Thermodynamic Database for the $\mathrm{NdO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$ System

Nathan S. Jacobson and Evan H. Copland Glenn Research Center, Cleveland, Ohio
Larry Kaufman
Consultant, Brookline, Massachusetts

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized data bases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301-621-0134
- Telephone the NASA Access Help Desk at 301-621-0390
- Write to:

NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076

Thermodynamic Database for the
 $\mathrm{NdO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$ System

Nathan S. Jacobson and Evan H. Copland
Glenn Research Center, Cleveland, Ohio
Larry Kaufman
Consultant, Brookline, Massachusetts

National Aeronautics and
Space Administration

Glenn Research Center

This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

This report contains preliminary findings, subject to revision as analysis proceeds.

Trade names or manufacturers' names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Available from

THERMODYNAMIC DATABASE FOR THE $\mathrm{NdO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$ SYSTEM

Nathan S. Jacobson and Evan H. Copland
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135
Larry Kaufman
Consultant
Brookline, Massachusetts 02445

SUMMARY

A database for $\mathrm{YO}_{1.5}-\mathrm{NdO}_{15}-\mathrm{YbO}_{1.5}-\mathrm{ScO}_{15}-\mathrm{ZrO}_{2}$ for ThermoCalc* has been developed. The basis of this work is the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ assessment by Du et al. (ref. 1). Experimentally only the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ system has been well-studied. All other systems are only approximately known. The major simplification in this work is the treatment of each single cation unit as a component. The pure liquid oxides are taken as reference states and two term lattice stability descriptions are used for each of the components. The limited experimental phase diagrams are reproduced.

I. INTRODUCTION

The rare earth oxide stabilized zirconias are of considerable technological importance. Applications range from thermal barrier coatings for turbine blades to electrodes for sensors and fuel cells. The most widely used system is $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$. The phase diagram for this system has been extensively studied (refs. 2 to 11) Further, there are several thermodynamic assessments and calculated phase diagrams in the literature for this and related systems (refs. 1, 12 to 19).

In this report we also consider the stabilizers: $\mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Sc}_{2} \mathrm{O}_{3}$, and $\mathrm{Nd}_{2} \mathrm{O}_{3}$. These different stabilizers alone and in combinations may offer improved properties. However, both experimental phase diagrams and thermodynamic data for these systems are very limited (refs. 20 to 30). Reliable phase and thermodynamic information over a range of compositions and temperatures is essential to understand the processing and properties of zirconia with $\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}$, $\mathrm{Sc}_{2} \mathrm{O}_{3}$, and $\mathrm{Nd}_{2} \mathrm{O}_{3}$ stabilizers.

Figures 1 to 10 give the available psuedo-binary phase diagrams for the systems (refs. 22 to 30) listed in table I. The most complete and most recent phase diagrams are given. In the case of $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}$, two phase diagrams are shown in figures I (a) and (b). The first diagram from Stubican et al. (refs. 11 and 22) includes one intermediate compound-- $-\mathrm{Zr}_{3} \mathrm{Y}_{4} \mathrm{O}_{12}$. The second diagram (ref. 23) also includes an ordered hexagonal phase-- $\mathrm{ZrY}_{0} \mathrm{O}_{12}$. However, the existence of the second compound remains controversial and will not be considered here. In addition, the primary interest is in the ZrO_{2}-rich portion of the diagram and therefore its existence is not important in the present study. Figures 2(a) and (b) are the available diagrams for the $\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ system. Figure 2(a) primarily shows the liquidus and figure 2(b) shows the solid phases. Note that these are similar to the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}$ diagram and shows an analogous intermediate phase- $\mathrm{Zr}_{3} \mathrm{Yb}_{4} \mathrm{O}_{12}$. However $\mathrm{Zr}_{3} \mathrm{Yb}_{4} \mathrm{O}_{12}$ is stable to $1612{ }^{\circ} \mathrm{C}$ and $\mathrm{Zr}_{3} \mathrm{Y}_{4} \mathrm{O}_{12}$ is stable to only to $1250{ }^{\circ} \mathrm{C}$ (fig. 1(a)) or $1330^{\circ} \mathrm{C}$ (fig. 1 (b)). Figures 3 to 10 are the remaining available binaries. Most of these diagrams are incomplete and have many approximate boundaries.

The addition of two (or more) stabilizing rare earth oxides to zirconia may lead to some interesting properties. Yet only a portion of the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ ternary diagram has been determined experimentally (ref. 31). Three isothermal sections are shown in figures $I 1$ (a) to (c). The major features of these systems are a continuous solid solution of tetragonal zirconia and cubic zirconia with both $\mathrm{Y}_{2} \mathrm{O}_{3}$ and $\mathrm{Yb}_{2} \mathrm{O}_{3}$. Note also that the two intermediate com-pounds- $\mathrm{Zr}_{3} \mathrm{Y}_{4} \mathrm{O}_{12}$ and $\mathrm{Zr}_{3} \mathrm{Yb}_{4} \mathrm{O}_{12}$ connect at lower temperatures. At higher temperatures $\mathrm{Zr}_{3} \mathrm{Y}_{4} \mathrm{O}_{12}$ becomes unstable and only $\mathrm{Zr}_{3} \mathrm{Yb}_{4} \mathrm{O}_{12}$ protrudes into the ternary. At the highest temperatures, both compounds are unstable. No other ZrO_{2} rare earth oxide experimental ternaries were found.

The first calculations of these types of refractory oxide phase diagrams were done in 1988 by Kaufman (ref. 14). Kaufman treats each oxide unit as a component. He sets the liquid oxide as a reference state and uses twoterm lattice stabilities to describe each end point oxide. Thus the lattice stability of a particular polymorph becomes

[^0]the energy to form that polymorph from the liquid. Du et al., (refs. I and 15) have done two assessments of the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$, using the Lukas programs (ref. 32) to derive phase descriptions that best fit all the available experimental data. Their first assessment (ref. 1) also uses the liquid as the reference state. Their second assessment (ref. 15) invokes the standard element reference state (SER) and uses Gibbs energy expressions for each phase.

This report discusses the development of a Thermo-Calc database for the multicomponent system: $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Sc}_{2} \mathrm{O}_{3}-$ $\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$. The quantities of Du et al., for $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$ (ref. 1) are used directly and other binaries are developed based on this. Du et al., (ref. 1) perform two optimizations for the $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$ system-using a different set of liquidus data for each optimization. Their second optimization values are used here. The rare earth oxides are normalized to one cation: $\mathrm{NdO}_{15}-\mathrm{ScO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$. Each of these one cation oxide units are treated as a component. Two-term lattice stability phase descriptions referenced to the liquid state are used, which are less complex than the Gibbs energy phase descriptions based on the standard element reference state.

The entire database in standard Thermo-Calc *.tdb format is given in appendix I. In the following report, we discuss this database and the calculation of binary and higher order diagrams in the $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ system.

II. LATTICE STABILITIES FOR END-POINTS

In order to estimate the lattice stabilities with respect to the liquid state, we need the enthalpies and entropies for the polymorphic transformations. Only limited information is available, particularly on the solid/solid transformations. These data (refs. 33 to 35) are shown in table II. As noted, each oxide is normalized to one mole of cation. The oxide abbreviations are given in table III.

It is important to discuss the compositional difference between the calculations and the measured values in table II and figures 1 to 11 . The experimental phase diagrams are for $\mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ ($\mathrm{RE}=$ Rare Earth Element) and will be referred to as such; the calculated diagrams are for $\mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}$ and will be referred to as such. In order to compare the two, we need to convert from mole fraction $x\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)$, in $\mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ to mole fraction $\times\left(\mathrm{REO}_{1.5}\right)$, in $\mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}$. Note that

$$
\begin{equation*}
\mathrm{x}\left(\mathrm{RE}_{2} \mathrm{O}_{3} \text { in } \mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}\right)=\frac{\mathrm{n}\left(\mathrm{RE}_{2} \mathrm{O}_{3} \text { in } \mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}\right)}{\mathrm{n}\left(\mathrm{RE}_{2} \mathrm{O}_{3} \text { in } \mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}\right)+\mathrm{n}\left(\mathrm{ZrO}_{2} \text { in } \mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}\right)} \tag{1}
\end{equation*}
$$

Here n is the number of moles. The composition for $\mathrm{REO}_{15}-\mathrm{ZrO}_{2}$ is:

$$
\begin{equation*}
x\left(\mathrm{REO}_{1.5} \text { in } \mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}\right)=\frac{\mathrm{n}\left(\mathrm{REO}_{1.5} \text { in } \mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}\right)}{\mathrm{n}\left(\mathrm{REO}_{1.5} \text { in } \mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}\right)+\mathrm{n}\left(\mathrm{ZrO}_{2} \text { in } \mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}\right)} \tag{2}
\end{equation*}
$$

Note that for each composition $n\left(\mathrm{ZrO}_{2}\right)$ the same and that $\mathrm{n}\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)=1 / 2 \mathrm{n}\left(\mathrm{REO}_{1.5}\right)$. So now:

$$
\begin{equation*}
\mathrm{x}\left(\mathrm{REO}_{1.5}\right)=\frac{2 \mathrm{x}\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)}{2 \times\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)+\left(1-\mathrm{x}\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)\right)} \tag{3}
\end{equation*}
$$

Table IV shows the equivalent compositions.
Now consider the derivation of the lattice stabilities for each oxide. The most information is available for ZrO_{2}, which undergoes three transformations (ref. 36):

$$
\begin{equation*}
\mathrm{ZrO}_{2}: \text { Monoclinic } \rightarrow \text { Tetragonal } \rightarrow \text { Cubic } \rightarrow \text { Liquid } \tag{4}
\end{equation*}
$$

The approach of Kaufman (ref. 14) and ThermoCalc notation are used in the following discussion.
The liquid phase is taken as the reference state and thus:

$$
\begin{equation*}
\mathrm{G}(\mathrm{~L}, \mathrm{ZM} ; 0)=0.0 \tag{5}
\end{equation*}
$$

