NASA/CR-2001-211216

Scheduled Civil Aircraft Emission Inventories for 1999: Database Development and Analysis

Donald J. Sutkus, Jr., Steven L. Baughcum, and Douglas P. DuBois Boeing Commercial Airplane Group, Seattle, Washington

Prepared under Contract NAS1-20341, Task 19

National Aeronautics and Space Administration

Glenn Research Center

October 2001

Available from

NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076

National Technical Information Service 5285 Port Royal Road Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov/GLTRS

TABLE OF CONTENTS

LIST OF FIGURES	v
LIST OF TABLES	vi
GLOSSARY	viii
EXECUTIVE SUMMARY	1
1. INTRODUCTION	4
2. DATABASE DEVELOPMENT METHODOLOGY	9
 2.1 DATABASE ACQUISITION AND DESCRIPTION 2.2 DATA EXTRACT CHALLENGES 2.3 CREATION OF THE EMISSIONS DATABASE: 2.3.1. Schedule Data Translation 2.3.2. Airplane/Engine Performance Data Substitution 2.3.3. Airplane Mission Performance Calculation 2.3.4. Calculation of Global Emissions 2.5 METHODOLOGY CHANGES FROM PREVIOUS BOEING INVENTORY CALCULATIONS 	10 12 16 <i>16</i> <i>18</i> <i>21</i> <i>22</i> 25
3. RESULTS AND ANALYSIS - SCHEDULED AIRCRAFT EMISSIONS	29
 3.1 OVERVIEW OF RESULTS	29 34 41 43 47 49
4. COMPARISON OF 1999 INVENTORY RESULTS WITH DOT FORM 41 DATA	51
5. SUMMARY AND CONCLUSIONS	57
6. REFERENCES	59

TABLE OF CONTENTS (CONTINUED)

APPENDIX A – SAMPLE AIRCLAIMS FLEET INFORMATION DATA	61
APPENDIX B – AIRPLANE/ENGINE SUBSTITUTION TABLES FOR 1999 EMISSION INVENTORY CALCULATIONS	63
APPENDIX C – ALTITUDE DISTRIBUTION OF FUEL BURN AND EMISSIONS FOR EACH MONTH OF 1999	81
APPENDIX D – EFFECTIVE GLOBAL EMISSION INDICES FOR 1999 AIRCRAFT	93
APPENDIX E – DEPARTURE AND DISTANCE SUMMARIES FOR MAY 1999 SCHEDULED AIR TRAFFIC	113

LIST OF FIGURES

Figure 2-1.	Schematic of emission inventory calculation.	9
Figure 2-2.	"Codeshare" flight duplication.	13
Figure 2-3.	"Starburst" flight duplication.	14
Figure 2-4.	"Effectivity" flight duplication.	15
Figure 3-1.	Global cruise (9-13 km) NOx distribution for the scheduled aircraft fleet, May 1999.	30
Figure 3-2.	NOx emissions for the scheduled aircraft fleet, May 1999, as a function of altitude and latitude (summed over longitude).	30
Figure 3-3.	Altitude distribution of fractional fuel burned and fractional global emissions of CO, Hydrocarbons and NOx for the scheduled aircraft fleet, May 1999.	32
Figure 3-4.	Fuel burned and emissions (solid line) as a function of latitude for scheduled May 1999 air traffic. Dashed lines show the cumulative fraction of emissions.	33
Figure 3-5.	Fuel burned per kilometer traveled (top panel) and fuel burned per available seat kilometer traveled (bottom panel) as a function of mission length for the 747-400 and the MD-11ER.	40
Figure 3-6.	Global fuel burned in the 0-19 km altitude band for scheduled air traffic and percent deviation from the annual average fuel burn for each month of 1999.	42
Figure 3-7.	Trends of global scheduled fleet NOx/ASK and fuel burned/ASK derived from NASA emission inventory and scenario work.	46

LIST OF TABLES

Table 2-1.	Regional changes in May 1999 global scheduled fleet emission inventory calculation results due to use of a 4-month projection of OAG flight schedule data instead of a one month projection (positive percent difference denotes an over-prediction by the 4-month projection).	12
Table 2-2.	Sample OAG to Airclaims airline code translation table.	17
Table 2-3.	Sample OAG to Airclaims airplane translation table.	17
Table 2-4.	List of airplane-engine combinations used in airplane performance calculations for the 1999 emission inventory.	20
Table 2-5.	Increase in ZFW relative to the 70% passenger loading case for very large freighters.	22
Table 2-6.	Recommended emission indices (in units of grams emission/kilogram fuel).	23
Table 3-1.	Fuel burned and emissions for scheduled air traffic for each month of 1999.	29
Table 3-2.	Percentage of global fuel burned, NOx emitted and distance traveled in selected regions of the world by the May 1999 scheduled aircraft fleet.	31
Table 3-3.	Summary of departure statistics by general aircraft type for May 1999.	35
Table 3-4.	Summary of fuel burned and global effective emission indices for commercial aircraft types (based on May 1999 scheduled air traffic).	37
Table 3-5.	Fractional contribution of each commercial airplane type to global fuel burned and emissions totals for May 1999 scheduled traffic. (Summed over all altitudes, latitudes, and longitudes)	38

Fuel burned and emissions calculated self- consistently for the scheduled aircraft fleet for August 1992 and August 1999.	43
Comparison of August 1999 global fuel burned and NOx emissions with and without the use of freighter cargo loading assumptions.	48
By airline comparison of DOT Form 41 reported departures, distance and fuel burned with 1999 scheduled inventory global totals for selected passenger carriers.	53
By airline comparison of DOT Form 41 reported departures, distance and fuel burned with 1999 scheduled inventory global totals for selected cargo carriers.	53
	 Fuel burned and emissions calculated self- consistently for the scheduled aircraft fleet for August 1992 and August 1999. Comparison of August 1999 global fuel burned and NOx emissions with and without the use of freighter cargo loading assumptions. By airline comparison of DOT Form 41 reported departures, distance and fuel burned with 1999 scheduled inventory global totals for selected passenger carriers. By airline comparison of DOT Form 41 reported departures, distance and fuel burned with 1999 scheduled inventory global totals for selected passenger carriers.

Glossary

AEAP	Atmospheric Effects of Aviation Project (NASA)
ANCAT	Abatement of Nuisances Caused by Air Transport
ASK	Available seat kilometer (the number of seats an airline
	provides times the number of kilometers they are flown)
BMAP	Boeing Mission Analysis Process
CAEP	ICAO Committee on Aviation Environmental Protection
CO	Carbon Monoxide
CO2	Carbon Dioxide
DOE	United States Department of Energy
DOT	United States Department of Transportation
DLR	Deutsches Zentrum fuer Luft- und Raumfahrt
EI(CO)	Emission Index (grams CO/kg fuel burn)
EI(HC)	Emission Index (grams hydrocarbon/kg fuel burn)
EI(NOx)	Emission Index (grams NOx (as NO ₂)/kg fuel burn)
FRT	Freighter designator in schedule data
GAEC	Global Atmospheric Emissions Code
GE	General Electric
HC	Unburned hydrocarbons
H ₂ O	Water
ICAO	International Civil Aviation Organization
kg	kilogram
lb	pound
Load Factor	Percentage of an airplane's seat capacity occupied by
	passengers on a given flight
LTO cycle	Landing takeoff cycle
М	Mach number
MTOW	Maximum takeoff weight
NASA	National Aeronautics and Space Administration
NOx	Oxides of nitrogen (NO + NO ₂) in units of gram
	equivalent NO2
OAG	Official Airline Guide
OEW	Operating Empty Weight
P&W	Pratt & Whitney
PAX	passengers
SO2	Sulfur dioxide
TOGW	Takeoff gross weight
US	United States
3-D	Three dimensional

Scheduled Civil Aircraft Emission Inventories for 1999: Database Development and Analysis

Donald J. Sutkus Jr., Steven L. Baughcum and Douglas P. DuBois Boeing Commercial Airplane Group Seattle, Washington 98124

Executive Summary

This report describes the development of three-dimensional inventories of aircraft fuel burned and emissions (NOx, CO, and hydrocarbons) from scheduled air traffic for each month of 1999. The data are on a 1° latitude x 1° longitude x 1 km altitude grid. The data files were delivered to NASA electronically. These emission inventories were developed for the NASA Ultra Efficient Engine Technology (UEET) Program under contract NAS1-20341, Task Assignment 19. They will be available for use by atmospheric scientists conducting modeling studies on the atmospheric effects of aviation, including the NASA Global Modeling Initiative (GMI).

Emissions produced by the world's entire aircraft fleet come from scheduled, military, charter and general aviation air traffic. In this report, we present only the results and methodology used for the calculation of emissions from scheduled air traffic which includes turboprops, passenger jets, and jet cargo aircraft.

Global fuel use for 1999 by scheduled air traffic was calculated to be 1.28×10^{11} kilograms. Global NOx emissions by scheduled air traffic in 1999 were calculated to be 1.69×10^{9} kilograms (as NO₂). Calculated global emissions show a seasonal variation, peaking in August with a minimum in February. Emissions for the month of December 1999 were closest to global annual average emissions, although emissions for May (the month typically used as an 'average' month in past NASA inventory studies) were within 1 percent of the global annual average.

A trend analysis for emissions and fuel burned was performed using the results of this current work and previously published emission inventories and scenarios. This analysis showed an increase in the absolute amount of fuel burned, distance traveled, NOx, and CO emissions produced by the scheduled fleet between 1992 and 1999 and a decrease in the absolute amount of hydrocarbon emissions produced. Calculated global fuel use increased by 33% and NOx emissions increased by 35% between 1992 and 1999. The analysis

also showed that scheduled fleet fuel burned and NOx emissions normalized by available seat kilometers decreased between 1992 and 2015.

The methodology used to extract and process air traffic data from the Official Airline Guide was changed from that used to calculate previous scheduled fleet inventories for 1976, 1984 and 1992. To quantify the effects of the methodology changes, an emission inventory for August 1992 was recalculated using the new methodology. Comparisons between the previously published and new August 1992 inventories show good agreement for global fuel burned and NOx totals. For CO and hydrocarbons, the global totals increased by 20 percent and 18 percent respectively with the use of the new methodology. Much of this difference arises from changes in the selection of combustor types for certain engines in the fleet. Hydrocarbon and CO emissions levels for many older technology engines can vary widely depending on the combustor used in the engine.

To improve the accuracy of global emissions calculations for freighters, United States Department of Transportation Form T-100 data was used to determine typical payloads for freighter aircraft. This information was then used to model freighter aircraft more accurately in the inventory calculations by using more realistic payloads.

To assess the effect of the different freighter payload assumptions, results were compared with previous inventory calculations done using 70 percent passenger payload for all aircraft. This comparison showed that improved freighter payload assumptions increased total global fuel burned by 0.6 percent and increased total global NOx by 1.5 percent for August 1999. These increases are relatively small and will not significantly change trends for fuel use or NOx created using the published inventories for 1976, 1984, and 1992.

In order to evaluate the 1999 scheduled aircraft fleet global emission inventory calculations, comparisons were made with aviation fuel use and traffic data reported on the U.S. Department of Transportation (DOT) Form 41 by US air carriers. In general, emission inventory calculations of departures and distance traveled for 1999 compared well (within 5 percent) with the DOT Form 41 data for the ten largest passenger carriers that reported fuel use and traffic data to the DOT. In contrast, for the four largest cargo carriers reporting to the DOT, calculated departures and distance traveled were significantly less than those reported. It appears that the OAG flight schedule data do not contain a complete listing of cargo flights.

For the passenger carriers in the DOT Form 41 data comparison, the emission inventory calculations consistently under-predicted fleet fuel burned. The magnitude of these under-predictions varied depending on the carrier being considered. For the ten largest air carriers reporting data to the DOT, the total fuel burn was under-predicted by 21 percent. This result is likely due to the simplifying assumptions used in the development of the global inventory, including our inability to consider air traffic control delays/diversions, weather/wind factors, more realistic routing, less than optimum aircraft/engine performance and actual aircraft operating weights.

1. Introduction

The NASA Ultra Efficient Engine Technology (UEET) program has been initiated to promote the development of fuel efficient and low NOx emissions jet engines for the future and to evaluate the effects of aircraft emissions on the atmosphere and human health. The work described herein was done in support of the UEET program Environmental Impact Assessment Element (WBS 1.2) which includes atmospheric modeling, health risk assessment, and emission characterization work. The creation of global emission inventories for the scheduled aircraft fleet as a function of altitude and geographical position (referred to as "3-D emission scenarios") is an important component of the atmospheric modeling portion of this element. These scenarios are used as the input to chemical transport models to evaluate the effect of aircraft emissions: how long they persist in the atmosphere, how much they perturb the chemistry or microphysics of the upper troposphere, and how they compare with other sources of NOx, water, soot, and condensation nuclei in the upper troposphere.

In previous NASA studies funded under the High Speed Research and Advanced Subsonic Technology programs, we have developed 3-D emission scenarios for aircraft fleets for 1976, 1984 and 1992 (Baughcum, *et al.*, 1996a and 1996b), and have projected 3-D emission scenarios of both subsonic and supersonic traffic for 2015 (Baughcum, *et al.*, 1998; Baughcum and Henderson, 1998). ANCAT and DLR have also published historical 3-D emission inventories and projections for 2015 (Schmitt and Brunner, 1997; Gardner, 1998). The emission scenario work of NASA, ANCAT and DLR has been compared and contrasted in the *Intergovernmental Panel on Climate Change Special Report on Aviation and the Global Atmosphere* (Henderson, *et al.*, 1999).

The NASA-funded work as well as that of ANCAT and DLR has used a "bottoms-up" approach in which aircraft schedules are obtained or estimated and the aircraft/engine combinations in these schedules are identified. Detailed calculations of fuel burned and emissions are then made along each flight path and the results are distributed over a 3-dimensional global grid space.

Emissions produced by the world's entire aircraft fleet come from scheduled, military, charter and general aviation air traffic. In this report, we present the results and methodology used for the calculation of emissions from scheduled air traffic, including turboprops, passenger jets, and jet cargo aircraft. In 1992, fuel usage for scheduled air traffic accounted for approximately 68% of the fuel usage of the entire aircraft fleet. The scheduled air traffic inventories presented in this report are calculated using the Official Airline Guide (OAG) as the source of scheduled flight data. The OAG accurately accounts for scheduled passenger flights in most regions of the world but it is unclear to what extent it covers cargo flights and flights within China and the former Soviet Union.

This report documents an emission inventory for only the 1999 scheduled aircraft fleet. In order for a complete emission inventory for the world's entire 1999 aircraft fleet to be created, the 3-D scheduled inventory documented in this work would need to be combined with 1999 3-D inventories of the military, charter and general aviation components of the world's fleet. Such inventories were developed earlier for 1976, 1984, 1992 and 2015 (Landau, *et al.*; 1994, Metwally, 1995; Mortlock and Van Alstyne, 1998). In addition, 3-D inventory calculations for year 1999 flights within the former Soviet Union and People's Republic of China not included in the OAG schedule would have to be included if it is determined that the OAG schedule is incomplete for these regions. As of the writing of this report, these additional inventories have not yet been developed for 1999.

To calculate scheduled aircraft fleet inventories, flight schedule data (number of departures for each city pair along with airplane and engine type) are combined with performance and emissions data to calculate fuel burned, oxides of nitrogen (NOx), carbon monoxide (CO), and total hydrocarbons (HC) on a 1° longitude x 1° latitude x 1 kilometer altitude grid. The results for all the different routes and airplane/engine combinations are then summed to produce the total inventory. The details of this process are described in Section 2 of this report.

Results of the 1999 scheduled aircraft fleet emission inventory calculations are analyzed and discussed in Section 3 of this report. The methodology used to create this inventory was changed in a number of ways from that which was used to calculate previously published NASA scheduled aircraft emission inventories. In order to assess the effects on inventory results of changes made to the calculation methodology, an emission inventory for August 1992 was calculated using the same methodology used to calculate the 1999 scheduled inventory. The results of this calculation were then compared to results of the previously published NASA August 1992 inventory calculations (Baughcum, *et al.*, 1996a). This comparison is documented in Section 2.5 of this report. The calculation of the August 1992 inventory using the current methodology is also utilized in Section 3.4 of this report to develop a self-consistent trend analysis of fuel use and emissions.

In the current work, improved modeling of freighter aircraft performance was utilized to improve the overall accuracy of global emissions calculations. A discussion of these improvements is presented in Section 2.3.3 and results of their implementation are presented in Section 3.5. The work described in this report was conducted under NASA Contract NAS1-20341, Task 19. The NASA Glenn Research Center Task Manager was Chowen C. Wey.

The principal investigator was Steven L. Baughcum. Donald J. Sutkus extracted aircraft departure data from the Official Airline Guide and assigned engines to aircraft types listed in the schedule using the Boeing proprietary computer code "The Emissions Desktop Flight Schedule Creation Module" (TED/FSCM). Donald J. Sutkus also calculated the 3-dimensional aircraft emission inventories using the Boeing proprietary Global Aircraft Emissions Code (GAEC). Douglas P. DuBois provided guidance on the selection of appropriate performance aircraft and emissions engines characteristics to use when modeling aircraft in the inventories and Steven J. Moskalik and Daniel Wajerski provided data to update the aircraft performance database used in the inventory calculations. The TED/FSCM code used to process flight schedule data was written by David F. Tankersley and the GAEC code used to calculate the aircraft emission inventories was written by Peter S. Hertel. The analysis of the results was completed by Steven L. Baughcum, Donald J. Sutkus and Douglas P. DuBois.

2. Database Development Methodology

The calculation of emission inventories has been described previously (Baughcum, *et al.*, 1994; Baughcum, *et al.*, 1996) and will be briefly summarized here. The overall process is shown schematically in Figure 2-1.

Global Emissions Database Calculation Schematic

Figure 2-1. Schematic of emission inventory calculation.

2.1 Database Acquisition and Description

The projected flight schedule data used to create the twelve month 1999 global emission inventory for the scheduled aircraft fleet were purchased by The Boeing Company from Official Airline Guide (OAG) (Oakbrook, IL) for four months (January, April, July and October). OAG data purchased in January include schedule forecasts for February, March, and April. The OAG schedule data contain listings of every scheduled jet and turboprop flight by city-pair and airline, and include departure and arrival times, airplane code, and trip frequency projected for several months into the future. This data are processed to create standard flight schedule databases that are used in a variety of airline and airplane studies within The Boeing Company. OAG flights for the 16th through the 22nd of each month were used to represent the entire month in this study. Fuel burned and emissions calculated in this study for this seven day period were divided by seven and multiplied by the number of days in the month to obtain monthly totals.

The coverage of the OAG database depends on schedule data submitted by individual airlines. While it is quite accurate overall, changes in airline planned operations during any month or operations not reported by the airline as part of their schedule are not included. The 1999 OAG did not include charter flights, military flights, general aviation flights and full coverage of freighter flights. In addition, Boeing analysis shows that the 1999 OAG under predicted scheduled air traffic by approximately 25 percent for China and approximately 30 percent for the former Soviet Union (on an available seat kilometer basis). The majority of the under prediction in China and the Soviet Union is for smaller jet aircraft.

The emission inventory calculations reported previously for the 1992 scheduled fleet (Baughcum, *et al.*, 1996a) used published schedule data obtained monthly directly from OAG. For the 1999 scheduled fleet inventory calculations, however, the OAG database normally used by Boeing, which is updated quarterly, was utilized. This means that projections of flight schedule data up to three months into the future were utilized in creating the 1999 scheduled fleet inventory.

In order to evaluate the effect of using schedule data projected for multiple months into the future, scheduled emission inventories for May 1999 were created using both one-month and four-month (from the previous quarter's OAG) projections. The 4-month projection was a longer-range forecast than was actually used in developing the 1999 monthly inventories. Table 2-1 compares the fuel burned, flight distance, and emissions for selected geographical regions for the one month and four month projections. Globally, fuel burned was under predicted by about 1% and distance by 1.7% by the 4-month projection. NOx, CO, and hydrocarbon emissions were also under predicted globally by the four month projection by approximately 1%. Discrepancies between results of the two projection methods are slightly greater in the Southern Hemisphere than those in the Northern Hemisphere. In the Southern Hemisphere, air traffic appears to have been over predicted by the 4-month projection while air traffic in the Northern Hemisphere was under predicted slightly by the four month projection.

The agreement between the one month and four month projections is within 1-3% for the US, North America, North Atlantic, and North Pacific for fuel burned, distance and emissions, with traffic (flight distance) increasing faster than projected by the 4-month projection. Air traffic in Europe also grew faster than expected from the 4-month projection but the under-prediction was slightly larger (4.5%) than the regions mentioned above. The most dramatic discrepancy is for China where the 4-month projection under-predicted the fuel use by 6% and the flight distance by 10%. The effect on global emissions of this discrepancy is relatively minor though considering that China is responsible for only 4% on global fuel burned (see Table 3-2).

When the one-month and 4-month projections are compared on an airplane by airplane basis, some differences are clearly evident. In general, these manifest themselves as under prediction of fuel use by airplanes which were currently in production (e.g., Boeing 737, Boeing 777, Boeing 757, Airbus A310, Airbus A319, and McDonnell Douglas MD-90), and over prediction of older aircraft (e.g., McDonnell Douglas DC-10, McDonnell Douglas DC-8, Lockheed L-1011). These effects are probably due to retirements, changes in utilization, and introduction of new airplanes.

Overall, from the perspective of using the aircraft emission inventories in global atmospheric modeling assessments, the errors associated with using projections based on quarterly data seem small and acceptable.

An airport listing is needed to calculate global emissions and fuel burn for the scheduled fleet using the OAG schedule. For each three-letter airport code listed in the OAG schedule, the airport listing gives the city name and position (latitude, longitude, and altitude) of the airport. Three-letter airport codes that have been 'retired' either because the airport they used to represent no longer exists or because a different code has been assigned to that airport may be reused by the OAG. For this reason, an airport listing corresponding to the specific month and year for which the inventory calculation is being done must be used when making inventory calculations. Table 2-1.Regional changes in May 1999 global scheduled fleet emission
inventory calculation results due to use of a 4-month projection
of OAG flight schedule data instead of a one month projection
(positive percent difference denotes an over-prediction by the
4-month projection).

	Global	Northern Hemisphere	Southern Hemisphere
Fuel burned	-0.9%	-1.2%	2.8%
NOx	-1.0%	-1.4%	3.1%
СО	-1.1%	-1.5%	3.5%
Hydrocarbons	-0.6%	-1.1%	4.4%
Distance	-1.7%	-2.0%	1.8%

	US	Europe	North America	North Atlantic	North Pacific	China	Far East
Fuel burned	-1.1%	-2.8%	-1.2%	0.3%	-1.5%	-6.3%	-1.1%
NOx	-1.9%	-2.2%	-1.8%	0.3%	-1.5%	-5.2%	-1.7%
CO	-0.4%	-2.6%	-0.5%	-0.3%	-1.1%	-8.5%	0.5%
Hydrocarbons	-0.2%	-3.3%	-0.4%	-2.8%	-0.4%	-2.6%	6.1%
Distance	-0.9%	-4.5%	-1.0%	1.1%	-1.8%	-10.0%	-2.6%

2.2 Data Extract Challenges

The OAG database is designed for the purpose of travel itinerary planning by airline passengers and travel agents. As a result, certain duplicate listings of the same actual flight segment may occur in the schedule data and legs of trips using transportation modes other than air travel may also be listed. While nonaircraft trip legs are tagged in the database and easily filtered, duplicate listings are not noted explicitly in the database. Logic must be built into an extract code to eliminate these duplications as much as possible.

The logic used to eliminate duplicate flight listings in this study differed from that used in past NASA scheduled inventory studies (Baughcum *et al.*, 1996a and 1996b). The new approach is much more automated, requires less expert judgment by the analyst, and is very reproducible. In order to determine the effect of these differences, a schedule for August 1992 was extracted using

the new duplicate removal scheme and compared to the August 1992 schedule used to generate the previously published NASA 1992 scheduled inventory. Differences between the two schedules were minimal and judged to be insignificant.

The flight duplications which must be eliminated fall into three main categories, which we term "Codeshare Duplication", "Starburst Duplication" and "Effectivity Duplication". A description of each of these three categories is given below.

Figure 2-2. "Codeshare" flight duplication.

"Codeshare Duplication"

This form of schedule duplication occurs when both airlines involved in a cooperative flight sharing arrangement (codesharing) will list the same flight segment under their own airline code and flight number. This results in the flight being listed twice in the OAG schedule, once under each airline's name. For instance, the same flight from Detroit to Amsterdam may be listed under both ABC Airlines and XYZ Airlines. Codeshare duplications are removed by checking for flights that are listed under two different airlines, but with the same airport-pair, time of day departure and arrival, same day and same equipment (See Figure 2-2).

A provision to retain certain known "head to head" competition flights was made in the codeshare duplication removal logic. "Head to head" flights are those flights where two airlines have directly competing flights between the same airport-pair with the same departure and arrival times on the same day with the same equipment.

"Starburst Duplication"

This form of duplication arises from the practice of airlines listing under separate flight numbers one-stop or multi-stop itineraries that contain the same flight segment. As a simple example of this practice, an airline listing a one-stop flight from Cleveland to London through New York and another one-stop flight from Washington to London through New York will combine the passengers from both flight numbers on the same New York - London flight segment. The published schedule, however, would lead one to believe that there are two separate flights from New York to London. This duplication is removed by checking flight itineraries for segments listed under the same airline, airport-pair, time of day departure and arrival, same day and equipment. (See Figure 2-3)

Figure 2-3. "Starburst" flight duplication.

"Effectivity Duplication"

Although the OAG schedule data are supplied as representing the airline schedules for a certain month, data within the schedules show the dates at which flights cease operation or begin operation within the month. The flight data show which days of the week the flight operates. If every flight that operates in a given week is counted, then the same flight segment may be counted twice as airlines change schedules (and flight numbers) within the week to account for holidays, daylight time, change of airplane type, etc. This duplication can be removed by choosing a single date for flight effectivity, rather than a whole week. All flights effective on the 16th day of the month are included in the analyses presented here. (See Figure 2-4)

Once the logic to remove the types of duplicate flights noted above was in place and tested, a complete set of schedules was extracted for each month of 1999 and August of 1992.

2.3 Creation of the Emissions Database:

2.3.1. Schedule Data Translation

Each flight listing in the monthly airline schedules extracted from the OAG database gives the airline, the airplane type, the origin airport, the destination airport and the number of times the flight is scheduled to fly between the specified airport pair in a one week period. The following is an example of a typical OAG flight database listing:

<u>Airline</u>	<u>Airplane</u>	<u>Origin</u>	Destination	Weekly Freq.
JL	74F	ANC	ATL	3

In order to calculate performance and emissions for a particular flight, the specific type of engine installed on the aircraft must be known. The OAG database flight listings do not contain information about engines installed on an aircraft used for a particular flight. In order to assign engines to flights listed in the OAG database, a fleet information database purchased from the Airclaims Company was used. This database provides a comprehensive listing of the aircraft owned by each of the world's airlines and the engines installed on them. This database differs from the Boeing internal fleet information database that was used to produce previous NASA emission inventories. The database used previously is now out of date and is no longer maintained by Boeing.

A Boeing proprietary computer code was used to automate the process of assigning engines to flights listed in the OAG database using airline fleet information contained in the Airclaims database. Engines were assigned to flights listed in the OAG database using a "majority rules" criteria where the most prevalent engine used in the given airline's fleet on the given airplane type was assigned to the flight.

To illustrate how the Airclaims Database was used to assign engines to flights listed in the OAG schedule database, we will build an example using the sample OAG database flight listed above.

OAG airplane and airline codes are different than Airclaims airplane and airline codes and so airplane and airline code translation tables were necessary to link the two databases. For illustration purposes, simplified airplane and airline translation tables relevant to the current example are shown in Tables 2-2 and 2-3.

Table 2-2.	Sample OAG to Aircla	ims airline code translation table.	
	OAG Airline Code	Airclaims Airline Code	
	JL	JAL	

Table 2-3. Sample OAG to Airclaims airplane translat	ition	table
---	-------	-------

OAG Specific Aircraft Code	Airclaims Aircraft Type	Airclaims Aircraft Variant	Airclaims Aircraft Usage
74F	747	200F (SCD) (P&W)	All Freight-Cargo
74F	747	200F (P&W)	All Freight-Cargo
74F	747	200SF (P&W)	All Freight-Cargo

For the current example, using an airline code translation table (like that in Table 2-2), the OAG airline code "JL" would be translated to the Airclaims airline code "JAL". Using the airplane code translation table (like that in Table 2-3), the OAG airplane code "74F" would be translated to the following three possible Airclaims aircraft type/aircraft variant/aircraft usage names: "747/200F (SCD) (P&W)/All Freight-Cargo", "747/200F (P&W)/All Freight-Cargo" and "747/200SF (P&W)/All Freight-Cargo".

Appendix A contains a sample listing from the Airclaims database for the Japan Airlines fleet as it existed on May 16th 1999. Using the "translated" Airclaims airline code and aircraft type/aircraft variant/aircraft usage names along with this Airclaims database sample listing, we find that the 747-200F (SCD) (P&W)/JT9D-7Q aircraft/engine combination is the one that has the largest representation in the Japan Airlines fleet of all combinations corresponding to the OAG schedule's 74F code. Therefore, by use of the "majority rules" criterion, the 747-200F (SCD) (P&W)/JT9D-7Q aircraft/engine combination would be assigned to the sample OAG flight. The "(SCD)" and "(P&W)" would then be stripped from the Airclaims aircraft variant name because they contain no useful information for the inventory calculation process.

With the above process being completed, the OAG listed flight with the new engine assigned using the Airclaims database would be as follows:

<u>Airline</u>	<u>Airplane</u>	Engine	<u>Origin</u>	Destination	Weekly Freq.
JL	747-200F	JT9D-7Q	ANC	ATL	3

Once aircraft performance data and engine emissions data are assigned to the above flight, the emissions for the flight can be calculated.

The make-up of the world's airline fleet is always changing. For this study, a "snapshot" of the Airclaims database as it existed on the 16th of each month was used when performing the schedule data translation. The 16th of the month was chosen in order to coincide with the effectivity date of the OAG schedule data.

2.3.2. Airplane/Engine Performance Data Substitution

In some cases, it was necessary to substitute one type of aircraft/engine combination for another in the translated schedule created using the process described in Section 2.3.1 above. While Boeing has performance information needed to calculate fuel burned for a large number of turbojet-powered airplane types, including all Boeing models and many non-Boeing models, we do not have such information for all airplane types in airline service. For some of these airplane types, performance data for a similar airplane were used to approximate fuel burned. The airplane type in the following flight is an example:

<u>Airline</u>	<u>Airplane</u>	<u>Engine</u>	<u>Origin</u>	Destination	Weekly Freq.
IT	Mercure	JT8D-9	PAR	LYS	21

Boeing does not have enough detailed information on the Dassault Mercure to calculate fuel burned or emissions on this flight. The Mercure is a twin-engined aircraft of similar size to the 737-200, and is powered by the same engines as some of the 737-200 models. The data for this flight can therefore be revised to:

<u>Airline</u>	<u>Airplane</u>	Engine	<u>Origin</u>	Destination	Weekly Freq.
IT	737-200	JT8D-9	PAR	LYS	21

For the RJ-85, RJ-100 and Fokker 70 aircraft types, no aircraft were present in the Boeing performance database that had performance characteristics similar enough to make a reasonable direct substitution. For these aircraft types, the performance characteristics of larger aircraft of the same general type were scaled to provide a reasonable performance estimate.

For emission calculation purposes, all of the myriad turboprop models that existed in the 1999 OAG database were grouped into three categories, small, medium and large. The "small" category includes airplanes such as the DeHaviland Twin Otter, the "medium" category includes airplanes such as the DeHaviland Dash-8, and the "large" category includes airplanes such as the Fokker F-27 and F-50. In addition, performance of all of the various types of regional jets was modeled using a single general regional jet performance model.

Appendix B contains a listing of all the airplane types appearing in the processed 1999 OAG data and the performance airplanes used to model each type in the emissions calculations. For 1999, the number of different airplane/engine combinations listed in the flight schedule data files varied between months from 369 to 387. These airplane/engine combinations were modeled using 89 airplane/engine combinations for which detailed performance and emissions data were available. A list of the 89 performance airplanes used to model the 1999 fleet is shown in Table 2-4.

The number of different airplane/engine combinations listed in the 1999 flight schedule data is considerably higher than the 228-235 different airplane/engine combinations appearing in the flight schedule data for the 1992 NASA inventory. This is partly due to the introduction of new airplane types into the fleet since 1992 and partly because the new process used to create the flight schedule data for the 1999 inventory extracts airplane types at a more detailed level. List of airplane-engine combinations used in airplane performance calculations for the 1999 emission Table 2-4.

