobe gain at this frequency is 3.07 dB. Fig. 4

shows a diagram of the antenna's physical structure.

To increase simulation speed, the evolved antennas were produced without

the presence of a ground plane - an idealized setting. Adding a ground plane

thus simulates more realistic conditions. We removed the reflector element and

simulated the best antennas found over a ground plane of 1.17 meters [7]. We

found the performance increased - at the center frequency the mainlobe gain
was 12.52 dB and the VSWR was 2.39. At 291 MHz, the gain was 11.33 dB, and

at 251 MHz, the gain was 11.15 dB. In contrast, the antenna produced in [7]

exhibits gains of 10.36, 10.91, 10.34 dB at 219, 235, and 251 dB, respectively.
Thus the antenna from run 13 has a minimum performance increase of 7.8% as

compared to the previously reported antenna.

219 MHz 235 MHz 251 MHz

Run dB VSWR dB VSWR dB VSWR

1 9.63 2.33 9.64 1.67 10.20 2.9fi

2 9.49 2.23 9,08 1.85 9.20 1.58

3 9.23 2.89 10,04 I.ii 9.62 2.6C

4 9.24 2.47 9,23 1.35 9,37 2.83

5 8.73 2.83 8,79i 1.51 9.22 2.60

6 9.35 2.87 9.51! 1.73 9.28 2.00

7 9.87 2.64 9.82 1.99 9.46 1.98

8 9.04 2.35 9.02 1.64 9.08 2.92

9 9.44 2.96 9.46 1.87 9.51 2.39

10 9.02 1.25 9.12 2,42 9.02 1.41

U I0.01 1.95 9,81 1.97 I0.II 1.66

12 9.37 2.55i 9.17 1.70 9.41 2.47

13 10.34 2.57! 10,58 2.02 10.51 1.70

Table 1. Results from the best individual after

(dB is measured at _ = 0 °, 8 = 0°).

100 generations for each of the 13 runs
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Fig. 3. Radiation pattern of the best evolved antenna without a ground plane, mea-

sured at 0 ° < _ < 360 °, _ = 0°, for 219, 235, and 251 MHz, respectively. (The scale is

2 dB per division. Inner ring is -12 db, outer ring is 12 dB.)
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Fig. 4. The best Yagi-Uda antenna from run 13 The radiusof allelements was 3 ram.



5 Coevolutionary Algorithm- Method and Preliminary
Results

A (:t)evohtti()nary grneti(: ;dgt)rithm was also applied t() t,ll(: antenna optimization

problem described :d)ove. The experiments are ongoing _ksof this writing, anti we

briefly mention ,_ome encouraging initial results. The algorithm used is similar to

that presented in 19]. Two populations are used: one consisting of antenna designs

_m described above, and one consisting of target vectors. The fumiamental idea

is that the r,arget vectors encapsulate level-of-difficulty. Then, under the control

of the genetic algorithm, the target vectors evolve from easy to difficult based

on the level of proficiency of the antenna population.

Each target vector consists of a set of objectives that must be met in order

for a target vector to be "solved." A target vector consisting of two values: the

mainlobe gain (in dB) and a VSWR value. A target vector was considered to be

solved by a given antenna if:

Gtarget < GL and Vtarget > Vt.

where GL is lowest gain of all frequencies measured at 9 = 0 ° and ¢ = 0 °, and

VL is lowest VSWR of all frequencies. For example, an antenna with a G_, value

equal to 5 dB and a VL value equal to 8 would solve the target vector (2, 12) but

not (7, 12).
Values for target gain ranged between 0 dB (easy) and 12 dB (difficult).

Target VSWR values ranged between 12 (easy) and 3 (difficult). Target vectors

are represented as a list of floating point values that are mutated individually by

randomly adding or subtracting a small amount (5% of the largest legal value).

Single point crossover was used, and crossover points were chosen between the

values.

The general form of the fitness calculations are from [9]. In summary, anten-

nas are rewarded for solving difficulttarget vectors. The most difficulttarget

vector is defined to be the target vector that only one antenna can solve.Such

a target vector garners the highest fitnessscore. Target vectors that are unsolv-

able, or are very easy to solve by the current antenna population, are given low

fitnessscores.

We ran our coevolutionary algorithm for 200 generations using 1600 indi-

viduals in both populations. In the antenna population, crossover and mutation

rates were 0.8 and 0.1, respectively.In the target vector population, crossover

and mutation rates were 0.8,0.5,respectively.

The highest-fitnessindividual came from generation 199. It had mainlobe

gains of 8.30, 8.51, and 8.30 dB at 219, 235, and 251 MHz, respectively.While

performance is less than the runs from above, it was achieved with a much

smaller population, and it is currently our single data point.

Fig. 5 shows a plot of how the highest fitnesstarget vectors varied during the

run. Such plots can give insightregarding the difficultyof achieving one objective

at the expense of another. In the plot, we see that difficultVS%VR levels(near

3.0) are attainable early on and remain so throughout the run. The algorithm
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Fig. 5. Coevolution run: plot of gain and VSWR for the best target vector over 200

generations.

6 Discussion

Small improvements in antenna performance can be significantin many ap-

plications.Because oftheirnumerous designvariables,complex behavior,and

sensitivityto parameters,Yagi-Uda antennas are notoriouslydifficultto opti-

mize.Our experimentsproduced severalexcellentantennas ina relativelysmall

number ofgenerations.When simulatedovera finiteground plane,the highest

performance antenna found exhibitinga mainlobe gain that was 7.8% higher

than a previously-reportedantenna.

Previouswork has explicitlyincludeda sidelobe/bacldobeterm inthe fitness

functionin order to minimize radiationoutsideofthe desireddirection[7].We

did not includean explicitsidelobe/bacldobeterm but ratherreliedon the fact

that the radiationpatternofan antenna isa zerosum quantity- increasingthe

intensityinone directionwillimplicitlyreducethe amount ofradiationinother

directions.

Finally,we axe encouraged by our preliminaryresultsproduced usingcoevo-

lutionaryoptimization.There we saw an antenna generatedthat had verygood

propertieswhilerequiringlessevaluationsthan the standard GA approach.
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