For the cubic phase:

$$
\begin{equation*}
\mathrm{G}(\mathrm{C}, \mathrm{ZM} ; 0)=\Delta \mathrm{H}^{\mathrm{CL}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{CL}}=-87027+29.471 \mathrm{~T} \tag{6}
\end{equation*}
$$

This is the value from Kubachewski and Alcock (ref. 33) with a melting point of 2953 K . More recent investigations have given the melting point of cubic zirconia as 2983 K . Du and Jin (ref. 1) adjust equation (6) to reflect this:

$$
\begin{equation*}
\mathrm{G}(\mathrm{C}, \mathrm{ZM} ; 0)=-87986.6+29.496 \mathrm{~T} \tag{7}
\end{equation*}
$$

The tetragonal to cubic transformation temperature is given as 2568 K (33) and thus:

$$
\begin{equation*}
\Delta \mathrm{H}^{\mathrm{TC}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{TC}}=-594 \mathrm{I}+2.313 \mathrm{~T} \tag{8}
\end{equation*}
$$

Again Du and Jin (ref. 1) adjust this for a more recent transformation temperature of 2642 K :

$$
\begin{equation*}
\Delta H^{\mathrm{T} \cdot \mathrm{C}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{T} \cdot \mathrm{C}}=-5941+2.249 \mathrm{~T} \tag{9}
\end{equation*}
$$

In order to obtain the free energy of the tetragonal phase referenced to the liquid, equations (7) and (9) are added:

$$
\begin{equation*}
\mathrm{G}(\mathrm{~T}, \mathrm{ZM} ; 0)=\Delta \mathrm{H}^{\mathrm{TL}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{TL}}=-93927+31.745 \mathrm{~T} \tag{10}
\end{equation*}
$$

From equation (10) a 'melting point' for the tetragonal phase can be calculated to be 2959 K . A metastable melting point must always be less than the melting point of the stable phase.

Table II indicates some disagreement on the monoclinic to tetragonal transformation temperature and heat. Here we take the temperature as 1454 K and the heat as 6000 joules $/ \mathrm{mol}$:

$$
\begin{equation*}
\Delta \mathrm{H}^{\mathrm{MT} \mathrm{~T}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{M} \cdot \mathrm{~T}}=-6000+4.127 \mathrm{~T} \tag{11}
\end{equation*}
$$

The free energy of the monoclinic phase referenced to the liquid is obtained by adding equations (10) and (11):

$$
\begin{equation*}
\mathrm{G}(\mathrm{M}, \mathrm{ZM} ; 0)=\Delta \mathrm{H}^{\mathrm{M} . \mathrm{L}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{ML}-\mathrm{L}}=-99927+35.872 \mathrm{~T} \tag{12}
\end{equation*}
$$

For the other oxides- $-\mathrm{YO}_{1.5}, \mathrm{YbO}_{1,5}, \mathrm{NdO}_{1.5}, \mathrm{ScO}_{1.5}$-a similar approach was followed. However, less data is available. Of these the most data is available for $\mathrm{YO}_{15} . \mathrm{YO}_{1,5}$ undergoes two phase transformations:

$$
\begin{equation*}
\text { YO }_{1 s}: \text { Cubic } \rightarrow \text { Hexagonal } \rightarrow \text { Liquid } \tag{13}
\end{equation*}
$$

Again, the liquid phase is taken as the reference state:

$$
\begin{equation*}
\mathrm{G}(\mathrm{~L}, \mathrm{YM} ; 0)=0.0 \tag{14}
\end{equation*}
$$

The melting point of the hexagonal phase is accepted as 2712 K . Kaufman (ref. 14) estimates the lattice stability of the hexagonal phase as:

$$
\begin{equation*}
\mathrm{G}(\mathrm{H}, \mathrm{YM} ; 0)=\Delta \mathrm{H}^{\mathrm{H}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{H} .2}=-56735+20.92 \mathrm{~T} \tag{15}
\end{equation*}
$$

This enthaply is somewhat more than half the IVTAN (ref. 34) data for melting of $\mathrm{Y}_{2} \mathrm{O}_{3}$, but more in line with Kubachewski's (ref. 34) values for alumina heat of melting ($54 \mathrm{~kJ} / \mathrm{mol} \mathrm{AlO}_{15}$).

The only measured transition heat for the polymorphs of a rare earth oxide was that for $\mathrm{Y}_{2} \mathrm{O}_{3}$ cubic to hexagonal, as reported in IVTAN to be $54 \mathrm{~kJ} / \mathrm{mol}$. However, this number seems much too high for a solid/solid transition such as this. Kaufman (ref. 14) estimates the heat to be about $10 \mathrm{~kJ} / \mathrm{mol}$ and it seems more reasonable to use this value. Accepting the cubic to hexagonal transformation temperature of 2550 K the lattice stability for the cubic phase becomes:

$$
\begin{equation*}
\mathrm{G}(\mathrm{C}, \mathrm{YM} ; 0)=\Delta \mathrm{H}^{\mathrm{CL}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{C} \cdot \mathrm{~L}}=-67419+25.105 \mathrm{~T} \tag{16}
\end{equation*}
$$

The behavior of $\mathrm{YbO}_{1.5}$ is controversial. The two published phase diagrams with $\mathrm{YbO}_{1.5}$ do not agree. The $\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ diagram (fig. 2) indicates that the hexagonal phase melts; whereas the $\mathrm{YbO}_{1.5}-\mathrm{NdO}_{1.5}$ diagram (fig. 9) indicates that the cubic phase melts. It is assumed that the hexagonal phase of YbO_{15} melts, in analogy with $\mathrm{YO}_{1.5}$. Therefore the phase sequence with temperature is taken as:

$$
\mathrm{YbO}_{1.5}: \text { Cubic } \rightarrow \text { Hexagonal } \rightarrow \text { Liquid }
$$

For $\mathrm{NdO}_{1.5}$, the phase sequence with temperature appears to be:

$$
\mathrm{NdO}_{1.5}: \text { N phase } \rightarrow \text { Hexagonal } \rightarrow \text { Cubic } \rightarrow \text { Liquid }
$$

Little information is available for $\mathrm{ScO}_{1,5}$ and it is assumed that the cubic phase melts. From the melting points and estimated heats of fusion, the lattice stabilities are derived as shown in the database (appendix I)

III. INTERACTION PARAMETERS: CUBIC, MONOCLINIC, TETRAGONAL, N PHASE, NM PHASE

In the binary case, each of the above solution phases are described by the following expression for the free energy:

$$
\begin{equation*}
G_{m}(x, T)=\sum_{i=1}^{2} x_{i}{ }^{0} G_{i}(T)+R T \sum_{i=1}^{2} x_{i} \ln x_{i}+{ }^{e x} G_{m} \tag{17}
\end{equation*}
$$

The first term is the sum of the lattice stabilities for each of two components. These are discussed in the previous section. The Calphad approach requires a lattice stability for every component in each phase-even if a particular component does not form the phase described. For example, a lattice stability if necessary for hexagonal ZrO_{2}, monoclinic $\mathrm{YO}_{1.5}$, and tetragonal $\mathrm{YO}_{1.5}$. The lattice stabilities are chosen so that these phases are always unstable (Appendix I).

The second term in equation (17) is the random mixing term for an ideal solution. The third term is the excess Gibbs energy and accounts for the deviations from ideality. Many solution models have been developed for this term (refs. 37 to 39). In the Calphad approach, the excess Gibbs energy is expanded as a Redlich-Kister polynomial (ref. 37):

$$
\begin{equation*}
{ }^{e x} G_{m}=x_{1} x_{2} \sum_{j=0}^{n}{ }^{j} L\left(x_{1}-x_{2}\right)^{j} \tag{18}
\end{equation*}
$$

Here only the first two terms are considered:

$$
\begin{equation*}
{ }^{e x} G_{m}=x_{1} x_{2}{ }^{o} L+x_{1} x_{2}{ }^{1} L\left(x_{1}-x_{2}\right)=x_{1} x_{2}{ }^{o} L+x_{1} x_{2}{ }^{1} L\left(1-2 x_{2}\right) \tag{19}
\end{equation*}
$$

where ${ }^{\circ} \mathrm{L}$ and ' L are the zero and first order interaction parameters, respectively. In assigning mole fraction designations, ThermoCalc takes the components in alphabetical order. Thus in this case $\mathrm{x}_{2}=\mathrm{x}_{2 \mathrm{rO}}^{2}$ and the sign of the second term in equation (19) is always the opposite of the sign of ${ }^{\mathrm{l}} \mathrm{L}$ for $\mathrm{x}_{2}>0.5$.

The shape of the Gibbs energy curves versus composition and temperature determine the stable phase fields in a classical temperature-composition phase diagram. The first two terms in equation (17) are fixed and lead to an ideal solution, as discussed in many textbooks (refs. 38 to 39). The variables in the excess term (L and ${ }^{\mathrm{t}} \mathrm{L}$) are adjusted to fit experimental observations for a real solution, which generally show deviations from ideality.

The $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ system description can be simplified by introducing a miscibility gap in the cubic phase field. This will be discussed in the next section. It follows that the ${ }^{\circ} L$ and ' L parameters need to be adjusted to create this feature. This is illustrated in figure 12. A single zero order term (regular solution) can only yield a symmetric miscibility gap. The 'L term is also needed to produce an asymmetric miscibility gap. The effect of the sign of 'L on the location of the miscibility gap is shown in figure 12 and table V . For the cubic phase in a $\mathrm{REO} \mathrm{O}_{15}-\mathrm{ZrO}_{2}$ phase diagram, we want the miscibility gap on the ZrO_{2}-rich side. This requires a positive ${ }^{\prime} \mathrm{L}$ and a negative second term in equation (19), which gives a second minima on the right, but less than the first minima on the left, as shown in figure 12.

The interaction parameters for the five solid solutions in this system are thus determined by (a) Using the assessment of Du (1) as a guide and (b) Estimating numbers which give a ${ }^{\text {ex }} \mathrm{G}_{\mathrm{m}}$ which will lead to phase regions similar to those observed in the experimental phase diagram.