				18	l		_	. ~~				15H		20-15	22B	22B	524B4	22D1F		22D1F		7A	0	70	•	5						
	Encine	2	JT3D-7	CFM56-	CF6-6D	CF6-6D	JC-06TL	JT3D-3F	JT8D-7	JT8D-15	JT8D-15	MK555-	TAY-650	MARK-6	RB211-5	RB211-5	RB211-5	CF6-800	PW4460	CF6-800	PW4460	JT8D-21	JT8D-21	JT8D-21	BR715	V2525-D	LF507	LF507	PT6A	PW120	PW125	ī
	Airolane		DC-8-63-63CF	DC-8-71-71CF	DC10-10	DC10-10F	DC10-40	DC8-55-55CF	DC9-30	DC9-31	DC9-50	F-28-4000	FOKKER-100	FOKKER-70	L-1011-1-100	L-1011-1-100F	L1011-500AC	MD-11	MD-11ER	MD-11F	MD-11F	MD-82	MD-83	MD-87	MD-95-30	MD90-30	RJ-100	RJ-85	Small Turboprop	Medium Turbonroc	Large Turboprop	
	Engine		TRENT892	CF6-80C2	JT9D-7R4H1	PW4056	CF6-50C2	CF6-80A3	CF6-80C2A2	JT9D-7R4E1	CFM56-5B3P-25	CFM56-5-A1	V2522-A5	CFM56-5-A1	CFM56-5B3P-26.5	V2525-A5	CFM56-5B1	V2530-A5	V2533-A5	CF6-80E1A3	PW4168	TRENT72	CF6-80E1A1	PW4164	TRENT768	CFM56-5C-2	MK512-14	ALF502R-5	ALF502R-5	CF34-3A1	CF6-50C2	
	Airplane		777-300	A300-600R	A300-621R-ER	A300-622R-ER	A300-B2-B4	A310-300	A310-300	A310-300	A319	A319-200	A319-200	A320-200	A320-200	A320-200	A321-100	A321-100	A321-200	A330-200	A330-200	A330-200	A330-300	A330-300	A330-300	A340-200	BAC111-500	BAE146-200	BAE146-300	CRJ (Estimated)	DC-10-30	
	Engine		RB211-524D4UP	CF6-50E2	CF6-80C2-B1F	PW4056	RB211-524G	CF6-80C2B1F	PW4056	RB211-524H	JT9D-7A	RB211-524C2	PW2037	PW2040	RB211-535C	RB211-535E4	CF6-80A	JT9D-7R4D	CF6-80C2B4F	PW4056	CF6-80A2	JT9D-7R4E	CF6-80C2B6F	PW4060	RB211-524H	PW4084	TRENT877	GE90-85B	GE90-90B	PW4084	TRENT877	
	Airplane		747-300	747-300F	747-400	747-400	747-400	747-400F	747-400F	747-400F	747SP	747SP	757-200	757-200	757-200	757-200	767-200	767-200	767-200ER	767-200ER	767-300	767-300	767-300ER	767-300ER	767-300ER	777-200	777-200	777-200ER	777-200ER	777-200ER	777-200ER	
nventory.	Engine		JT3D-3B	JT8D-7	JT8D-9	JT8D-15-15A	JT8D-9	JT8D-15-15A	JT8D-9	JT8D-15	JT8D-7	JT8D-9-9A	CFM56-3-B1	CFM56-3-B1-18.5	CFM56-7B18	CFM56-7B20	CFM56-7B24	CFM56-7B27	CF6-45A2	CF6-50E2	JT9D-7A	JT9D-7F	JT9D-7J	JT9D-7R4G2	RB211-524C	RB211-524D4U	JT9D-7Q	JT9D-7J	RB211-524D4	CF6-50E2	CF6-80C2B1	
-	Airplane		707-320B-C	727-100	727-100	727-200	727-200	727-200F	737-100	737-200	737-200	737-200ADV	737-300	737-500	737-600	737-700	737-800	737-800	747-100-100SR	747-100-200	747-100-200	747-100F	747-200	747-200	747-200	747-200	747-200B-C-F	747-200F	747-200F	747-300	747-300	747-300

2.3.3. Airplane Mission Performance Calculation

Boeing proprietary performance data files for the airplane/engine combinations shown in Table 2-4 and were used to model all of the airplane/engine combinations listed in the OAG schedule. These data files provide tables of time, fuel burned and distance flown as a function of airplane gross weight and altitude for climbout, climb, and descent conditions. They also provide tables of fuel mileage (nautical miles per pound of fuel burned) as a function of gross weight, cruise Mach number and altitude for cruise conditions and tables of long range cruise Mach number vs. gross weight and altitude. Constant fuel burn rates for taxi-in, taxi-out and approach based on typical mission allowances are also included in these data files. These performance data files were generated using the proprietary Boeing Mission Analysis Program (BMAP), and each file covered the whole operating envelope of the airplane. Simple interpolation routines were used to obtain engine fuel flow for a given flight condition.

Airplane performance calculations were done assuming 70% passenger load factors for all passenger and 'combi' airplanes (airplanes that can be used to carry either passengers or cargo).

Typical payloads for freighter airplanes were determined using cargo loading data reported on the United States Department of Transportation (DOT) Form T-100. DOT Form T-100 data for U.S. domestic flights and flights to and from the U.S. were combined and used to determine the average payload carried by each general freighter airplane type existing in the 1999 OAG flight schedule. For each general freighter type, the average payload carried was added to a typical operating empty weight (OEW) for that airplane type to obtain an 'average' zero fuel weight (ZFW). If the 'average' ZFW for a given general freighter type matched the passenger version's ZFW reasonably well, then performance data for the passenger version loaded at 70% passenger load were used to model it. If the 'average' ZFW for a given general freighter type did not match well with the passenger version's ZFW, then a special performance file for that freighter type was created. This performance file used passenger version operating empty weights (OEW) and an estimated average freighter payload.

Of the 16 general freighter airplane types that existed in the 1999 OAG flight schedule, only the very large freighters (747, Antonov An-124, DC-10, L-1011 and MD-11) had 'average' ZFWs that differed enough from the passenger version ZFW to warrant their being modeled with typical freighter payloads. All other freighter types were modeled as passenger airplanes with 70% passenger load.

Table 2-5 shows the increase in ZFW relative to the 70% passenger loading ZFW for the specific very large freighter airplane types that were modeled using estimated typical freighter payloads.

	Freighter Loading ZFW Percent
Specific Freighter Airplane	Increase Over PAX Loading ZFW
747 1005 ERT ITOD 74	10.5%
747-100F_FHI_JI9D-7A	12.5%
747-2000_F_FRT_0F0-50E2	11.4%
747-200F_FRT_CF6-50E2	11.4%
1/4/-200F_FRI_J19D-/F	19.4%
/4/-200F_FRI_J19D-7J	19.4%
747-200F_FRT_JT9D-7Q	19.4%
747-200F_FRT_JT9D-7R4G2	19.4%
747-200F_FRT_RB211-524D4	14.6%
747-200SF_FRT_CF6-50E2	11.4%
747-200SF_FRT_JT9D-7J	19.4%
747-200SF_FRT_JT9D-7Q	19.4%
747-200SF_FRT_JT9D-7R4G2	19.4%
747-200SF_FRT_RB211-524D4	14.6%
747-400F_FRT_CF6-80C2B1F	10.9%
747-400F_FRT_PW4000-4056	15.6%
747-400F_FRT_RB211-524H2	10.2%
An-124-* FRT D-18-T	10.9%
DC-10-10F FRT CF6-6D	5.7%
DC-10-30F FRT CF6-50C2	17.8%
DC-10-30F FRT CF6-50C2B	17.8%
L-1011-200 FRT RB211-524B	11.5%
L-1011-200 FRT RB211-524B4	11.5%
MD-11-Freighter FRT CF6-80C2D1F	16.3%
MD-11-Freighter_FRT_PW4000-4460	13.5%

Table 2-5. Increase in ZFW relative to the 70% passenger loading case for very large freighters.

2.3.4. Calculation of Global Emissions

The primary emissions produced by the combustion of jet fuel are water vapor (H_2O) and carbon dioxide (CO_2). The emission levels of H_2O and CO_2 are determined by the fuel consumption and the fraction of hydrogen and carbon contained in the fuel. Results from a Boeing study of jet fuel properties measured from samples taken from airports around the world have yielded an average hydrogen content of 13.8% (Hadaller and Momenthy, 1989). Emissions of sulfur dioxide (SO_2) from aircraft engines are determined by the levels of sulfur

compounds in the jet fuel. Although jet fuel specifications require sulfur levels below 0.3%, they are typically much lower than this in the fuel supply utilized by the world's aircraft fleet. The Boeing measurements obtained an average sulfur content of 0.042% with 90% of the samples below 0.1% (Hadaller and Momenthy, 1989). These measurements are in the range of values reported in more recent fuel surveys (Hadaller, *et al.*, 2000). Future sulfur levels are projected to drop to about 0.02% (Hadaller and Momenthy, 1993).

Aircraft engine emissions are characterized in terms of an emission index, which has units of grams of emission per kilogram of fuel burned. Current and projected emission indices are summarized in Table 2-6, based on the analyses of Hadaller and Momenthy for commercial Jet A fuel.

Emission	Emission Index
Carbon Dioxide (CO2)	3155
Water (H ₂ O)	1237
Sulfur oxides (as SO ₂)	0.8

Table 2-6.Recommended emission indices (in units of grams
emission/kilogram fuel).

Emissions of nitrogen oxides (NO_X) , carbon monoxide (CO) and hydrocarbons from an aircraft engine vary in quantity according to the combustor conditions. Nitrogen oxides are produced in the high temperature regions of the combustor primarily through the oxidation of atmospheric nitrogen. Thus, the NO_X produced by an aircraft engine is sensitive to combustor pressure, temperature, flow rate, and geometry. The NO_X emission index varies with the power setting of the engine, being highest at high thrust conditions. By contrast, carbon monoxide and hydrocarbon emission indices are highest at low power settings where combustor temperatures and pressures are low and combustion is less efficient.

Nitrogen oxides consist of both nitric oxide (NO) and nitrogen dioxide (NO₂). For NO_x, the emission index [EI(NO_x)] is given as gram equivalent NO₂ to avoid ambiguity. Although hydrocarbon measurements of aircraft emissions by species have been made (Spicer *et al.*, 1992), only total hydrocarbon emissions are considered in this work.

For the majority of the engines considered in this study, emissions data from engine certification measurements (ICAO, 2000) were used to model emissions characteristics. In these measurements, emissions of nitrogen oxides (NOx), carbon monoxide (CO) and total hydrocarbons (HC) are measured at standard day sea level conditions at four power settings [7% (idle), 30% (approach), 85% (climbout) and 100% (takeoff)]. If the ICAO database did not contain a particular engine, the data for that engine were obtained from the engine manufacturer. This was done for the three sizes of turboprops considered. If a source could not be found (e.g., JT3C and JT4A), engines with a similar core were used with an adjustment for different fuel flow rates.

In the global emissions calculations, each OAG airplane/engine combination is matched to both a performance engine and an emissions engine (see Appendix B for the matchup table). Fuel flow is calculated using the performance data. Then the emissions are calculated using the fuel flow based technique discussed later in this section.

In most cases, the emissions engine used to model an airplane was the same as that used to calculate the performance. In some cases, performance data for the airplane model identified in the processed OAG flight schedule were available but the engine assumed in the performance data was different than the engine identified in the schedule. In the majority of these cases, the basic engine type is matched but not the specific maximum take-off thrust rating (a 737-700/CFM56-7B20 airplane/engine combination listed in the OAG schedule might be modeled using 737-700/CFM56-7B18 performance data).

If the engine identified in the processed OAG schedule for a particular airplane was similar to the engine assumed in the performance data used to model the airplane, the emissions engine was selected to match the OAG engine. If the engine identified in the processed OAG schedule was significantly different from the engine assumed in the performance data, the emissions engine was selected to match the performance engine.

Boeing has developed an empirical method that allows the calculation of emissions for a wide variety of airplanes and a large number of missions. This method was described in detail previously (Baughcum, *et al.*, 1996a, Appendix D) and is referred to as the Boeing Fuel Flow Method #2. In this method, emission indices measured during sea level static engine certification tests are correlated with engine fuel flow and then scaled for ambient temperature, pressure, flight Mach number and humidity to determine emissions at flight conditions.

All global emissions calculations were done using the GAEC (Global Atmospheric Emissions Code) as described previously (Baughcum, *et al.*, 1994; Baughcum, *et al.*, 1996a). The GAEC graphical user interface was used to associate airplane/engine combinations listed in the OAG airplane schedule with the performance and emissions data that were used to model them in the inventory calculation. Once these associations were made, the GAEC was used to calculate a global emission inventory using OAG schedule data, performance data, emissions data and airport location data.

For purposes of the emissions calculations, the Earth's atmosphere was divided into a grid of three-dimensional cells with dimensions of 1 degree of latitude by 1 degree of longitude by 1 kilometer in altitude, up to 22 kilometers.

2.5 Methodology Changes from Previous Boeing Inventory Calculations

The methodology used to create the 1999 scheduled aircraft fleet global emission inventory documented in this report is slightly different from the methodology used to calculate the NASA full year 1992 scheduled aircraft fleet emission inventory (Baughcum, *et al.*, 1996a). Differences between the two methodologies are as follows:

- 1. A new procedure was used to extract flight schedules from OAG data for creating the 1999 inventory. The new procedure uses the same basic OAG flight schedule data for input as the previously used procedure and utilizes similar algorithms to filter double counted flights from the data but is much more automated, requires less expert judgment by the analyst, and is more reproducible. The new procedure uses a different fleet information database to assign engines to a specific OAG airplane type. The new procedure utilizes the commercially available "Airclaims" database for fleet information (See Appendix A for a sample of Airclaims fleet information data) instead of the Boeing proprietary fleet information database called "Jet Track" which was utilized by the previously used procedure. The "Jet Track" database is no longer in use by the Boeing company.
- 2. OAG schedules forecasted up to three months into the future were used for the current work while published schedules for each month of the year were used to create the 1992 scheduled aircraft fleet emission inventory (see Section 2.1).
- 3. In the current work, some specific airplane/engine types were modeled using different emissions and/or performance data than those used in the 1992 full year scheduled aircraft fleet emission inventory calculations. As noted earlier, the 1999 study uses a larger set of airplane performance and engine data.

4. As discussed in Section 2.3.3 of this report, some freighter airplanes were modeled differently in the current work than in previous NASA scheduled inventory calculations by using a more realistic payload.

To quantify the effects of the above methodology changes, the NASA emission inventory for August 1992 scheduled aircraft was recalculated using the same methodology that was used to create the 1999 scheduled aircraft inventory. Global totals of fuel burned, distance traveled and NOx emissions for the recalculated August 1992 inventory compared well with the global totals for August 1992 reported previously (Baughcum, *et al.*, 1996a). Totals by general aircraft classes (737, A320, etc.) were also compared between the original and recalculated August 1992 inventories.

A comparison of the recalculated August 1992 inventory and the previously published August 1992 inventory shows that global totals for distance are in excellent agreement, differing by only 0.1%. Distance totals for general aircraft classes also compared well between the previous and recalculated inventories, they differed from one another by no more than 1.8%. The agreement in distance totals indicates that the new procedure used to extract flight schedules from OAG data gives results that are very similar to the previously used procedure.

Comparisons between the new and old calculations for global totals of NOx, CO and hydrocarbon emissions and fuel burned show differences of -0.3%, 19.7%, 18.2% and 0.0% respectively (a positive percent difference in these and the comparisons that follow indicates that values for the recalculated inventory are greater than the previously published inventory). Totals of NOx, CO and hydrocarbon emissions for some general aircraft classes differed between the two inventory calculations significantly more than the global totals did.

The differences in NOx, CO and hydrocarbon emissions between the recalculated and the previously calculated August 1992 inventories are due to differences in the emissions characteristics selected to model specific engines in the two inventory calculations.

Some engine types have had more than one combustor type implemented during their production run. For some engines used on a significant number of flights flown by the 1992 scheduled aircraft fleet, NOx, CO and hydrocarbon emission indices can change dramatically depending on the combustor selected for the engine. Further study and more complete data regarding implementation of various combustor options has led to a revised distribution and assignment of combustors for selected engine types. These revised assignments were used for the August 1992 recalculated inventory so they would be consistent with combustor assumptions made when creating the 1999 inventory. Because of the changes in methodology discussed above, in order to do a self consistent trend analysis of emissions and fuel burn from 1976 to 1999, the previously published 1976 and 1984 inventories would have to be recalculated using the same methodology that was used to create the 1999 scheduled inventory if trends in hydrocarbon or carbon monoxide emissions are required. Recalculation of the 1976 and 1984 emission inventories is beyond the scope of the current work but should be considered for the future. The analysis suggests that trends of fuel burn and NOx emissions would not be impacted by the change in methodology, at least in terms of global totals. A more detailed analysis would be required to evaluate whether this is true for regional and "by-aircraft" trends as well.
3. Results and Analysis - Scheduled Aircraft Emissions

3.1 Overview of Results

The fuel burned and emissions calculated for the scheduled aircraft fleet for each month of 1999 are summarized in Table 3-1.

	of 1999.				
	Fuel	NOx	HC	CO	Distance
Month	(kg/day)	(kg/day)	(kg/day)	(kg/day)	(km/day)
January	3.42E+08	4.49E+06	5.30E+05	1.87E+06	6.80E+07
February	3.40E+08	4.48E+06	5.24E+05	1.86E+06	6.82E+07
March	3.43E+08	4.52E+06	5.20E+05	1.86E+06	6.88E+07
April	3.45E+08	4.54E+06	5.12E+05	1.85E+06	6.90E+07
May	3.47E+08	4.58E+06	5.14E+05	1.87E+06	7.01E+07
June	3.57E+08	4.70E+06	5.24E+05	1.90E+06	7.21E+07
July	3.61E+08	4.75E+06	5.28E+05	1.92E+06	7.27E+07
August	3.64E+08	4.80E+06	5.36E+05	1.94E+06	7.36E+07
September	3.57E+08	4.70E+06	5.23E+05	1.91E+06	7.26E+07
October	3.54E+08	4.66E+06	5.12E+05	1.88E+06	7.21E+07
November	3.46E+08	4.58E+06	4.90E+05	1.82E+06	7.02E+07
December	3.50E+08	4.64E+06	4.93E+05	1.83E+06	7.10E+07
Total	1.28E+11	1.69E+09	1.89E+08	6.85E+08	2.58E+10
	kg/year	kg/year	kg/year	kg/year	km/year

Table 3-1.Fuel burned and emissions for scheduled air traffic for each month
of 1999.

The geographical distribution of the NOx emissions calculated for May 1999 scheduled air traffic is shown in Figures 3-1 and 3-2. This distribution is representative of the geographical distributions of fuel burn, NOx, CO and hydrocarbon emissions for scheduled air traffic for all months of 1999.

Figure 3-1 shows cruise emissions (9-13 km altitude band) as a function of latitude and longitude. As in scheduled inventories previously calculated for 1976, 1984 and 1992, peak emissions occur over the United States, Europe, the North Atlantic flight corridor, and Japan.

Figure 3-1. Global cruise (9-13 km) NOx distribution for the scheduled aircraft fleet, May 1999.

Figure 3-2. NOx emissions for the scheduled aircraft fleet, May 1999, as a function of altitude and latitude (summed over longitude).

Figure 3-2 shows NOx emissions as a function of altitude and latitude. This figure illustrates that the majority of global NOx emissions occur between 30° North and 60° North latitude at typical cruise altitudes (9-13 km).

Approximately 91 percent of emissions from the scheduled aircraft fleet are produced in the Northern Hemisphere. Table 3-2 shows the percentage of global fuel burned, NOx emitted and distance traveled amongst seven selected regions of the world for May 1999. The largest percentage of global fuel burned and emissions occur over the United States and Europe.

	traveleo schedu	t in selecte led aircraft	ed regions o fleet.	f the world	by the N	/lay 1995	•
	US	Europe	North America	North Atlantic	North Pacific	China	Far East
Fuel burned NOx Distance	30% 28% 39%	14% 14% 16%	32% 30% 41%	4% 4% 3%	3% 3% 2%	4% 5% 4%	3% 4% 2%

Percentage of global fuel burned, NOx emitted and distance Table 3-2.

Distributions of fuel burned and emissions as a function of altitude are shown in Figure 3-3. This figure shows that peak fuel burned and NOx emissions occur at cruise altitudes, while peak CO and hydrocarbon emissions occur during the landing/takeoff cycle in the 0-1 km altitude band. Approximately 31% of the fuel burned and 35% of NOx emissions occur below 9 km while approximately 70% of the hydrocarbon and carbon monoxide emissions are emitted below 9 km.

The plots of fuel burned and emissions as a function of latitude in Figure 3-4 emphasize that peak emissions from the scheduled fleet occur at northern mid-latitudes, with the majority of emissions occurring between 30° North and 60° North latitude.

Figure 3-3. Altitude distribution of fractional fuel burned and fractional global emissions of CO, Hydrocarbons and NOx for the scheduled aircraft fleet, May 1999.

Figure 3-4. Fuel burned and emissions (solid line) as a function of latitude for scheduled May 1999 air traffic. Dashed lines show the cumulative fraction of emissions.

3.2 Fleet Movement Statistics, Fuel Usage and Effective Emission Indices

To summarize results of the emission inventory calculations, specific aircraft types were grouped into general aircraft classes and their fuel burned, emissions, departures and distance traveled were totaled. Global effective emission indices for each general aircraft class were also calculated for the 1-9 km and 9-13 km band. Here we define an effective emission index as the ratio of emittant integrated over a given geographical region (latitude, longitude, altitude band) to the integrated fuel use over the same region. Effective emission indices reported herein were calculated using global emissions and are therefore referred to as *global* effective emission indices.

Fleet movement statistics for May 1999 by general aircraft class are summarized in Table 3-3. This table shows the total daily distance flown, the daily departures, and their fraction of the global total for each general aircraft class. It also shows the average route distance for each general class. A more detailed summary identifying similar results for each specific OAG airplane/engine combination in a given aircraft class is provided in Appendix E, which also identifies how each of the general aircraft classes in Table 3-3 is defined. The statistics for May 1999 shown in Table 3-3 and Appendix E are representative of those for all other months in 1999.

	· · · · · · ·	% of		% of	Average Route
	Daily	Global	Distance	Global	Distance
	Doparturos	Departures	(km/day)	Distance	(km)
General Type	Departures	Departures	(KIID ddy)	Distance	(((())))
Turboprops	21 296	30.56%	6 608 584	9 43%	310
Reging 737 300/400/500	10.224	14 67%	9 147 802	13.05%	895
Doeing 737-300/400/300	5 207	7 7 4 %	5,147,002	8 02%	1 041
Reging 727 100/200	3,537	5 76%	3 176 500	4 53%	792
Boeing 737-100/200	4,013	3.70%	3,170,350	3 20%	752
DC-9	3,340	4.00%	2,379,330	3.39%	656
	3,198	4.59%	2,090,410	2.33%	1 242
Airdus A320	3,071	4.41%	3,010,401	5.45%	1,243
Boeing 757-200	2,741	3.93%	4,828,701	0.09%	1,702
Boeing /2/-200	2,353	3.38%	2,532,550	3.01%	1,077
Fokker 100	1,697	2.43%	1,079,091	1.54%	636
Boeing 767-300	1,533	2.20%	4,043,356	5.77%	2,638
Boeing 747-400	1,006	1.44%	5,664,264	8.08%	5,632
BAE 146	993	1.43%	630,398	0.90%	635
Airbus A300-600	825	1.18%	1,012,579	1.44%	1,228
Boeing 737-600/700/800	771	1.11%	1,047,151	1.49%	1,357
Russian Aircraft	701	1.01%	1,266,310	1.81%	1,806
Fokker 28	626	0.90%	358,254	0.51%	572
Boeing 747-100/200/300	570	0.82%	2,573,174	3.67%	4,517
Airbus A319	537	0.77%	692,169	0.99%	1,289
Boeing 767-200	492	0.71%	1,417,564	2.02%	2,884
Boeing 777-200	473	0.68%	1,583,564	2.26%	3,345
Airbus A310	464	0.67%	1,044,357	1.49%	2,251
Airbus A321	448	0.64%	361,687	0.52%	807
MD-90	442	0.63%	331,624	0.47%	750
DC-10	379	0.54%	1,523,344	2.17%	4,022
MD-11	308	0.44%	1,541,979	2.20%	5,006
DC-8	266	0.38%	451,733	0.64%	1,699
Boeing 727-100	261	0.37%	205,915	0.29%	789
Airbus A330-300	250	0.36%	510,219	0.73%	2,044
Airbus A340-300	224	0.32%	1,250,423	1.78%	5,589
Airbus A300-B2/B4/F4	199	0.29%	273,690	0.39%	1,377
Fokker 70	198	0.28%	149,699	0.21%	756
Lockheed L-1011	140	0.20%	288,761	0.41%	2,058
Boeing 777-300	82	0.12%	131,672	0.19%	1,614
BAC111	57	0.08%	45.221	0.06%	797
Boeing 707	41	0.06%	105,766	0.15%	2.607
Airbus A330-200	39	0.06%	138,796	0.20%	3,572
Airbus A340-200	20	0.03%	140,216	0.20%	6.961
Concorde	6	0.01%	33,890	0.05%	5.648
Miscellaneous	5	0.01%	3.013	0.00%	659
			2,210		
Total	69,690		70,107,755		

Table 3-3.Summary of departure statistics by general aircraft type for May 1999.

Tables 3-4 and 3-5 show a summary of average daily fuel burned, global effective emission indices and the fractional contribution to the global fuel burned and emissions totals calculated for May 1999 for each general aircraft class. In Table 3-4, separate global effective emission indices are shown for NOx, CO and hydrocarbons for the 1-9 km band and the 9-13 km band. A more detailed summary of global effective emission indices showing the results for each OAG airplane/combination is included as Appendix D. Some variation in the global effective emission indices listed in Appendix D may occur between similar aircraft/engine types because of differences in average mission distances flown by them and differences in engine and performance data used to model them.

The data in Table 3-4 represent results of calculations done assuming typical OEWs and average seat counts and load factors, actual configurations and loading will be unique to specific operators and routes.

Table 3-3 shows that global departures are dominated by smaller aircraft (turboprops, 737s, MD-80s, DC-9s and regional jets) with 31% of global departures being made by turboprop aircraft alone. Tables 3-4 and 3-5 show that no general aircraft class dominates global scheduled aircraft fleet fuel burned and NOx emissions. These tables show that roughly 48% of scheduled fleet fuel was consumed and 52% of scheduled fleet NOx was created by large long-range aircraft (747s, A340s, L-1011s, DC-10s, 777s and 767s).

			1-9 km	Altitude	Band	9-13 ki	m Altitude	e Band
	Fuel	% of Global Scheduled Traffic Fuel Burned	EI	EI	El	EI	El	EI
O	(1000 ka/dav)	Durney	(NOx)	(CO)	(HC)	(NOx)	(CO)	(HC)
General Type	ky/uay)							
Booing 747-400	59,837	17.22%	25.3	8.1	1.9	13.3	1.0	0.4
Boeing 737-300/400/500	30,765	8.85%	13.23	11.5	0.9	9.6	3.5	0.2
Boeing 747-100/200/300	30,638	8.82%	27.51	15.4	10.2	15.2	2.2	1.1
MD-80	22,367	6.44%	15.96	4.2	1.2	10.6	4.4	1.6
Boeing 767-300	22,153	6.37%	21.33	7.0	1.4	12.5	1.2	0.3
Boeing 757-200	19,717	5.67%	18.64	8.4	0.5	11.0	1.7	0.1
Boeing 727-200	14,334	4.12%	11.91	9.6	3.1	8.3	5.4	1.0
DC-10	12,679	3.65%	24.23	7.5	2.8	14.9	2.0	0.9
Boeing 737-100/200	12,223	3.52%	11.18	10.0	3.3	7.1	6.8	1.3
MD-11	11,952	3.44%	18.98	5.9	0.5	12.9	1.2	0.1
Airbus A320	11,884	3.42%	17.45	5.6	0.5	12.0	2.0	0.4
Boeing 777-200	11,260	3.24%	25.17	5.4	6.0	16.8	0.6	1.0
DC-9	9,130	2.63%	10.99	11.8	4.2	/.6	b./	1.0
Turboprops	8,788	2.53%	11.92	3.8	0.2	107	17	0.2
Airbus A340-300	8,242	2.37%	22.97	11.3	4.7	13.7	1./ Q./	15
Russian Aircraft	7,138	2.05%	12.33	15.5	9.0	9.2	20	0.3
Boeing 767-200	7,110	2.05%	22.6	6.6 10.1	0.1	11.1	17	0.3
Airbus A300-600	6,397	1.84%		10.1	2.U 17	113	22	0.6
Airbus A310	5,298	1.52%	18.46	10.3	4./ 1/	Q 1	0.6	0.1
Regional Jets	4,479	1.29%	11.03	9.4 21 0	20	64	7.0	1.0
Fokker 100	3,444	0.99%		21.U 7 0	2.0	14.5	1.3	0.5
Airbus A330-300	3,402	0.98%	16 32	64	0.9	11.8	1.8	0.3
Boeing 737-600/700/800	3,219	0.93%	11 24	16.3	11.2	8.6	7.2	1.4
DC-8	2,003	0.03%	18 74	19.4	13.6	14.4	9.0	2.2
Lockheed L-1011	2,410	0.70%	9.14	5.0	0.5	7.8	1.6	0.1
BAE 140	2,000	0.59%	14.55	5.7	0.7	10.9	2.5	0.3
AIDUS AS 19 Airbus A200 B2/BA/EA	2,040	0.58%	22.17	13.1	5.2	14.5	1.9	1.2
AIDUS ASUU-DZ/D4/174	1 405	0.40%	17.45	6.4	0.6	13.3	1.7	0.2
MD-90	1 243	0.36%	16.44	5.2	0.1	11.9	1.8	0.1
Fokker 28	1.211	0.35%	10.47	13.5	7.8	7.4	7.2	2.7
Boeing 777-300	1.131	0.33%	24.77	4.4	10.3	15.7	0.8	0.5
Boeing 727-100	1.094	0.31%	10.8	14.8	5.7	7.1	10.2	2.1
Airbus A340-200	910	0.26%	23.05	11.2	4.6	13.7	1.8	0.1
Airbus A330-200	848	0.24%	24.34	6.5	1.0	16.3	1.6	0.3
Boeing 707	607	0.17%	8.35	31.6	39.4	5.4	17.9	0.0 1 0
Fokker 70	453	0.13%	10.3	5.3	1.2		2.7	1.U 1 Ω
Concorde	351	0.10%	11.03	18.5	1.3		20.1	۰.0 ۵.1
BAC111	158	0.05%	14.44	25.5	15.1	10.1	14.7 ೧	0.0 0.2
Miscellaneous	5	0.00%	8.61	15.8	2.3	/.3	0.0	0.2

Table 3-4.Summary of fuel burned and global effective emission indices for
commercial aircraft types (based on May 1999 scheduled air
traffic)

General Type	Engl	1 110			/
General Type	ruei	NOX	НС	co	Distance
Boeing 747-400	17.000/	10.040			
Boeing 737-300/400/500	17.22%	18.94%	6.68%	6.67%	8.08%
Boeing 747-100/200/200	0.05%	1.22%	3.91%	14.79%	13.04%
MD-80	8.82%	11.1/%	15.36%	7.86%	3.67%
Booing 767 200	6.44%	6.04%	6.75%	5.68%	8.01%
Booing 757 200	6.37%	6.78%	2.73%	3.43%	5.77%
Boeing 707-200	5.67%	5.55%	0.87%	4.46%	6.89%
DC 10	4.12%	3.04%	6.34%	6.56%	3.61%
	3.65%	4.45%	4.08%	2.74%	2.17%
Doeing 737-100/200	3.52%	2.36%	6.44%	6.40%	4.53%
MD-11	3.44%	3.53%	0.42%	1.28%	2.20%
Airbus A320	3.42%	3.51%	1.04%	2.58%	5.45%
Boeing ///-200	3.24%	4.42%	4.13%	1.10%	2.26%
DC-9	2.63%	1.72%	6.85%	6.25%	3.39%
Turboprops	2.53%	2.13%	0.53%	2.13%	9.42%
Airbus A340-300	2.37%	2.63%	1.00%	1.33%	1.78%
Boeing 767-200	2.05%	2.01%	0.95%	1.27%	2.02%
Russian Aircraft	2.05%	1.53%	7.52%	4.92%	1.83%
Airbus A300-600	1.84%	1.93%	1.36%	2.07%	1.44%
Airbus A310	1.52%	1.46%	1.65%	1.67%	1.49%
Regional Jets	1.29%	1.01%	0.83%	1.82%	2.99%
Fokker 100	0.99%	0.62%	1.14%	3.04%	1.54%
Airbus A330-300	0.98%	1.24%	0.57%	0.65%	0.73%
Boeing 737-600/700/800	0.93%	0.92%	0.41%	0.77%	1 49%
DC-8	0.83%	0.57%	2.85%	1.82%	0.64%
Lockheed L-1011	0.69%	0.82%	3.51%	1.90%	0.41%
BAE 146	0.67%	0.43%	0.22%	0.67%	0.90%
Airbus A319	0.59%	0.54%	0.23%	0.50%	0.99%
Airbus A300-B2/B4/F4	0.58%	0.74%	1.37%	0.93%	0.39%
Airbus A321	0.40%	0.47%	0.13%	0.44%	0.52%
MD-90	0.36%	0.38%	0.02%	0.32%	0.52%
Fokker 28	0.35%	0.22%	5,18%	1.43%	0.51%
Boeing 777-300	0.33%	0.45%	1.24%	0.15%	0.19%
Boeing 727-100	0.31%	0.21%	0.81%	0.76%	0.10%
Airbus A340-200	0.26%	0.29%	0.09%	0.14%	0.20%
Airbus A330-200	0.24%	0.33%	0.07%	0.12%	0.20%
Boeing 707	0.17%	0.08%	2.13%	0.76%	0.15%
Fokker 70	0.13%	0.09%	0.12%	0.17%	0.10%
Concorde	0.10%	0.12%	0.09%	0.17%	0.21%
BAC111	0.05%	0.04%	0.38%	0.10%	0.05%
			0.0070	0.2070	0.00%

Table 3-5.Fractional contribution of each commercial airplane type to global
fuel burned and emissions totals for May 1999 scheduled traffic.
(Summed over all altitudes, latitudes, and longitudes)

There has been some confusion in the scientific literature and with various emission inventory calculations with regard to emission indices at flight altitudes. Most of the available data are from certification measurements at sea level conditions (International Civil Aviation Organization (ICAO), 2000). In some cases, these have been used incorrectly as being representative of the emission levels at cruise conditions, without corrections being used for ambient conditions of pressure and temperature.