III.A. Cubic Solid Solution (Cubic ZrO_{2} ss and Cubic $\mathrm{REO}_{1.5}$ ss)

A major feature of the ZrO_{2}-Rare Earth Oxide phase diagrams is the large cubic phase field. This is evident in each of the experimental phase diagrams (figs. I to 4).

As pointed out by Degtyarev and Voronin (refs. 12 and 13), most of the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagram is composed of cubic solid solutions of $\mathrm{YO}_{1.5}$ and ZrO_{2}. Cubic zirconia has a classical face-centered cubic lattice CaF_{2} structure. The cubic phase for $\mathrm{Y}_{2} \mathrm{O}_{3}$ has a body-centered cubic lattice like $\mathrm{Mn}_{2} \mathrm{O}_{3}$. Degtyarev and Voronin (refs. 12 and 13) further point out that this $\mathrm{Mn}_{2} \mathrm{O}_{3}$ structure can be derived from the CaF_{2} structure by removing one quarter of the oxygen anions. Thus the two cubic phases can be derived from one G-x curve with a miscibility gap.

The above assumption simplifies the phase diagram calculation procedure. The miscibility gap option in Thermo-Calc is used which has the program search for a second free energy minimum. Further, the experimental phase diagrams indicate that the miscibility gap is shifted to the right.

The interaction parameters for the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ are taken from the assessment of Du et al. (ref. 1):

$$
\begin{align*}
& \mathrm{L}(\mathrm{C}, \mathrm{YM}, \mathrm{ZM} ; 0)=-12060+11.156 \mathrm{~T} \tag{20}\\
& \mathrm{~L}(\mathrm{C}, \mathrm{YM}, \mathrm{ZM} ; 1)=+13784+5.379 \mathrm{~T} \tag{21}
\end{align*}
$$

The first order interaction parameter is always positive and thus shifts the miscibility gap to the right (table V) as observed experimentally.

As shown in the database (appendix I), similar interaction parameters were taken for the $\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ and $\mathrm{ScO}_{1.5}$ ZrO_{2} systems. For the $\mathrm{NdO}_{1.5}-\mathrm{ZrO}_{2}$ system, the following interaction parameters are estimated:

$$
\begin{align*}
& \mathrm{L}(\mathrm{C}, \mathrm{NM}, \mathrm{ZM} ; 0)=-52400+27 \mathrm{~T} \tag{22}\\
& \mathrm{~L}(\mathrm{C}, \mathrm{NM}, \mathrm{ZM} ; \mathrm{I})=+24400+1.5 \mathrm{~T} \tag{23}
\end{align*}
$$

Again the first order interaction parameter is always positive and hence the miscibility gap is shifted to the right, as the experimental phase diagram shows. Note that equation (23) yields the similar values to equation (21) at high temperatures.

Consider the remaining interaction parameters between the various rare earth oxides. Now there is no miscibility gap and in most instances a continuous or nearly continuous cubic solution (figs. 5 to 10). Only the $\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{Nd}_{2} \mathrm{O}_{3}$ and $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{Nd}_{2} \mathrm{O}_{3}$ systems have been established with any certainty. These interaction parameters are estimated as:

$$
\begin{align*}
& \mathrm{L}(\mathrm{C}, \mathrm{BM}, \mathrm{NM} ; 0)=+21425+2.5 \mathrm{~T} \tag{24}\\
& \mathrm{~L}(\mathrm{C}, \mathrm{BM}, \mathrm{NM} ; 1)=-19600+8 \mathrm{~T} \tag{25}\\
& \mathrm{~L}(\mathrm{C}, \mathrm{NM}, \mathrm{YM} ; 0)=+21425+2.5 \mathrm{~T} \tag{26}\\
& \mathrm{~L}(\mathrm{C}, \mathrm{NM}, \mathrm{YM} ; 1)=-19600+8 \mathrm{~T} \tag{27}
\end{align*}
$$

The other rare earth oxide phase diagrams $\left(\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{Nd}_{2} \mathrm{O}_{31}, \mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{Sc}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}\right.$) are only very approximately known (figs. $5,6,8$, and 10 , respectively). In this case only the zero order interaction parameter is estimated to be $+20,000 \mathrm{~J} / \mathrm{mol}$.

III.B. Hexagonal Solid Solution (Hex $\mathrm{REO}_{1.5} \mathrm{ss}$)

As shown in figures 1 (a) and (b), the hexagonal solid solution only occupies a small region of the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagram. The assessment of Du et al., gives a single Redlich-Kister term:

$$
\begin{equation*}
\mathrm{L}(\mathrm{H}, \mathrm{YM}, \mathrm{ZM} ; 0)=50420 \tag{28}
\end{equation*}
$$

As shown in figure 12 , a large positive value of ${ }^{0} \mathrm{~L}$ gives a symmetric free energy of mixing with two small minima on either side. The minima on the $\mathrm{YO}_{1.5}$ side gives the small hexagonal region in the phase diagram.

Most of the other hexagonal ${ }^{\circ} \mathrm{L}$ solution terms were estimated to 20000 or $35000 \mathrm{~J} / \mathrm{mol}$. However the phase diagrams for the $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}$ and $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}$ have been reported (figs. 7 and 9, respectively). In order to obtain the hexagonal solid solutions across these phase diagrams, the following expressions are used:

$$
\begin{gather*}
\mathrm{L}(\mathrm{H}, \mathrm{BM}, \mathrm{NM} ; 0)=12750+1.5 \mathrm{~T} \tag{29}\\
\mathrm{~L}(\mathrm{H}, \mathrm{BM}, \mathrm{NM} ; 1)=-1000-\mathrm{T} \tag{30}\\
\mathrm{~L}(\mathrm{H}, \mathrm{YM}, \mathrm{NM} ; 0)=11265+1.5 \mathrm{~T} \tag{31}\\
\mathrm{~L}(\mathrm{H}, \mathrm{YM}, \mathrm{NM} ; 1)=1000-\mathrm{T} \tag{32}
\end{gather*}
$$

Both these sets of values for the interaction parameters give a free energy with a single, broad minima at the temperatures of interest.

III.C. Liquid Solution

The liquid solution parameters for the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ system have been determined by Du et al., (ref. 1) to be:

$$
\begin{align*}
& \mathrm{L}(\mathrm{LIQ}, \mathrm{YM}, \mathrm{ZM} ; 0)=-183751+72.4 \mathrm{~T} \tag{33}\\
& \mathrm{~L}(\mathrm{LIQ}, \mathrm{YM}, \mathrm{ZM} ; 1)=48733-9.476 \mathrm{~T} \tag{34}
\end{align*}
$$

Due to similarity between the liquid regions in the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ and $\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ systems, these same parameters are taken:

$$
\begin{gather*}
\mathrm{L}(\mathrm{LIQ}, \mathrm{BM}, \mathrm{ZM} ; 0)=-183750+72.4 \mathrm{~T} \tag{35}\\
\mathrm{~L}(\mathrm{LIQ}, \mathrm{BM}, \mathrm{ZM} ; \mathrm{I})=48700-9.48 \mathrm{~T} \tag{36}
\end{gather*}
$$

For the $\mathrm{NdO}_{1.5}-\mathrm{ZrO}_{2}$ system, a single term expression is used:

$$
\begin{align*}
& \mathrm{L}(\mathrm{LIQ}, \mathrm{NM}, \mathrm{ZM} ; 0)=-20000 \tag{37}\\
& \mathrm{~L}(\mathrm{LIQ}, \mathrm{NM}, \mathrm{ZM} ; 1)=-15000 \tag{38}
\end{align*}
$$

All of the $\mathrm{ScO}_{1 s}$ parameters were estimated to $20000 \mathrm{~J} / \mathrm{mol}$. As shown in figures $3,6,8$, and 10 , virtually nothing is known about the liquid phase in the scandia systems. Thus, it is reasonable to use the above approximations.

For the other systems, zero order parameters are estimated as:

$$
\begin{gather*}
\mathrm{L}(\mathrm{LIQ}, \mathrm{BM}, \mathrm{NM} ; 0)=-200 \tag{39}\\
\mathrm{~L}(\mathrm{LIQ}, \mathrm{BM}, \mathrm{YM} ; 0)=-10000 \tag{40}\\
\mathrm{~L}(\mathrm{LIQ}, \mathrm{NM}, \mathrm{YM} ; 0)=-200 \tag{41}
\end{gather*}
$$

III.D. Monoclinic Phase Solid Solution (Mon $\mathrm{ZrO}_{2} \mathrm{ss}$)

The monoclinic phases show very limited solubility for a second oxide, except for the $\mathrm{NdO}_{1.5}-\mathrm{YbO} \mathrm{Y}_{1.5}$ and $\mathrm{NdO}_{1,5}-\mathrm{YO}_{1,}$ systems. Again, beginning with the data from the assessment of Du et al., (ref. 1):

$$
\begin{equation*}
\mathrm{L}(\mathrm{M}, \mathrm{YM}, \mathrm{ZM} ; 0)=-58223+98.126 \mathrm{~T} \tag{42}
\end{equation*}
$$

The other interaction parameters are estimated. Only two terms are used for the $\mathrm{NdO}_{1.5}-\mathrm{YbO}_{1.5}$ and $\mathrm{NdO}_{1.5}-\mathrm{YO}_{1,5}$ systems:

$$
\begin{gather*}
\mathrm{L}(\mathrm{M}, \mathrm{BM}, \mathrm{NM} ; 0)=-5000 \tag{43}\\
\mathrm{~L}(\mathrm{M}, \mathrm{BM}, \mathrm{NM} ; \mathrm{I})=100 \tag{44}\\
\mathrm{~L}(\mathrm{M}, \mathrm{NM}, \mathrm{YM} ; 0)=-50000 \tag{45}\\
\mathrm{~L}(\mathrm{M}, \mathrm{NM}, \mathrm{YM} ; \mathrm{I})=1000 \tag{46}
\end{gather*}
$$

The remaining zero order interaction parameters are all estimated to be $20000 \mathrm{~J} / \mathrm{mol}$.

IIII.E. Phase MN Solid Solution (MN ss)
Again, since only the $\mathrm{YbO}_{1.5}-\mathrm{NdO}_{1,5}$ and $\mathrm{YO}_{15}-\mathrm{NdO}_{15}$ phase diagrams are known with any certainty, these interaction parameters are taken as:

$$
\begin{align*}
& \mathrm{L}(\mathrm{MN}, \mathrm{BM}, \mathrm{NM} ; 0)=-160000+48 \mathrm{~T} \tag{47}\\
& \mathrm{~L}(\mathrm{MN}, \mathrm{BM}, \mathrm{NM} ; 1)=120000-15 \mathrm{~T} \tag{48}\\
& \mathrm{~L}(\mathrm{MN}, \mathrm{NM}, \mathrm{YM} ; 0)=-160000+50 \mathrm{~T} \tag{49}\\
& \mathrm{~L}(\mathrm{MN}, \mathrm{NM}, \mathrm{YM}: 1)=120000+15 \mathrm{~T} \tag{50}
\end{align*}
$$

All other interaction parameters are taken as $20000 \mathrm{~J} / \mathrm{mol}$.

III.F. N Phase Solid Solution (N ss)

As above, since only the $\mathrm{YbO}_{1.5}-\mathrm{NdO}_{1.5}$ and $\mathrm{YO}_{1.5}-\mathrm{NdO}_{1.5}$ phase diagrams are known with any certainty, these interaction parameters are taken as:

$$
\begin{align*}
\mathrm{L}(\mathrm{~N}, \mathrm{BM}, \mathrm{NM} ; 0) & =-15200-7 \mathrm{~T} \tag{51}\\
\mathrm{~L}(\mathrm{~N}, \mathrm{BM}, \mathrm{NM} ; 1) & =-13000-6.7 \mathrm{~T} \tag{52}\\
\mathrm{~L}(\mathrm{~N}, \mathrm{NM}, \mathrm{YM} ; 0) & =-15000-7 \mathrm{~T} \tag{53}\\
\mathrm{~L}(\mathrm{~N}, \mathrm{NM}, \mathrm{YM} ; 1) & =13000+5 \mathrm{~T} \tag{54}
\end{align*}
$$

All other interaction parameters are taken as $20000 \mathrm{~J} / \mathrm{mol}$, except for:

$$
\begin{equation*}
\mathrm{L}(\mathrm{~N}, \mathrm{NM}, \mathrm{ZM} ; 0)=50000 \tag{55}
\end{equation*}
$$

III.G. Tetragonal Phase Solid Solution (Tet $\mathrm{ZrO}_{2} \mathrm{ss}$)

This phase shows a triangular appearance in the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagram (figs. 1 (a) and (b)). There is a suggestion on the other $\mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagrams (figs. 2 to 4) of similar behavior. The assessment of Du et al., (1) gives:

$$
\begin{equation*}
\mathrm{L}(\mathrm{~T}, \mathrm{YM}, \mathrm{ZM} ; 0)=-25800 \tag{56}
\end{equation*}
$$

The same value is adopted for $\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{1,5}$:

$$
\begin{equation*}
\mathrm{L}(\mathrm{~T}, \mathrm{BM}, \mathrm{ZM} ; 0)=-25800 \tag{57}
\end{equation*}
$$

All other interaction parameters are estimated to be $20000 \mathrm{~J} / \mathrm{mol}$.

IV. INTERMEDIATE COMPOUNDS

In the binary $\mathrm{NdO}_{1.5}-\mathrm{ZrO}_{2}, \mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$, and $\mathrm{YbO}_{15}-\mathrm{ZrO}_{2}$ systems there are several intermediate compounds. The $\mathrm{Zr}_{3} \mathrm{Y}_{4} \mathrm{O}_{12}$ phase has been reported by several investigators. These line compounds are treated with two sublattice model-the ZrO_{2} component is on one sublattice and the YO_{15} component is one the other sublattice. Following Du et al.:

$$
\begin{equation*}
\mathrm{G}_{(1 / 7) \mathrm{Zr}_{3} \mathrm{Y}_{4} \mathrm{O}_{12}}=\frac{3}{7}{ }^{0} \mathrm{G}^{\mathrm{C}-\mathrm{ZrO}_{2}}+\frac{4}{7}{ }^{0} \mathrm{G}^{\mathrm{C}^{\prime}-\mathrm{ZrO}_{2}}-3284.3-2.26749 \mathrm{~T}=-79536+24.72 \mathrm{~T} \tag{58}
\end{equation*}
$$

As mentioned, there is an analogous $\mathrm{Zr}_{3} \mathrm{Yb}_{4} \mathrm{O}_{12}$ phase. This is treated as:

$$
\begin{equation*}
\mathrm{G}_{(1 / 7) \mathrm{Zr}_{3} \mathrm{Yb}_{4} \mathrm{O}_{12}}=-79350+25 \mathrm{~T} \tag{59}
\end{equation*}
$$

To account for interchange of Y and Yb in this compound, the following solution parameter is introduced:

$$
\begin{equation*}
\mathrm{L}(\mathrm{DELTA}, \mathrm{BM}, \mathrm{YM}: \mathrm{ZM} ; 0)=10200 \tag{60}
\end{equation*}
$$

The free energy of each of the compounds are chosen so that they protrude into the cubic phase. For $\mathrm{NdO}_{1,5}-\mathrm{ZrO}_{2}$, there exists a binary with the $1: 1$ composition

$$
\begin{equation*}
\mathrm{G}(\mathrm{P}, \mathrm{NM}: \mathrm{ZM} ; 0)=-180450+57 \mathrm{~T} \tag{61}
\end{equation*}
$$

For the $\mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$, there are several intermediate compounds, each with a range of solution according to the experimental diagram in figure 3 . However for the purpose of this approximation, we shall treat them as line compounds.

For $4\left(\mathrm{ScO}_{15}\right) \cdot 3\left(\mathrm{ZrO}_{2}\right)$, Phase RB:

$$
\begin{equation*}
\mathrm{G}(\mathrm{RB}, \mathrm{SM} ; \mathrm{ZM} ; 0)=-557200+171.5 \mathrm{~T} \tag{62}
\end{equation*}
$$

For $2\left(\mathrm{ScO}_{1.5}\right) \cdot 5\left(\mathrm{ZrO}_{2}\right)$, Phase RH :

$$
\begin{equation*}
\mathrm{G}(\mathrm{RH}, \mathrm{SM}: \mathrm{ZM} ; 0)=-620000+185 \mathrm{~T} \tag{63}
\end{equation*}
$$

For $2\left(\mathrm{ScO}_{1.5}\right) \cdot 7\left(\mathrm{ZrO}_{2}\right)$, Phase RM:

$$
\begin{equation*}
\mathrm{G}(\mathrm{RM}, \mathrm{SM}: \mathrm{ZM} ; 0)=-822800+258 \mathrm{~T} \tag{64}
\end{equation*}
$$

V. RESULTS: BINARY PHASE DIAGRAMS

Having described the database, we now turn to the results for the binaries and compare them to the limited experimental data. Figures 13 to 22 give the calculated binaries. Recall again that the experimental diagrams are for $\mathrm{RE}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ whereas the calculated diagrams are for $\mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}$.

The calculated diagrams show the same general features as the experimental diagrams. The calculated $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram (fig. 13) is, of course, the same as that obtained by Du et al., (ref. 1) and is in good agreement with the experimental diagram of Stubican et al., (fig. 1(a)).

All other $\mathrm{REO}_{1.5}-\mathrm{ZrO}_{2}$ diagrams show similar behavior to the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram on the ZrO_{2}-rich side, where most of the interest is. The $\mathrm{NdO}_{1.5}-\mathrm{ZrO}_{2}, \mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$, and $\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ diagrams are not so definitive, as much
less experimental data is available. Nonetheless, the general features of the experimental diagrams are reproduced on the calculated diagrams.

The $\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ diagram is also only approximately known (fig. 2) and consists of a large cubic phase field and one intermediate compound. This is reproduced in the calculated diagram (fig. 14).

The $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ experimental diagram shows a eutectic at $\sim 2115^{\circ} \mathrm{C}$ and the $\mathrm{NdO}_{1.5}-\mathrm{ZrO}_{2}$ calculated diagram shows the same eutectic at $2100^{\circ} \mathrm{C}$. The $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ experimental diagram shows a euctectoid at $1440^{\circ} \mathrm{C}$, whereas the calculated $\mathrm{NdO}_{15}-\mathrm{ZrO}_{2}$ phase diagram shows this eutectoid at $\sim 1660^{\circ} \mathrm{C}$. But this part of the diagram is not wellknown.

Only a limited portion of the $\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagram is known (fig. 3). For the purpose of this approximation, the intermediate compounds $\left(\mathrm{Sc}_{2} \mathrm{Zr}_{3} \mathrm{O}_{17}, \mathrm{Sc}_{2} \mathrm{Zr}_{5} \mathrm{O}_{13}, \mathrm{Sc}_{4} \mathrm{Zr}_{3} \mathrm{O}_{12}\right)$ are treated as line compounds rather than solid solutions. Even with this approximation, the general appearance is reproduced.

For the binaries among the rare earth oxides $\left(\mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{Sm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}\right)$, only the $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}$ (fig. 7) and $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}$ (fig. 9) systems are known to any extent. The major features of these diagrams are reproduced in the calculated diagrams (figs. 19 and 21, respectively). Both show a substantial monoclinic solid solution. The remaining rare earth oxide binaries show large cubic solid solution regions.