In order to help reduce the confusion about the global effective emission indices for commercial aircraft, Table 3-4 shows the global effective emission indices for NOx, CO, and hydrocarbons for each general aircraft class. Global effective emission indices are shown for two altitude bands: 1-9 km (climb and descent averaged together) and 9-13 kilometers (primarily cruise but some final climb and initial descent).

These global effective emission indices represent our best estimate of fleet averages (averaged over all missions) and should not be compared directly with an emission index measured behind an individual aircraft in flight. The methodology used to calculate emissions at altitude in this study (see Section 2.3.4 of this report) can be used for such a comparison if accurate and precise measurements of actual fuel flow, ambient temperature, ambient pressure, humidity, Mach number and corresponding emission index are made. Comparisons with in-flight emission index measurements should provide a way to evaluate the accuracy of the emission methodology used to calculate the inventories documented in this report.

Care must be exercised if attempting to use the information in Table 3-3 and Table 3-4 to calculate fuel efficiencies for the various general aircraft classes. Any aircraft fuel efficiency comparison requires a consideration of the amount of payload (passengers and freight) being carried by each aircraft for a given mission length. Comparisons of aircraft on a strict fuel burn per distance traveled basis without normalizing the data for the number of passengers carried may result in misleading comparisons.

Figure 3-5 illustrates this point. This figure contains plots of fuel burned per kilometer traveled (top panel) and fuel burned per passenger kilometer traveled (bottom panel) as a function of mission length for a 747-400 and an MD-11ER. The top panel of Figure 3-5 shows that the fuel burned per kilometer for the MD-11ER is significantly lower (approximately 46 percent) than that of the 747-400 for all mission lengths shown. This though is a misleading comparison because the number of passengers carried by the MD-11ER is less than that carried by the 747-400. The bottom panel of Figure 3-5 shows the effect of normalizing the data by average seat count. Fuel burned per ASK (available seat kilometer) is plotted versus mission range. For this comparison the fuel burned per ASK values for the 747-400 and MD-11ER are within 6 percent of each other for all mission lengths shown.

Mission Length (Km)

Figure 3-5. Fuel burned per kilometer traveled (top panel) and fuel burned per available seat kilometer traveled (bottom panel) as a function of mission length for the 747-400 and the MD-11ER.

3.3 Seasonal Variability

There is a noticeable- seasonal variation in air traffic departures in some regions as airlines shift schedules and aircraft to accommodate passenger demand. For example, increased air traffic may mean that airlines will utilize their aircraft more frequently and that some airplanes will be used more than others. There are seasonal variations in emissions which reflect both changes in passenger flow and in the equipment being used.

Trends of emissions and fuel burned global totals for the fleet are a composite of three trends: (1) The seasonal variation in traffic demand, (2) Demand growth and changes in overall fleet technology brought about by the introduction of new aircraft and (3) The retirement of old aircraft.

Figure 3-6 shows the seasonal variation in total global fuel burned by the scheduled aircraft fleet (summed over all altitudes). The top panel shows the daily fuel use as a function of month. The bottom panel shows the percent deviation from the annual average fuel use as a function of month. Global fuel use for 1999 peaked at roughly 4% above the annual average in August and was the lowest in February when it was roughly 3% below the annual average. The month having a daily fuel use that was closest to the annual average was December.

Both water vapor and carbon dioxide emission indices are functions of the hydrogen and carbon content, respectively, of the jet fuel. For typical jet fuel,

 $EI(H_2O) =$ 1237 grams H₂O/kg fuel burned EI (CO₂) = 3155 grams CO₂/kg fuel burned

Thus, the seasonal variation in carbon dioxide and water vapor emissions from the commercial fleet will be the same as that shown for the fuel usage in Figure 3-6.

Figure 3-6. Global fuel burned in the 0-19 km altitude band for scheduled air traffic and percent deviation from the annual average fuel burn for each month of 1999.

3.4 Trend Analysis

In order to assess changes in scheduled fleet global emissions and fuel burned between 1992 and 1999, August 1999 emission inventory global totals were compared to August 1992 emission inventory global totals calculated using the same updated methodology outlined in Section 2 of this report.

Table 3-6 shows a comparison between the scheduled fleet global emissions, distance and fuel burned totals for August 1992 and August 1999 that were calculated using the same methodology. Both the total change in emissions, distance and fuel burned over the seven year period and the yearly rate of change are given in Table 3-6. Yearly rate of change values were calculated by assuming exponential growth.

Scheduled anord	Fuel (kg/day)	NOx (kg/day)	HC (kg/day)	CO (kg/day)	Distance (km/day)
August 1992	2.74E+08	3.57E+06	6.63E+05	1.71E+06	5.07E+07
August 1999	3.64E+08	4.80E+06	5.36E+05	1.94E+06	7.36E+07
Total Change (1992 to 1999)	33%	35%	-19%	14%	45%
Average Yearly Change	4.1%	4.3%	-3.0%	1.9%	5.5%

Table 3-6	Fuel burned and emissions calculated self-consistently for the
I able 5-0.	The burned and emperative to the toop and August 1000
	ashoduled aircraft fleet for August 1992 and August 1999.

Fuel use was calculated to have increased by 33% between 1992 and 1999, while NOx emissions were calculated to increased by 35%. These increases correspond to an average annual growth rate of approximately 4%. During this same period, the total distance flown by all scheduled aircraft was calculated to increase by 45%, corresponding to an annual growth rate of 5.5%. By contrast, CO emissions were calculated to increase by only 14% and hydrocarbon emissions were calculated to decrease by 19% between 1992 and 1999.

The relatively small yearly growth of CO emissions and the reduction of hydrocarbon emissions between 1992 and 1999 is mainly due to the retirement of old aircraft from the fleet and the delivery of new technology engines as the fleet grew. The new technology engines have more efficient combustors with higher overall pressure ratios (OPR). These engines generally produce less hydrocarbons and CO than the ones they replaced.

The average yearly growth in NOx emissions between August 1992 and August 1999 is slightly larger than that of fuel burned. Higher engine OPRs, although they lead to fuel efficiency improvements, lead to higher temperatures and pressures within the combustor and typically higher NOx emissions for a given combustor design. This tendency presents a challenge to engine manufacturers who are trying to improve engine fuel efficiency while reducing NOx emissions.

Absolute quantities of fleet emissions and fuel burned do not take into account trends of the productivity of the fleet. In order to establish a trend in scheduled fleet global emissions that takes fleet productivity into account, total global NOx emissions and fuel burned for 1992, 1999 and projected emissions and fuel burned for 2015 were normalized by available seat kilometers (ASK) flown and plotted as a function of year in Figure 3-7.

To generate the trends in Figure 3-7, results of the previously published NASA 1992 scheduled fleet global emission inventory (Baughcum, *et al.*, 1996a) were used for the 1992 NOx emissions and fuel burned totals. Results of the previously published NASA 2015 scheduled fleet global emission scenario (Baughcum, et al., 1998) were used for the 2015 NOx emissions and fuel burned totals. As was discussed in Section 2.5, the methodology used to create the NASA 1992 and 2015 inventories was different than that used for the 1999 inventory, but differences in NOx emissions and fuel burned global totals that come about from the use of the two different methodologies are small. Therefore, it is reasonable to use previous NASA calculations of NOx and fuel burned global totals with the current results to develop a trend analysis.

Total ASKs for 1992, 1999 and 2015 were calculated by multiplying average seat counts for each individual aircraft type in the respective inventory by the number of kilometers flown by that aircraft type and adding the ASK totals for all of the individual aircraft types. Total fleet NOx emissions and fuel use were then normalized by these ASK totals

Figure 3-7 shows that both global NOx/ASK and global fuel use/ASK for the scheduled aircraft fleet decrease with time. The dashed trend lines running through the data points in Figure 3-7 represent a 1.2 percent per year improvement and 1.3 percent per year improvement in NOx/ASK and Fuel Use/ASK, respectively. When the trend lines are extrapolated to 2015, the fuel trend is consistent with the previous 2015 scenario projected, while the NOx trend is slightly better than projected in that scenario.

The trend toward a reduction in NOx/ASK and fuel use/ASK with time demonstrates the effect of introducing improved fuel efficiency and NOx emission reduction technology into the scheduled fleet.

3.5 Effects of Improved Freighter Modeling

In the earlier NASA emission inventories, (Baughcum, *et al.*, 1996a and 1996b) no distinction was made between flights flown by freighter aircraft and those flown by passenger aircraft. All aircraft flights were modeled using performance data generated assuming a 70% passenger load factor. In the OAG flight schedules created for this study, flights flown by freighters are distinguished from those flown by passenger aircraft. This increased detail in the schedule made it possible in the 1999 inventory calculations to more accurately model freighters by modeling them with more representative payloads.

As described in Section 2.3.3 of this report, DOT Form T-100 data were analyzed to determine average payloads for various types of freighter aircraft. Based on this analysis, it was determined that more accurate inventory results could be obtained if very large freighter aircraft types (747, MD-11, L-1011, DC-10 and Antonov An-124) were modeled using passenger versions with payloads heavier than those associated with 70% passenger loading. This analysis also showed that small and medium freighter aircraft could be modeled accurately enough by using passenger versions with payloads corresponding to 70% passenger load factor as was done in previous NASA inventory calculations.

In order to determine the effect of improved freighter payload assumptions on global fuel burned and NOx totals, inventory calculations were made with and without the improved freighter payload assumptions discussed above for August 1999. For general aircraft types that included very large freighters, Table 3-7 shows fuel burned and NOx emissions global totals for the two different calculations along with percent difference comparisons. A positive percent difference indicates that the new freighter payload assumptions increased fuel burn or NOx emissions. Table 3-7 also shows the percent of the total distance within each aircraft type that was traveled by freighter aircraft.

Total fuel use and NOx for the 1999 scheduled aircraft fleet were increased by 0.6 and 1.5 percent respectively when the improved freighter payload assumptions were used. For each aircraft type modeled using improved payload assumptions, global NOx emissions and fuel use increased because the aircraft operated at higher takeoff gross weights (TOGW). Higher TOGWs require higher engine thrust throughout the mission. This leads to increased fuel burn and higher combustor temperatures, which in turn lead to increased NOx emissions.

This improved treatment of freighter aircraft represents a fairly small correction to the emission inventories.

Comparison of August 1999 global fuel burned and NOx emissions with and without the use of freighter cargo loading assumptions. Table 3-7.

			Fuel Burned		Ň	Ox Emissio	SU
	Percent of General						
	Type Distance	With Freighter	Without Freighter		With Freichter	Without	
General Aircraft Type	Traveled by Freighters	Payloads (kg/day)	Payloads (kg/day)	Percent Difference	Payloads (kɑ/dav)	Payloads (ka/dav)	Percent
						(fan fau)	מוופופורפ
Boeing 747-100/200/300	41.7%	2.88E+07	2.74E+07	5.3%	4.83E+05	4 34E-05	11 20/
Boeing 747-400	3.7%	6.46E+07	6.44E+07	0.4%	9.30F+05	0.055.05	0/0.1
DC-10	9.8%	1.38E+07	1.37E+07	1.1%	2 21F105	9.47E.0E	0.0%
Lockheed L-1011	4.5%	2.56E+06	2.55E+06	0.4%	3 99F+04	2 06E104	2.U%
MD-11	23.5%	1.29E+07	1.24E+07	4.0%	1.74E+05		0.0%
Russian Aircraft	4.4%	8.10E+06	8.09E+06	0.1%	7.86E+04	7.85E+04	0.1%
Global Totals		3.65E+08	3.62E+08	0.6%	4.80E+06	4.73F+06	1 50/
				-			0/0-1

3.6 Database Availability

The 3-dimensional scheduled aircraft emission inventories of fuel burned and emissions calculated on a 1 degree latitude x 1 degree longitude x 1 km altitude grid for each month of 1999 and for August 1992 have been delivered in electronic format to the NASA Langley Research Center. Questions concerning the availability of these data should be directed to Dr. Chowen C. Wey (Chowen.C.Wey@grc.nasa.gov), the NASA GRC contract monitor for this work. Technical questions about the data set should be sent to Steven L. Baughcum (Steven.L.Baughcum@boeing.com) or Donald J. Sutkus (Donald.J.Sutkus@boeing.com) at the Boeing Company, P. O. Box 3707, MS 0R-RC, Seattle, WA 98124-2207. .

4. Comparison of 1999 Inventory Results with DOT Form 41 Data

As discussed in Section 2 of this report, the 1999 scheduled aircraft fleet global emission inventory was created using Official Airline Guide (OAG) flight schedule data, Boeing aircraft performance data and International Civil Aviation Organization (ICAO) engine emissions data.

In developing the performance data used to model aircraft in the 1999 scheduled aircraft fleet global emission inventory, certain simplifying assumptions were made about the conditions under which aircraft operate. These assumptions, which are listed below, lead to errors in the calculation of global aircraft fleet fuel burned and emissions. These errors have been discussed in detail in previous work (Baughcum, *et al.*, 1996a; Daggett, *et al.*, 1999).

Performance Assumptions for the NASA 1999 scheduled emission inventory calculations:

- No winds
- International Standard Atmosphere (ISA) temperatures and pressures
- Continuous climb cruise flight segment with typical westbound flight beginning and ending cruise altitudes
- All aircraft were modeled as passenger aircraft except 747, MD-11, DC-10, L-1011 and An-124 freighter aircraft which were modeled using typical freighter cargoes and OEWs
- Passenger aircraft were modeled assuming no cargo (Payload = passengers + baggage weight)
- Passenger aircraft were modeled using a 70% passenger load factor
- Passenger and baggage weight were assumed to be 200 lb/passenger for single aisle and 210 lb/passenger for wide body aircraft
- Boeing typical weight calculations were used for Operating Empty Weight, Maximum Landing Weight, Maximum Zero Fuel Weight, etc.
- Fuel density of 6.75 lb/gallon and fuel energy content of 18,580 BTU/lb
- Direct great circle routes--no turns or air traffic control diversions
- Takeoff Gross Weights (TOGW) are calculated assuming city pairs are at sea level. Performance calculations assume origin and destination
- airports are at their respective actual airport altitudes.
- Optimum aircraft operating rules
- Engine and airframe performance at new airplane level

Some of the characteristics of the OAG flight schedule data used in creating the scheduled aircraft fleet emission inventories also lead to inaccuracies in global aircraft emission inventory calculations. As discussed in

Section 2 of this report, the 1999 scheduled aircraft fleet global emission inventory calculations are based on the OAG listing of flights which is used as a resource for travelers attempting to book flights. Flights listed in the OAG are those that are *projected* to take place and not ones that necessarily occurred. In addition, the OAG flight schedule often contains duplicate listings of the same flights due to phenomena such as codesharing between airlines. Filtering of the OAG schedules must be done prior to their use for calculating emission inventories and the filtering process is another possible source for inaccuracies in emission inventory results.

In order to evaluate the 1999 scheduled aircraft fleet global emission inventory calculations, comparisons were made between results of these calculations and aviation fuel use and traffic data reported on the U.S. Department of Transportation (DOT) Form 41. Details of this comparison are discussed below.

Each large U.S. air carrier must report statistics for aircraft fuel used, revenue aircraft departures performed and revenue aircraft statute ground track miles flown during a given year on U.S. DOT Form 41. A more detailed description of DOT Form 41 data is contained in previous work (Daggett, *et al.*, 1999). Although these statistics are reported by specific aircraft type (i.e. 747, DC-10 etc.) and geographic region (i.e. North America, Atlantic Ocean, etc.), only airline totals were compared with 1999 scheduled emission inventory results.

DOT Form 41 fuel issue, departure and ground track miles flown data were obtained for the 1999 calendar year for each carrier that reported traffic and capacity data to the U.S. Department of Transportation. Results of the 1999 scheduled aircraft emission inventory calculations were compared to these data. Comparisons were made for the ten passenger airlines that burned the most fuel in 1999 (according to the DOT data) and for the four major cargo carriers that report their fuel use and air traffic statistics to the DOT. The ten passenger airlines considered reported 87% of all fuel use reported by passenger carriers included in the DOT Form 41 database. The four cargo airlines considered account for 87% of all carrier cargo fuel use and approximately 10% of total fuel use reported on DOT Form 41 by all US carriers (passenger and cargo).

•

By airline comparison of DOT Form 41 reported departures, distance and fuel burned with 1999 scheduled inventory global totals for selected passenger carriers. Table 4-1.

		anartires/V	asr 1		o. Moor //				
	5				Incer rear (N	(III)	Lueit	surned/Yeal	(Kg)
Air Carrier	DOT	Inventory	% Diff.	DOT	Inventory	% Diff.	DOT	Inventory	% Diff.
United Air Lines	8.20E+05	8.59E+05	5%	1.06E+09	1.10F+09	4%	9 38F+09		-18%
IISAir	7 11E-05	6 BAELOS	10/	E OAE LOO	E DEL DO	204			0/01
		0.04040	;	0.04E+00	2.20E+U8	4%	3.38E+09	2. /0E+09	-20%
America West Airlines	2.10E+05	2.17E+05	3%	2.09E+08	2.16E+08	4%	1.26E+09	9.81E+08	-22%
American Airlines	8.18E+05	8.45E+05	3%	1.13E+09	1.16E+09	2%	8.88E+09	7.10E+09	-20%
Alaska Airlines	1.70E+05	1.75E+05	3%	1.50E+08	1.55E+08	3%	9.37E+08	7.52E+08	-20%
Delta Air Lines	9.58E+05	9.32E+05	-3%	9.37E+08	9.44E+08	1%	8.33E+09	6.55F+09	-21%
Northwest Airlines	5.85E+05	6.00E+05	3%	6.09E+08	6.19E+08	2%	6.24E+09	4.96E+09	-21%
Southwest Airlines	8.48E+05	8.59E+05	1%	4.54E+08	4.60E+08	1%	2.84E+09	2.27E+09	-20%
Trans World Airlines	2.87E+05	2.91E+05	1%	2.78E+08	2.78E+08	%0	2.09E+09	1.61E+09	-23%
Continental	4.82E+05	4.78E+05	-1%	6.18E+08	6.11E+08	-1%	4.85E+09	3.49E+09	-28%
Passenger Carrier									
Totals	5.89E+06	5.94E+06	1%	5.95E+09	6.07E+09	2%	4.82E+10	3.81E+10	-21%

By airline comparison of DOT Form 41 reported departures, distance and fuel burned with 1999 scheduled inventory dishal totals for selected cardo carriers Table 4-2.

	yiuuai iulai;	S IOL SEIECI	eu cargc) carriers.					
	De	∳partures/\	Year	Dista	ince/Year (ki	í m	Fuel B	urned/Yea	(Ka)
Air Carrier	DOT	Inventory	% Diff.	DOT	Inventory	% Diff.	DOT	Inventory	% Diff.
Federal Express Emery Worldwide DHL Airways United Parcel Service	3.36E+05 7.48E+04 7.83E+04 1.33E+05	5.07E+04 4.26E+04 5.22E+04 1.26E+05	-85% -43% -5%	2.39E+08 8.38E+07 3.78E+07 1.49E+08	9.02E+07 4.10E+07 3.18E+07 1.29E+08	-62% -51% -16%	2.58E+09 6.18E+08 2.88E+08 1.57E+09	1.02E+09 3.60E+08 1.99E+08 1.12E+09	-60% -42% -29%
Cargo Carrier Totals	6.22E+05	2.71E+05	-56%	5.09E+08	2.92E+08	-43%	5.06E+09	2.69E+09	-47%

Table 4-1 shows the results of the comparison of yearly totals for departures, distance traveled and fuel burned for the ten passenger carriers considered. Comparisons are made on a percent difference basis relative to the DOT Form 41 reported values. A negative percent difference denotes that 1999 emission inventory values are lower than those reported on DOT Form 41.

Table 4-1 shows that total departures and distance flown agree within 5 percent for all of the ten passenger air carriers considered with the differences in total departures and distance traveled for the ten passenger carriers being 1 percent and 2 percent respectively. The agreement for total departures and distance traveled is reasonably good considering that the OAG schedule data used to calculate the 1999 emission inventory is based on projections of air traffic demand. Both flight cancellations and code sharing between airlines or their subsidiaries will contribute to the differences.

Because total departures and distance traveled are in relatively good agreement, comparisons of fuel burned between the two data sets may be used to give an indication of how well the emission inventory calculations predicted fuel burned for the ten passenger airlines considered. For the passenger air carriers listed in Table 4-1, the inventory calculations under predicted total fuel by 21 percent on average. The differences in fuel burned for passenger carriers are similar to those found in a similar analysis of 1992 scheduled aircraft emission inventory results (Daggett, *et al*, 1999). The majority of these differences are likely due to the simplifying assumptions made regarding the performance calculations used in creating the emission inventory. Major factors here are the effect of air traffic control, the effect of weather and winds, assumed payload, cargo load, and the assumption of great circle routing between airports.

Table 4-2 shows the results of the comparison of yearly totals for departures, distance traveled and fuel burned for the four cargo carriers considered in this analysis. This table shows that, for the four cargo carriers considered, the total departures and total distance traveled calculated in the 1999 scheduled aircraft emission inventory are significantly less than those reported in the DOT Form 41 data. The inventory under predicts total departures and distance traveled by 56 percent and 43 percent respectively on average. This indicates that the OAG flight schedule data used to create the 1999 scheduled aircraft fleet emission inventory do not contain a complete listing of flights flown by cargo carriers. Fuel use by these four selected cargo carriers was under predicted by 47 percent on average. Similar behavior was observed for DOT Form 41 comparisons made for 1992 emission inventory results (Daggett, *et al*, 1999).

To put the under prediction of cargo flights in perspective, the fuel use reported on DOT Form 41 by all cargo carriers for 1999 was approximately 10 percent of the fuel use reported by all carriers (passenger and cargo). Thus, missing the cargo carrier fuel use by approximately 50 percent in the emission inventory would correspond to an error of approximately 5 percent in the calculated fuel use by all US carriers.

Although this percentage may not necessarily be representative for non-U.S. carriers, it is large enough to justify further investigation of the effect that the lack of coverage of cargo flights in the OAG has on global emission inventory calculations. An investigation of this type is not within the scope of the current work but should be considered for future study.

Overall, this comparison indicates that the OAG data are relatively complete, at least for US carriers, but that there is a systematic under prediction of fuel use of approximately 21 percent in the emission inventories. For cargo carriers, the comparison indicates that there is a systematic under counting of cargo flights in the OAG data with which we are working. This would introduce an additional 5 percent under prediction in the inventory calculations of US carriers. It is unclear how to extend these results to global totals or how to account for them explicitly in the 3-dimensional emission inventory calculation.

5. Summary and Conclusions

Emissions produced by the world's entire aircraft fleet come from scheduled, military, charter and general aviation air traffic. In this report, we only present the results and methodology used for the calculation of emissions from scheduled air traffic which includes turboprops, passenger jets, and jet cargo aircraft.

Global fuel use for 1999 by scheduled air traffic was calculated to be 1.28×10^{11} kilograms. Global NOx emissions by scheduled air traffic in 1999 were calculated to be 1.69×10^{9} kilograms (as NO₂). The calculated global emissions show a seasonal variation, peaking in August with a minimum in February. Emissions for the month of December 1999 were closest to global annual average emissions, although emissions for May (the month typically used as an 'average' month in past NASA inventory studies) were within 1 percent of the global annual average.

A trend analysis for emissions and fuel burned was performed using the results of this current work and previously published emission inventories and scenarios. This analysis showed an increase in the absolute amount of fuel burned, distance traveled, NOx, and CO emissions produced by the scheduled fleet between 1992 and 1999 and a decrease in the absolute amount of hydrocarbon emissions produced. Calculated global fuel use increased by 33% and NOx emissions increased by 35% between 1992 and 1999. The analysis also showed that scheduled fleet fuel burned and NOx emissions normalized by available seat kilometers decreased between 1992 and 2015.

The methodology used to extract and process air traffic data from the Official Airline Guide was changed from that used to calculate previous scheduled fleet inventories for 1976, 1984 and 1992. To quantify the effects of the methodology changes, an emission inventory for August 1992 was recalculated using the new methodology. Comparisons between the previously published and new August 1992 inventories show good agreement for global fuel burned and NOx totals. For CO and hydrocarbons, the global totals increased by 20 percent and 18 percent respectively with the use of the new methodology. Much of this difference arises from the different combustor types selected in the two methodologies for certain engines in the fleet. Emissions from a specific engine model can vary widely depending on the combustor that is installed in the engine.

To improve the accuracy of global emissions calculations for freighters, United States Department of Transportation Form T-100 data were used to determine typical payloads for freighter aircraft. This information was then used to model freighter aircraft more accurately in the inventory calculations by using more realistic payloads.

To assess the effect of the different freighter payload assumptions, results were compared with previous inventory calculations done using 70 percent passenger payload for all aircraft. This comparison showed that improved freighter payload assumptions increased total global fuel burned by 0.6 percent and increased total global NOx by 1.5 percent for August 1999. These increases are relatively small and will not significantly change trends for fuel use or NOx created using the published inventories for 1976, 1984, and 1992.

In order to evaluate the 1999 scheduled aircraft fleet global emission inventory calculations, comparisons were made with aviation fuel use and traffic data reported on the U.S. Department of Transportation (DOT) Form 41 by US air carriers. In general, emission inventory calculations of departures and distance traveled for 1999 compared well (within 5 percent) with the DOT Form 41 data for the ten largest passenger carriers. In contrast, for the four largest cargo carriers, departures and distance traveled calculated were significantly less than those reported on DOT Form 41. It appears that the OAG flight schedule data do not contain a complete listing of cargo flights.

For the passenger carriers in the DOT Form 41 data comparison, the emission inventory calculations consistently under-predicted fleet fuel burned. The magnitude of these under-predictions varied depending on the carrier being considered. For the ten largest air carriers, the total fuel burn was underpredicted by 21 percent. This result is likely due to the simplifying assumptions used in the development of the global inventory, including our inability to consider air traffic control delays/diversions, weather/wind factors, more realistic routing, less than optimum aircraft/engine performance and actual aircraft operating weights.

6. References

- Baughcum, S. L., S. C. Henderson, P. S. Hertel, D. R. Maggiora, and C. A. Oncina, *Stratospheric Emissions Effects Database Development*, NASA CR-4592, 1994.
- Baughcum, S. L., S. C. Henderson, T. G. Tritz, and D. C. Pickett, *Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis*, NASA CR-4700, 1996.
- Baughcum, S. L., S. C. Henderson, and T. G. Tritz, *Scheduled Civil Aircraft Emission Inventories for 1976 and 1984: Database Development and Analysis*, NASA CR-4722, 1996.
- Baughcum, S. L., S. C. Henderson, and D. J. Sutkus, *Scheduled Civil Aircraft Emission Inventories Projected for 2015: Database Development and Analysis*, NASA/CR—1998-207638, 1998.
- Baughcum, S. L., and S. C. Henderson, *Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport*, NASA/CR—1998-207635, 1998.
- Daggett, D. L., D. J. Sutkus Jr., D. P. DuBois, and S. L. Baughcum. An Evaluation of Aircraft Emission inventory Methodology by Comparisons with Reported Airline Data, 1999-CR-209480, 1999.
- DOE, International Energy Annual 1999, DOE/EIA-0219(99), U.S. Department of Energy, 2001
- Gardner, R. M., K. Adams, T. Cook, F. Deidewig, S.Ernedal, R. Falk, E. Fleuti, E. Herms, C. E. Johnson, M. Lecht, D. S. Lee, M. Leech, D. Lister, B. Masse, M. Metcalfe, P. Newton, A. Schmitt, C. Vandenbergh, and R. Van Drimmelen, The ANCAT/EC global inventory of NO_x emissions from Aircraft. *Atmospheric Environment*, 31(12), 1751-1766, 1997.
- Gardner, R. M. (ed.), ANCAT/EC2 Global Aircraft Emissions Inventories for 1991/1992 and 2015: Final Report, EUR-18179, ANCAT/EC Working Group, ISBN-92-828-2914-6, 84 pp. +appendices, 1998.
- Hadaller, O. J., and A. M. Momenthy, *The Characteristics of Future Fuels*, Boeing publication D6-54940, 1989.
- Hadaller, O. J., and A. M. Momenthy, "Characteristics of Future Aviation Fuels," Chapter 10 in *Transportation and Global Climate Change*, (D. L. Greene and D. J. Santini, Eds.), American Council for an Energy-Efficient Economy, Washington, DC, 1993.

- Hadaller, O. J., C. M. Roseburg, and M. E. Monsrud, *The Impact on Commercial Aviation From Reducing the Sulfur Content in Jet Fuel*, NASA Contractor Report NASI 20267, March, 2000.
- Henderson, S. C., U. K. Wickrama, S. L. Baughcum, J. J. Begin, F. Franco, D. L. Greene, D. S. Lee, M. L. McLaren, A. K. Mortlock, P. J. Newton, A. Schmitt, D. J. Sutkus, A. Vedantham, and D. J. Wuebbles, "Aircraft Emissions; Current Inventories and Future Scenarios", Chapter 9 in the Intergovernmental Panel on Climate Change (IPCC) Special Report, Aviation and the Global Atmosphere [Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (eds)], Cambridge University Press, 1999.
- International Civil Aviation Organization (ICAO), *ICAO Engine Exhaust Emissions Databank*, Internet Issue (http://www.dera.gov.uk/html/te/combustion/t&e_aircraft_engine_exhaust_emi ssions_data_bank.htm), May 2000.
- Landau, Z. H., M. Metwally, R. Van Alstyne, and C. A. Ward, Jet Aircraft Engine Exhaust Emissions Database Development -- Year 1990 and 2015 Scenarios, NASA CR-4613, 1994.
- Metwally, M., Jet Aircraft Engine Emissions Database Development--1992 Military, Charter, and Nonscheduled Traffic, NASA CR-4684, 1995.
- Mortlock, A. M., and R. Van Alstyne, *Military, Charter, Unreported Domestic Traffic and General Aviation: 1976, 1984, 1992, and 2015 Emission Scenarios,* NASA/CR—1998-207639, 1998.
- Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (eds.), Intergovernmental Panel on Climate Change (IPCC) Special Report on Aviation and the Global Atmosphere, Cambridge University Press, 1999.
- Schmitt, A. B. and B. Brunner, *Emissions from aviation and their development* over time. In: Final Report on the BMBF Verbundprogramm, Schadstoffe in der Luftfahrt, [Schumann, U., A. Chlond, A. Ebel, B. Karcher, H. Pak, H Schlager, A. Schmitt, and P. Wendling (eds.)], DLR-Mitteilung 97-04, Deutsches Zentrum fur Luft- und Raumfahrt, Oberpfaffenhofen and Cologne, Germany, pp. 37-52, 1997
- Spicer,C. W., M. W. Holdren, D. L. Smith, D. P. Hughes, and M. D. Smith, "Chemical Composition of Exhaust from Aircraft Turbine Engines," *J. Engineering for Gas Turbines and Power*, vol. 114, pp. 111-117 (January 1992).

Appendix A – Sample Airclaims Fleet Information Data

This Appendix contains a sample of the fleet information obtained from the Airclaims database that was used to assign engines to aircraft listed in the filtered OAG flight schedule. The sample data in this appendix show the Japan Airlines fleet as it existed on May 16, 1999.