There are some limited activity measurements for the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ system at 2773 K (ref. 40) and the $\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ system at 2600 K (ref. 41) obtained via mass spectrometry. In order to compare these data to calculations from the database described here, the mole fraction must be converted according to table IV and the activity also must be converted to appropriate units. Belov et al. (refs. 40 and 41) show that the rare earth oxides vaporize as:

$$
\begin{equation*}
\mathrm{RE}_{2} \mathrm{O}_{3}(\mathrm{~s})=2 \mathrm{REO}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \tag{65}
\end{equation*}
$$

Thus the activity of $\mathrm{RE}_{2} \mathrm{O}_{3}\left[\mathrm{a}\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)\right]$ is defined as:

$$
\begin{equation*}
\mathrm{a}\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)=\frac{[\mathrm{P}(\mathrm{REO})]^{2}[\mathrm{P}(\mathrm{O})]}{\left[\mathrm{P}^{0}(\mathrm{REO})\right]^{2}\left[\mathrm{P}^{0}(\mathrm{O})\right]} \tag{66}
\end{equation*}
$$

Here the quantities in the numerator are the partial pressures over the oxide in solution and the quantities in the denominator are the partial pressures over the pure oxide-solid $\mathrm{Y}_{2} \mathrm{O}_{3}$ (presumably hexagonal) and cubic $\mathrm{Sc}_{2} \mathrm{O}_{3}$.

Next consider $\mathrm{REO}_{1.5}$, which should vaporize as:

$$
\begin{gather*}
\mathrm{REO}_{1.5}(\mathrm{~s})=\mathrm{REO}(\mathrm{~g})+1 / 2 \mathrm{O}(\mathrm{~g}) \tag{67}\\
\mathrm{a}\left(\mathrm{REO}_{1.5}\right)=\frac{[\mathrm{P}(\mathrm{REO})][\mathrm{P}(\mathrm{O})]^{1 / 2}}{\left[\mathrm{P}^{\mathrm{o}}(\mathrm{REO})\right]\left[\mathrm{P}^{\mathrm{o}}(\mathrm{O})\right]^{1 / 2}}=\sqrt{\mathrm{a}\left(\mathrm{RE}_{2} \mathrm{O}_{3}\right)} \tag{68}
\end{gather*}
$$

Thus the experimental measurements need only be converted with a square root for comparison to the calculated values.

Figures 23(a and b) and 24(a and b) show the comparison of these measured activities (refs. 40 and 41) to the calculated values from this database. For both systems the data indicate measurements were taken in a single phase region across the diagram; whereas the phase diagrams-both experiment and calculated indicate some two phase regions. There appears to be a conflict in the phase boundary locations. Agreement with a($\left.\mathrm{ZrO}_{2}\right)$ is good, as these data were used in the Du et al. (ref. 1) assessment. However, agreement with a($\mathrm{REO}_{1.5}$) is only fair-these data were not used in the assessment.

VI. RESULTS: TERNARY SECTIONS

This database can be used to approximate ternary sections. One would expect the following features in a ternary diagram:

1. The cubic phase occupies a large region in each binary. Therefore it seems reasonable that the cubic phase would stretch across the ternary as well.
2. The intermediate compounds should protrude into the ternary.

Calculations of the isothermal cuts led to some convergence problems in ThermoCalc and additional steps were necessary to force convergence. These are illustrated in the macro in appendix II. This macro also allows the variation of the ternary interaction parameter.

Figures 25 (a) and (b) are isothermal cuts for the $\mathrm{YO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ system at 1600 K , illustrating the effects of two different ternary interaction parameters:

Figure 24(a): L(C, BM, YM, ZM; 0) $=+10000$, insufficient for a continuous two phase region.
Figure 24(b): L(C, BM, YM, ZM; 0) $=+100000$, continuous two phase region.
In order to address issue (2) above, an interaction parameter was added for the intermediate phase. Figure 25 shows the effect of

$$
\mathrm{L}(\mathrm{C}, \mathrm{BM}, \mathrm{YM}: \mathrm{ZM})=70000
$$

$\mathrm{L}($ DELTA, $\mathrm{BM}, \mathrm{YM}: \mathrm{ZM})=10200$
Figures 26(a) to (c) are the calculated temary for 1473,1673 , and 2000 K . These can be compared to experimental sections in figure I1. The protrusion behavior as a function of temperature for the delta phase is reproduced by these calculations. Further work is necessary to reproduce the phase boundaries of the solution phases correctly.

VI. RESULTS: HIGHER ORDER SYSTEMS

There are no reported data on higher order phase diagrams. However they can be approximated with this database. Phase data for systems with more than three components can be presented with a phase fraction diagram or an isoplethal section with one component varying over a small range. An example of a phase fraction diagram for $\mathrm{ScO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ is shown in figure 27. Figure 28 shows an isoplethal section for $\mathrm{ScO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ with a small variation in $\mathrm{YO}_{1,5}$.

VII. SUMMARY AND CONCLUSIONS

An approximate database for $\mathrm{ScO}_{1.5}-\mathrm{NdO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ has been discussed. It is based on the assessment of Du et al., for the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ system (ref. 1) and uses a two-term lattice stability description of the phases with the liquid as the reference state. Binary phase diagrams for the other systems agree reasonably well with the limited experimental data. Ternary and higher order diagrams require the introduction of a ternary interaction parameter and an interaction parameter for the intermediate compounds to allow protrusion of the intermediate compounds into the multi-component composition space. The binary systems beyond $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ require additional experimental and modeling efforts. This will provide a stronger basis for further development of the multicomponent diagrams.

APPENDIX I

```
$ Database file written 99-12-23
$
\begin{tabular}{lllll} 
ELEMENT \(/-\) & ELECTRON_GAS & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00!\) \\
ELEMENT VA & VACUUM & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00!\) \\
ELEMENT BM & LIQ & \(1.9704 \mathrm{E}+02\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00!\) \\
ELEMENT NM & LIQ & \(1.6827 \mathrm{E}+02\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00!\) \\
ELEMENT SM & LIQ & \(6.8960 \mathrm{E}+01\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00!\) \\
ELEMENT YM & LIQ & \(1.1291 \mathrm{E}+02\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00!\) \\
ELEMENT ZM & LIQ & \(1.2322 \mathrm{E}+02\) & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00!\)
\end{tabular}
FUNCTION UN_ASS 2.98140E+02 0.0 ; 3.00000E+02 N !
TYPE DEFINITION % SEQ *!
DEFINE_SYSTEM_DEFAULT SPECIE 2 !
DEFAULT_COMMAND DEF_SYS_ELEMENT VA !
PHASE C \% 1.0 !
CONSTITUENT \(\mathrm{C}: \mathrm{BM}, \mathrm{NM}, \mathrm{SM}, \mathrm{YM}, \mathrm{ZM}:\) !
```


PHASE DELTA 우 2 . 571 . 429 !
CONSTITUENT DELTA : BM, YM : ZM : !
PARAMETER G(DELTA, YM: ZM; 0) 5.00000E+02 -79536+24.72*T; 6.00000E+03 N
REF:0 !
PARAMETER G(DELTA,BM:ZM;0) $300 \quad-79350+25 * T ; 6000 \mathrm{~N}$ REF:0 !
PARAMETER G(DELTA, BM, YM:ZM;0) $300+10200$; 6000 N REF: 0 !

PHASE H \% 1.0 !
CONSTITUENT H : BM, NM, SM, YM, ZM : !

PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{BM} ; 0)$	$2.98150 \mathrm{E}+02$	$-55919+20.92 * \mathrm{~T}$;	$6.00000 \mathrm{E}+03$	N REF: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{NM} ; 0)$	$2.98150 \mathrm{E}+02$	$-75697+29.29 * \mathrm{~T}$;	$6.00000 \mathrm{E}+03$	N REF:0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{SM} ; 0)$	$2.98150 \mathrm{E}+02-$	$-54000+30 * T ; 6$. $00000 \mathrm{E}+03$	N REF: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{YM} ; 0)$	$5.00000 \mathrm{E}+02-$	$-56735+20.92 * \mathrm{~T}$;	$6.00000 \mathrm{E}+03$	N REF:0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{ZM} ; 0)$	$5.00000 \mathrm{E}+02-$	$-53973+25.104 * T$;	$6.00000 \mathrm{E}+03$	N REF:0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{BM}, \mathrm{NM} ; 0)$) $5.00000 \mathrm{E}+02$	$2+12750+1.5 * T ;$	$6.00000 \mathrm{E}+03$	N REF:0	
PARAMETER	G (H, BM, NM; 1)) $5.00000 \mathrm{E}+02$	$2-1000-\mathrm{T}$; 6.0	0000E+03 N RE	EF: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{BM}, \mathrm{SM} ; 0)$) $5.00000 \mathrm{E}+02$	2 20000; 6.0000	0E+03 N REF	: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{BM}, \mathrm{YM} ; 0)$) $5.00000 \mathrm{E}+02$	+20000; 6.000	0000+03 N REF	F : 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{BM}, \mathrm{ZM} ; 0)$) $5.00000 \mathrm{E}+02$	2 20000; 6.000	000E+03 N REF:	: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{NM}, \mathrm{SM} ; \mathrm{O})$) $5.00000 \mathrm{E}+02$	2 20000; 6.000	00E+03 N REF:	: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{NM}, \mathrm{YM} ; 0)$) $5.00000 \mathrm{E}+02$	2 +11265+1.5*T;	$6.00000 \mathrm{E}+03$	N REF:0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{NM}, \mathrm{YM} ; 1)$) $5.00000 \mathrm{E}+02$	+1000+T; 6.0	0000E+03 N RE	EF: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{NM}, \mathrm{ZM} ; 0)$) $5.00000 \mathrm{E}+02$	2 35000; 6.000	00E+03 N REF:	: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{SM}, \mathrm{YM} ; 0)$) $5.00000 \mathrm{E}+02$	20000; 6.000	N $00 \mathrm{E}+03 \mathrm{REF}$:	: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{SM}, \mathrm{ZM} ; 0)$) $5.00000 \mathrm{E}+02$	20000; 6.000	00E+03 N REF:	: 0	
PARAMETER	$\mathrm{G}(\mathrm{H}, \mathrm{YM}, \mathrm{ZM} ; 0)$) $5.00000 \mathrm{E}+02$	50420; 6.000	O0E+03 N REF:	: 0	

PHASE LIQ \% 11.0 !
CONSTITUENT LIQ : BM,NM,SM,YM,ZM : !
PARA G(LIQ,BM; 0) $298.150 ; 6000 \mathrm{~N}$! PARA G(LIQ,NM; 0) $298.150 ; 6000 \mathrm{~N}$! PARA $G(L I Q, S M ; 0) 298.150 ; 6000 \mathrm{~N}$! PARA G(LIQ, YM; 0) $298.150 ; 6000 \mathrm{~N}$! PARA G(LIQ, ZM; 0) $298.150 ; 6000 \mathrm{~N}$!
PARAMETER G(LIQ, BM,NM;0) 5.00000E+02 -200; 6.00000E+03 N REF:0 ! PARAMETER G (LIQ, BM,SM;0) 5.00000E+02 20000; 6.00000E+03 N REF:0 ! PARAMETER G(LIQ, BM, YM;0) 5.00000E+02 -10000; 6.00000E+03 N REF:0 ! PARAMETER G(LIQ, BM, ZM;0) 5.00000E+02 -183750+72.4*T; 6.00000E+03 N REF: 0!
PARAMETER G(LIQ, BM, ZM; 1) 5.00000E+02 +48700-9.48*T; 6.00000E+03 N
REF: 0 :
PARAMETER G (LIQ, NM, SM; 0) 5.00000E+02 20000; 6.00000E+03 N REF:0 :
PARAMETER G(LIQ,NM, YM; 0) 5.00000E+02 -200; 6.00000E+03 N REF:0 !
PARAMETER G(LIQ.NM, ZM;0) 5.00000E+02 -20000; 6.00000E+03 N REF:0 !
PARAMETER G(LIQ,NM,ZM;1) 500 -15000; 6000 N REF: 0 !
PARAMETER G (LIQ, SM, YM; 0) $5.00000 \mathrm{E}+02$ 20000; 6.00000E+03 N REF:0 !
PARAMETER G (LIQ, SM, ZM;0) $5.00000 \mathrm{E}+02$ 20000; 6.00000E+03 N REF:0 !
PARAMETER G(LIQ, YM, ZM; 0) 5.00000E+02 -183751+72.4*T; 6.00000E+03 N
REF: 0 !
PARAMETER G(LIQ, YM, ZM; 1) 5.00000E+02 +48733-9.476*T; 6.00000E+03 N
REF: 0 !

PHASE M \% 1 1.0 !
CONSTITUENT M : BM,NM, SM, YM, $\mathrm{ZM}: \quad$!

PARAMETER	$\mathrm{G}(\mathrm{M}, \mathrm{BM} ; 0)$	$5.00000 \mathrm{E}+02$	-14000+29.915 T ,	+03	N REF:0
PARAMETER	G (M, NM ; 0)	$5.00000 \mathrm{E}+02$	$-14000+29.915 * \mathrm{~T}$;	$6.00000 \mathrm{E}+03$	N REF: 0
PARAMETER	$\mathrm{G}(\mathrm{M}, \mathrm{SM} ; 0)$	$5.00000 \mathrm{E}+02$	$-14000+29.915 * T ;$	$6.00000 \mathrm{E}+03$: 0
	$\mathrm{G}(\mathrm{M}, \mathrm{YM} ; 0)$	$5.00000 \mathrm{E}+02$	$-14698+29.915 * T ;$	$6.00000 \mathrm{E}+03$: 0
	$\mathrm{G}(\mathrm{M}, \mathrm{ZM} ; 0)$	00000E+	-99979+35.9*T;	0000E+03	

PHASE MN $\frac{0}{\circ} 1.0$!
CONSTITUENT MN : BM, NM, SM, YM, ZM : !

PHASE N \% 1.0 !
CONSTITUENT N : BM,NM, SM, YM, ZM : !
PARAMETER G(N,BM; 0) 5.00000E+02 -50000+30*T; 6.00000E+03 N REF:0 ! PARAMETER $G(N, N M ; 0) 5.00000 E+02-78000+30.29 * T ; 6.00000 \mathrm{E}+03 \mathrm{~N}$ REF:0! PARAMETER $G(N, S M ; 0) \quad 5.00000 E+02-50000+30 * T ; 6.00000 E+03$ N REF:0 ! PARAMETER $\mathrm{G}(\mathrm{N}, \mathrm{YM} ; 0) \quad 5.00000 \mathrm{E}+02-50000+30 * \mathrm{~T} ; \quad 6.00000 \mathrm{E}+03 \mathrm{~N}$ REF:0! PARAMETER $G(N, Z M ; 0) \quad 5.00000 E+02-50000+30 * T ; 6.00000 \mathrm{E}+03 \mathrm{~N}$ REF:0!
PARAMETER $G(N, B M, N M ; 0) \quad 5.00000 E+02-15200-7 * T ; 6000$ N REF:0 !
PARAMETER G(N,BM,NM;1) 500 -13000-6.7*T; 6000 N REF: 0!
PARAMETER G(N,BM,SM;0) 5.00000E+02 20000; 6.00000E+03 N REF:0 !
PARAMETER G (N,BM, YM; 0) 5.00000E+02 20000; 6.00000E+03 N REF:0!
PARAMETER G (N, BM, ZM; 0) 5.00000E+02 20000; 6.00000E+03 N REF:0 !
PARAMETER G(N,NM, SM; 0) 5.00000E+02 20000; 6.00000E+03 N REF:0 !
PARAMETER G(N,NM, YM; 0) 500 -15000-7*T; 6.00000E+03 N REF:0 !
PARAMETER $G(N, N M, Y M ; 1) 500 \quad 13000+5 * T ; 6000 \mathrm{~N}$ REF: 0 !
PARAMETER $G(N, N M, Z M ; 0) \quad 5.00000 E+0250000 ; 6.00000 E+03$ N REF:0 !
PARAMETER $G(N, S M, Y M ; 0) \quad 5.00000 \mathrm{E}+02$ 20000; 6.00000E+03 N REF:0 :
PARAMETER G(N,SM, ZM; 0) 5.00000E+02 20000; 6.00000E+03 N REF:0 !
PARAMETER G(N,YM, ZM; 0) 5.00000E+02 20000; 6.00000E+03 N REF:0 :

```
PHASE P % 2 1 1 :
    CONSTITUENT P :NM : ZM : !
    PARAMETER G(P,NM:ZM;0) 5.00000E+02 -180450+57*T; 6.00000E+03 N REF:0 !
PHASE RB %% 2 4 3 !
        CONSTITUENT RB :SM : ZM : !
    PARAMETER G(RB,SM:ZM;0) 5.00000E+02 -557200+171.5*T; 6.00000E+03 N
REF:0 !
PHASE RH % 2 2 5 !
        CONSTITUENT RH :SM : ZM : !
    PARAMETER G(RH,SM:ZM;0) 5.00000E+02 -620000+185*T; 6.00000E+03 N
REF:0 !
PHASE RM % 2 2 7 !
        CONSTITUENT RM :SM : ZM : !
    PARAMETER G(RM,SM:ZM;0) 5.00000E+02 -822800+258*T; 6.00000E+03 N
REF:0 !
```

PHASE T \% 1 1.0 :
CONSTITUENT T : BM, NM, SM, YM, ZM : !

PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{BM} ; 0) \quad 5$	$5.00000 \mathrm{E}+02$	$-35000+26$.	62*T;	6.00	00E+03		REF: 0
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{NM} ; 0) 5$	$5.00000 \mathrm{E}+02$	$-35000+26.4$	462*T;	6.000	00E+03		REF: 0
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{SM} ; 0) 5$	$5.00000 \mathrm{E}+02$	$-35000+26$.	462*T;	6.00	00E+03	N	REF: 0
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{YM} ; 0) 5$	$5.00000 \mathrm{E}+02$	-35618+26	462*T;	6.00	00E+03	N	REF: 0
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{ZM} ; 0) 5$	$5.00000 \mathrm{E}+02$	-93955+31.	755*T;	6.00	00E+03	N	REF: 0
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{BM}, \mathrm{NM} ; 0)$) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	0E+03	N REF:		
PARAMETER	G(T, BM, SM ; 0)) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	0E+03	N REF:		
PARAMETER	G(T, BM, YM ; 0)) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	0E+03	N REF:		
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{BM}, \mathrm{ZM} ; 0)$) $5.00000 \mathrm{E}+02$	$2-25800 ;$	6.000	00E+03	N REF		
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{NM}, \mathrm{SM} ; 0)$) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	0E+03	N REF:		
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{NM}, \mathrm{YM} ; 0)$) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	0E+03	N REF:		
PARAMETER	G (T, NM, ZM ; 0)) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	0E+03	N REF:		
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{SM}, \mathrm{YM} ; 0)$) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	$0 \mathrm{E}+03$	N REF:		
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{SM}, \mathrm{ZM} ; 0)$) $5.00000 \mathrm{E}+02$	2 20000;	6.0000	0E+03	N REF:		
PARAMETER	$\mathrm{G}(\mathrm{T}, \mathrm{YM}, \mathrm{ZM} ; 0)$) $5.00000 \mathrm{E}+02$	$2-25800 ;$	6.0000	00E+03	N REF		

LIST_OF_REFERENCES
NUMBER SOURCE
!