	Carrier	AIrcialms Fleet	Information Data				
Carrier Name	Code	Aircraft Type	Aircraft Variant	Aircraft Usage	Engine	Engine	Aircraft in
Japan Airlines	JAL	737 (CFMI)	400	All Passenger	CFM56	3C1	Service
Japan Airlines	JAL	747 747 747	100 100B/SR (SUD) (P&W) 100B/SR (P&W)	All Passenger All Passenger All Passenger	179D 179D 179D	7A 7A 7A	ର ର -
Japan Airlines	JAL	747 747 747 747 747 747 747 747	200B (P&W) 200B (P&W) 200B (P&W) 200B (P&W) 200F (SCD) (P&W) 200F (SCD) (P&W) 200F (SCD) (P&W) 200F (P&W) 200SF (P&W)	All Passenger All Passenger All Passenger All Passenger All Freight / Cargo All Freight / Cargo All Freight / Cargo All Freight / Cargo All Freight / Cargo	061L 061L 061L 061L 061L 061L 061L 061L	70 784G2 784G2 70 70 70 70	· © いろうくオクトート
Japan Airlines	JAL	747	300 (P&W)	All Passenger	JT9D	7R4G2	5
Japan Airlines	JAL	747 747	400 (GE) 400D (GE)	All Passenger All Passenger	CF6 CF6	80C2B1F 80C2B1F	8 5 <u>3</u>
Japan Airlines	JAL	767	200 (P&W)	All Passenger	JT9D	7R4D	ę
Japan Airlines	JAL	767 767 767	300 (P&W) 300 (GE) 300 (GE)	All Passenger All Passenger All Passenger	JT9D CF6 CF6	7R4D 80C2B4F 80C2B2	4 + +
Japan Airlines	JAL	777	200 (P&W)	All Passenger	PW4000	4077	ى ب
Japan Airlines	JAL	777	300 (P&W)	All Passenger	PW4000	4090	4
Japan Airlines	JAL	DC-10 DC-10	40I 40D	All Passenger All Passenger	JT9D JT9D	59A 59A	04
Japan Airlines	JAL	MD-11	Passenger (P&W)	All Passenger	PW4000	4460	10

1 Appendix A – Samnle Airclaims Fleet

Appendix B – Airplane/Engine Substitution Tables for 1999 Emissions Inventory Calculations

This Appendix contains a list of each aircraft/engine combination listed in the filtered OAG flight schedule and the performance aircraft and emissions engine that was used to model it. Each emissions engine name has a prefix that represents its unique ID number in the ICAO Engine Emissions Databank. Some emissions data used in the creation of the 1999 inventory had not been published as of the writing of this report and was obtained directly from the engine companies. These emissions engines are listed with the internal Boeing prefix of the form "PREXXX_".

Schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Funine
			0	
100-*	RB.183-620-15	FOKKER-100	TAY-650	
100-*	RB.183-650-15	FOKKFR-100	TAV.660	
146-100	ALF502-R-5	RAF146-200		1HHU21_IAYMk650-15
146-200	AI F502-B-5		ALFOUZH-5	11L003_ALF502R-5
146-300		DAE140-200	ALF502R-5	1TL003_ALF502R-5
146 200		BAE146-200	ALF502R-5	1TL003 ALF502R-5
140-300	LF507-1H	RJ-100	LF507	
146-300Q1_FRI	ALF502-R-5	BAE146-300	ALF502R-5	171003 ALEGNOD E
318 	Blank-Blank	737-500	CFM56-3-B1-18 5	
*-02	RB.183-620-15	FOKKER-70	MARK-620-15	
707-320C	JT3D-3B	707-320B-C	IT3D-3R	
707-320C_AII_FRT	JT3D-3B	707-320B-C		
707-320C_AII_FRT	JT3D-7	707-320B_C		1PW001_JT3D-3B
707-320C FRT	JT3D-3B			1PW001_JT3D-3B
707-320C_FRT			J13D-3B	1PW001_JT3D-3B
		/07-320B-C	JT3D-3B	1PW001 JT3D-3B
	Blank-Blank	707-320B-C	JT3D-3B	1PW004 JTRD-7series
/1/-200	BR700-715C	MD-95-30	BR715	
121	Blank-Blank	727-100	JTRD-7	
727-100	JT8D-7	727-100		
727-100	JT8D-7B	727-100		1PW004_JT8D-7series
727-100	TRD-9	727-100		1PW004_JT8D-7series
727-100	TRD-9A	727 100	118U-9	1PW006_JT8D-9series
727-100C	ITRD-0	777 100	9-01810	1PW006_JT8D-9series
727-100C CMB		001-171	9-11812-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	1PW006_JT8D-9series
727-100C CMB		001-12/	JT8D-7	1PW004_JT8D-7series
	110U-/B	727-100	JT8D-7	1PW004 JT8D-7series
727 100E FDT		727-100	JT8D-7	1PW004 .ITRD-7series
707 100F_FRI	J18D-7B	727-100	JT8D-7	1 PW004 IT80.7 Series
767 100F_FHI	J18D-9	727-100	JT8D-9	
727 1000C_FHI	J18D-9A	727-100	JT8D-9	
727-1000F_FHI	RB.183-651-54	727-100	JT8D-7	1PW004 ID-356165
121-200	JT8D-15	727-200	JT8D-15-15A	1PW009_JT8D-15

Suc
ulatic
Calcı
ory (
vento
is In
sior
Emis
666
for 1
bles
n Tal
tutio
bstit
e Su
ngin
ne/E
irpla
- A
dix B
benc
Ap
Schadula Airnlana

727-200
727-200
727-200
727-200
727-200
727-200
727-200F_FRT
727-200F_FRT
727-200F_FRT
727-200F_FRT
727-200F_FRT
727-200RE
731
737-100
737-200
737-200
737-200
737-200
737-200
737-200
737-200
737-200C
737-200C
737-200C
737-200C
737-200C_CMB
737-200C_CMB
737-200C_QC

																		_	_						N N				
	Emissions Engine	1PW011_JT8D-15A	1PW014_JT8D-17A	1PW006_JT8D-9series	1PW006_JT8D-9series	1PW009_JT8D-15	1PW006_JT8D-9series	1PW006_JT8D-9series	1CM004_CFM56-3-B1	1CM004_CFM56-3-B1	1CM004_CFM56-3-B1	1CM004_CFM56-3-B1	1CM005_CFM56-3B-2	1CM005_CFM56-3B-2	1CM007_CFM56-3C-1	1CM007_CFM56-3C-1	3CM029_CFM56-7B18	3CM030_CFM56-7B20	3CM030_CFM56-7B20	3CM032_CFM56-7B24	3CM034_CFM56-7B27	3CM034_CFM56-7B27	1PW021_JT9D-7A	1PW021_JT9D-7A	1RR006_RB211-524C	1PW021_JT9D-7A	1PW021_JT9D-7A	1GE009_CF6-50E2	1PW021_JT9D-7A
	Performance Engine	JT8D-15	JT8D-15	JT8D-7	JT8D-7	JT8D-15	JT8D-9-9A	JT8D-9-9A	CFM56-3-B1	CFM56-3-B1	CFM56-3-B1	CFM56-3-B1	CFM56-3-B1	CFM56-3-B1	CFM56-3-B1-18.5	CFM56-3-B1-18.5	CFM56-7B18	CFM56-7B20	CFM56-7B20	CFM56-7B24	CFM56-7B27	CFM56-7B27	JT9D-7A	JT9D-7A	RB211-524C	JT9D-7A	JT9D-7F	CF6-50E2	JT9D-7A
Performance	Airplane	737-200	737-200	737-200	737-200	737-200	737-200ADV	737-200ADV	737-300	737-300	737-300	737-300	737-300	737-300	737-500	737-500	737-600	737-700	737-700	737-800	737-800	737-800	747-100-200	747-100-200	747-200	747-100-200	747-100F	747-100-200	747-100-200
	Schedule Engine	JT8D-15A	JT8D-17A	JT8D-9	JT8D-9A	JT8D-15	JT8D-9A	JT8D-9A	CFM56-3B1	CFM56-3B2	CFM56-3C1	CFM56-3C1	CFM56-3B2	CFM56-3C1	CFM56-3B1	CFM56-3C1	CFM56-7B20	CFM56-7B22	CFM56-7B24	CFM56-7B24	CFM56-7B26	CFM56-7B27	JT9D-7	JT9D-7A	RB211-524C2	JT9D-7A	JT9D-7A	CF6-50E2	JT9D-70A
	Schedule Airplane	737-200C_QC	737-200C_QC	737-200C QC	737-200QC	737-200QC_FRT	737-200QC_FRT	737-200QC_QC	737-300	737-300	737-300	737-300QC QC	737-400	737-400	737-500	737-500	737-600	737-700	737-700	737-800	737-800	737-800	747-100	747-100	747-100B	747-100B_SR	747-100F_FRT	747-200B	747-200B

Cabadida Alminan	Schedule Endine	Performance Airnlane	Performance Engine	Emissions Engine
Screanie All plaite				
747-200R	AT-041.	747-100-200	JT9D-7A	1PW021_JT9D-7A
747-200B	WAT-UETI,	747-100-200	JT9D-7A	1PW021_JT9D-7A
747-200B	.119D-7F	747-200	JT9D-7J	1PW023_JT9D-7F
747-200R	I.7-09TI.	747-200	JT9D-7J	1PW024_JT9D-7J
747-200B	07-09TL	747-200B-C-F	JT9D-7Q	1PW025_JT9D-7Q
747-200B	JT9D-7Q3	747-200B-C-F	JT9D-7Q	1PW025_JT9D-7Q
747-200B	JT9D-7R4G2	747-200	JT9D-7R4G2	1PW029_JT9D-7R4G2
747-200B	RB211-524D4	747-200	RB211-524D4U	1RR007_RB211-524D4
747-200B CMB	CF6-50E	747-100-200	CF6-50E2	1GE009_CF6-50E2
747-200B CMB	CF6-50E2	747-100-200	CF6-50E2	1GE009_CF6-50E2
747-200B CMB	JT9D-7Q	747-200B-C-F	JT9D-7Q	1PW025_JT9D-7Q
747-200C F FRT	CF6-50E2	747-300F	CF6-50E2	1GE009_CF6-50E2
747-200C OC	CF6-50E2	747-100-200	CF6-50E2	1GE009_CF6-50E2
747-200F FRT	CF6-50E2	747-300F	CF6-50E2	1GE009_CF6-50E2
747-200F FRT	JT9D-7F	747-200F	JT9D-7J	1PW024_JT9D-7J
747-200F FRT	JT9D-7J	747-200F	JT9D-7J	1PW024_JT9D-7J
747-200F FRT	JT9D-7Q	747-200F	JT9D-7J	1PW024_JT9D-7J
747-200F FRT	JT9D-7R4G2	747-200F	JT9D-7J	1PW024_JT9D-7J
747-200F FRT	RB211-524D4	747-200F	RB211-524D4	1RR008_RB211-524D4
747-200SF FRT	CF6-50E2	747-300F	CF6-50E2	1GE009_CF6-50E2
747-200SF FRT	LT-00TL	747-200F	JT9D-7J	1PW024_JT9D-7J
747-200SF FRT	JT9D-7Q	747-200F	JT9D-7J	1PW024_JT9D-7J
747-200SF FRT	JT9D-7R4G2	747-200F	JT9D-7J	1PW024_JT9D-7J
747-200SF FRT	RB211-524D4	747-200F	RB211-524D4	1RR007_RB211-524D4
747-300	CF6-50E2	747-300	CF6-50E2	1GE009_CF6-50E2
747-300	CF6-80C2B1	747-300	CF6-80C2B1	1GE022_CF6-80C2B1
747-300	JT9D-7R4G2	747-300	JT9D-7R4G2	1PW029_JT9D-7R4G2
747-300	RB211-524C2	747-300	RB211-524D4UP	1RR008_RB211-524D4

		Device		
Schedule Airplane	Schedule Engine	Airolane	Performance Engine	Emissions Entites
747-300	RB211-524D4	747-300	RP11_694011D	
747-300_CMB	CF6-50E2	747-300	CE6.ENES	10000/_00211-02404
747-300 CMB	CF6-80C2B1	747-300		
747-300 CMB	IT9D-7B4G2			
747-300 SB		000-141	J19D-/H4G2	1PW029_JT9D-7R4G2
747-400		747-300	J19D-7H4G2	1PW029_JT9D-7R4G2
		/4/-400	CF6-80C2-B1F	1GE024_CF6-80C2B1F
747-400	PW4000-4056	747-400	PW4056	1PW041 PW4056
/4/-400	RB211-524G	747-400	RB211-524G	1BB010 BB211-524G
747-400	RB211-524H2	747-400	RB211-524G	188011 88211-524H
747-400F_FRT	CF6-80C2B1F	747-400F	CF6-80C2B1F	2GE045 CE6-R0C2R1E
747-400F_FRT	PW4000-4056	747-400F	PW4056	1 PW041 PWANSE
747-400F_FRT	RB211-524H2	747-400F	RB211-524H	188011 88011-501U
747-400_CMB	CF6-80C2B1F	747-400	CF6-80C2-B1F	
747-400_CMB	PW4000-4056	747-400	PW4056	
747-SP	JT9D-7A	747SP	AT-051.	
747-SP	JT9D-7F	747SP	AT-001.	
747-SP	JT9D-7FW	747SP	T9D-7A	
747-SP	JT9D-7J	747SP	TQD-7A	
747-SP	RB211-524D4	747SP	BR211-524C2	
747-SR-100B	CF6-45A2	747-100-100SB	CF6-45A2	100001_00211-52404
757-200	PW2000-2037	757-200	PW0037	
757-200	PW2000-2040	757-200	DMODAD	
757-200	RR211_5350			
767 200		002-101	HB211-535C	1RR012_RB211-535C
757 000	HBZ11-535E4	757-200	RB211-535E4	3RR028_RB211-535E4
773 00005 775	HB211-535E4B	757-200	RB211-535E4	3RR034 RB211-535E4B
/5/-200PF_FHI	PW2000-2040	757-200	PW2040	PRE114 PW2040
/5/-200PF_FHI	RB211-535E4	757-200	RB211-535E4	3RR028 RB211-535F4
/6/-200	CF6-80A	767-200	CF6-80A	1GE010_CF6-80A

	Control Cardino	Performance Aimiane	Performance Engine	Emissions Enaine
Schedule Airplane	Scilennie Erigine			
767-200	IT9D-7R4D	767-200	JT9D-7R4D	1PW026_JT9D-7R4D-7R4D1
767-200EM	CE6-R0A2	767-200	CF6-80A	1GE010_CF6-80A
767-200EM	UT9D-7R4D	767-200	JT9D-7R4D	1PW026_JT9D-7R4D-7R4D1
767-200ER	CF6-80A	767-200ER	CF6-80C2B4F	1GE028_CF6-80C2B4F
767-200ER	CF6-80C2B2	767-200ER	CF6-80C2B4F	1GE025_CF6-80C2B2
767-200FR	CF6-80C2B4	767-200ER	CF6-80C2B4F	1GE027_CF6-80C2B4
767-200FR	CF6-80C2B4F	767-200ER	CF6-80C2B4F	1GE028_CF6-80C2B4F
767-200FR	JT9D-7R4E	767-200	JT9D-7R4D	1PW027_JT9D-7R4E-7R4E1
767-200FR	JT9D-7R4E4	767-200	JT9D-7R4D	1PW028_JT9D-7R4E4-E1
767-200FB	PW4000-4056	767-200ER	PW4056	1PW042_PW4056
767-200FR	PW4000-4060	767-200	CF6-80A	1GE010_CF6-80A
767-200FRM	JT9D-7R4E	767-200	JT9D-7R4D	1PW027_JT9D-7R4E-7R4E1
767-200PC FRT	CF6-80A	767-200	CF6-80A	1GE010_CF6-80A
767-300	CF6-80C2B2	767-300	CF6-80A2	1GE012_CF6-80A2
767-300	CF6-80C2B2F	767-300	CF6-80A2	1GE012_CF6-80A2
767-300	CF6-80C2B4F	767-300	CF6-80A2	1GE012_CF6-80A2
767-300	JT9D-7R4D	767-300	JT9D-7R4E	1PW027_JT9D-7R4E-7R4E1
767-300	PW4000-4056	767-300	CF6-80A2	1GE012_CF6-80A2
767-300FB	CF6-80C2B2	767-300ER	CF6-80C2B6F	1GE025_CF6-80C2B2
767-300FR	CF6-80C2B4	767-300ER	CF6-80C2B6F	1GE027_CF6-80C2B4
767-300FR	CF6-80C2B4F	767-300ER	CF6-80C2B6F	1GE028_CF6-80C2B4F
767-300FR	CF6-80C2B6	767-300ER	CF6-80C2B6F	1GE029_CF6-80C2B6
767-300FR	CF6-80C2B6F	767-300ER	CF6-80C2B6F	2GE048_CF6-80C2B6F
767-300ER	CF6-80C2B7F	767-300ER	CF6-80C2B6F	2GE055_CF6-80C2B7F
767-300ER	PW4000-4056	767-300ER	PW4060	1PW041_PW4056
767-300ER	PW4000-4060	767-300ER	PW4060	1PW041_PW4056
767-300ER	PW4000-4062	767-300ER	PW4060	1PW041_PW4056
767-300ER	RB211-524H2	767-300ER	RB211-524H	1RR011_RB211-524H
767-300ER	RB211-524H3	767-300ER	RB211-524H	1RR011_HB211-524H

		•		
Schedule Airplane	Schedule Engine	Perrormance Airplane	Performance Engine	Emissions Fnoine
			0	
767-300ERF_FRT	CF6-80C2B6F	767-300ER	CF6-80C2B6F	1GEN30 CE6 SOCODEL
767-300ERF_FRT	CF6-80C2B7F	767-300ER	CF6-80C2B6F	
777-200	PW4000-4074	777-200	PW4084	
777-200	PW4000-4077	777-200	PWADRA	
777-200	Trent-875	777-200	TRENT877	25 VU01_F VV4U//
777-200	Trent-877	777-200	TRENT877	20005 T-2016/18/1
777-200ER	GE90-85B	777-200ER	GE90-85B	
777-200ER	GE90-92B	777-200ER	GE90-90B	3GENER GEDN OND
777-200ER	PW4000-4090	777-200ER	PW4084	
777-200ER	Trent-884	777-200ER	TRENT877	21 VV002_F VV4004 288025 Trant077
777-200ER	Trent-892	777-200ER	TRENT877	28025_115110//
777-300	PW4000-4090	777-300	PW4090	
777-300	Trent-892	777-300	TRENT892	
A300-600	CF6-80C2A3	A300-600R	CE6-80C2	
A300-600R	CF6-80C2A5	A300-600R	CF6-80C2	1GE070 CER BOCTAS
A300-600R	CF6-80C2A5F	A300-600R	CF6-80C2	
A300-600_FRT	CF6-80C2A5F	A300-600R	CE6-80C2	
A300-620	JT9D-7R4H1	A300-621R-FR		
A300-620	PW4000-4158	A300-622R-FR	DWARE	IPW030_J19U-/H4H1
A300-620R	PW4000-4158	A300-622R-FR	DWADEE	1PVV048_PVV4158
A300-B2-100	CF6-50C	A300-R2-R4		
A300-B2-200	CF6-50C2			1GEU0/_CF6-50C1-C2
A300-B2-200				1GE007_CF6-50C1-C2
		A300-B2-B4	CF6-50C2	1GE008_CF6-50C2R
A200 B1 100	CF6-5UC2	A300-B2-B4	CF6-50C2	1GE007_CF6-50C1-C2
A300 B4 100	CF6-50C2	A300-B2-B4	CF6-50C2	1GE009_CF6-50E2
	CF6-5UC2H	A300-B2-B4	CF6-50C2	1GE008 CF6-50C2R
A300-64-120	J19D-59A	A300-621R-ER	JT9D-7R4H1	1PW033 JT9D-59A
A300-B4-200	CF6-50C2	A300-B2-B4	CF6-50C2	1GE007_CF6-50C1-C2

Appendix B – Airplane/Engine Substitution Tables for 1999 Emissions Inventory Calculations

Schedule Airolane	Schedule Engine	Performance Airplane	Performance Engine	Emissions Engine
	2			
A300-B4-200FF	CF6-50C2	A300-B2-B4	CF6-50C2	1GE007_CF6-50C1-C2
A300-B4-200F FRT	CF6-50C2	A300-B2-B4	CF6-50C2	1GE007_CF6-50C1-C2
A300-F4-200 FRT	CF6-50C2	A300-B2-B4	CF6-50C2	1GE007_CF6-50C1-C2
A310-200	CF6-80A3	A310-300	CF6-80A3	1GE013_CF6-80A3
A310-200	CF6-80C2A2	A310-300	CF6-80C2A2	1GE016_CF6-80C2A2
A310-220	JT9D-7R4D1	A310-300	JT9D-7R4E1	1PW027_JT9D-7R4E-7R4E1
A310-220	JT9D-7R4E1	A310-300	JT9D-7R4E1	1PW027_JT9D-7R4E-7R4E1
A310-300	CF6-80C2A2	A310-300	CF6-80C2A2	1GE016_CF6-80C2A2
A310-300	CF6-80C2A8	A310-300	CF6-80C2A2	1GE021CF6-80C2A8
A310-320	JT9D-7R4E1	A310-300	JT9D-7R4E1	1PW027_JT9D-7R4E-7R4E1
A310-320	PW4000-4152	A310-300	CF6-80C2A2	1GE016_CF6-80C2A2
A310-320	PW4000-4156A	A310-300	CF6-80C2A2	1GE016_CF6-80C2A2
A319-110	CFM56-5A4	A319-200	CFM56-5-A1	1CM008_CFM56-5-A1
A319-110	CFM56-5A5	A319-200	CFM56-5-A1	1CM008_CFM56-5-A1
A319-110	CFM56-5B5_P	A319	CFM56-5B3P-25	3CM027_CFM56-5B5/P
A319-110	CFM56-5B6_2P	A319	CFM56-5B3P-25	3CM028_CFM56-5B6/P
A319-110	CFM56-5B6_P	A319	CFM56-5B3P-25	3CM028_CFM56-5B6/P
A319-130	V2500-2522-A5	A319-200	V2522-A5	3IA006_V2522-A5
A319-130	V2500-2524-A5	A319-200	V2522-A5	3IA007_V2524-A5
A320-110	CFM56-5A1	A320-200	CFM56-5-A1	1CM008_CFM56-5-A1
A320-210	CFM56-5A1	A320-200	CFM56-5-A1	1CM008_CFM56-5-A1
A320-210	CFM56-5A3	A320-200	CFM56-5-A1	1CM009_CFM56-5A3
A320-210	CFM56-5B4	A320-200	CFM56-5-A1	1CM008_CFM56-5-A1
A320-210	CFM56-5B4_2	A320-200	CFM56-5-A1	3CM026_CFM56-5B4/P
A320-210	CFM56-5B4_2P	A320-200	CFM56-5B3P-26.5	3CM026_CFM56-5B4/P
A320-210	CFM56-5B4_P	A320-200	CFM56-5B3P-26.5	3CM026_CFM56-5B4/P
A320-230	V2500-2500-A1	A320-200	V2525-A5	11A001_V2500-A1
A320-230	V2500-2527-A5	A320-200	V2525-A5	11A003_V2527-A5

		Derformanco		
Schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Engine
A321-110	CFM56-5B1_2	A321-100	CFM56-5B1	20M012 CEM56_5B1
A321-110	CFM56-5B2	A321-100	CFM56-5B1	
A321-130	V2500-2530-A5	A321-100	V2530-A5	
A321-210	CFM56-5B3_2P	A321-200	V2533-A5	31A008_V2530-A3
A321-210	CFM56-5B3_P	A321-200	V2533-A5	31A008 V2533-A5
A321-230	V2500-2533-A5	A321-200	V2533-A5	31A008 V2533-A5
A330-200	CF6-80E1A4	A330-200	CF6-80E1A3	4GE080 CE6-80E1A4
A330-220	PW4000-4168A	A330-200	PW4168	
A330-240	Trent-772B-60	A330-200	TRENT772	288023 Trent772
A330-300	CF6-80E1A2	A330-300	CF6-80E1A1	1GE033 CF6-80F1A2
A330-320	PW4000-4164	A330-300	PW4164	1PW049 PW4164
A330-320	PW4000-4168	A330-300	PW4164	1PW049 PW164
A330-340	Trent-768-60	A330-300	TRENT768	288022 Trent768
A330-340	Trent-772-60	A330-300	TRENT768	2BB022 Trent768
A330-340	Trent-772B-60	A330-300	TRENT768	28B022 Trent768
A340-210	CFM56-5C2	A340-200	CFM56-5C-2	1CM010 CFM56-5C2
A340-210	CFM56-5C2G	A340-200	CFM56-5C-2	1CM010 CEM56-5C2
A340-210	CFM56-5C3_F	A340-200	CFM56-5C-2	
A340-310	CFM56-5C2	A340-200	CFM56-5C-2	
A340-310	CFM56-5C3_F	A340-200	CFM56-5C-2	1CM010 CFM56-5C2
A340-310	CFM56-5C4	A340-200	CFM56-5C-2	1CM010 CFM56-5C2
AN4	LGTURB	LGTURB	PW125B	PW125B
AN6	MDTURB	MDTURB	PW120	PW120
ANF	MDTURB	MDTURB	PW120	PW120
A14	LGTURB	LGTURB	PW125B	PW125B
AI/	LGTURB	LGTURB	PW125B	PW125B
AIP	LGTURB	LGTURB	PW125B	PW125B
AIH	LGTURB	LGTURB	PW125B	PW125B

		Performance		
Schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Engine
An-194 * ERT	D-18-T	747-400F	CF6-80C2B1F	1GE024_CF6-80C2B1F
AIF1247 _1111 RE1	SMTURB	SMTURB	PT6A	PT6A
BF9	SMTURB	SMTURB	PT6A	PT6A
BFH	SMTURB	SMTURB	PT6A	PT6A
BES	SMTURB	SMTURB	PT6A	PT6A
	SMTURB	SMTURB	PT6A	PT6A
CNC	SMTURB	SMTURB	PT6A	PT6A
CRJ-100ER	CF34-3A1	CRJ	CF34-3A1	1GE035_CF34-3A1
CRJ-100LR	CF34-3A1	CRJ	CF34-3A1	1GE035_CF34-3A1
CRJ-200ER	CF34-3B1	CRJ	CF34-3A1	1GE035_CF34-3A1
CRJ-200LR	CF34-3B1	CRJ	CF34-3A1	1GE035_CF34-3A1
CS5	LGTURB	LGTURB	PW125B	PW125B
CV5	LGTURB	LGTURB	PW125B	PW125B
CVF	LGTURB	LGTURB	PW125B	PW125B
Concorde-100	Olympus-593-610	Concorde	Olympus-593-610	Olympus-593-610
D28	SMTURB	SMTURB	PT6A	PT6A
D38	MDTURB	MDTURB	PW120	PW120
DC-10-10	CF6-6D	DC10-10	CF6-6D	1GE001_CF6-6D
DC-10-10	CF6-6K	DC10-10	CF6-6D	1GE001_CF6-6D
DC-10-10F FRT	CF6-6D	DC10-10F	CF6-6D	1GE001_CF6-6D
DC-10-15	CF6-50C2F	DC-10-30	CF6-50C2	1GE007_CF6-50C1-C2
DC-10-30	CF6-50C	DC-10-30	CF6-50C2	1GE006_CF6-50C
DC-10-30	CF6-50C1	DC-10-30	CF6-50C2	1GE007_CF6-50C1-C2
DC-10-30	CF6-50C2	DC-10-30	CF6-50C2	1GE007_CF6-50C1-C2
DC-10-30	CF6-50C2R	DC-10-30	CF6-50C2	1GE007_CF6-50C1-C2
DC-10-30CF	CF6-50C2	DC-10-30	CF6-50C2	1GE007_CF6-50C1-C2
DC-10-30F FRT	CF6-50C2	DC-10-30F	CF6-50C2	1GE007_CF6-50C1-C2
DC-10-30F_FRT	CF6-50C2B	DC-10-30F	CF6-50C2	1GE007_CF6-50C1-C2

Schedule Airplane	Schedule Engine	Performance Aimlane		
				Emissions Engine
DC-10-40				
		UC-10-40	J19D-20	1PW031_JT9D-20
0-10-40	J19D-59A	DC10-40	JT9D-20	1PW033 .JT9D-59A
DC-8-54CF_FRT	JT3D-3B	DC-8-63-63CF	JT3D-7	
DC-8-61C_FRT	JT3D-3B	DC8-55-55CF	JT3D-3B	
DC-8-62CF_FRT	JT3D-3B	DC8-55-55CF	JT3D-3B	
DC-8-62F_FRT	JT3D-3B	DC-8-63-63CF	.1130-7	
DC-8-63CF_FRT	JT3D-7	DC-8-63-63CF	.1730-7	
DC-8-63C_FRT	JT3D-7	DC-8-63-63CF	T3D-7	
DC-8-63_FRT	JT3D-7	DC-8-63-63CF	JT3D-7	
DC-8-71F_FRT	CFM56-2C1	DC-8-71-71CF	CEM56-1R	
DC-8-73CF_FRT	CFM56-2C1	DC-8-71-71CF	CEM56-1B	
DC-8-73F_FRT	CFM56-2C1	DC-8-71-71CF	CEM56-1B	
DC-9-15	JT8D-7	DC9-30		
DC-9-15	JT8D-7A	DC9-30		IPW004_JI8D-/Series
DC-9-15RC	ITRD-7B			IPW004_JIBD-/series
DC-9-15BC ERT				1PW004_JT8D-7series
			J18D-7	1PW004_JT8D-7series
		DC9-31	JT8D-15	1PW009_JT8D-15
DC-9-31	J18D-7A	DC9-30	JT8D-7	1PW004 JT8D-7series
DC-9-31	JT8D-7B	DC9-30	JT8D-7	1PW004 JT8D-7series
DC-9-31	JT8D-9A	DC9-30	JT8D-7	1PW007 JT8D-9series
DC-9-31CF	JT8D-17	DC9-31	JT8D-15	1PW012 .JT8D-17
DC-9-32	JT8D-11	DC9-31	JT8D-15	1PW008 IT8D-11
DC-9-32	JT8D-15	DC9-31	JT8D-15	
DC-9-32	JT8D-17	DC9-31	JT8D-15	
DC-9-32	JT8D-7	DC9-30	.ITRD-7	
DC-9-32	JT8D-7A	DC9-30	ITBD_7	
DC-9-32	JT8D-7B	DC9-30		
DC-9-32	ITBD-0			1PW004_J18D-7series
 	0-00-0	00-600	J18D-7	1PW006_JT8D-9series

		Performance		
Schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Engine
		DC9-30	JT8D-7	1PW006 JT8D-9series
		DC9-30	ITBD-7	1PW006 JT8D-9series
	TRD-11	DC9-50	JT8D-15	1PW008_JT8D-11
DC-9-41	.ITRD-15	DC9-50	JT8D-15	1PW009_JT8D-15
DC-0-41 FRT	.IT8D-11	DC9-50	JT8D-15	1PW008_JT8D-11
DC-9-51	JT8D-17	DC9-50	JT8D-15	1PW012_JT8D-17
DC-9-51	JT8D-17A	DC9-50	JT8D-15	1PW014_JT8D-17A
DFI	Blank-Blank	CRJ	CF34-3A1	1GE034_CF34-3A
DH1	MDTURB	MDTURB	PW120	PW120
DH3	MDTURB	MDTURB	PW120	PW120
DH7	LGTURB	LGTURB	PW125B	PW125B
DH8	MDTURB	MDTURB	PW120	PW120
DHT	SMTURB	SMTURB	PT6A	PT6A
EM2	SMTURB	SMTURB	PT6A	PT6A
EM3	Blank-Blank	CRJ	CF34-3A1	1GE035_CF34-3A1
EMB	SMTURB	SMTURB	PT6A	PT6A
FM.1	Blank-Blank	CRJ	CF34-3A1	1GE035_CF34-3A1
EB3	Blank-Blank	CRJ	CF34-3A1	1GE035_CF34-3A1
EB4	Blank-Blank	CRJ	CF34-3A1	1GE035_CF34-3A1
FB.I	Blank-Blank	CRJ	CF34-3A1	1GE035_CF34-3A1
ER.J-145-EP	AE-A	CRJ	CF34-3A1	1GE035_CF34-3A1
FRJ-145-EP	AE-A1 1	CRJ	CF34-3A1	1GE035_CF34-3A1
FR.I-145-FR	AE-A	CRJ	CF34-3A1	1GE035_CF34-3A1
ERJ-145-EU	AE-A	CRJ	CF34-3A1	1GE035_CF34-3A1
FR.J-145-LB	AE-A1	CRJ	CF34-3A1	1GE035_CF34-3A1
ERJ-145-LU	AE-A1	CRJ	CF34-3A1	1GE035_CF34-3A1
ERJ-145-MP	AE-A1	CRJ	CF34-3A1	1GE035_CF34-3A1
F.28-1000	Spey-555-15	F-28-4000	MK555-15H	1RR017_SPEYMk555

		1		
		Performance		
schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Engine
F.28-2000	Spey-555-15	F-28-4000	MK555-15H	1RR017 SPEYMk555
F.28-3000	Spey-555-15H	F-28-4000	MK555-15H	1 BR017 SPEYMk555
F.28-4000	Spey-555-15H	F-28-4000	MK555-15H	1BR017 SPEYMK555
F.28-4000	Spey-555-15P	F-28-4000	MK555-15H	1 RR017 SPEVMLERE
F27	LGTURB	LGTURB	PW125B	
F50	LGTURB	LGTURB	PW125B	PW125B
FRJ	Blank-Blank	CRJ	CF34-3A1	1GE035 CF34-3A1
HS7	LGTURB	LGTURB	PW125B	PW125B
IL8	LGTURB	LGTURB	PW125B	PW125B
II-62-*	NK-8-4	DC-8-63-63CF	JT3D-7	1PW004 JT8D-7series
II-62-M	D-30-KU	DC-8-63-63CF	JT3D-7	1PW004 .IT8D-7series
II-76-M_FRT	D-30-KP-2	DC-8-63-63CF	JT3D-7	1PW004 .ITRD-7series
II-76-T_FRT	D-30-KP-2	DC-8-63-63CF	JT3D-7	1PW004 .ITRD-7series
II-86-*	NK-86	L-1011-1-100	RB211-22B	1RR002 RR211-22R
II-86-*	NK-86-Blank	L-1011-1-100	RB211-22B	1RB002 RB211-22B
II-96-300	PS-90-A	L-1011-1-100	RB211-22B	1RR003 RR211-22R
J31	SMTURB	SMTURB	PT6A	PT6A
J41	MDTURB	MDTURB	PW120	PW120
L-1011-1	RB211-22B	L-1011-1-100	RB211-22B	1RR003 RB211-22B
L-1011-150	RB211-22B	L-1011-1-100	RB211-22B	1RR003 RB211-22B
L-1011-200_FRT	RB211-524B	L-1011-1-100F	RB211-22B	1RR003 RB211-22B
L-1011-200_HRT	RB211-524B4	L-1011-1-100F	RB211-22B	1RR003 RB211-22B
L-1011-50	RB211-22B	L-1011-1-100	RB211-22B	1RR003 RB211-22B
L-1011-500	RB211-524B4	L1011-500AC	RB211-524B4	1BR004 BB211-524Bseries
11	Blank-Blank	L-1011-1-100	RB211-22B	1RR003 RB211-22B
	SMTURB	SMTURB	PT6A	PT6A
LOE	LGTURB	LGTURB	PW125B	PW125B
LOT	LGTURB	LGTURB	PW125B	PW125B

		Performance		
Schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Engine
	IGTIRR	I GTURB	PW125B	PW125B
	IGTURB	IGTURB	PW125B	PW125B
I B.I	Blank-Blank	CRJ	CF34-3A1	1GE034_CF34-3A
MD-11-CF QC	PW4000-4460	MD-11ER	PW4460	1PW052_PW4460
MD-11-CF OC	PW4000-4462	MD-11ER	PW4460	1PW052_PW4460
MD-11-Combi CMB	CF6-80C2D1F	MD-11	CF6-80C2D1F	2GE049_CF6-80C2D1F
MD-11-Freighter FRT	CF6-80C2D1F	MD-11F	CF6-80C2D1F	2GE049_CF6-80C2D1F
MD-11-Freighter FRT	PW4000-4460	MD-11F	PW4460	1PW057_PW4x60
MD-11-Passenger	CF6-80C2D1F	MD-11	CF6-80C2D1F	2GE049_CF6-80C2D1F
MD-11-Passenger	PW4000-4460	MD-11ER	PW4460	1PW052_PW4460
MD-11-Passenger	PW4000-4462	MD-11ER	PW4460	1PW058_PW4x62
MD-80-81	JT8D-217	MD-82	JT8D-217A	1PW018_JT8D-217series
MD-80-81	JT8D-217C	MD-82	JT8D-217A	1PW018_JT8D-217series
MD-80-82	JT8D-217	MD-82	JT8D-217A	1PW018_JT8D-217series
MD-80-82	JT8D-217A	MD-82	JT8D-217A	1PW018_JT8D-217series
MD-80-82	JT8D-217C	MD-82	JT8D-217A	1PW018_JT8D-217series
MD-80-82	JT8D-219	MD-83	JT8D-219	1PW019_JT8D-219
MD-80-83	JT8D-217C	MD-83	JT8D-219	1PW018_JT8D-217series
MD-80-83	JT8D-219	MD-83	JT8D-219	1PW019_JT8D-219
MD-80-87	JT8D-217C	MD-87	JT8D-217C	1PW018_JT8D-217series
MD-80-87	JT8D-219	MD-87	JT8D-217C	1PW019_JT8D-219
MD-80-88	JT8D-219	MD-83	JT8D-219	1PW019_JT8D-219
MD-90-30	V2500-2525-D5	MD90-30	V2525-D5	11A002_V2525-D5
MD-90-30	V2500-2528-D5	MD90-30	V2525-D5	11A002_V2525-D5
MU2	SMTURB	SMTURB	PT6A	PT6A
ND2	MDTURB	MDTURB	PW120	PW120
One-Eleven-200	Spey-506-14A	BAC111-500	MK512-14	1RR016_SPEYMk511
One-Eleven-500	Spey-512-14DW	BAC111-500	MK512-14	1RR015_SPEYMk511

		Performance		
Schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Engine
One-Fleven-560	Snev-512-14DW	BAC111 EOD		
			41-21 CUM	1HH015_SPEYMK511
L'Z	SMTURB	SMTURB	PT6A	PT6A
PL6	SMTURB	SMTURB	PT6A	PT6A
RJ-RJ100	LF507-1F	RJ-100	LF507	1TI 004 I E507-1E-1H
RJ-RJ70	LF507-1F	RJ-85	LF507	1TI 004 I E507-1E-1H
RJ-RJ85	LF507-1F	RJ-85	LF507	1TI 004 F507.1F.1H
S20	LGTURB	LGTURB	PW125B	PW125B
SF3	MDTURB	MDTURB	PW120	PW120
SH3	MDTURB	MDTURB	PW120	PW120
SH6	MDTURB	MDTURB	PW120	PW120
SHS	SMTURB	SMTURB	PT6A	PTGA
SWM	SMTURB	SMTURB	PT6A	PTGA
T20	Blank-Blank	757-200	BB211-535F4	3RR028 RR011_535E1
Tu-134-A	D-30-2	DC9-30	JT8D-7	
Tu-134-A	D-30-3	DC9-30	JT8D-7	
Tu-134-B	D-30-3	DC9-30	JT8D-7	
Tu-154-B	NK-8-2U	727-200	JT8D-15-15A	
Tu-154-M	D-30-KU-154-II	727-200	JT8D-15-15A	1PW000 IT80-15
Tu-204-100C_FRT	PS-90-AT	757-200	RB211-535C	1BR012 BR011-535C
YN2	SMTURB	SMTURB	PT6A	
YN7	LGTURB	LGTURB	PW125B	PW125B
YS1	LGTURB	LGTURB	PW125B	PW125B

		Performance			
Schedule Airplane	Schedule Engine	Airplane	Performance Engine	Emissions Engine	
Yak-40-*	AI-25	727-100	JT8D-7	1PW002_JT3D-7series	
Yak-40-*	AI-25-Blank	727-100	JT8D-7	1PW002_JT3D-7series	
Yak-42-*	D-36	727-100	JT8D-7	1PW002_JT3D-7series	
Yak-42-*	D-36-Blank	727-100	JT8D-7	1PW002_JT3D-7series	
Yak-42-D	D-36	727-100	JT8D-7	1PW002_JT3D-7series	
Yak-42-D	D-36-Blank	727-100	JT8D-7	1PW002_JT3D-7series	

Notes: SMTURB = Small Turboprop MDTURB = Medium Turboprop LGTURB = Large Turboprop

Table C-1. Fuel burned, emissions, cumulative fractions of emissions, and effective emission indices as a function of altitude (Summed over Latitude and Longitude) for scheduled air traffic in January 1999.

Altitu	de B	and	Fuel (ka/dav)	cum fuel (%)	NOx (kq/dav)	cum NOx (%)	HC (kg/day)	cum HC (%)	CO (kg/day)	cum CO (%)	EI(NOx)	EI(HC)	EI(CO)
			16-2-18-11										
C	,	-	3.35E+07	9.80%	4.05E+05	9.02%	1.83E+05	34.52%	6.15E+05	32.93%	12.09	5.46	18.35
> - -		• •	9 13F+06	12.48%	1.47E+05	12.29%	2.96E+04	40.10%	1.04E+05	38.50%	16.11	3.24	11.40
- ເ	1	1 0	8.53F+06	14.98%	1.45E+05	15.51%	2.43E+04	44.69%	8.75E+04	43.19%	16.93	2.85	10.25
4 6			9 R6F+06	17 86%	1.79E+05	19.49%	2.30E+04	49.03%	7.98E+04	47.47%	18.14	2.33	8.09
) -		r ư	9.07E+06	20.52%	1.53E+05	22.89%	2.38E+04	53.52%	7.98E+04	51.74%	16.83	2.62	8.79
t 1		מי	8 94F+06	23.14%	1.44E+05	26.09%	2.40E+04	58.05%	7.96E+04	56.01%	16.06	2.69	8.91
שר		, , ,		25 74%	1.41E+05	29.23%	2.33E+04	62.45%	7.41E+04	59.98%	15.90	2.62	8.33
7 0		- α	9.60F+06	28.55%	1.44E+05	32.45%	2.42E+04	67.01%	8.06E+04	64.29%	15.04	2.52	8.39
- α		σ	9 16F+06	31.24%	1.31E+05	35.37%	2.24E+04	71.23%	7.53E+04	68.33%	14.35	2.44	8.23
οσ	,	, CF	1.91E+07	36.82%	2.65E+05	41.28%	2.51E+04	75.96%	8.31E+04	72.78%	13.91	1.31	4.36
ç) -	1.06E+08	67.74%	1.25E+06	69.00%	7.33E+04	89.79%	3.18E+05	89.82%	11.79	0.69	3.01
2 7	•	÷ •	1 09F+08	99.61%	1.37E+06	99.57%	5.33E+04	99.84%	1.86E+05	60.79%	12.61	0.49	1.71
		1 4	8 01E+05	99.84%	1.12E+04	99.81%	5.82E+02	99.95%	2.11E+03	%06.66	13.94	0.73	2.64
4 4		14	2.69E+05	99.92%	3.62E+03	69.89 %	2.16E+02	86°.66%	9.11E+02	99.95%	13.46	0.80	3.39
2 7	,	- L	1 07F+04	99.93%	1.92E+02	%06.66	2.10E+00	%66.66	3.74E+01	99.95%	18.00	0.20	3.50
r r	1	2 4	1 07F+04	66 .93%	1.92E+02	%06`66	2.10E+00	66.9 9%	3.74E+01	99.95%	18.00	0.20	3.50
<u>,</u>	ı	17	8 94F+04	96 [.] 66%	1.61E+03	99.94%	1.79E+01	66.66 %	3.13E+02	99.97%	18.00	0.20	3.50
2 -	ı	8	1 19F+05	86 [°] 99%	2.14E+03	%66.66	2.38E+01	100.00%	4.16E+02	66.66 %	18.00	0.20	3.50
18	۰	19	3.42E+04	100.00%	6.16E+02	100.00%	6.80E+00	100.00%	1.20E+02	100.00%	18.00	0.20	3.50
									1 87E106		13 15	1.55	5.46
Globa	I Tot	a	3.42E+08		4.49E+UD		0.300+100		1.01				

Table C-	and F	uel bur Longitt	ned, emissior Ide) for sched	ns, cumulativ Iuled air traff	ve fractions o fic in Februar	ıf emissions y 1999.	, and effectiv	e emission	indices as a	function of	altitude (Sı	ummed ov	Ŀ
Altituc	de f	3and	Fuel	cum fuel	ŇON	cum NOX	ЧС	Cim HC	C C			Ú L	
	Ē		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
0	ı	-	3.35E+07	9.85%	4.06E+05	9.06%	1 82F+05	78%/	6 15C . DE	, and cc			
	ı	2	9.16E+06	12.54%	1.48E+05	12.36%	2.94E+04	40.40%	0.13C+03	30.00%	1.1	0.44 44	18.35
N		e	8.54E+06	15.05%	1.45E+05	15.60%	2.41F+04	44 99%	R 71E+04	30.01%	4 0. 4 4 00 4	12.5	11.34
ო	•	4	9.87E+06	17.95%	1.79E+05	19.61%	2.27E+04	49.32%	7 945-104	47.650 /o		10.2	10.19 0.05
4	ı	ъ	9.12E+06	20.63%	1.54E+05	23.03%	2.36E+04	53.82%		%00.14 /070.13	10,10	09.2 0	8.05 1.05
2	,	9	8.88E+06	23.24%	1.43E+05	26.23%	2.37E+04	58.35%	7 94F+04	56 10%	10.00	80.2 2	8.74
9		7	8.97E+06	25.87%	1.43E+05	29.41%	2.30E+04	62.74%	7 43F+04	50.10%		70.7	0.94 0.00
~	,	æ	9.60E+06	28.69%	1.45E+05	32.64%	2.39E+04	67 30%	R DEFLOA	60.10%	10.30	10.2	8.29
8	·	ი	9.30E+06	31.42%	1.33E+05	35.62%	2.21E+04	71 51%		04.42%		2.49	8.39 0 : 0
6	ı	10	1.92E+07	37.07%	2.68E+05	41.59%	2.46F+04	76.20%	8 31 E-04		40.41	2.37	8.12 - 22
10	ı	1	1.04E+08	67.62%	1.23E+06	69.00%	7 17F+04	R0 88%	2 1 2 E - 0 E	00 700/	10.92	1.28	4.32
11	•	12	1.09E+08	39.60 %	1.37E+06	99.55%	5 21E-04	00.00%	3.12E+U3	09./3%	18.11	0.69	3.01
12	ı	13	8.64E+05	99.85%	1.21E+04	%29.66 66 82%	6 10F+02	00.05%	2 2015 22	99./8%	/9.21	0.48	1.72
13	ı	14	2.18E+05	99.92%	2.96E+03	99.89%	0.10C+02	0/ 06.66 00 00%	2.23E+U3	89.90%	13.98	0.71	2.65
14		15	1.24E+04	99.92%	2.24E+02	99.89%	2 50F+00	90.03 /0	9.03E+02	33.30%	13.55	0.93	4.15
15		16	1.24E+04	99.93 %	2.24E+02	%06.66	2 50F+00	00.00%	4.000+01 4 260-01	99.90%	18.00	0.20	3.50
16	,	17	9.40E+04	99.95%	1.69E+03	99.94%	1 88F+01	00 00%	4.00E+01	99.90%		0.20	3.50
17		18	1.24E+05	66.66 %	2.24E+03	%66 [.] 66	2.48E+01	100.00%	4 35F 102	00 000/00		0.20	3.50 2.50
18		19	3.58E+04	100.00%	6.44F+02	100 00%	7 205 100			01.23.70 100.000	00.01	0.20	3.50
						0,000	1.50L+00	NU.UU%	204362.1	100.00%	18.00	0.20	3.50
GlobalT	otal		3.40E+08		4.48E+06		5.24E+05		1.86E+06		13 16	1 51	E 17
											2.2	t 	0.47

NASA/CR-2001-211216

Table C-3. Fuel burned, emissions, cumulative fractions of emissions, and effective emission indices as a function of altitude (Summed over Latitude and Longitude) for scheduled air traffic in March 1999.

Altitude	e Bč	and	Fuel	cum fuel	XON	cum NOx	HC	cum HC	CO	cum CO	EI(NOx)	EI(HC)	EI(CO)
¥	Ê		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(0/_)	(kg/uay)	(0/)			
c		Ŧ	3 3RF±07	9 84%	4 09F+05	9.06%	1.82E+05	34.95%	6.18E+05	33.18%	12.12	5.39	18.32
- C		- c	0.000L10	12.53%	1 49F+05	12.36%	2.93E+04	40.58%	1.05E+05	38.79%	16.14	3.17	11.33
- 0		J C	8.61E+06	15.04%	1.47E+05	15.60%	2.38E+04	45.15%	8.76E+04	43.49%	17.03	2.77	10.18
י יי י		7	9.5F+06	17.94%	1.81E+05	19.61%	2.25E+04	49.47%	8.00E+04	47.78%	18.19	2.26	8.05
~ <		۲ur	9 19F+06	20.62%	1.55E+05	23.04%	2.33E+04	53.96%	8.03E+04	52.09%	16.86	2.54	8.73
י. רעל		ۍ د	8.93E+06	23.23%	1.44E+05	26.24%	2.35E+04	58.47%	7.98E+04	56.37%	16.14	2.63	8.93
در	ı	~ ~	9.05F+06	25.87%	1.44E+05	29.42%	2.29E+04	62.88%	7.48E+04	60.38%	15.90	2.54	8.27
7 0	,	. α	9.66E+06	28.68%	1.46E+05	32.65%	2.39E+04	67.47%	8.11E+04	64.73%	15.09	2.47	8.39
- a	,	σ	9.30E+06	31.40%	1.34E+05	35.61%	2.20E+04	71.70%	7.58E+04	68.80%	14.36	2.37	8.15
σ		, CF	1.94E+07	37.07%	2.71E+05	41.61%	2.45E+04	76.41%	8.37E+04	73.29%	13.92	1.26	4.30
, t		: =	1.05E+08	67.62%	1.24E+06	69.05%	7.12E+04	90.08%	3.12E+05	90.03%	11.83	0.68	2.98
; =	,	÷ F	1 10F+08	99.65%	1.38E+06	99.61%	5.08E+04	99.84%	1.82E+05	99.80%	12.56	0.46	1.66
	ı	1 0	7 33F+05	99.86%	1.01E+04	99.83%	5.61E+02	99.95%	1.92E+03	99.90%	13.74	0.76	2.62
ī č		77	2 12F+05	99.92%	2.87E+03	99.89%	2.00E+02	66.99 %	8.59E+02	99.95%	13.50	0.94	4.05
		r r	1 07F+04	99.93%	1.92E+02	80°.90%	2.10E+00	66.66 %	3.74E+01	99.95%	18.00	0.20	3.50
<u>י</u> ג ד	,	- -	1 07F+04	66 93%	1.92E+02	80°.90%	2.10E+00	99.99%	3.74E+01	99.95%	18.00	0.20	3.50
<u>, 4</u>	1	2	8 94F+04	%96 ⁻⁶⁶	1.61E+03	99.94%	1.79E+01	%66`66	3.13E+02	99.97%	18.00	0.20	3.50
2 -	,	. 8	1.19E+05	89.99%	2.14E+03	%66 [°] 66	2.38E+01	100.00%	4.16E+02	66.66 %	18.00	0.20	3.50
18	•	6	3.42E+04	100.00%	6.16E+02	100.00%	6.80E+00	100.00%	1.20E+02	100.00%	18.00	0.20	3.50
											1 7 7	50 1	E 12
Global	Tota	le	3.43E+08		4.52E+06		5.20E+05		1.805+00		13.1/	20.1	0.40

Latitude	4. ⊢ and I	uel bur Longiti	rred, emissior ide) for sched	ns, cumulati Iuled air trafi	ve fractions o fic in April 19(of emissions, 99.	, and effectiv	e emission	indices as a	function of	altitude (Sı	ummed ov	er
Altituc	de B	and	Fuel	cum fuel	NOX	cum NOx	위	cum HC			ELNOV		
	Ê		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
0		-	3.37E+07	9.76%	4.08E+05	8.99%	1 77F+05	34 69%	6 10ELOF	/92.0.20	Ţ		
←		N	9.17E+06	12.42%	1.48E+05	12.25%	2.86E+04	40.20%	0.12E+03	38 65%	12.11	12.0	18.1/
2	ı	ო	8.55E+06	14.90%	1.45E+05	15.46%	2.34E+04	44.77%	8.67F+04	43 34%		21.0	07.11
ო		4	9.88E+06	17.77%	1.80E+05	19.42%	2.20E+04	49.08%	7.90E+04	47.61%	18.18		τ. 2 α
4	,	S	9.13E+06	20.41%	1.54E+05	22.80%	2.30E+04	53.56%	7.95E+04	51.92%	16.84	0 F0	00.0 1 4
ഗ		9	8.89E+06	22.99%	1.43E+05	25.96%	2.31E+04	58.07%	7.92E+04	56.20%	16.11	2 60 2 60	- / O
io n	ı	~ `	8.97E+06	25.60%	1.43E+05	29.11%	2.26E+04	62.49%	7.42E+04	60.21%	15.89	2.52	8.26
~ 0	,	ω	9.65E+06	28.39%	1.45E+05	32.31%	2.35E+04	67.08%	8.05E+04	64.56%	15.05	2.44	8.35
ο	1	ີ່ດ	9.21E+06	31.07%	1.32E+05	35.22%	2.17E+04	71.32%	7.51E+04	68.62%	14.36	2.36	8.15 8.15
ი ი '	ī	10	1.92E+07	36.64%	2.68E+05	41.12%	2.42E+04	76.05%	8.30E+04	73.11%	13.93	1.26	4.32
0	ı	=	1.06E+08	67.41%	1.26E+06	68.82%	7.12E+04	89.95%	3.11E+05	89.92%	11.85	0.67	2 03
<u> </u>		12	1.11E+08	99.66%	1.40E+06	99.62%	5.07E+04	99.85%	1.83E+05	99.80%	12.57	0.46	164
2 9		13	6.84E+05	99.86%	9.42E+03	99.83%	5.40E+02	99.95%	1.88E+03	60.90%	13.76	0.79	2.75
2		4 I	2.09E+05	99.92%	2.83E+03	99.89%	1.90E+02	99.99%	8.25E+02	99.95%	13.52	0.91	3.94
4		۲ د ا	1.11E+04	99.92%	2.00E+02	99.89%	2.20E+00	99.99%	3.90E+01	99.95%	18.00	0.20	3.50
ດ ເ	ı	16	1.11E+04	60.93%	2.00E+02	66.60%	2.20E+00	66 .66%	3.90E+01	99.95%	18.00	0.20	3.50
<u>9</u> ;		17	9.34E+04	99.95%	1.68E+03	99.94%	1.87E+01	99.99%	3.27E+02	99.97%	18.00	0.20	3.50
29		8 9	1.24E+05	66.66 %	2.24E+03	99.99%	2.49E+01	100.00%	4.36E+02	66.99 %	18.00	0.20	3.50
8	,	6L	3.59E+04	100.00%	6.45E+02	100.00%	7.20E+00	100.00%	1.26E+02	100.00%	18.00	0.20	3.50
Global 1	Total		3.45F+08		A SAFLOG		E 40E.0E				,		
			00.10.0				3.1ZE+U3		1.85E+06		13.16	1.49	5.36

NASA/CR-2001-211216

Table C-5. Fuel burned, emissions, cumulative fractions of emissions, and effective emission indices as a function of altitude (Summed over Latitude and Longitude) for scheduled air traffic in May 1999.

Altitu	de E	3and	Fuel	cum fuel	XON	cum NOx	Р Ч	cum HC	CO	cum CO	EI(NOX)	EI(HC)	EI(CO)
	(ji)		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
C		-	3.41E+07	9.82%	4.14E+05	9.05%	1.80E+05	35.00%	6.20E+05	33.22%	12.14	5.27	18.16
) -	ı	· <	9.28E+06	12.49%	1.50E+05	12.33%	2.91E+04	40.68%	1.04E+05	38.82%	16.18	3.14	11.26
	,	က ၊ က	8.64E+06	14.98%	1.47E+05	15.55%	2.35E+04	45.25%	8.74E+04	43.50%	17.05	2.72	10.12
i က	•	4	9.99E+06	17.85%	1.82E+05	19.52%	2.21E+04	49.56%	7.98E+04	47.78%	18.20	2.22	7.99
4	ı	л С	9.24E+06	20.51%	1.56E+05	22.93%	2.30E+04	54.04%	8.03E+04	52.09%	16.89	2.49	8.69
· LC	·	о (с	9.10E+06	23.13%	1.47E+05	26.13%	2.32E+04	58.56%	8.04E+04	56.40%	16.11	2.55	8.84
о (с	,		9.15E+06	25.76%	1.45E+05	29.31%	2.26E+04	62.97%	7.52E+04	60.43%	15.90	2.47	8.22
~ ~	,	. α	9.88E+06	28.60%	1.49E+05	32.56%	2.35E+04	67.54%	8.16E+04	64.81%	15.04	2.38	8.26
) ()	9.47E+06	31.33%	1.36E+05	35.53%	2.18E+04	71.79%	7.63E+04	68.90%	14.36	2.31	8.05
00	ı	, 0 10	1.90E+07	36.79%	2.62E+05	41.27%	2.39E+04	76.45%	8.29E+04	73.34%	13.84	1.26	4.37
10	,	Ŧ	1.06E+08	67.26%	1.26E+06	68.77%	7.00E+04	90.07%	3.11E+05	90.00%	11.88	0.66	2.93
: =	ı	12	1.13E+08	60.70%	1.41E+06	99.66%	5.03E+04	99.86%	1.83E+05	99.81%	12.54	0.45	1.62
12	ı	13	6.27E+05	66.88%	8.66E+03	99.85%	5.08E+02	<u>96.96</u> %	1.92E+03	99.91%	13.81	0.81	3.06
: [ı	14	1.45E+05	99.92%	2.01E+03	%06 [°] 66	1.53E+02	66.66 %	7.84E+02	99.95%	13.88	1.06	5.42
14	•	15	9.38E+03	60.93%	1.69E+02	8 9.90%	1.90E+00	66.66 %	3.28E+01	99.95%	18.00	0.20	3.50
. ru	•	16	9.38E+03	60.93%	1.69E+02	%06 [.] 66	1.90E+00	66.66 %	3.28E+01	99.95%	18.00	0.20	3.50
16	ı	17	8.88E+04	66.96%	1.60E+03	99.94%	1.78E+01	66.66 %	3.11E+02	99.97%	18.00	0.20	3.50
17	,	18	1.19E+05	80 [.] 99%	2.14E+03	66.66	2.38E+01	100.00%	4.17E+02	%66 .66	18.00	0.20	3.50
18	ŀ	19	3.43E+04	100.00%	6.17E+02	100.00%	6.90E+00	100.00%	1.20E+02	100.00%	18.00	0.20	3.50
Glob	al T	otal	3.47E+08		4.58E+06		5.14E+05		1.87E+06		13.17	1.48	5.37

Table C-I	e. F and	uel bul Longitt	rned, emission ude) for sched	is, cumulativ uled air traff	e fractions o ic in June 19	f emissions, 99.	and effectiv	e emission	indices as a	function of	altitude (Su	ummed ov	er
Altituc	de E	Band	Fuel	cum fuel	NOX	cum NOx	ЧС	cum HC	co	cum CO	EI(NOx)	EICHO	
	(ji)		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
0	,	.	3.47E+07	6.72%	4 21E+05	8 Q5%	1 R3E105	70 BO%	6 20E 0E	1000 CC			
-	ī	2	9.43E+06	12.36%	1.53E+05	12 20%	2 96F+04	40.54%		30.037%	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	12.0	18.15
2	,	ო	8.78E+06	14.82%	1.50E+05	15.39%	2.39E+04	45.10%	8 89F+04	%75.57 73.34%	17.05	0 	
ო		4	1.02E+07	17.66%	1.85E+05	19.32%	2.26E+04	49.41%	8.12F+04	47.61%	00.41 10.41	2 2 2 2	7 00
4		S	9.39E+06	20.29%	1.59E+05	22.69%	2.34E+04	53.88%	8.17E+04	51.90%	16.90	22.2	07 Q
2ı	ī	9	9.24E+06	22.88%	1.49E+05	25.86%	2.36E+04	58.38%	8.17E+04	56.20%	16.13	2.55	8.84
9	ı	7	9.29E+06	25.48%	1.48E+05	29.01%	2.30E+04	62.77%	7.64E+04	60.21%	15.92	2.47	60.8
7	,	ω	1.00E+07	28.30%	1.51E+05	32.22%	2.39E+04	67.33%	8.28E+04	64.56%	15.06	2.38	8 25
œ		6	9.64E+06	31.00%	1.39E+05	35.17%	2.22E+04	71.57%	7.75E+04	68.64%	14.39	2.30	8.04
თ :		10	1.93E+07	36.42%	2.68E+05	40.87%	2.46E+04	76.26%	8.46E+04	73.09%	13.85	1.27	4.37
10			1.09E+08	67.03%	1.30E+06	68.52%	7.18E+04	89.96%	3.18E+05	89.82%	11.90	0.66	16.0
F		12	1.17E+08	69.70%	1.46E+06	66%	5.18E+04	99.86 %	1.90E+05	99.81%	12.56	0.44	163
12		13	6.65E+05	99.88%	9.14E+03	99.85%	5.19E+02	60.96%	1.94E+03	99.91%	13.75	0.78	667
1 3		4	1.58E+05	99.93%	2.21E+03	66.90%	1.54E+02	66.66 %	8.16E+02	99.95%	13.97	0.97	5.15
14		15	9.38E+03	99.93%	1.69E+02	99.90%	1.90E+00	66.66 %	3.28E+01	99.95%	18.00	0.20	3.50
15		16	9.38E+03	99.93%	1.69E+02	99.91%	1.90E+00	<u>99.99%</u>	3.28E+01	66.96%	18.00	020	3.50
16		17	8.88E+04	66.96%	1.60E+03	99.94%	1.78E+01	<u>99.99%</u>	3.11E+02	99.97%	18.00	0.20	3.50
17		18	1.19E+05	99.99%	2.14E+03	99.99%	2.38E+01	100.00%	4.17E+02	%66 [.] 66	18.00	0.20	3.50
18		19									8 9 9		
Global	Tota	_	3.57E+08		4.70E+06		5.24E+05		1.90E+06		13.17	1.47	5.33

NASA/CR—2001-211216

Table C-7. Fuel burned, emissions, cumulative fractions of emissions, and effective emission indices as a function of altitude (Summed over Latitude and Longitude) for scheduled air traffic in July 1999.