APPENDIX II

```
$ MACRO bmymzm-3.tcm GENERATED ON PC/WINDOWS NT DATE 0- 3- 8
$ Make the BM-YM-ZM ternary with a L(C,BM,YM, ZM;0) term directly
$
go da
sw user nasa5rl
def-sys bm ym zm
get
go gib
l-p-d
C
ent-par
L
C
bm
ym
zm
O
5 0 0
@? Enter Value
6 0 0 0
N
l-p-d
C
go p-3
sp-op
SET_MISCIBILITY_GAP
C
2
bom ym
s-c n=1, t=1600, p=le5, x (ym)=.78, x(zm)=.219
I-c
c-e
s-a-s
N
Y
zm
Y
bm ym
N
N
bm
N
bm
N
```

```
bm
N
bm
N
bm
N
bm
s-c n=1, t=1600, p=1e5, x (ym)=.78, x(zm)=.219
1-C
c-e *
l-e
SCREEN
VWCS
s-a-v 1 x(ym)
0
1
.025
s-a-v 2 x(zm)
O
I
. 025
add
-1
1i-in-eq
save
bmymzm-3
Y
map
post
s-d-t
Y
Y
n
pl
SCREEN
ba
read
bmymzm-3. PL 3
l-c
s-c x(ym)=1e-3, x(zm)=.21
1-c
c-e *
c-e
l-e
SCREEN
vWCS
add
2
li-in-eq
s-c x (ym)=.05, x (zm) =.9
l-c
c-e
c-e
1-e
SCREEN
VWCS
```

```
add
-2
li-in-eq
save
bmymzm-3.PL3
Y
map
post
s-t-s
4
s-c-t L L
YbO1.5
s-c-t l-r
YO1.5
s-c-t t
ZrO2
s-f
4
0.3
s-a-t-s
x
N
X(YO1.5)
s-a-t-s
Y
N
X(ZrO2)
s-tit
Yb01.5-YO1.5-ZrO2 1600K
s-1-c
n
pl
SCREEN
dump
bmp
ba
read bmymzm-3. PL3
li-in-eq
s-c x (ym)=0.78, x(zm)=0.21
l-c
c-e *
1-e
add
-1
save
bmymzm-3. PL3
y
map
post
pl
SCREEN
set-int
ba
```


REFERENCES

1. Y. Du, Z. Jin, and P. Huang, "Thermodynamic Assessment of the $\mathrm{ZrO}_{2}-\mathrm{YO}_{15}$ System," J. Am. Ceram. Soc. 74 [7] pp. 1569-77 (1991).
2. P. Duwez, F.H. Brown, Jr., and Odell, F., "The Zirconia-Yttria System," J. Electrochem. Soc. 98, pp. 356-62 (1951).
3. T. Noguchi, M. Mizuno, and T. Yamada, "The Liquidus Curve of the $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$ System as Measured by a Solar Furnace," Bull. Chem. Soc. Japan 43, pp. 2614-16 (1970).
4. S.R. Skaggs, "The Zirconia-Yttria System above $2000^{\circ} \mathrm{C}$, " PhD Dissertation, University of New Mexico, Albuquerque, New Mexico, 1972.
5. K.K. Srivastava, R.N. Patil, C.B. Choudhary, K.V.G.K. Gokhale, and E.C. Subbaro, "Revised Phase Diagram of the System $\mathrm{ZrO}_{2}-\mathrm{YO}_{15}$," Trans. J. Brit. Ceram. Soc. 73 [2], pp. 85-91 (1974).
6. H.G. Scott, "Phase relationships in the zirconia-yttria system," J. Mat. Sci. 10. pp. 1527-35 (1975).
7. V.S. Stubican, R.C. Hink, and S.P. Ray, "Phase Equilibria and Ordering in the System $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$," J. Am. Ceram. Soc. 61 [1/2]. pp. 17-21 (1978).
8. V.S. Stubican and J.R. Hellman, "Phase Equilibria in some zirconia systems," in Science and Technology of Zirconia, pp. 25-36, Advances in Ceramics, Volume 3, ed. by A.H. Heuer and L. W. Hobbs, American Ceramic Society, Columbus, OH, 1981.
9. C. Pascual and P. Duran, "Subsolidus Phase Equilibria and Ordering in the System $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$," J. Am. Ceram. Soc. 66 [1], pp. 23-27 (1983).
10. R. Ruh, K.S. Mazdiyasni, P.G. Valentine, and H.O. Bielstein, "Phase Relations in the System $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$ at Low $\mathrm{Y}_{2} \mathrm{O}_{3}$ Contents," J. Am. Ceram. Soc. C-190-92 (1984).
11. V.S. Stubican, G.S. Corman, J.R. Hellman, and G. Senft, "Phase Relationships in Some ZrO pp. 96-106, Science and Technology of Zirconia II, Adv. in Ceramics, Vol. 12, ed. by N. Claussen, M. Ruhle, and A. H. Heuer, Am. Ceram. Soc., Columbus, OH, 1984.
12. S.A. Degtyarev and G.F. Voronin, "Solution of Incorrect Problems in the Thermodynamics of Phase Equilibria. I. The System $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$," Russ. J. Phys. Chem. 61 [3], pp. 317-20 (1987).
13. S.A. Degtyarev and G.F. Voronin, "Solution of "Incorrect" Problems in the Thermodynamics of Phase Equilibria. I. Calculation of the $\mathrm{ZrO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$ Phase Diagram," Russ. J. Phys. Chem. 61 [3], pp. 320-23 (1987).
14. L. Kaufman, "Calculation of Multicomponent Ceramic Phase Diagrams," Physica B 150, pp. 99-114 (1988).
15. Y. Du, Z. Jin, and P. Huang, "Thermodynamic Calculation of the $\mathrm{ZrO}_{2}-\mathrm{YO}_{1.5}$ System," J. Am. Ceram. Soc. 74 [9]. pp. 2107-12 (1993).
16. Y. Du and Z. Jin, "Optimization and Calculation of $\mathrm{ZrO}_{2}-\mathrm{MgO}$ System," CALPHAD, 15 [1], pp. 59-68 (1991).
17. Z. Jin and Y. Du, "A Reassessment of the $\mathrm{ZrO}_{2}-\mathrm{YO}_{15}-\mathrm{MgO}$ System," Ceramics Int. 20, pp. 17-25 (1994).
18. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, "Phase Diagram Calculations for ZrO 2 Based Ceramics: Thermodynamic Regularities in Zirconate Formation and Solubilities of Transition Metal Oxides," Science and Technology of Zirconia V,
19. H. Yokokawa, "Phase Diagrams and Thermodynamic Properties of Zirconia Based Ceramics," Key Engineering Materials, pp. 153-154, 37-74 (1998).
20. F.H. Brown, Jr. and P. Duwez, "The Systems Zirconium Oxide-Lanthanum Oxide and Zirconium OxideNeodynium Oxide," J. Am. Ceram. Soc. 38 [3], pp. 95-101 (1955).
21. A. Rouanet, "Zirconium Dioxide-Lanthanide Oxide Systems Close to the Melting Point," Rev. Int. Hautes Temp. Refract. 8 [2], pp. 16I-80 (1971).
22. M.A. Clevinger, K.M. Hill, T.R. Green, C.C. Cedeno, E. Hayward, and N. Swanson, "Phase Equilbrium Diagrams, CD-ROM Database, Version 2.1," Am. Ceram. Soc., Westerville, OH, 1993, Figure 93-023.
23. ibid., Figure 93-055.
24. ibid., Figure 5257.
25. ibid., Figure 4430.
26. ibid., Figure 4426.
27. ibid., Figure 347.
28. ibid., Figure 351.
29. ibid., Figure 5234.
30. ibid., Figure 5235.
31. G.S. Corman and V.S. Stubican, "Phase Equilibria and Ionic Conductivity in the System- $\mathrm{ZrO}_{2}-\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}$," J. Am. Ceram. Soc. 68 [4], pp. 174-81 (1985).
32. H.L. Lukas, E.-Th. Henig, and B. Zimmermann, "Optimization of Phase Diagrams by a Least Squares Method Using Simultaneously Different Types of Data," CALPHAD 1 [3], pp. 2215-36 (1977).
33. O. Kubachewski and C.B. Alcock, Metallurgical Thermochemistry, $5^{\text {th }}$ Edition, Pergamon Press, Oxford, 1983.
34. L.V. Gurvich, V.S. Iorish, D.V. Chekhovskoi, and V.S. Yungman, IVTANTHERMO-A Thermodynamic Database and Software System for the Personal Computer, NIST Special Database 5, NIST, Gaithersburg, MD, 1993.
35. L.B. Pankratz, "Thermodynamic Properties of Elements and Oxides," Bulletin 672, United States Department of the Interior, Bureau of Mines, 1982.
36. M. Yoshimura, "Phase Stability of Zirconia," Am. Ceram. Soc. Bull. 67 [12], pp. 1950-55 (1988).
37. O. Redlich, A.T. Kister, and C.E. Turnquist, "Thermodynamics of Solutions," Chem. Eng. Progress, Symp. Series, 48, pp. 49-64 (1952).
38. R.T. DeHoff, Thermodynamics in Materials Science, McGraw-Hill, 1993.
39. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformation Their Thermodynamic Basis, Cambridge University Press, Cambridge, UK, 1998.
40. A.N. Belov and G.A. Semenov, "Thermodynamics of Binary Solid Solutions of Zirconium, Hafnium, and Yttrium Oxides from High-temperature Mass Spectrometry Data," Russ. J. Phys. Chem. 59 [3], pp. 342-44 (1985).
41. A.N. Belov, G.A. Semenov, G.A. Teterin, and T.M. Shkol'nikova, "Evaporation and Thermodynamic Properties of $\mathrm{Sc}_{2} \mathrm{O}_{3}$ and of $\mathrm{ZrO}_{2}-\mathrm{Sc}_{2} \mathrm{O}_{3}$ Binary Solid Solutions According to High-temperature Mass Spectrometry Data II. Calculations," Russ. J. Phys. Chem. 61 [4], pp. 468-70 (1987),

> TABLE I.-AVAILABLE BINARY PHASE DLAGRAMS

	ZrO_{2}	$\mathrm{Y}_{2} \mathrm{O}_{3}$	$\mathrm{Yb}_{2} \mathrm{O}_{3}$	$\mathrm{Sc}_{2} \mathrm{O}_{3}$	$\mathrm{Nd}_{2} \mathrm{O}_{3}$
ZrO_{2}		x	x	x	x
$\mathrm{Y}_{2} \mathrm{O}_{3}$			x	x	x
$\mathrm{Yb}_{2} \mathrm{O}_{3}$				x	x
$\mathrm{Sc}_{2} \mathrm{O}_{3}$					X
$\mathrm{Nd}_{2} \mathrm{O}_{3}$					