Altitud	e B	and	Fuel (ko/dav)	cum fuel	NOX (ko/dav)	cum NOx (%)	HC (ka/dav)	cum HC (%)	CO (kq/day)	cum CO F	EI(NOX)	EI(HC)	EI(CO)
2			(App/Au)	(21)	(Innieu)	<u></u>							
C	,	-	3 48F+07	9.63%	4.23E+05	8.91%	1.85E+05	35.00%	6.34E+05	33.01%	12.16	5.32	18.22
> -		- ^	9.45E+06	12.25%	1.53E+05	12.13%	3.00E+04	40.68%	1.07E+05	38.58%	16.20	3.17	11.30
- n		I (°.	8.80E+06	14.69%	1.50E+05	15.29%	2.42E+04	45.27%	8.94E+04	43.24%	17.06	2.75	10.17
1 0.	•) 1	1 02E+07	17.51%	1.85E+05	19.20%	2.28E+04	49.58%	8.17E+04	47.49%	18.21	2.24	8.02
0 4		י ער	9 40F+06	20,11%	1.59E+05	22.55%	2.36E+04	54.06%	8.21E+04	51.77%	16.92	2.52	8.74
ר ער		ۍ د	9.25E+06	22.67%	1.49E+05	25.69%	2.38E+04	58.56%	8.22E+04	56.06%	16.13	2.57	8.88
s u) r	9.29E+06	25.24%	1.48E+05	28.81%	2.32E+04	62.95%	7.68E+04	60.05%	15.94	2.49	8.27
) r	,	. 00	1 00F+07	28.02%	1.51E+05	32.00%	2.40E+04	67.50%	8.32E+04	64.39%	15.07	2.40	8.29
- 00	•	ი თ	9.66E+06	30.70%	1.39E+05	34.93%	2.24E+04	71.75%	7.79E+04	68.45%	14.40	2.32	8.07
o	,	, 01	1.94E+07	36.08%	2.69E+05	40.59%	2.48E+04	76.45%	8.57E+04	72.92%	13.84	1.28	4.41
• 1		2	1.11E+08	66.82%	1.32E+06	68.34%	7.20E+04	90.08%	3.23E+05	89.77%	11.87	0.65	2.91
2		12	1.19E+08	%69.66	1.49E+06	99.65%	5.16E+04	99.86%	1.93E+05	99.81%	12.52	0.44	1.62
: 6		: C	6.77E+05	99.88%	9.30E+03	99.85%	5.26E+02	96 [.] 66%	1.95E+03	99.91%	13.74	0.78	2.88
1 (- T	1_78E+05	99 [.] 93%	2.47E+03	60.90%	1.60E+02	66 .66%	8.16E+02	99.95%	13.88	0.90	4.59
14		. r.	9.38E+03	99.93%	1.69E+02	8 9.90%	1.90E+00	66.66 %	3.28E+01	99.95%	18.00	0.20	3.50
- <u>r</u>	,	16	9 38F+03	60.93%	1.69E+02	99.91%	1.90E+00	<u> 99.99%</u>	3.28E+01	<u>96.96</u> %	18.00	0.20	3.50
<u>, 4</u>	,	2 -	8 88F+04	96 [.] 66%	1.60E+03	99.94%	1.78E+01	66.66 %	3.11E+02	99.97%	18.00	0.20	3.50
2 -	,	18	1 19F+05	%66.66	2.14E+03	%66`66	2.38E+01	100.00%	4.17E+02	66. 66%	18.00	0.20	3.50
18	,	19	3.43E+04	100.00%	6.17E+02	100.00%	6.90E+00	100.00%	1.20E+02	100.00%	18.00	0.20	3.50
Global	Tot	le	3.61E+08		4.75E+06		5.28E+05		1.92E+06		13.15	1.46	5.32

	Altit Ba	tude	Fuel	cum fuel	NOX	cum NOx	НС	cum HC	8	cum CO	EI(NOx)	EI(HC)	EI(CO)
	(km)		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
0	•	-	3.53E+07	9.70%	4.31E+05	8 <u>9</u> 8%	1 90E 105	3E 100/	0 10L 0				
-		N	9.60E+06	12.33%	1.56E+05	12.22%	3 01 F + 04	11 10%/	0.40E+U5	33.23%	12.19	5.38	18.28
N	ī	ო	8.93E+06	14.78%	1.53E+05	15 41%	2 45F104	AE 600/	CU+300.1	38./8%	16.22	3.14	11.24
ო	ı	4	1.04E+07	17.63%	1.89E+05	19.34%	2.31E404		9.00E+04	43.45%	01./1	2.74	10.14
4	,	2	9.59E+06	20.26%	1 62E+05	20 720/		0/ 00.04	0.235+04	47.77%	18.23	2.23	8.00
S		9	9.34E+06	22,82%	1 51E-05	25 B20/	2.3904-04	04.44%	8.33E+04	52.00%	16.92	2.49	8.68
9		7	9 43F+06	25.41%		%00.07		56.91%	8.28E+04	56.26%	16.19	2.56	8.87
-	,	. α	1 005-00	20 000 000		×10.82	2.34E+04	63.28%	7.78E+04	60.27%	15.95	2.48	8.25
. α	,	o		%07.07	CU+14C-1	32.22%	2.44E+04	67.83%	8.44E+04	64.61%	15.10	2.40	8.29
0 0	,	, [3.7 0LT-00	00.03%	1.41E+U5 0.71F_05	35.16%	2.26E+04	72.05%	7.88E+04	68.67%	14.45	2.31	8.06
• •	,	2 #	1 105-00	0/. / Z.OC	201102 7 071 00	40.82%	2.47E+04	76.67%	8.63E+04	73.11%	13.83	1.26	4.40
2 +				00.00%	1.31E+06	68.15%	7.20E+04	90.11%	3.22E+05	89.70%	11.88	0.65	60 6
- -	•	<u>v</u> 4	1.21C+00	99./3%	1.51E+06	99.70%	5.23E+04	99.87%	1.97E+05	99.82%	12.52	0.43	1.63
i t	,	2 7	0.23C+03	99.90%	8./5E+U3	99.88%	4.94E+02	60.96%	1.91E+03	99.92%	13.91	0.78	3.04
14	,	<u>ו</u> - ד	1.00E+U3 6.32E103	99.95% 00.050/	Z.59E+03	99.93%	1.84E+02	66.66 %	8.82E+02	99.97%	13.95	0.99	4.75
. r		<u>ה</u> ה		99.90%	1.14E+UZ	99.94%	1.30E+00	99.99%	2.21E+01	99.97%	18.00	0.20	3.50
<u>,</u>		<u>1</u>		99.90%	1.14E+02	99.94%	1.30E+00	66.66 %	2.21E+01	99.97%	18.00	0.20	3.50
2 -	ı	2 9	0.U3E+U4	99.97%	1.09E+03	99.96%	1.21E+01	100.00%	2.12E+02	99.98%	18.00	0.20	3 50
<u>~</u>	,	<u> </u>	7.90E+04	99.99%	1.43E+03	66.66 %	1.59E+01	100.00%	2.79E+02	100.00%	18.00	02.0	3 50
2	,	<u>0</u>	Z.Z8E+04	%00.001	4.13E+02	100.00%	4.60E+00	100.00%	8.03E+01	100.00%	18.00	0.20	3.50
Global	Totai		3.64E+08		4 80F+06		E 26C. OF						
					>> >> -		0.002700		1.94E+UD		13.17	1.47	5.33

Table C-9. Fuel burned, emissions, cumulative fractions of emissions, and effective emission indices as a function of altitude (Summed over Latitude and Longitude) for scheduled air traffic in September 1999.

Band	Fuel (kq/day)	cum fuel (%)	NOx (kg/day)	cum NOx (%)	HC (kg/day)	cum HC (%)	CO (kg/day)	cum CO (%)	EI(NOx)	EI(HC)	EI(CO)
1	2 AOE 107	0 76%	A 23E LOS	0 U1%	1 REFLUS	35 55%	6 356+05	33 26%	12.15	5 34	18 20
	0.456.06	J. 10 /0 10 /1%	1 53F+05	10.07%	2 94F104	41 18%	1 06E+05	38.81%	16.18	3 11	11 21
	8.43LT-00	14 88%	1.50F±05	15.46%	2 39F+04	45 75%	8.92E+04	43.49%	17.01	2.72	10.13
	1.02E+07	17.74%	1.85E+05	19.40%	2.26E+04	50.06%	8.16E+04	47.76%	18.15	2.21	7.99
	9.48E+06	20.39%	1.60E+05	22.81%	2.33E+04	54.52%	8.20E+04	52.06%	16.86	2.46	8.65
	9.26E+06	22.98%	1.49E+05	25.98%	2.34E+04	58.98%	8.17E+04	56.35%	16.12	2.52	8.83
	9.33E+06	25.60%	1.48E+05	29.14%	2.29E+04	63.36%	7.68E+04	60.37%	15.89	2.46	8.23
	1.01E+07	28.41%	1.51E+05	32.36%	2.38E+04	67.91%	8.31E+04	64.73%	15.04	2.36	8.26
	9.67E+06	31.12%	1.39E+05	35.32%	2.21E+04	72.13%	7.78E+04	68.80%	14.40	2.29	8.04
	1.95E+07	36.57%	2.70E+05	41.06%	2.42E+04	76.76%	8.55E+04	73.28%	13.84	1.24	4.39
	1.08E+08	66.90%	1.29E+06	68.44%	7.01E+04	90.16%	3.16E+05	89.82%	11.88	0.65	2.91
	1.17E+08	69.69 %	1.47E+06	99.65%	5.07E+04	99.86%	1.90E+05	99.80%	12.52	0.43	1.63
	6.60E+05	99.88%	9.17E+03	99.85%	5.32E+02	69.96%	2.09E+03	99.91%	13.90	0.81	3.18
	1.78E+05	60.93%	2.47E+03	%06 [°] 66	1.64E+02	%66.66	8.33E+02	99.95%	13.88	0.92	4.69
	9.38E+03	<u>99.93%</u>	1.69E+02	80°.90%	1.90E+00	66.99%	3.28E+01	99.95%	18.00	0.20	3.50
	9.38E+03	<u>99.93</u> %	1.69E+02	99.91%	1.90E+00	66.66 %	3.28E+01	99.96%	18.00	0.20	3.50
	8.88E+04	<u>96.96</u> %	1.60E+03	99.94%	1.78E+01	66. 66%	3.11E+02	99.97%	18.00	0.20	3.50
	1.19E+05	86 [.] 66%	2.14E+03	99.99%	2.38E+01	100.00%	4.17E+02	66.66 %	18.00	0.20	3.50
	3.43E+04	100.00%	6.17E+02	100.00%	6.90E+00	100.00%	1.20E+02	100.00%	18.00	0.20	3.50
	3 57F+08		4 70F+06		5.23E+05		1.91E+06		13.16	1.47	5.34
	3.5/E+U8		4./UE+U0		5.23E+UD		1.410+00		10.10	-	Ì,

Table C- Latitude	and	Fuel bu Longitu	Irned, emissio Ide) for sched	ns, cumulat uled air traff	ive fractions ic in October	of emission: 1999.	s, and effect	ive emission	n indices as a	a function o	f altitude (S	Summed a	ver
Altitu	de E	Band	Fuel	cum fuel	XON	cum NOx	Ч	cum HC	00	cum CO	FI(NOx)	FILHCY	
	(E		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
0	•	.	3.46E+07	9.76%	4.20F+05	9.01%	1 R1E 105	35 JE%	6 ORE OF	20 4 70/	LI T T		
-	•	N	9.38E+06	12.41%	1.52E+05	12.27%	2.88E+04	40.89%	0.25L+03	38 73%	16.10	0.2.0 2.0 G	10.0/
N	ı	ი	8.74E+06	14.88%	1.49E+05	15.46%	2.34E+04	45.46%	8.81E+04	43 41%	17 01	268	
ი	•	4	1.01E+07	17.74%	1.84E+05	19.40%	2.22E+04	49.79%	8.08E+04	47.70%	18.14	0 10 10	7 97
4		ъ	9.41E+06	20.40%	1.59E+05	22.81%	2.29E+04	54.26%	8.11E+04	52.01%	16.85	2,43	8.62
ഹ		9	9.20E+06	23.00%	1.48E+05	25.98%	2.30E+04	58.75%	8.09E+04	56.31%	16.11	2.50	8.79
9	ı	2	9.26E+06	25.61%	1.47E+05	29.14%	2.25E+04	63.14%	7.60E+04	60.34%	15.88	2.43	8.20
~	1	ω	9.98E+06	28.43%	1.50E+05	32.36%	2.34E+04	67.70%	8.23E+04	64.71%	15.04	2.34	8.24
ω	ı	თ	9.56E+06	31.13%	1.38E+05	35.31%	2.17E+04	71.94%	7.67E+04	68.78%	14.41	2.27	8.02
ന		10	1.92E+07	36.54%	2.65E+05	41.00%	2.39E+04	76.60%	8.43E+04	73.26%	13.83	1.25	4.40
9		F	1.08E+08	66.95%	1.28E+06	68.46%	6.91E+04	90.08%	3.12E+05	89.80%	11.89	0.64	2.89
	ı	12	1.16E+08	99.71%	1.45E+06	99.67%	5.00E+04	99.84%	1.88E+05	99.78%	12.54	0.43	1.62
42		13	6.18E+05	99.88%	8.52E+03	99.85%	5.97E+02	99.95%	2.24E+03	60.90%	13.78	0.97	3.62
13	ł	4	1.62E+05	99.93%	2.25E+03	99.90%	1.85E+02	99.99%	9.02E+02	99.95%	13.93	1.14	5.58
4	•	15	9.38E+03	99.93%	1.69E+02	66.90%	1.90E+00	99.99%	3.28E+01	99.95%	18.00	0.20	3.50
15	,	16	9.38E+03	99.93%	1.69E+02	99.91%	1.90E+00	<u>99.99%</u>	3.28E+01	60.96%	18.00	0.20	3.50
16		17	8.88E+04	60.96%	1.60E+03	99.94%	1.78E+01	66.66 %	3.11E+02	99.97%	18.00	0.20	3.50
17		18	1.19E+05	66.66 %	2.14E+03	99.99%	2.38E+01	100.00%	4.17E+02	66.66 %	18.00	0.20	3.50
18		6	3.43E+04	100.00%	6.17E+02	100.00%	6.90E+00	100.00%	1.20E+02	100.00%	18.00	0.20	3.50
Global	Tota	_	3.54E+08		4.66E+06		5.13E+05		1.88E+06	ĺ	13.16	1.45	5.32

NASA/CR-2001-211216

90

Table C-11. Fuel burned, emissions, cumulative fractions of emissions, and effective emission indices as a function of altitude (Summed over Latitude and Longitude) for scheduled air traffic in November 1999.

Appendix C – Altitude Distribution of Fuel Burn and Emissions for Each Month of 1999

				(
Altitude	Banc	d Fuel	cum tuel	XON	cum NOX	НС	cum HC	00	cum CO	EI(NOX)	EI(HC)	EI(CO)
(kn	Ē	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
Ċ	•	3 36E+07	9 70%	4 11F+05	A 97%	1 69F+05	34 60%	6 01E+05	33 00%	12 24	5 05	17 89
, •	· c	0.115.06	10 24%	1 405.05	10 010/	0 73E104	10170/	3.01E.0E	20 66%	10.01		00.11
- c	J C		0/ 10.71		0/12.21		40.17 /0					00.01
' N	n	8.51E+06	14.80%	1.46E+05	15.39%	2.27E+04	44.81%	8.56E+04	43.37%	17.12	2.67	10.06
ص	4	9.88E+06	17.65%	1.80E+05	19.33%	2.16E+04	49.21%	7.83E+04	47.68%	18.24	2.18	7.93
4	ъ	9.18E+06	20.30%	1.56E+05	22.73%	2.23E+04	53.75%	7.87E+04	52.02%	16.96	2.43	8.57
2 2	9	8.98E+06	22.90%	1.45E+05	25.90%	2.24E+04	58.31%	7.84E+04	56.33%	16.18	2.49	8.73
, 9	7	9.07E+06	25.52%	1.45E+05	29.06%	2.18E+04	62.77%	7.35E+04	60.39%	15.94	2.41	8.10
- 2	ω	9.80E+06	28.35%	1.48E+05	32.29%	2.27E+04	67.40%	7.95E+04	64.76%	15.10	2.31	8.11
, 8	6	9.33E+06	31.05%	1.35E+05	35.24%	2.10E+04	71.68%	7.38E+04	68.83%	14.51	2.25	7.91
0	10) 1.85E+07	36.41%	2.59E+05	40.90%	2.27E+04	76.33%	8.03E+04	73.25%	13.97	1.23	4.33
10	=	1.04E+08	66.48%	1.25E+06	68.10%	6.63E+04	89.85%	2.97E+05	89.63%	11.98	0.64	2.86
11 -	5	2 1.15E+08	99.72%	1.45E+06	69.69 %	4.92E+04	99.89%	1.85E+05	99.84%	12.58	0.43	1.61
12 -	13	3 5.63E+05	68.66 %	7.66E+03	99.85%	3.43E+02	%96 .66	1.38E+03	99.91%	13.62	0.61	2.46
13 -	4	t 1.22E+05	99.92%	1.71E+03	99.89 %	1.21E+02	99. <u>9</u> 9%	6.40E+02	99.95%	14.02	0.99	5.25
14 -	10	5 1.11E+04	99.92%	2.00E+02	66.90%	2.20E+00	99.99%	3.90E+01	99.95%	18.00	0.20	3.50
15 -	16	3 1.11E+04	99.93%	2.00E+02	%06.66	2.20E+00	66. 66%	3.90E+01	99.95%	18.00	0.20	3.50
16 -	17	9.34E+04	99.95%	1.68E+03	99.94%	1.87E+01	99.99%	3.27E+02	99.97%	18.00	0.20	3.50
17 -	48	3 1.24E+05	%66 .66	2.24E+03	66.66 %	2.49E+01	100.00%	4.36E+02	99.99%	18.00	0.20	3.50
18 -	19	9 3.59E+04	100.00%	6.45E+02	100.00%	7.20E+00	100.00%	1.26E+02	100.00%	18.00	0.20	3.50
Global T (otal	3.46E+08		4.58E+06		4.90E+05		1.82E+06		13.24	1.42	5.25

Table C Latitude	and	Fuel bu Longitu	irned, emissio de) for sched	ns, cumulati uled air traffi	ve fractions (c in Decemb	of emissions er 1999.	s, and effecti	ve emissior	indices as a	function of	altitude (\$	Summed o	ver
Altitı	J apr	Band	Fuel	cum fuel	XON	cum NOx	우	cum HC	8	cum CO	EI(NOx)	EI(HC)	EI(CO)
	(km)		(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)	(kg/day)	(%)			
c	1	+	3 276 107	0 67%	1 12E.0E	/000 0	1 70E .0E	/077 PC				Č	
- C	I	- (9.00.0		0.30%		04.44.70	0.4360.0	02:337/0	07.71	5.U4	17.93
-	•	N	9.15E+06	12.23%	1.49E+05	12.12%	2.74E+04	40.00%	1.02E+05	38.56%	16.32	2.99	11.13
CV	•	ო	8.56E+06	14.68%	1.47E+05	15.28%	2.28E+04	44.63%	8.63E+04	43.28%	17.13	2.66	10.08
က	ı	4	9.91E+06	17.51%	1.81E+05	19.18%	2.16E+04	49.01%	7.88E+04	47.58%	18.27	2.18	7.95
4	ı	с С	9.20E+06	20.14%	1.56E+05	22.55%	2.23E+04	53.54%	7.90E+04	51.90%	16.98	2.42	8.59
ъ	ł	9	9.02E+06	22.71%	1.46E+05	25.70%	2.25E+04	58.10%	7.88E+04	56.21%	16.20	2.49	8.74
9	·	7	9.11E+06	25.32%	1.45E+05	28.84%	2.19E+04	62.55%	7.39E+04	60.25%	15.95	2.40	8.11
7	ł	8	9.82E+06	28.12%	1.49E+05	32.04%	2.27E+04	67.16%	7.99E+04	64.62%	15.12	2.32	8.13
80	·	6	9.39E+06	30.80%	1.36E+05	34.99%	2.11E+04	71.44%	7.42E+04	68.68%	14.53	2.25	7.90
6	•	10	1.89E+07	36.19%	2.65E+05	40.71%	2.30E+04	76.12%	8.07E+04	73.09%	14.07	1.22	4.28
10	ı	1	1.05E+08	66.30%	1.26E+06	67.96%	6.69E+04	89.70%	3.00E+05	89.49%	11.99	0.63	2.85
F	ı	12	1.17E+08	99.69 %	1.47E+06	66%	5.00E+04	99.84%	1.88E+05	99.79%	12.57	0.43	1.61
12	ī	13	6.29E+05	99.87%	8.66E+03	99.84%	4.97E+02	99.94%	1.91E+03	66.89 %	13.75	0.79	3.04
13		14	1.81E+05	99.93%	2.52E+03	%06.66	2.44E+02	99.99%	1.08E+03	99.95%	13.89	1.35	5.95
14	•	15	1.42E+04	99.93%	2.55E+02	60.90%	2.80E+00	66.66 %	4.96E+01	99.95%	18.00	0.20	3.50
15	•	16	1.42E+04	99.93 %	2.55E+02	99.91%	2.80E+00	%66 .66	4.96E+01	96.66 %	18.00	0.20	3.50
16	ī	17	8.71E+04	66.96%	1.57E+03	99.94%	1.74E+01	66.66 %	3.05E+02	99.97%	18.00	0.20	3.50
17	ŀ	18	1.13E+05	66.66 %	2.03E+03	<u> 89.99%</u>	2.25E+01	100.00%	3.94E+02	99.99 %	18.00	0.20	3.50
18	,	19	3.24E+04	100.00%	5.83E+02	100.00%	6.50E+00	100.00%	1.13E+02	100.00%	18.00	0.20	3.50
Globa	l Tot	le	3.50E+08		4.64E+06		4.93E+05		1.83E+06		13.25	1.41	5.23

NASA/CR—2001-211216

				0, 24	10	m Altitude P	hand	9-13 k	cm Altitude	Band	Fuel	Fuel
			10 %	5 %	20-		2				(1000	(1000
		Fuel	Euclar Eucl	1 OTAI	π	Ē	Ξ	Ξ	Ш	Ū	kg/day)	kg/day)
Generic	OAG		Burned	Tvbe	(NOX)	; () ; ()	(HC)	(XON)	(co)	(HC)	(1-9 km)	(9-13 km)
Type	Airplane/engine	vgiuayi		247.								
Airbus A	\300-600	6,397.3	1.8%		17.8	10.1	2.0	12.2	1.7	0.3	1,675.9	3,953.9
							 ! (, (Ċ		0.230	1 436 2
	APAC PMADAC	2.854.1		44.6%	17.3	7.6	0.7	13.1	2.0	0.Z		1.000
		0 110 1		37 8%	18.2	17.6	5.5	11.2	1.5	0.4	367.1	1,865.8
				7 1%	17.7	12.4	3.6	13.0	1.3	0.3	142.4	250.1
	A300-600_CF6-80C2A3	0.104		702 V	21 1	52	0.7	13.1	2.0	0.4	121.3	134.9
	A300-620_JT9D-7R4H1	299.0		0/ 1.4 7 00/	17.0		0.7	13.1	1.2	0.3	52.9	174.3
	A300-600_FRT_CF6-80C2A5F	253.9		4.U.4	, c	0 0 0 0	. σ 	13.0	1.9	0.1	10.7	46.7
	A300-620_PW4000-4158	62.8		0/.0.1	0.0	0.0	o c	0 C	(* +	с С	8.5	45.8
	A300-600R CF6-80C2A5F	56.0		0.9%	16.9	18.0	7.C	0.1	2	2		
							1			с т	E73 6	1 273 5
Airbus	A300-B2/B4/F4	2,004.3	0.6%		22.2	13.1	5.2	14.5		<u>-</u>	0.020	
				10/ 10/	23.3	1 1 1	45	14.9	1.8	1.2	136.9	441.6
	A300-B4-200_CF6-50C2	049.2		0/ 1. 70				14 5	00	1.2	91.1	182.2
	A300-B2-100_CF6-50C	316.1		15.8%	2.22	10.7	- - -		, c i c	- -	689	140.0
	A300-B2-200_CF6-50C2R	225.2		11.2%	22.1	16.3		0, 1	ט כ ע ד	 1 4	418	152.3
	A300-B4-120 JT9D-59A	213.8		10.7%	19.7	9.L2	ר. 	1.71	- c	r c - +	0.63	76.8
	A300-B2-200FF CF6-50C2	163.5		8.2%	21.4	10.4	4.1	14.4	- , N G	י י <u>ר</u>		542
	A300-B2-200 CF6-50C2	143.1		7.1%	21.0	15.4	6.0	14.1	1.2	- 1		
	A300-B4-200F FRT CF6-50C2	133.9		6.7%	23.5	10.7	4.3	15.1	1./			
	ADALEALOND FRT CF6-50C2	115.0		5.7%	24.6	10.6	4.3	15.1	1.7	-		0.0 1 1 1 1 1 1 1
		549		1.2%	24.4	11.7	4.7	14.5	2.0	1.2	2.0	
		2 D T		1 0%	24.4	12.0	4.8	14.4	2.1	1.2	4.9	11.6
	A300-64-100 Uro-2002)))			-							

			% 01	% of	1-9 k	m Altitude I	Band	9-13	km Altitude	Band		-
		Fuel	Global	Total				2			Luei	LUE
Generic	OAG	(1000	Fuel	within	Ē	Ξ	ū	π	ũ	Ū	0001)	(1000
1 ype	Airplane/engine	kg/day)	Burned	Type	(NOX)	00)	CH)		j Ç	_ <u>(</u>	kg/uay)	kg/day)
						52		(YON)	()))	(DH)	(1-9 km)	(9-13 km)
Airbus A	(310	5,297.5	1.5%		18.5	15.3	4.7	+ 1 3	с с с	ÿ		
							:	2	7.7	0.0	/93.8	4,091.6
	A310-300_CF6-80C2A2	1.583.2		20 0%	C 7 F	ר כ ד	(1					
	A310-320 PW4000-4152	1 226 2		0, 0, 0, 0	2.71	10.1	2.2	11.1	2.2	0.5	255.8	1.203.4
				%7.07	9.71	17.7	5.6	11.2	2.2	0.5	177.1	1 057 2
		1,022.6		19.3%	17.0	21.0	6.6	10.2	2.0	05	119 7	
		576.6		10.9%	19.2	5.8	6. 1	12.8	000			0.140
	A310-200_CF6-80C2A2	293.2		5.5%	18.4	C 0C			D		114.5	408.5
	A310-220 JT9D-7R4E1	104 7				2.02	0.0	T.11	2.7	0.8	45.9	219.9
	4310-320 DWADON 4455A			3.1%	28.6	3.9	0.6	14.4	1.4	0.3	34.3	140 5
		1/9.8		3.4%	17.6	18.1	5.6	11.2	51	ц		
	A310-320_J19D-7H4E1	112.1		2.1%	27.2	3.7	0.6	K K F	- - i -		24.4	144.2
						5	>	-4.4	4	0.3	22.2	77.0
Airbus A.	319		200									
		2,040.1	o-0-0		14.6	5.7	0.7	10.9	2.5	0.3	655.4	1,164.9
	A319-130_V2500-2522-A5	622.2		30.4%	15.0	L L						
	A319-110_CFM56-5A5	582 2		20 YOF OC	0.0	0.0		9.01	2.5	0.1	132.6	447.9
	A319-110 CFM56-5B6 P	077 E		×0.4%	0.41	8.4	0.5	10.2	2.1	0.5	190.0	330.2
	A319-110 CEM56-544	0.112		13.0%	16.0	8.3	1.6	11.7	2.5	0.5	65.1	182.8
	A310-110 CEMES EDE D	0.001		9.1%	12.3	3.9	0.5	9.8	2.4	0.4	147 R	
		186.2		9.1%	16.5	9.0	6	11.5	ۍ ۲			
	A319-110_CFM56-5B6_2P	120.9		5.9%	16.0	a z	1) (- +	- 0		49.0	110.8
	A319-130_V2500-2524-A5	72 F		2 50/		י ני ני		р. 1	2.9	0.6	48.2	50.2
		5		0.07%	1.01	5 .0		10.7	2.5	0.1	22.2	42.6

		% of	% of	1-9	knAltitude	Band	9-1:	3 knAltitud	e Band	Fuel	Fuel
	Fuel	Global	Total							(1000	(1000
Generic OAG	(1000	Fuel with	hin		Ξ	Ξ	Ξ	ш	l kg/day)	kg/day)	
Type Airplane/engine	kg/day)	Burned	Type	(NOX)(CC) (HC	(NOX) ((CO)	(HC) (1-9 km) (9-13	(m)	
Airbus A320	11,883.6	3.4%		17.5	5.6	0.5	12.0	2.0	0.4	3,233.9	7,284.7
A320-210_CFM56-5A1	5,882.1		49.5%	16.7	5.4	0.6	11.0	2.1	0.5	1,690.7	3,409.0
A320-230_V2500-2527-A5	1,943.2	÷	6.4%	16.6	6.2	0.1	11.5	2.1	0.1	412.6	,373.1
A320-230_V2500-2500-A1	1,927.9	÷	6.2%	21.4	4.8	0.2	15.9	1.5	0.3	507.2	1,259.7
A320-210_CFM56-5A3	791.1		6.7%	16.9	5.2	0.5	11.0	2.1	0.4	200.4	498.0
A320-230_V2500-2527E-A5	344.6		<u>2.9%</u>	15.0	6.2	0.1	11.6	2.1	0.1	90.8	234.2
A320-210_CFM56-5B4_2	327.8		2.8%	18.5	7.8	1.5	12.6	2.4	0.5	113.8	160.8
A320-210_CFM56-5B4_P	281.9	¢,	4% 1	6.9	7.8	1.5	12.6	2.7	0.6	81.0	160.2
A320-210_CFM56-5B4_2P	161.7	÷	4% 1	5.9 (5.7	1.3	12.6	2.8	0.6	64.9	73.4
A320-210_CFM56-5B4	120.2		1.0%	16.7	5.4	0.6	11.0	2.2	0.5	34.4	69.3
A320-110_CFM56-5A1	103.1		0.9%	16.7	5.5	0.6	11.3	2.4	0.5	38.0	47.0
Airbus A321	1,405.1	0.4%		17.5	6.4	0.6	13.3	1.7	0.2	591.8	588.2
A321-110_CFM56-5B2	409.9		29.2%	18.2	11.2	1.4	13.5	1.8	0.3	129.7	226.3
A321-210_CFM56-5B3_P	288.8	20	. %9.	7.4	3.6	0.1	13.4	1.9	0.1	162.7	74.2
A321-130_V2500-2530-A5	229.9	-	6.4%	16.1	4.3	0.1	12.5	1.8	0.1	118.7	60.2
A321-110_CFM56-5B1_2	228.8	~	6.3%	17.6	10.1	1.4	13.4	1.6	0.3	84.4	110.7
A321-230_V2500-2533-A5	203.0	-	4.4%	17.7	3.7	0.1	13.4	1.7	0.1	86.0	86.7
A321-210_CFM56-5B3_2P	44.8	ς	2%	0 1	4.5	0.1	13.2	1.8	0.1	10.2	30.1

		<u>م</u> ر م	<u>م</u> م	10	Altitudo	Pood		A late. J -		-	
	Fuel	o o Global	Total		u Ailluue	Dalla		km Altitude	band		Fuel
Generic OAG	(1000	Fuel	within	Ξ	Ξ	Ξ	Ξ	Ш	Ξ	ka/dav)	(1000) ka/dav)
Type Airplane/engine	kg/day)	Burned	Type	(XON)	(co)	(HC)	(XON)	(co)	(HC)	(1-9 km)	(9-13 km)
Airbus A330-200	847.9	0.2%		24.3	6.5	1.0	16.3	1.6	0.3	109.4	691.8
A330-220_PW4000-4168A	733.3		86.5%	24.5	6.7	1.0	16.9	1.8	0.1	98.5	593.9
A330-240_Trent-772B-60	108.7		12.8%	22.4	4.0	0.7	12.9	0.7	1.2	10.2	93.1
A330-200_CF6-80E1A4	5.8		0.7%	26.9	14.2	4.5	13.6	1.2	0.3	0.7	4.8
Airbus A330-300	3,402.0	1.0%		23.0	7.0	1.5	14.5	1.3	0.5	690.4	2,387.9
A330-320_PW4000-4168	1,022.1		30.0%	24.2	6.9	1.2	16.1	1.8	0.2	202.6	719.2
A330-300_CF6-80E1A2	840.5		24.7%	21.8	12.8	3.5	13.9	1.1	0.2	136.7	645.7
A330-340_Trent-772-60	756.3		22.2%	22.1	3.6	0.7	13.0	0.8	1.1	172.3	499.0
A330-320_PW4000-4164	420.6		12.4%	23.5	6.8	1.2	16.0	1.9	0.2	135.1	228.1
A330-340_Trent-768-60	362.5		10.7%	23.7	3.6	0.6	13.3	0.7	1.1	43.6	295.9
Airbus A340-200	910.4	0.3%		23.1	11.2	4.6	13.7	1.8	0.1	68.4	815.5
A340-210_CFM56-5C2	601.2		66.0%	23.1	11.1	4.6	13.8	1.8	0.1	44.1	539.3
A340-210_CFM56-5C2G	176.9		19.4%	23.0	10.5	4.2	13.6	1.6	0.1	11.7	161.3
A340-210_CFM56-5C3_F	132.3	-	14.5%	22.8	12.1	5.0	13.7	1.9	0.2	12.6	114.9
Airbus A340-300	8,242.4	2.4%		23.0	11.3	4.7	13.7	1.7	0.2	706.4	7,228.7
A340-310_CFM56-5C4	4,989.6		60.5%	23.1	11.6	4.8	13.7	1.8	0.2	447.2	4,346.2
A340-310_CFM56-5C2	2,658.9		32.3%	23.2	10.8	4.4	13.7	1.7	0.1	188.1	2,391.6
A340-310_CFM56-5C3_F	594.0	-	7.2%	21.6	11.1	4.4	13.7	1.9	0.2	71.1	490.8
BAC111	157.7	0.0%		14.4	25.5	15.1	10.1	14.7	6.0	57.9	73.1
One-Eleven-500_Spey-512-14DW One-Eleven-560_Spey-512-14DW	98.9 58.9		62.7% 37.3%	14.1 15.1	26.2 23.8	15.4 14.5	10.2 10.0	14.9 14.4	6.2 6.2	39.2 18.6	43.6 29.4

raft
Airc
1999
for .
Indices
nissions
En En
Globa
- Effective
ò
Appendix

			% of	% of	1-9 kr	m Altitude	Band	9-131	cm Altitude	Band	Fuel	Filel
		Fuel	Global	Total							(1000	(1000
Generic	OAG	(1000	Fuel	within	Ξ	Ш	ū	Ξ	Ш	Ш	kg/day)	kq/dav)
Type	Airplane/engine	kg/day)	Burned	Type	(XON)	(CO)	(HC)	(NOX)	(co)	(HC)	(1-9 km)	(9-13 km)
BAE 146		2,329.6	0.7%		9.1	5.0	0.5	7.8	1.6	0.1	927.3	950.5
	146-200_ALF502-R-5	1,555.3		66.8%	9.1	5.0	0.4	7.7	1.6	0.1	624.1	616.3
	146-300_ALF502-R-5	432.9		18.6%	9.2	4.6	0.4	7.7	1.6	0.1	185.5	157.2
	146-100_ALF502-R-5	183.3		7.9%	9.1	4.9	0.4	7.8	1.6	0.1	57.7	98.7
	146-300_LF507-1H	137.6		5.9%	9.5	6.3	0.6	8.1	1.5	0.0	52.6	69.2
	146-300QT_FRT_ALF502-R-5	20.5		0.9%	9.1	4.6	0.4	7.7	1.6	0.1	7.4	9.0
Boeing 7	707	606.8	0.2%		8.4	31.6	39.4	5.4	17.9	8.5	103.5	448.0
	707-320C_FRT_JT3D-3B	482.8		79.6%	8.4	31.0	39.2	5.4	17.9	8.5	78.8	358.4
	707-320C_FRT_JT3D-7	77.1		12.7%	8.6	29.4	37.7	5.4	17.7	8.2	11.6	58.9
	707-320C_AII_FRT_JT3D-3B	30.1		5.0%	7.7	35.9	38.0	5.5	16.1	7.0	7.1	21.1
	707-320C_JT3D-3B	16.8		2.8%	7.7	39.8	46.2	5.3	22.0	12.0	6.0	9.7
Boeing 7	27-100	1,093.9	0.3%		10.8	14.8	5.7	7.1	10.2	2.1	374.7	485.8
	727-100_JT8D-7B	462.6		42.3%	10.7	14.9	5.7	7.1	10.0	2.0	165.5	201.8
	727-100F_FRT_JT8D-7B	223.3		20.4%	10.8	14.7	6.0	7.1	10.6	2.3	69.8	95.5
	727-100QF_FRT_RB.183-651-54	199.2		18.2%	10.8	14.8	6.1	7.1	10.8	2.4	65.1	80.4
	727-100_JT8D-7	87.7		8.0%	10.7	15.3	5.5	7.0	11.1	2.5	41.6	33.8
	727-100C_JT8D-9	53.5		4.9%	11.3	15.0	5.0	7.2	8.4	1.6	15.6	34.7
	727-100C_CMB_JT8D-7B	35.0		3.2%	10.9	13.9	5.7	7.2	9.1	1.5	7.2	21.9
	727-100_JT8D-9	14.8		1.4%	11.9	14.4	5.0	7.2	8.9	1.8	4.5	8.4
-	727-100F_FRT_JT8D-9	10.5		1.0%	12.2	14.1	5.2	7.1	9.5	2.0	2.9	5.4
	727-100C_CMB_JT8D-7	7.2		0.7%	10.7	15.0	5.6	7.2	9.7	1.9	2.4	3.9

Aircraft
1999
for
s Indices
Emission
Global I
Effective
Appendix E

-

			% of	% of	1-9 kr	n Altitude I	Band	9-13 k	m Altitude	Band	Fuel	Fuel
		Fuel	Global	Total							(1000	(1000
Generic OAG		(1000	Fuel	within	Ξ	⊡	ū	Ξ	Ξ	Ξ	kg/day)	kg/day)
Type Airplane/engin	16	kg/day)	Burned	Type	(NOX)	(CO)	(HC)	(NOX)	(CO)	(HC)	(1-9 km)	(9-13 km)
Boeing 727-200		14,333.8	4.1%		11.9	9.6	3.1	8.3	5.4	1.0	4,477.8	7,593.6
727-200_JT8[0-15	8,271.9		57.7%	12.0	10.9	3.7	8.0	5.8	1.1	2,676.0	4,289.2
727-200_JT8[A9-C	2,451.8		17.1%	11.4	9.1	2.7	8.4	5.8	1.0	676.8	1,366.0
727-200_JT8[D-17R	1,546.4		10.8%	12.6	4.0	0.6	9.5	2.5	0.7	486.2	886.9
727-200_JT81	6-0	526.5		3.7%	11.4	9.3	2.7	8.5	6.2	1.1	203.3	199.1
727-200F_FR	T_JT8D-9	521.4		3.6%	11.3	9.3	2.7	8.4	5.9	1.0	159.5	261.5
727-200F_FR	T_JT8D-15	287.8		2.0%	12.1	10.6	3.6	8.0	5.6	1.1	81.3	164.9
727-200F_FR	T_JT8D-7	272.9		1.9%	11.3	9.4	2.8	8.4	5.8	1.0	78.7	151.3
727-200_JT81	0-17	181.4		1.3%	11.7	9.0	3.5	7.9	5.6	1.5	49.2	103.1
727-200F_FR	T_JT8D-17R	135.9		0.9%	12.8	3.4	0.5	10.1	2.1	0.6	36.4	76.3
727-200_JT81	D-7B	102.7		0.7%	11.4	8.9	2.6	8.4	6.0	0.9	20.8	71.8
727-200F_FR	T_JT8D-17	35.1		0.2%	11.6	10.7	4.0	7.9	5.7	1.5	9.6	23.5

13.8 7.8 8.5 11.0 4.9 7.8 5.0 48.5 19.1 8.1 636.5 538.0 570.4 335.6 84.1 5,429.2 1,083.3 2,043.6 (9-13 km) kg/day) (1000 Fuel 8.0 11.6 8.5 2.7 5.1 3.4 2.0 0.8 18.9 5 i 254.6 60.7 47.3 12.5 1,581.4 445.5 322.7 567.8 906.7 4,262.4 (1-9 km) kg/day) (1000 Fuel 2.6 0.7 1.2 1.5 1.2 0.9 1.8 2.6 1.2 0.9 1.2 (HC) 1.2 1.3 1.2 1.9 0.7 2.4 0.8 0.8 2.4 ū 9-13 km Altitude Band 10.5 8.9 7.9 7.9 7.8 3.2 9.5 2.4 7.7 8.2 7.9 8.3 3.0 З.1 шÔ 2.9 9.0 6.8 7.8 9.1 ດ (XOX) 6.9 7.6 6.8 7.0 7.0 7.0 7.5 7.1 7.1 œ 6.8 7.1 7.6 6.8 7.4 7.5 7.1 6.9 7.1 7.1 Ö Ξ 3.2 2.6 4.2 0.8 6.2 4.0 3.5 4 4.3 3.4 4.7 (HC) 4.3 2.5 2.6 4.2 4.1 3.5 4.3 0.8 3.3 α Ξ 1-9 km Altitude Band 12.0 10.8 11.4 11.4 20.7 10.9 13.9 11.0 14.2 10.7 5.2 17.1 11.2 11.6 12.5 4.7 10.0 5.0 5.0 00 4.8 $\overline{\mathbf{m}}$ 10.9 10.3 11.9 11.5 11.8 œ 11.0 10.8 11.0 11.5 11.4 11.4 10.0 10.8 9.7 (XOX) 11.6 11.6 11.3 11.2 10.7 Ę Ē 0.1% 0.1% 13.0% 0.2% 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 37.7% 20.6% 5.8% 1.5% 0.9% 0.3% 0.3% 9.9% 9.1% within Total Type % of Burned Global Fuel 3.5% % of 1,108.6 12,222.7 2,513.9 1,583.0 1,210.1 4,610.4 185.2 107.3 kg/day) 703.4 39.6 27.2 23.0 22.1 15.3 12.3 11.3 11.1 31.7 (1000 4.7 2.5 Fuel 737-200QC_FRT_JT8D-15 737-200QC_FRT_JT8D-9A 737-200C_CMB_JT8D-9A 737-200C_QC_JT8D-15A 737-200C_CMB_JT8D-17 737-200C_QC_JT8D-17A 737-200C_QC_JT8D-15 737-200C_QC_JT8D-9 737-200C_JT8D-17A 737-200C_JT8D-17 737-200C_JT8D-9A 737-200C_JT8D-15 737-200_JT8D-17A 737-200_JT8D-15A 737-200_JT8D-9A 737-200_JT8D-15 737-200_JT8D-17 737-200_JT8D-9 737-200_JT8D-7 Airplane/engine Boeing 737-100/200 OAG Generic Type

			0, of	<u>، م</u>								
		Fuel	Global	vo UI Total	אן - אר	n Altitude	Band	9-13 k	m Altitude	Band	Fuel	Fuel
Generic Type	OAG Airplane/engine	(1000 kg/day)	Fuel Burned	Type	(NOX)	Ш Ô	EI (HC)	Ē	ШÇ	Ē	(1000 kg/day)	(1000 kg/day)
Boeing 7	737-300/400/500	30,764.9	8.9%		13.2	11.5	6.0	9.6	3.5	(חכ) 0.2	(1-9 km) 9 640 1	(9-13 km) 16 222 e
	737-300_CFM56-3B1	14,158.7		46.0%	13.3	12.3		90	L C			0.022.0
	737-400_CFM56-3C1	5,961.3		19.4%	13.5	11.1	2. 0 - 0	0.0 9	0.0 7	0 0	4,394.7	7,574.4
	/3/-500_CFM56-3C1 737-600_CEM66_3D4	3,442.2		11.2%	12.6	<u>9.3</u>	0.6	9.4	3.7	2.0	1 270 1	3,218.5
	737-300 CEM56-301	2,177.5		7.1%	12.7	9.8	0.6	9.4	3.6	0.1	7211	1 103 0
	737-300 CFM56-3R2	Z, 169.3		7.1%	13.3	12.5	1.1	9.6	3.5	0.3	676.7	1 172 7
	737-400 CFM56-3R2	1,920.1		6.2%	13.4	12.0	1.0	9.6	3.3	0.2	565.6	1 084 9
	737-3000C 0C CEM56-3C1	8.02E		3.0%	13.5	11.2	0.8	9.6	3.6	0.2	258.2	518.7
		12.2		0.0%	13.4	12.2		9.9	7.1	0.7	5.6	3.3
Boeing 7	737-600/700/800	3,218.7	%6.0		16.3	6.4	0.9	11.8	1.8	0.3	818.2	2.032.0
	737-800_CFM56-7B26	1,323.3		41.1%	18.4	5.6	0.6	19.7	5 5	C		
	737-700 CEM56-7822	832.1		25.9%	15.3	6.9	1.1	11,1	5.0	0.0 7	8.8/2	911.3
	737-600 CFM56-7R20	812.6 047.4		25.2%	15.4	6.9	1.1	11.2	2.2	0.3	6.622 209.6	00.700
	737-800_CFM56-7B24	235		6.7%	14.4	6.9	1.1	10.7	3.1	0.5	95.6	75.1
		2.00		1.0%	18.6	6.1	0.8	12.2	1.5	0.3	48	26.2
		1	% 01	% of	1-9 k	m Altitude	Band	9-13 k	m Altitude	Band	Fuel	E lel
----------	---------------------------	----------	--------	--------	-------	------------	------	-------------	------------	------	----------	-----------
		Fuel	Global	Total				- - -			1000	(1000
Generic	OAG	(1000	Fuel	within	Ш	Ξ	Ш	Ξ	Ξ	Ξ	ka/dav)	ka/dav)
Type	Airplane/engine	kg/day)	Burned	Type	(NOX)	(co)	(HC)	(NOX)	(co)	(HC)	(1-9 km)	(9-13 km)
Boeing 7	747-100/200/300	30,638.2	8.8%		27.5	15.4	10.2	15.2	2.2	1.1	3,145.6	25,846.4
	747-200B_JT9D-7Q	4,886.9		16.0%	23.6	14.7	7.1	12.7	0 7	2 0	406 5	20 078 8
	747-200SF_FRT_CF6-50E2	3,616.5		11.8%	27.2	14.6	10.2	16.1	17	- IC	351.6	21 530 A
	747-200F_FRT_CF6-50E2	3,061.5		10.0%	27.1	14.6	10.1	16.1	1.7	, ru	297.3	18.259.1
	747-200F_FRT_JT9D-7Q	2,904.3		9.5%	30.3	14.4	10.1	17.7	2.3	0.2	363.8	16,670.6
	747-100F_FRT_JT9D-7A	1,853.7		6.1%	26.6	15.3	10.0	15.2	0.6	0.8	254.5	10,340.6
	747-300_RB211-524D4	1,374.4		4.5%	31.4	24.4	22.5	15.8	8.3	2.6	132.4	8,262.5
	747-200B_CMB_CF6-50E2	1,293.0		4.2%	26.5	14.9	10.3	14.4	2.1	1.4	85.1	8,144.4
	747-200B_CF6-50E2	1,047.3		3.4%	25.3	14.4	9.8	14.6	2.0	1.4	78.5	6,511.8
	747-300_JT9D-7R4G2	1,029.6		3.4%	26.9	3.5	0.5	14.8	1.3	0.3	94.0	6,267.7
	747-200B_JT9D-7J	927.7		3.0%	28.1	20.2	13.7	16.1	3.1	0.6	120.9	5,308.3
	747-300_CF6-50E2	866.7		2.8%	27.3	14.5	10.1	14.9	1.9	1.4	60.1	5,430.1
	747-200F_FRT_JT9D-7J	860.9		2.8%	30.2	14.8	10.4	17.7	2.4	0.3	113.2	4,879.7
	747-100_JT9D-7A	722.9		2.4%	24.5	17.3	10.5	13.8	0.6	0.9	87.2	4,140.3
	747-200B_RB211-524D4	654.6		2.1%	31.0	24.6	22.9	15.0	9.2	2.8	57.5	3,963.4
	747-200F_FRT_RB211-524D4	641.0		2.1%	37.7	3.7	0.8	21.5	1.6	0.8	71.6	3,732.6
	747-300_CF6-80C2B1	600.0		2.0%	25.2	14.6	4.5	12.1	1.3	0.3	38.9	3,806.0
	747-200B_JT9D-7R4G2	534.8		1.7%	27.1	4.0	0.6	14.2	1.3	0.3	42.9	3,360.6
	747-200B_JT9D-7A	443.4		1.4%	25.1	17.4	10.5	13.3	0.6	0.9	60.4	2,475.2
	747-100_JT9D-7	366.3		1.2%	25.1	15.1	9.2	13.3	0.4	0.7	33.6	2,219.4
	747-200SF_FRT_RB211-524D4	354.4		1.2%	32.8	21.2	19.3	18.0	6.3	2.0	37.5	2,096.2
	747-300_CMB_CF6-50E2	291.7		1.0%	26.2	16.4	11.1	14.7	2.1	1.6	30.1	1,734.3
	747-300_CMB_JT9D-7R4G2	249.4		0.8%	28.4	3.7	0.6	14.6	1.4	0.3	19.7	1,544.1
	747-SP_RB211-524D4	236.1		0.8%	28.2	24.6	21.1	15.2	9.3	3.1	22.7	1,086.4
	747-100B_SR_JT9D-7A	199.8		0.7%	28.4	20.2	12.2	12.2	1.3	1.8	66.6	665.3
	747-200C_F_FRT_CF6-50E2	196.1		0.6%	26.9	15.5	10.7	15.8	1.9	1.6	22.1	1,132.2
i	747-SP_JT9D-7F	191.3		0.6%	25.1	29.9	20.7	15.6	3.8	1.6	28.7	2 629

			% of	% of	1-9 kr	n Altitude	Band	9-13 k	m Altitude	Band	Fuel	Fuel
		Fuel	Global	Total							(1000	(1000
Generic	OAG	(1000	Fuel	within	Ē	Ξ	ũ	Ξ	Ξ	Π	kg/day)	kg/day)
Type	Airplane/engine	kg/day)	Burned	Type	(NOX)	(CO)	(HC)	(NOX)	(CO)	(HC)	(1-9 km)	(9-13 km)
Boeina 7	'47-100/200/300 (Continued)											
n												
	747-200SF_FRT_JT9D-7J	164.6		0.5%	30.2	14.8	10.4	17.4	2.4	0.3	21.1	938.6
	747-300_RB211-524C2	143.9		0.5%	33.7	4.8	0.8	18.4	2.0	0.9	32.1	651.7
	747-100B_RB211-524C2	131.5		0.4%	25.0	26.9	25.3	14.1	11.0	2.3	15.3	755.0
	747-200F_FRT_JT9D-7R4G2	127.1		0.4%	28.6	16.5	10.1	17.3	2.4	0.3	19.4	729.8
	747-SP_JT9D-7J	109.7		0.4%	24.4	22.1	13.5	13.3	1.3	1.7	18.5	554.3
	747-SP_JT9D-7FW	84.5		0.3%	25.9	29.3	20.3	16.2	2.8	0.6	9.9	476.3
	747-200B_CMB_CF6-50E	84.0		0.3%	24.5	18.2	11.9	13.7	2.4	1.6	8.4	501.0
	747-200B_JT9D-7Q3	82.7		0.3%	22.9	14.8	6.2	12.9	0.6	0.6	6.2	528.1
	747-200B_CMB_JT9D-7Q	72.8		0.2%	20.9	14.5	6.2	11.9	0.8	0.7	9.5	407.4
	747-SR-100B_CF6-45A2	70.7		0.2%	24.1	12.9	10.1	14.2	2.8	1.6	5.5	436.5
	747-200C_QC_CF6-50E2	50.5		0.2%	26.6	14.2	9.9	14.6	2.0	1.4	3.1	320.8
	747-SP_JT9D-7A	49.4		0.2%	24.2	22.8	13.9	13.8	4.1	4.4	9.3	104.8
	747-200B_JT9D-7F	25.8		0.1%	27.0	21.9	13.8	16.2	2.6	0.5	3.5	150.5
	747-300_CMB_CF6-80C2B1	22.7		0.1%	20.4	20.2	6.3	11.5	2.1	0.5	3.0	125.6
	747-200B_JT9D-70A	14.2		0.0%	22.0	26.3	13.7	13.2	1.1	1.4	3.6	74.8
Braind 7	747.400	59 837 4	17 2%		25.3	8	0 F	13.3	10	0 4	4 440.3	52,982,2
R						;	2		2			
	747-400_CF6-80C2B1F	20,215.2		33.8%	20.4	13.6	3.6	11.6	1.3	0.3	1,695.1	17,580.1
	747-400_PW4000-4056	15,590.5		26.1%	22.8	3.0	0.3	14.0	0.6	0.3	1,104.1	13,881.3
	747-400_RB211-524H2	11,341.7		19.0%	41.0	2.8	0.5	15.7	1.2	0.6	729.1	10,233.3
	747-400_CMB_CF6-80C2B1F	6,249.3		10.4%	21.0	13.7	3.7	11.6	1.3	0.3	446.8	5,566.3
	747-400_RB211-524G	2,605.1		4.4%	39.2	2.9	0.5	15.1	0.9	0.6	150.5	2,371.8
	747-400F_FRT_PW4000-4056	1,428.0		2.4%	23.2	2.9	0.3	14.4	0.5	0.3	126.2	1,234.2
	747-400_CMB_PW4000-4056	1,234.9		2.1%	22.5	3.2	0.3	13.8	0.6	0.3	101.9	1,073.6
	747-400F_FRT_CF6-80C2B1F	888.7		1.5%	20.0	1.5	0.2	13.1	0.5	0.1	62.5	794.3
	747-400F_FRT_RB211-524H2	284.0		0.5%	38.4	6.4	0.5	16.4	1.3	0.6	24.0	247.3

							.			1000	בייסן	Et le
			% of	% of	1-9 kr	n Altitude E	Band	9-13 K	m Altitude t	nupo	i nci	2
		Euch	Global	Total							(1000	(1000
		11000		within	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	kg/day)	kg/day)
ieneric	0AG Aimlana/anaine	ka/dav)	Burned	Type	(NOX)	(co)	(HC)	(XON)	(co)	(HC)	(1-9 km)	(9-13 km)
ype	Airplaire/erigine	1 Cara Ba										
loeing	757-200	19,716.7	5.7%		18.6	8.4	0.5	11.0	1.7	0.1	3,916.9	13,810.7
		0 500 0		73 2%	17.3	6.7	0.6	12.1	1.6	0.1	1,850.0	5,841.9
	757-200_PW2000-2037	0.0U0.0		0/ J.O.F				101	8	0.0	509.3	3,335.7
	757-200_RB211-535E4B	4,171.6		21.2%	9.77	ית			- •		736 0	2 ARU 2
	757-200 BB211-535F4	4,054.2		20.6%	20.7	9.2	0.2	10.1	0.1	0.0	1.00.1	1.000.1
		1 036 0		5.3%	18.1	7.2	0.6	12.1	1.5	0.1	198.7	C.84/
		060 0		4 9%	15.8	12.7	0.6	9.8	3.3	0.5	387.5	381.4
	/5/-200_H6211-33300	047.8		4 8%	19.4	8.8	0.2	10.2	1.6	0.0	230.1	590.8
	757-200PF_FH1_HB211-333E4	37 5 27 5		0.2%	18.2	8.1	0.7	12.1	1.2	0.1	4.4	32.1
	757-200PF_FHI_FW2000-2040	2.20										-
Boeing	767-200	7,110.2	2.0%		22.6	6.6	1.6	11.1	2.0	0.3	959.5	5,693.3
		4 003 E		26.5%	24.0	2.0	0.3	11.2	1.9	0.3	269.6	1,496.3
	767-200_J19D-/H4U	1,000.0		17 7%	801	16.9	4.7	10.0	1.9	0.4	108.0	1,093.4
	767-200ER_CF6-80A	1,200.0		11 .7 /0	0.07 7	19.5 19.5	4.8	10.0	1.8	0.4	71.8	723.8
	767-200ER_CF6-80C2B2	830.7		0/ 7.11) 2 7 7	- F	12.2	3.4	0.6	195.2	390.9
	767-200_CF6-80A	6/8.8 100 1		9/ C'A	26.02	5 -	i 0	11.3	1.8	0.3	49.6	491.9
	767-200EM_JT9D-7H4U	200.7		0.0.0 A 7%	18.7	5	6.0	12.3	1.8	0.1	26.9	303.6
		300.1		4.3%	28.2	2.1	0.4	13.4	1.5	0.3	86.9	166.6
	767-200EH_J19U-7H4E	202.2 206 4		%0 V	195	16.0	4.4	10.0	2.0	0.3	19.1	256.5
	767-200ER_CF6-80C2B4	1.002		200 r	22.8	3.7	0.8	11.4	1.7	0,4	51.1	189.2
	767-200EH_J19D-/H4E4	1002		0.0%	27.3	27	0.4	13.8	1.2	0.3	25.8	164.7
	767-200EHM_J19U-/H4E	151.0		0.0.7	19.4	18.5	5.2	10.2	2.5	0.6	25.1	124.8
	767-200_CF6-80C2B2F	9.401		1 7%	6 66	44	10	12.6	2.8	0.6	8.6	111.0
	767-200EM_CF6-80A2	0.021		1 20/	201	ר ע	1 2	12.2	3.2	0.6	15.7	6.06
	767-200PC_FRT_CF6-80A	114.8		0/0/1		- a ¥ F	4 1	10.3	1.6	0.3	2.2	89.8
	767-200ER_CF6-80C2B4F	98.5		1.4%	50.2 2	0.4	ř					

Aircraf
1999
for
Indices
Emissions
Global
Effective
Appendix I

			% of	%, of	101	m Altitudo						
		Fuel			20-	in Ailiude	band	9-131	km Altitude	Band	Fuel	Fuel
Conorio			GIODAI	lotal							(1000	(1000
		(1000	Fuel	within	Ξ	Ξ	ū	⊡	Ξ	Ē	ka/dav)	kaldau)
1 ype	Airplane/engine	kg/day)	Burned	Type	(NOX)	(co)	(HC)	(NOX)	(co)	HC)	(1-9 km)	(9-13 km)
Boeina 7	67-300	00 1E0 7	24.0		č	1						
0		1.201,322	0.4%		5.13	7.0	4.	12.5	1.2	0.3	3,207.2	17,470.8
	767-300ER_PW4000-4060	9,192.1		41.5%	21.5	3.6	0.3	13.4	20	c c		
	767-300ER_CF6-80C2B6	4.240.2		19.1%	10.2	16.4			· ·	0.0	1,008.1	7,743.6
	767-300ER CF6-80C2B6F	2 595 5		14 70/	0.0 1 1	4 . 2 .	4 (1) 1	9.01	1.7	0.3	384.1	3,664.0
	767-300 CF6-80C2R2	1 770 0		%/.1	0.71	0. 4. 1	0.5	12.5	1.1	0.1	253.8	2,222.6
	767-300EB DB944 E04U2	1,13.5		8.0%	19.4	5.9	1.4	13.3	3.1	0.8	667.0	810.1
	767-300EBE EDT CEE 800006F	905.4		4.4%	35.6	8.5	0.6	14.9	1.7	0.7	200.5	666.5
		8.800 2000 -		3.0%	19.1	16.6	4.4	10.8	2.1	0.5	112.1	491.7
	767-300ED / F6 80/201	603.5 500 -		2.7%	24.2	2.4	0.4	14.7	1.4	0.3	243.3	253.8
	707-300EN_OF0-000/204 767-300ED DM4000 4056	7.880		2.7%	18.2	15.1	4.1	10.5	2.1	0.4	82.3	465.4
	767 300 CTS 20000-4035	3/4.1		1.7%	21.6	3.8	0.3	13.2	0.7	0.3	44.7	308.3
	707-500_CF5-80C2B2F	363.1		1.6%	18.8	5.6	1.3	13.2	2.8	0.7	101 4	212.6
	707-300EH_CF6-80C2B7F	226.9		1.0%	17.8	5.6	0.5	12.4	1.2	0.1	0 66	10.3 4
	707-300EH_CF6-80C2B2	224.0		1.0%	18.7	17.4	5.0	10.7	1.7	0.5	25.1	188.8
	767-300EH_PW4000-4062	100.6		0.5%	22.0	3.7	0.3	13.0	0.7	0.3	10.7	0.001
	/6/-300EH_HB211-524H2	89.0		0.4%	33.8	10.2	0.6	14.9	1.9	0.7	20.3	1.10
	/6/-300_PW4000-4056	52.7		0.2%	21.8	7.0	1.8	13.5	4.6			0.4.0
	767-300_CF6-80C2B4F	52.1		0.2%	21.9	6.9	1 7	13.1	t r o e	n o C C	ο. Ο. Ο.	30.9
	767-300ERF_FRT_CF6-80C2B7F	45.0		0.2%	19.7	16.3	4.3	10.8	- 0.1	0.0	5.6	36.4 36.4
	1											3
n goeing //	007-77	11,260.1	3.2%	-,	25.2	5.4	6.0	16.8	0.6	0.3	1,416.7	9,244.0
	777-200ER_PW4000-4090	3,183.9		28.3%	26.7	56	م د	16.0		с с		
	777-200ER_GE90-92B	2,676.6		23.8%	28.9	4 4	0.0	0.0 0			306.7	2,766.0
	777-200ER_Trent-892	2 018 G		17 00/			1.0		0.0		320.2	2,209.3
	777-200ER GE90-85B	1 302 7		0/ D. / I	4. L4	ά.4	24.0	13.4	0.7	0.4	178.3	1,758.3
	777-200 PW4000-4074	670.7		14.4%	4.02	4	0.2	19.4	0.7	0.1	127.5	1,211.8
	777-200FR Trent-884	1.210		6.U%	23.1	3.5	0.6	16.1	0.6	0.2	247.6	328.7
	777-200 Trent-875	042.U 352.0		5./%	21.0	8.9	25.4	13.3	0.8	0.8	72.8	533.7
	777-200 PW4000-4077	0.200		3.1%	21.0	9.9	28.6	13.4	1.3	1.6	66.5	251.6
		0.120		2.9%	24.6	4.0	0.7	16.2	0.7	0.3	97.0	184.6

aft.
ů,
Vi
6
66
1
ę
es
Ĩ
<u>n</u>
S
lo
SSi
Ë
ш
oal
<u>to</u>
G
<u>×</u> e
Ç
ffe
ш
X
ipu
Jel
d

		- jo	ە/ م ا	1.0 kr	n Altitude	Band	9-13 k	m Altitude	Band	Fuel	Fuel
		0%	5 %))				(1000
	Fuel	Global	Total								
	(1000	Fuel	within	Ξ	Ē	Ξ	Ξ	Ξ	Ξ	kg/day)	kg/day)
deficience OAG	ka/dav)	Burned	Type	(XOX)	(CO)	(HC)	(XON)	(co)	(HC)	(1-9 km)	(9-13 km)
	l'an En		;								
Boeing 777-300	1,131.0	0.3%		24.8	4.4	10.3	15.7	0.8	0.5	264.3	756.3
	767 1		67 8%	24.8	6.8	23.6	15.3	0.8	0.7	115.9	597.8
777-300_11601-492 777-300_PW4000-4090	363.9		32.2%	24.7	2.5	0.0	17.2	6.0	0.0	148.4	158.5
Concorde	351.2	0.1%		11.0	18.5	1.3	10.0	26.1	1.8	45.4	18.1
concorde	351.2		100%	11.0	18.5	1.3	10.0	26.1	1.8	45.4	18.1
DC-10	12,679.4	3.6%		24.2	7.5	2.8	14.9	2.0	0.9	1,966,1	10,454.0
	A A77 6		35.3%	24.6	10.2	4.1	12.9	2.7	1.3	382.4	3,899.4
	0.114.4		20 3%	23.0	5.8	1.9	14.6	0.2	0.4	355.8	2,324.7
	1 302 1		10.3%	29.4	7.0	2.6	20.5	2.2	0.7	160.0	1,070.2
	RQ6.6		7.1%	23.4	10.5	4.2	13.0	3.3	1.4	104.7	740.7
DC-10-30_CF0-30C	745.9		5.9%	28.4	6.8	2.5	21.0	2.0	0.6	132.9	559.5
	610.7		4 8%	17.3	4.0	1.0	12.0	0.7	0.4	120.5	439.5
	1.010 F 7 7		4 8%	28.9	8.6	3.1	20.1	2.4	0.8	100.8	468.3
DC-10-10_CF6-6U	1.100			10.0	8 4	66	15.1	1.8	<u>+</u>	139.7	426.1
DC-10-30F_FRT_CF6-50C2	C. LAC		4.7.0		r ;	1 4	10 5	3.0	14	53.7	424.4
DC-10-30CF_CF6-50C2	507.5		4.0%	24./		0 t 0 t		5 G	- 6	9	86.1
DC-10-30_CF6-50C2R	95.8		0.8%	25.2	9.4	3.0 1	0.0		<u>,</u>		151
DC-10-30_CF6-50C1	16.8		0.1%	25.2	6.3	3.8	13.0	2	7.1		2