TABLE II-ZZIRCONIA AND RARE EARTH OXIDES TRANSITION TEMPERATURES

Oxide	Phase Change	$\begin{gathered} \mathrm{T} \text { (trans) } \\ \mathrm{K} \\ \hline \end{gathered}$	$\begin{gathered} \Delta_{\mathrm{H}} \mathrm{H} \\ (\mathrm{~kJ} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta_{\mathrm{u}} \mathrm{~S} \\ (\mathrm{~J} / \mathrm{mol}-\mathrm{K}) \end{gathered}$	Reference
ZrO	Monoclinic \rightarrow Tetragonal	1448	5.941	4.103	Kubachewski (33)
	Monoclinic \rightarrow Tetragonal	1478	8.075	5.464	Pankratz (35)
	Monoclinic \rightarrow Tetragonal	1445	8.4	5.813	IVTAN (34)
	Terragonal \rightarrow Cubic	2568	5.9	2.3	Kubachewski (33)
	Terragonal \rightarrow Cubic	2620	13.001	4.962	IVTAN (34)
	Cubic \rightarrow Liquid	2953	87	29.492	Kubachewski (33)
	Cubic \rightarrow Liquid	2983	90	30.171	IVTAN (34)
$\mathrm{Y}_{2} \mathrm{O}_{3}$	Cubic \rightarrow Hexagonal	2550	54	21.176	IVTAN (34)
	Hexagonal \rightarrow Liquid	2712			Kubacheski (33)
	Hexagonal \rightarrow Liquid	2712	81	29.867	IVTAN (34)
$\mathrm{Yb}_{2} \mathrm{O}_{1}$	Cubic \rightarrow Hexagonal	2663			IVTAN (34)
	Hexagonal \rightarrow Liquid	2708	130	48.006	IVTAN (34)
$\mathrm{Nd}_{2} \mathrm{O}$	N phase \rightarrow Hexagonal				
	Hexagonal \rightarrow Cubic	2333			IVTAN (34)
	Cubic \rightarrow Liquid	2593	125	48.207	IVTAN (34)

TABLE III.-OXIDES
AND ABBREVIATIONS

Oxide	Abbreviation
ZrO_{2}	ZM
YO_{4}	YM
$\mathrm{YbO}_{1 .}$	BM
NdO_{13}	NM
ScO_{13}	SM

TABLE V.-_EFFECT OF FIRST ORDER INTERACTION PARAMETER ON THE LOCATION OF THE MISCIBILITY GAP

MISCIBILITY GAP	
Miscibility Gap	L
Symmetric	Zero
Shifted to Right	Positive
Shifted to Left	Negative

Figure 1.-Two experimentally determined $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagrams. (a) Stubican et al. 1981 (22, 7). (b) Pascual and Duran, 1983 (23, 9). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1984] by the American Ceramic Society. All rights reserved.

Figure 2.-Experimentally determined $\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagrams. (a) Rouanet (24). (b) Stubican et al. (11). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1985] by the American Ceramic Society. All rights reserved.

Figure 3.-Experimentally determined $\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagram
(25). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 4.-Experimentally determined $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagram (26). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 5.-Experimentally determined $\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}$ phase diagram (27). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 6.-Experimentally determined $\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}$ phase diagram (28). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reservec

Figure 7.-Experimentally determined $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}$ phase diagram (29). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 8.-Experimentally determined $\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}$ phase diagram (28). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 9.-Experimentally determined $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}$ phase diagram (30). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 10.-Experimentally determined $\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{Sc}_{2} \mathrm{O}_{3}$ phase diagram (28). Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 11.-Experimental determined $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{Yb}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ phase diagram (31) at (a) $1200{ }^{\circ} \mathrm{C}$, (b) $1400^{\circ} \mathrm{C}$, and (c) $1650^{\circ} \mathrm{C}$. Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 11.-Concluded. (c) $1650^{\circ} \mathrm{C}$. Reprinted with permission of The American Ceramic Society, Post Office Box 6136, Westerville, OH 43086-6136. Copyright [1993] by the American Ceramic Society. All rights reserved.

Figure 12.-Values of $G_{\text {config }}+G_{\text {excess }}$ versus T illustrating the effect of the interaction parameters on the symmetry and location of the miscibility gap.

Figure 13.--Calculated $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram. Compare to Figure 1(a). The starting point for the calculation is $\mathrm{x}(\mathrm{YM})=0.5, \mathrm{~T}=3500 \mathrm{~K}$.

Figure 14.-Calculated $\mathrm{YbO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram. Compare to Figure 2. The starting point for the calculation is $x(Z M)=0.5, T=3500 \mathrm{~K}$, followed $x(Z M)=0.2, T=2000 K$.

Figure 15.-Calculated $\mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram. Compare to Figure 3. The starting point for the calculation is $x(Z M)=0.5, T=3500 \mathrm{~K}$.

Figure 16.-Calculated $\mathrm{NdO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram. Compare to Figure 4. The starting point for the calculation is $\times(Z M)=0.1, T=1800 \mathrm{~K}$, initially mapping up with temperature, followed by $x(Z M)=0.99, T=1000 \mathrm{~K}$, initially mapping up with temperature, followed by $x(Z M)=0.99, T=3100 \mathrm{~K}$, initially mapping up with temperature, and finally $x(Z M)=0.1, T=2300 \mathrm{~K}$.

Figure 17.-Calculated $\mathrm{YbO}_{1.5}-\mathrm{YO}_{1.5}$ phase diagram. Compare to Figure 5. The starting point for this calculation is $\mathrm{x}(\mathrm{YM})=0.001, \mathrm{~T}=2500 \mathrm{~K}$, map with temperature increasing first.

Figure 18.-Calculated $\mathrm{ScO}_{1.5}-\mathrm{YO}_{1.5}$ phase diagram. Compare to Figure 6. The starting point for this calculation is $x(S M)=0.001, T=2500 \mathrm{~K}$, map with temperature increasing first.

Figure 19.-Calculated $\mathrm{NdO}_{1.5}-\mathrm{YO}_{1.5}$ phase diagram. Compare to Figure 7. The starting point for this calculation is $\times(\mathrm{YM})=0.01, \mathrm{~T}=3000 \mathrm{~K}$, followed by $\mathrm{x}(\mathrm{YM})=0.99, \mathrm{~T}=1500 \mathrm{~K}$.

Figure 20.-Calculated $\mathrm{ScO}_{1.5}-\mathrm{YO}_{1.5}$ phase diagram. Compare to Figure 8. The starting point for this calculation is $x(S M)=0.001, T=2500 \mathrm{~K}$, map with temperature increasing first.

Figure 21 -Calculated $\mathrm{NdO}_{1.5}-\mathrm{YbO}_{1.5}$ phase diagram. Compare to Figure
 followe by $x(B M)=0.1, T=1500 \mathrm{~K}$.

Figure 22.-Calculated $\mathrm{ScO}_{1.5}-\mathrm{NdO}_{1.5}$ phase diagram. Compare to Figure 10. The starting point for this calculation is $x(S M)=0.001, T=3000 \mathrm{~K}$, followed by $x(S M)=0.001, T=1000 \mathrm{~K}$.

Figure 23.-Calculated activities across the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram at 2773 K (line) and experimental data (points) of Belov and Semenov et al. (39). This line was generated using a starting point of $x(Z M)=0.8$ and then a step with options command. (a) a $\left(\mathrm{YO}_{1.5}\right)$. (b) a $\left(\mathrm{ZrO}_{2}\right)$.

Figure 24.-Calculated activities across the $\mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$ phase diagram at 2600 K (line) and experimental data (points) of Belov and Semenov et al. (40). This line was generated using a starting point of $x(Z M)=0.8$ and then a step with options command. (a) a ($\mathrm{ScO}_{1.5}$). (b) a $\left(\mathrm{ZrO}_{2}\right)$.

Figure 25.-Calculated ternary section for the $\mathrm{YbO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ system at 1600 K . (a) L(C, BM, YM, ZM; 0) $=+10000$ insufficient to form a continuous two phase region. (b) L(C, BM, YM, ZM; 0) = +100000 continuous two phase region.

Figure 26.-Calculated ternary diagram for the $\mathrm{YbO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ system at (a) 1473 K , (b) 1673 K , and (c) 2000 K.

Figure 27.-Calculated phase fraction diagram for $0.05 \mathrm{YbO}_{1.5-0.04 \mathrm{YO}_{1.5}-0.01 \mathrm{ScO}_{1.5}-0.9 \mathrm{ZrO}_{2} .}$

Figure 28.-Calculated isopleth for $\mathrm{YbO}_{1.5}-\mathrm{YO}_{1.5}-\mathrm{NdO}_{1.5}-\mathrm{ZrO}_{2}$ with $x\left(\mathrm{YbO}_{1.5}\right)=x\left(\mathrm{ScO}_{1.5}\right)=0.02$.

Nathan S. Jacobson and Evan H. Copland, NASA Glenn Research Center; Larry Kaufman, Consultant, Brookline, Massachusetts 02445. Responsible person, Nathan Jacobson, organization code 5160, 216-433-5498.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE
Unclassified -Unlimited
Subject Categories: 25 and 27 Distribution: Nonstandard
Available electronically at http://gltrs.gre nasa.gov/GLTRS
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390

13. ABSTRACT (Maximum 200 words)

A database for $\mathrm{YO}_{1.5}-\mathrm{NdO}_{1.5}-\mathrm{YbO}_{1.5}-\mathrm{ScO}_{1.5}-\mathrm{ZrO}_{2}$ for ThermoCalc (ThermoCalc AB, Stockholm, Sweden) has been developed. The basis of this work is the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ assessment by Y . Du, Z . Jin, and P. Huang, "Thermodynamic Assessment of the $\mathrm{ZrO}_{2}-\mathrm{YO}_{1.5}$ System," J. Am. Ceram. Soc. 74, [7], pp. 1569-77 (1991). Experimentally only the $\mathrm{YO}_{1.5}-\mathrm{ZrO}_{2}$ system has been well-studied. All other systems are only approximately known. The major simplification in this work is the treatment of each single cation unit as a component. The pure liquid oxides are taken as reference states and two term lattice stability descriptions are used for each of the components. The limited experimental phase diagrams are reproduced.

14. SUBJECT TERMS Thermodynamics; Database; Ceramics			15. NUMBER OF PAGES 50
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

[^0]: *ThermoCalc AB, Stockholm, Sweden.