			% of	% of	101	m Altitudo	7500					
		Ter 1			1-9 K	in Aillude	band	9-13 k	m Altitude I	Band	Fuel	Fuel
Generic	OAG C			I UIAI				_			(1000	(1000
		(1000	Fuel	within	Ē	Ξ	Ξ	Ξ	Ē	ū	ku (dow)	10001
1 ype	Airplane/engine	kg/day)	Burned	Type	(NOX)	(co)	(HC)	(NOX)	i ()	HC) H	(1-9 km)	(0-13 km)
1										12	(IIIX 2 1)	
8-00		2,882.7	0.8%		11.2	16.3	11.2	8.6	7.2	1.4	645.0	1,962.5
	DC-8-71F_FRT_CFM56-2C1	1,111.6		38.6%	12 0	ā	u C		0			
	DC-8-63 FRT JT3D-7	000		0.0.0	2.1	0 7	0.0	2.01	2.9	0.2	244.6	774.7
	DC-8-73CF EDT CEMER DC1	209.D		20.5%	8.2	32.0	28.6	5.7	14.0	2.2	136.5	386.2
		1.500		19.5%	13.0	8.2	0.5	10.1	3.2	0 0	130.8	1.000
	UC-8-/3F_FH1_CFM56-2C1	188.9		6.6%	13.3	7.3	0.4	10.3	40	, c		2000
	DC-8-54CF_FRT_JT3D-3B	142.1		4.9%	9.1	26.0	33.1	2 2 2	- u	4 Q	20.1	149.5
	DC-8-61C_FRT_JT3D-3B	134.6		4.7%	75	30.05	0.00		0.4.0	0.0	34.5	91.4
	DC-8-63CF_FRT JT3D-7	97 R		2 40/) (- (0.00	0.0	0.0	23.3	7.0	35.8	80.2
	DC-8-62CF FRT JT3D-3B	0.72		0.4%	ο Ω	30.4	27.0	5.7	13.1	1.8	18.3	71.0
		D. + 0		1.9%	8.1	27.7	32.7	5.2	20.5	6.0	7.3	43.4
6-DQ		9,130.1	2.6%		11.0	11.8	4.2	7.6	6.7	1.0	3.910.8	3 610 6
	DC-9-31 .IT8D-7B	2 400 E			1							0.0.00
		2,490.0		27.3%	10.6	13.0	5.0	7.4	7.9	6.0	1.071 2	956 2
		1,678.0		18.4%	10.5	13.3	4.7	74	7 4	+ +		1.000
	UC-9-31_JT8D-9A	1,272.3		13.9%	10.9	7.1	14	7 7	t +		0.000	0.60/
	DC-9-51_JT8D-17	1,080.7		11.8%	105	00			- 0 VI 1	4.0	602.0	402.1
	DC-9-41_FRT_JT8D-11	557 Q		2, 0, 1 10, 10, 1		0.0 7	0.4 0.0	Г. Ю	5.8	1.6	492.9	356.7
	DC-9-15 JT8D-7A	380.6		00	0. J	12.4	4.3	8.3	6.5	0.9	214.3	261.0
	DC-9-41 JT8D-11	0.000 2.75 0		4.2%	9.4	16.5	6.1	7.4	7.8	0.9	157.6	191.8
	DC-9-32 JT8D-7A	2.020 2.040		0.0%	13.0	11.9	4.1	8.3	6.7	0.9	142.4	121.7
	DC-9-32 JT8D-7B	247.0		6.1%	10.2	14.0	5.3	7.4	8.0	1.0	102.9	111.2
	DC-9-32 JT8D-17			×.1%	10.3	13.6	5.2	7.4	7.9	0.9	108.8	96.8
	DC-9-31 JT8D-7A	172 1		2.3%	9.4 - 0.1	14.4	5.3	7.1	7.3	1.8	94.0	95.2
	DC-9-51 ITRD-17A	0.1		1.9%	10.7	12.5	4.8	7.4	7.8	0.9	52.3	97.3
		153.U		1.7%	12.5	4.8	2.8	8.6	2.4	0.6	76.7	42.7
	DC-9-21 .ITRN-11	00.4		0.7%	12.7	11.5	4.3	8.2	5.4	0.9	23.8	34.8
		0.10		0.7%	10.9	13.4	5.4	7.2	7.4	1.3	26.3	30.6
	DC-9-32 IT8D-11	40.4		0.5%	8.8	18.5	6.7	7.4	8.2	1.0	27.8	17.8
		2.14 2.14		0.5%	9.3	15.6	5.4	7.2	8.4	1.0	26.5	10.2
		34.7		0.4%	10.6	13.0	4.7	7.5	7.5	1.2	17.0	101

ppendix D – Effective Global Emissions Indices for 1999 Airc	raft
ppendix D – Effective Global Emissions Indices for 1999	Airc
vppendix D – Effective Global Emissions Indices for 1	666
ppendix D – Effective Global Emissions Indices	for 1
ppendix D – Effective Global Emissions	Indices
vppendix D – Effective Global Err	issions
vppendix D – Effective Globa	I Em
vppendix D – Effective G	iloba
vppendix D – Effecti	ve G
ppendix D – I	Effecti
ppendix D	1
ppendix	D
	Appendix

			%, of	% of	1-0 kr	n Altitude F	Sand	9-13 k	m Altitude	Band	Fuel	Fuel
				5.	20-							(1000
		Fuel	Global	otal		i	i	i	i	i		
Generic	OAG	(1000	Fuel	within	Ξ	Ξ	Ū	Ξ	Ш	Ш	kg/day)	kg/day)
Type	Airplane/engine	kg/day)	Burned	Type	(NOX)	(co)	(HC)	(NOX)	(CO)	(HC)	(1-9 km)	(9-13 km)
;									i			
DC-9 (C	ontinued)			<u> </u>								
	DC-9-31CF JT8D-17	24.1		0.3%	8.8	15.8	5.7	7.2	6.9	1.7	8.6	14.6
	DC-9-15RC FRT JT8D-7B	11.4		0.1%	9.8	15.8	5.9	7.4	8.1	1.0	5.3	4.7
	DC-9-33CF_JT8D-9A	11.3		0.1%	10.7	12.7	4.5	7.4	7.6	1.2	4.7	4.5
Fokker	100	3,444.1	1.0%	_	11.1	21.0	2.0	6.4	7.0	1.0	1,319.4	1,413.6
	100-* BB 183-650-15	3,062.2		88.9%	10.8	21.7	1.9	6.2	7.3	1.0	1,170.2	1,273.4
	100-*_RB.183-620-15	381.8		11.1%	13.3	14.9	2.0	8.2	4.2	1.2	149.3	140.2
Fokker	28	1,210.7	0.3%	<u> </u>	10.5	13.5	7.8	7.4	7.2	2.7	601.0	362.1
	F.28-4000 Spev-555-15P	994.7		82.2%	10.5	13.6	7.9	7.4	7.1	2.6	481.1	320.2
	F 28-1000 Spev-555-15	110.8		9.2%	10.4	14.3	8.6	7.5	7.5	2.8	63.4	20.0
	F 28-3000 Spev-555-15H	51.1		4.2%	10.4	12.4	6.8	7.5	6.8	2.6	24.6	17.2
	F 28-2000 Spev-555-15	40.9		3.4%	10.6	12.0	5.2	7.7	8.4	3.3	24.9	3.2
	F.28-4000_Spey-555-15H	13.2		1.1%	10.6	13.3	7.0	7.4	7.5	2.7	7.0	1.4
Fokker	70	452.5	0.1%		10.3	5.3	1.2	7.1	2.7	1.0	202.2	153.4
	70-*_RB.183-620-15	452.5		100.0%	10.3	5.3	1.2	7.1	2.7	1.0	202.2	153.4
Lockhe	ed L-1011	2,415.5	0.7%		18.7	19.4	13.6	14.4	0.6	2.2	518.3	1,676.1
	1-1011-1 BB211-22B	1,689.9		70.0%	18.3	18.6	13.7	14.7	6.8	1.8	409.1	1,115.8
	L-1011-500 RB211-524B4	463.9		19.2%	20.5	24.9	13.0	12.8	17.4	3.8	67.5	361.6
	L-1011-200 FRT RB211-524B	121.8		5.0%	20.8	17.8	14.2	15.3	6.0	1.4	20.8	91.0
	L-1011-50_RB211-22B	108.7		4.5%	19.6	17.4	13.3	14.7	6.5	1.6	14.6	86.0
	L-1011-200_FRT_RB211-524B4	23.7		1.0%	20.5	19.0	15.2	14.6	7.0	1.9	5.3	15.7
	L11_Blank-Blank	7.5		0.3%	21.6	18.0	14.4	14.8	6.5	1.6	1.0	6.0

Aircraft
1999
for
Indices
Emissions
Global
- Effective
ò
Appendix

			% of	% 01	1-9 ki	m Altitude	Band	9-13	km Altitude	Band	Fuel	Fuel
		Fuel	Global	Total							(1000	(1000
Generic	OAG	(1000	Fuel	within	Ξ	Ш	Ξ	Ξ	Ξ	ū	ka/dav)	(vich/nd
Type	Airplane/engine	kg/day)	Burned	Type	(XON)	(co)	(HC)	(NOX)	(co)	i () H	(1-9 km)	(9-13 km)
MD.11												
		11,951.7	3.4%		19.0	5.9	0.5	12.9	1.2	0.1	1,003.6	10,448.6
	MD-11-Passenger_CF6-80C2D1F	4,268.4		35.7%	18.9	4	0 4	107	C 7	ţ	0.010	
	MD-11-Freighter_FRT_CF6-80C2D1F	2.941.4		24.6%	17.5	С 4		100			040.0	0./0/.0
	MD-11-Passenger_PW4000-4460	2.293.2		19.2%	0.00			0.0	00	- 0	C/8/2	2,515.7
	MD-11-Passenger PW4000-4462	1 621 E		10 201	1.01	, c	0 1	12.4	<u>م</u>	0.2	195.8	1,994.1
	MD-11-Combi CMB CE6 80C2D1E	0.120,1		13.0%	20.4	8.3	0.7	12.5	1.8	0.2	120.5	1,446.5
	MD 41 Furthers FRT RW0000 100	450.3		3.8%	17.4	3.9	0,4	12.8	1.0	0.1	28.6	409.6
	IVID-11-Freignter_FH1_PW4000-4460	310.5		2.6%	22.0	9.1	1.6	14.3		1.3	28.1	266.7
	MD-11-CF_QC_PW4000-4462	33.2		0.3%	20.8	8.0	0.7	12.4	1.7	0.1	1.9	30.3
	MU-11-CF_QC_PW4000-4460	33.0		0.3%	19.3	8.5	0.7	12.0	2.0	0.2	3.3	28.0
MD-80		22,366.8	6.4%		16.0	4.2	1.2	10.6	4.4	1.6	6,712.7	12,352.9
	MD-80-82_JT8D-217C	8,751.6		39.1%	16.4	4.0		10.7	с т	u 7	0.000	
	MD-80-83_JT8D-219	5,047.2		22.6%	15.6	4.2		10.6	, c , T	<u>ס</u> ע ד	2,3U1.0	0,213.2 0 700 C
	MD-80-88_JT8D-219	3,736.1		16.7%	15.4	4 2) (r	10.6	2 0 t T	<u>ס</u> ע - ד	1.202.1	G.U81,2
	MD-80-82_JT8D-217A	1,894.9		8.5%	16.4	4 1) -	2 C F) = F =	<u> </u>	1,340.0	1,847.1
	MD-80-81_JT8D-217C	932.0		4.2%	16.4	4	- 0	10.7	t 4	0 4	312.8	0.201,1
	MD-80-87_JT8D-217C	777.5		3.5%	15.6	4.5	1 (7)	Z 6	o o F u	o o	C.210	0.4.0
	MD-80-81_JT8D-217	664.2		3.0%	16.4	4.0		10.6	545	, u	2002	264.0
	MD-80-82_JT8D-217	354.1		1.6%	16.3	4.1	12	10.6	4 4	, u	200.0 80.7	7-100
	MD-80-87_JT8D-219	173.4		0.8%	15.3	4.9	4	86	- L		1.60	21/12
	MD-80-83_JT8D-217C	36.0		0.2%	14.4	4	1.3	10.4	4.5	1.7	18.8	7.6
06-DM		0 676 1	94.0		4	c L						
		6-74-24	0. 1 .0	- <u> </u>	10.4	2.2	0.1	11.9	1.8	0.1	510.4	543.2
	MD-90-30_V2500-2525-D5	637.5		51.3%	16.4	4.9	0.1	11.8	61	0 1	7 676	5 500
	MD-90-30_V2500-2528-D5	605.3		48.7%	16.5	5.6	0.1	11.9	1.8	; c	237.7	
							-)	-	1.124	111-223

NASA/CR-2001-211216

108

			je jo	0/ of	1-0 kr	n Altitude F	Sand	9-13 k	cm Altitude I	Band	Fuel	Fuel
				Total	-						(1000	(1000
		Luei			ī	Ū	ū	ū	ū	ũ	ka/dav)	ka/dav)
Generic	OAG	(1000	Fuel	MILLIN	Ū	Ū]	J	Ĵ	j		
Tvpe	Airplane/engine	kg/day)	Burned	Type	(NOX)	(co)	(HC)	(NOX)	(CO)	(HC)	(1-9 km) (9-13 km)
221												
Miscella	neous	5.4	%0.0	-	8.6	15.8	2.3	7.3	0.8	0.2	2.3	2.3
	NEI Blank-Blank	3.8		70.3%	8.5	16.0	2.2	7.3	0.7	0.2	1.6	1.7
		1.6		29.7%	8.9	15.3	2.4	7.3	1.2	0.2	0.7	0.6
Regiona	Il Jets	4,479.0	1.3%		11.6	9.4	1.4	9.1	0.6	0.1	1,907.1	1,663.8
•		1 603 0		37 8%	8.7	13.4	2.0	7.3	0.7	0.2	724.3	639.7
	CHJ-100EH_CF34-3A1	1,030.0			- a +	- -	00	12.8	0.5	0.0	381.4	314.6
	RJ-RJ85_LF507-1F	900.9 561.9		40.2.02 10.5%	0.01 A 7	13.0	0.0	7.3	0.6	0.2	238.8	208.8
	EMJ_Blank-Blank	201.0		2 0%	17.8	0.1	0.0	13.9	0.4	0.0	163.9	120.0
	HJ-HJ100_LF50/-1F	201.7 266 5		6.0%	88	13.8	2.1	7.3	0.7	0.2	102.6	113.4
		216.9		4.8%	8.7	13.3	2.1	7.3	0.6	0.2	85.2	91.5
	B.1.B.170 F507-1F	149.2		3.3%	18.7	1.0	0.0	12.8	0.5	0.0	55.7	66.0
		144.9		3.2%	8.6	11.5	1.8	7.3	0.7	0.2	82.6	30.0
		6.26		2.1%	8.8	14.4	2.2	7.3	0.8	0.2	35.7	38.7
		65 0		1.5%	8.7	12.8	1.9	7.3	0.4	0.2	23.4	29.4
	CHJ-149-CT_AC-A	241		0.5%	8.7	13.0	2.0	7.3	0.5	0.2	10.0	9.3
	FRJ-140-EF_AE-AL_1 FD-144E-1D-AE-A-1	76		0.2%	8.6	12.3	1.9	7.3	0.7	0.2	3.6	2.5
		D .		2								

			% of	% of	1-01	m Altitudo	Paga					
		le l		5 . ? H		יוון אוווטעפ	Dario	9-131	km Altitude	Band	Fuel	Fuel
Conorio		LUCI	GIODAI	lotal							(1000	(1000
Cellello	CAG	(1000	Fuel	within	Ξ	Ξ	Ξ	Ш	ū	ū	halder.	
I ype	Airplane/engine	kg/day)	Burned	Type	(NOX)	(00)	(CH)		j	<u>ן</u>	(vav)	kg/day)
				;		()))	12-11	(1)		() [)	(II-9 KM)	(9-13 km)
Russian .	Aircraft	7.138.3	2.1%		10.2	1 1 1 1 1	0	0				
			2		C.7	C.C.	9.0	9.2	8.4	1.5	1,351.6	5,045.7
	Tu-154-B_NK-8-2U	1 954 6		7 40/		Ċ	((1				
	II-62-M D-30-KH			21.4%	7.7	0.0	3.3	8.2	5.2	0.0	385.7	1,353.8
		1,404.5		19.7%	15.5	7.8	2.3	9.5	4.8	0.8	139.4	1 204 8
	1 u-1 J4-1N_U-3U-KU-1 J4-1	1,008.6		14.1%	12.2	9.8	3.3	8.0	5.5	10	1 100	667 4
	11-80	653.5		9.2%	19.5	30.6	26.4	14.3	13.3	5.0	105 0	
	iu-134-A_D-30-3	534.5		7.5%	10.7	12.3	4.7	7.4	77	o o i c	157.0	7.024
	II-76-T_FRT_D-30-KP-2	374.7		5.2%	15.2	9.2	27	2 2	- L		0.761	0.115
	II-96-300_PS-90-A	240.4		3.4%	21.3	14.5	11 3	15.5	- 0 - U	י כ י כ	58.4	287.7
	Yak-40-*_AI-25	147.5		2 1%	5 7	1 7 5	2. 7	0.0	0.0	<u>ה</u>	21.0	211.0
	Tu-134-A D-30-2	0 241			, r ; ;		23.1	4.0	46.7	10.4	54.0	50.1
	Yak-42-* D-36	4.04 C 4.04		2.U%	10.7	12.4	4.8	7.4	7.8	0.9	44.1	80.0
	Vak-40-* AL-25-Blank	124.3		1./%	5.7	36.3	28.1	4.0	46.0	8.1	31.0	67.6
		92.7		1.3%	5.7	40.5	32.3	4.0	46.2	10.1	38.6	26.5
	Vak-40-D D-36	92.0		1.3%	5.6	36.5	28.4	4,1	44.5	8.0	24.7	46.6
		92.0		1.3%	5.6	36.5	28.4	4.1	44.5	8.0	24.7	46.6
	141-420-00-DIGUIA	08.7		1.0%	5.7	36.0	27.8	4.1	43.8	7.0	14.8	42.5
	1-05	67.4		0.9%	15.3	8.7	2.6	8.8	5.5	0.8	0.6	54 4
		59.2		0.8%	22.5	4.9	1.2	11.5	1.0	0.2	6.1	49.4
-		48.9		0.7%	19.8	28.5	24.3	14.5	12.7	2.0	61	30 0
		16.3		0.2%	10.5	12.8	4.9	7.4	7.7	6.0	5.0	2.0
-	TOO DIALE D-30-KP-2	12.7		0.2%	15.2	8.9	2.7	8.7	5.6	6.0	17	101
	1 20_DIALIK-DIANK	2.7		0.0%	22.8	10.2	0.2	10.0	1.5	0.0	0.3	- 0 0

			% of	% of	1-9 kr	n Altitude	Band	9-13 k	m Altitude E	Band	Fuel	Fuel
		Fuel	Global	Total							(1000	(1000
Generic	OAG	(1000	Fuel	within	Ξ	Ξ	Ш	ū	ū	ū	kg/day)	kg/day)
Type	Airplane/engine	kg/day)	Burned	Type	(NOX)	(CO)	(HC)	(NOX)	(co)	(HC)	(1-9 km)	(9-13 km)
Turbonre	Sa Contraction of the second se	8,787.6	2.5%		11.9	3.8	0.2				7,416.3	
	SE3 MDTHBR	1 266 2		14.41%	12.5	4	0.5				1,074.6	
	DH8 MDTURB	960.1		10.93%	12.8	4.3	0.6				802.0	
	ATR LGTURB	797.2		9.07%	14.2	3.8	0.0				679.4	
	BE1 SMTURB	755.9		8.60%	8.8	3.1	0.1				645.3	
	EM2 SMTURB	721.8		8.21%	8.8	3.0	0.1				618.9	
	AT7 LGTURB	529.3		6.02%	14.2	3.7	0.0				443.3	
	F50 LGTURB	527.5		6.00%	14.2	3.8	0.0				450.8	
	J31 SMTURB	358.0		4.07%	8.8	3.0	0.1				295.7	
	DH1 MDTURB	326.4		3.71%	12.5	4.4	0.5				271.6	
	SWM SMTURB	289.4		3.29%	8.7	3.1	0.1	-			252.6	
	J41 MDTURB	282.6		3.22%	12.2	4.5	0.5				244.9	
	D38 MDTURB	267.9		3.05%	11.6	4.6	0.5				241.2	
	S20 LGTURB	238.7		2.72%	13.7	3.8	0.0				212.2	
-	DH3 MDTURB	217.1		2.47%	12.5	4.4	0.5				186.3	
	AT4 LGTURB	187.8		2.14%	14.1	3.8	0.0				160.3	
	DHT SMTURB	176.1		2.00%	8.9	3.0	0.1				113.5	_
	ATP LGTURB	111.7		1.27%	14,4	3.6	0.0				06	
	SH6 MDTURB	95.7		1.09%	13.8	3.9	0.5				20.07	
	EMB_SMTURB	94.2		1.07%	8.9	3.0	0.1				73.(_
	F27 LGTURB	91.1		1.04%	14.1	3.8	0.0				75.5	
	AN4 LGTURB	88.1		1.00%	13.6	3.9	0.0				19.2	~
	BEH SMTURB	73.2		0.83%	8.7	3.1	0.1				61.	~
	DH7 LGTURB	52.8		0.60%	14.4	3.7	0.0				43.(_
	D28 SMTURB	49.9		0.57%	8.9	3.0	0.1				37.1	~
	HS7 LGTURB	46.8		0.53%	13.9	3.8	0.0				40.1	10
	YS1 LGTURB	37.5		0.43%	14.2	3.6	0.0				29.1	~
	BE9 SMTURB	30.8		0.35%	8.7	3.2	0.1				27.	*
	YN7_LGTURB	25.3		0.29%	14.0	3.9	0.0				22	

			% of	% of	1-9 kr	n Altitude	Band	9-13 k	m Altitude	Band	Filel	Fiel	_
		Fuel	Global	Total						2	1000	11000	
Generic (DAG	(1000	Fuel	within	Ξ	Ш	Ξ	Ξ	ū	Ξ	kq/dav)	ka/dav)	
ype /	Airplane/engine	kg/day)	Burned	Type	(NOX)	(CO)	(HC)	(NOX)	(co)	(HC)	(1-9 km)	(9-13 km)	
urboprop	s (Continued)												-
<i>ب</i> _	.4T_SMTURB	24.8		0.28%	88	0.6	- -						
ш	3ES_SMTURB	9.8		0.11%	8.7	2 C 8 C					0.91 7 0		
0	SVF_LGTURB	9.0		0.10%	13.9	3.9	0.0				0.0		_
	.OF_LGTURB	8.1		0.09%	13.3	3.7	0.0				D		_
4	NNF_MDTURB	6.1		0.07%	11.0	4.2	0.2				0 F - 4		_
	OM_LGTURB	5.6		0.06%	13.3	3.9	0.0				, т с		_
S	SH3_MDTURB	5.6		0.06%	13.2	4.2	50				- u v		-
=	L8_LGTURB	3.8		0.04%	13.3	3.8	0.0				т. С. П.		_
4	N6_MDTURB	3.7		0.04%	11.2	4.7	0.4				רי ה ה		_
J	S5_LGTURB	3.5		0.04%	13.0	3.5	0.0						
J	SNC_SMTURB	2.2		0.03%	9.1	2.5	01				+ c 		_
S	SHS_SMTURB	2.0		0.02%	6.8	30					- + -		_
Z	ID2_MDTURB	1.9		0.02%	14.9	46	- 6				<u>,</u> ,		_
	OH_LGTURB	1.4		0.02%	13.6	38					 		
U	:V5_LGTURB	0.7		0.01%	14.9	3.6	00				- C		
											2.2		

Annendiv E – Denarture	e and Distan	ce Summarie	s for May 19	99 Scheduled A	ir Traffic	
Generic OAG Airplane/Engine	Distance	% of Global	Daily	% of Global	Average Route Distance (km)	
Type	(km/day)	Distance	Departures	Departures		
Airbus A300-600	1,012,579	1.4%	825	1.2%	1,228	
A300-620B PW4000-4158	438,116	43.3%	474	57.5%	925	
	403.445	39.8%	193	23.4%	2,092	
A300-0001_01 0-000270 A300-600 CF6-80C2A3	68,224	6.7%	63	7.6%	1,085	
	41.405	4.1%	58	7.0%	719	
ARON-600 FRT CF6-80C2A5F	41,086	4.1%	28	3.4%	1,453	
A300-620_PW4000-4158	10,803	1.1% 0.9%	90	0.7% 0.4%	1,801 2,771	
A300-600H_0F6-8002A3F	665 - 6	2, 2, 2				
Airbus A300-B2/B4/F4	273,690	0.4%	199	0.3%	1,377	
A300-B4-200 CF6-50C2	88,165	32.2%	56	28.3%	1,570	
A300-B2-100 CF6-50C	41,704	15.2%	35	17.5%	1,201	
A300-B4-120 JT9D-59A	33,972	12.4%	20	10.3%	1,663	
A300-B2-200 CF6-50C2R	30,132	11.0%	24	12.2%	1,248	
A300-B2-200FF_CF6-50C2	20,841	7.6%	22	10.9%	960	
A300-B4-200F_FRT_CF6-50C2	19,140	7.0%	2	3.7%	2,02/	
A300-B2-200_CF6-50C2	17,244	6.3%	24	12.1%	7 10	
A300-F4-200_FRT_CF6-50C2	16,552	6.1%	ں ص	2.9%	1 180	
A300-B4-200FF_CF6-50C2	3,402	1.2%	N 0	1 2%	1.111	
A300-B4-100_CF6-50C2	2,039	0.3.%	U	-		1
Airbus A310	1,044,357	1.5%	464	0.7%	2,251	
A310-300 CF6-80C2A2	312,847	30.0%	146	31.5%	2,141	
A310-320 PW4000-4152	265,031	25.4%	109	23.6%	2,425	
A310-300 CF6-80C2A8	206,423	19.8%	71	15.2%	2,919	
A310-200 CF6-80A3	107,586	10.3%	20	12.8%	1,810	
A310-200 CF6-80C2A2	58,743	5.6%	30	6.5%	2000 1	
A310-220_JT9D-7R4E1	36,845	3.5%	21	4.5%		
A310-320_PW4000-4156A	35,994	3.5%	14	3.1%	2,320	
A310-320 JT9D-7R4E1	20,889	2.0%	13	2.8%	60C'I	1

			•			
Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)	
Airbus A319	692,169	1.0%	537	0.8%	1,289	
A319-110_CFM56-5A4	232,750	33.6%	109	20.3%	0 138	
A319-110_CFM56-5A5	193,924	28.0%	151	28.1%	1 288	
A319-110_CFM56-5B5_P	94,740	13.7%	65	12.0%	1,200	_
A319-110_CFM56-5B6_2P	61,614	8.9%	56	10.5%	1000	
A319-110_CFM56-5B6_P	48,724	7.0%	86	16.0%	260,1	
A319-130_V2500-2524-A5	35,150	5.1%	52	9.6%	680	
A319-130_V2500-2522-A5	25,266	3.7%	19	3.5%	1.330	-
Airbus A320	3,818,451	5.4%	3,071	4.4%	1,243	
A320-110_CFM56-5A1	1,824,134	47.8%	1 667	20/2		
A320-210_CFM56-5B4_P	673.556	17.6%	375	0/ C. + C	1,034	
A320-210_CFM56-5A1	653.329	17.1%	854	0/ 7/7	1,798	
A320-210_CFM56-5A3	253,641	66%	107	64.3% 6.40/	1,490	_
A320-210_CFM56-5B4	117,499	3.1%	75	0.4%	1,285	
A320-210_CFM56-5B4_2	95,698	2.5%	116	0.0.0 200	1,561	_
A320-210_CFM56-5B4_2P	85,472	2.2%	2° 8	0.0% 2 7%	823 1 010	
A320-230_V2500-2527E-A5	48,379	1.3%	49	2.7 % 1 6%	1,040	
A320-230_V2500-2500-A1	37,428	1.0%	34	1 1%		
A320-230_V2500-2527-A5	29,316	0.8%	38	1.2%	774	
Airbus A321	761 507	ò				
	201,00/	%c.0	448	0.6%	807	
A321-110_CFM56-5B2	111,007	30.7%	102	22.7%	1 /03	
A321-110_CFM56-5B1_2	71,275	19.7%	108	24 0%	000	
A321-130_V2500-2530-A5	59,509	16.5%	67	14.9%	200	
A321-210_CFM56-5B3_P	53,446	14.8%	62	13.7%	898	
A321-210_CFM56-5B3_2P	53,269	14.7%	102	22.7%	500 704	
A321-230_V2500-2533-A5	13,180	3.6%	6	2.0%	1.488	

Generic OAG Airplane/Engine Fype	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)	
Airbus A330-200	138,796	0.2%	39	0.1%	3,572	
A330-220_PW4000-4168A A330-240_Trent-772B-60 A330-200_CF6-80E1A4	119,770 18,068 958	86.3% 13.0% 0.7%	34 4	88.2% 11.0% 0.7%	3,493 4,216 3,353	
Airbus A330-300	510,219	0.7%	250	0.4%	2,044	
A330-320_PW4000-4168 A330-300_CF6-80E1A2	152,881 129,029	30.0% 25.3%	78 47	31.1% 18.7%	1,971	
A330-340_Trent-772-60 A330-320_PW4000-4164	112,357 58,195	22.0% 11.4%	63 46	25.4% 18.3%	1,775 1,273	
A330-340_Trent-768-60	57,757	11.3%	16	6.6%	3,516	-
Airbus A340-200	140,216	0.2%	50	0.0%	6,961	
A340-210_CFM56-5C2	92,676	66.1%	13	64.5%	7,129	
A340-210_CFM56-5C2G A340-210_CFM56-5C3_F	26,794 20,746	19.1% 14.8%	64	15.6% 19.9%	8,525 5,186	
Airbus A340-300	1,250,423	1.8%	224	0.3%	5,589	
A340-310_CFM56-5C4 A340-310_CFM56-5C2 A340-310_CFM56-5C2_F	754,377 405,735 90,310	60.3% 32.5% 7.2%	144 55 24	64.6% 24.8% 10.7%	5,223 7,320 3,785	

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
BAC111	45,221	0.1%	57	0.1%	797
One-Eleven-500_Spey-512-14DW One-Eleven-560_Spey-512-14DW	27,964 17,257	61.8% 38.2%	37 20	64.7% 35.3%	762 863
BAE 146	630,398	0.9%	6 63	1.4%	635
146-200_ALF502-R-5 146-300_A1 F502-R-5	415,062 114.367	65.8% 18 1%	686 195	69.1% 19.6%	605 587
146-100_ALF502-R-5	53,409	8.5%	59	5.9%	910
146-300_LF507-1H 146-300QT_FRT_ALF502-R-5	41,890 5,670	6.7% 0.9%	45 8	4 .6% 0.8%	922 709
Boeing 707	105,766	0.2%	41	0.1%	2,607
707-320C_JT3D-3B	2,722	2.6%	2	4.9%	1,361
707-320C_FRT_JT3D-7	13,664	12.9% 70.0%	ۍ ۲	11.3% 77 5%	2,989
707-3200_FH1_J130-35 707-3200_All_FRT_JT3D-3B	64,456 4,922	4.7%	ი ო	6.3%	1,914
Boeing 717	0	0.0%	o	0.0%	0

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Boeing 727-100	205,915	0.3%	261	0.4%	789
727-100QF FRT RB.183-651-54	36,435	17.7%	50	19.2%	729
727-100F FRT JT8D-9	2,123	1.0%	0	0.8%	991
727-100F FRT_JT8D-7B	41,525	20.2%	54	20.8%	765
727-100C JT8D-9	11,797	5.7%	80	3.2%	1,400
727-100C_CMB_JT8D-7B	7,668	3.7%	ഹ	2.0%	1,451
727-100C_CMB_JT8D-7	1,491	0.7%	-	0.6%	1,044
727-100_JT8D-9	3,087	1.5%	ო	1.1%	1,080
727-100 JT8D-7B	86,090	41.8%	112	42.9%	769
727-100_JT8D-7	15,700	7.6%	25	9.5%	635
Boeing 727-200	2,532,550	3.6%	2,353	3.4%	1,077
727-200_JT8D-15	1,443,421	57.0%	1,403	59.7%	1,029
727-200 JT8D-9A	449,984	17.8%	360	15.3%	1,248
727-200_JT8D-17R	279,982	11.1%	235	10.0%	1,190
727-200F_FRT_JT8D-9	91,148	3.6%	92	3.9%	986
727-200_JT8D-9	84,997	3.4%	116	4.9%	734
727-200F FRT_JT8D-15	51,931	2.1%	42	1.8%	1,236
727-200F_FRT_JT8D-7	49,592	2.0%	42	1.8%	1,185
727-200_JT8D-17	32,169	1.3%	28	1.2%	1,143
727-200F_FRT_JT8D-17R	22,337	0.9%	19	0.8%	1,158
727-200_JT8D-7B	20,257	0.8%	10	0.4%	2,085
727-200F_FRT_JT8D-17	6,733	0.3%	4	0.2%	1,625

•					
Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Boeing 737-100/200	3,176,590	4.5%	4,013	5.8%	792
737-200_JT8D-9A	1,215,577	38.3%	1,528	38.1%	796
737-200_JT8D-15	639,196	20.1%	844	21.0%	758
737-200_JT8D-15A	393,614	12.4%	552	13.8%	713
737-200_JT8D-17	311,240	9.8%	400	10.0%	778
737-200C_QC_JT8D-17A	302,133	9.5%	307	7.7%	984
737-200_JT8D-17A	185,907	5.9%	219	5.5%	850
737-200C_CMB_JT8D-17	47,616	1.5%	61	1.5%	786
737-200_JT8D-9	28,804	0.9%	36	0.9%	794
737-200C_JT8D-9A	10,874	0.3%	12	0.3%	826
737-200QC_FRT_JT8D-9A	7,622	0.2%	8	0.2%	1.007
737-200C_JT8D-15	6,896	0.2%	15	0.4%	473
737-200C_JT8D-17	5,456	0.2%	ω	0.2%	682
737-200C_JT8D-17A	5,350	0.2%	10	0.2%	559
737-200C_QC_JT8D-15A	4,781	0.2%	0	0.1%	2,092
737-200QC_FRT_JT8D-15	3,463	0.1%	N	0.1%	1,865
737-200C_QC_JT8D-9	3,280	0.1%	5	0.1%	717
737-200C_CMB_JT8D-9A	2,875	0.1%	4	0.1%	719
737-200_JT8D-7	1,218	0.0%	2	0.1%	609
737-200C_QC_JT8D-15	688	0.0%		0.0%	963
Boeina 737-300/400/500	0 1 1 7 800	\0 0 C F			
	3,141,002	13.0%	10,224	14.7%	895
737-300_CFM56-3B1	4,200,235	45.9%	4,671	45.7%	899
737-400_CFM56-3C1	1,769,552	19.3%	1,932	18.9%	916
737-500_CFM56-3C1	1,006,448	11.0%	1,304	12.8%	772
737-500_CFM56-3B1	662,492	7.2%	728	7.1%	911
737-300_CFM56-3C1	646,331	7.1%	708	6.9%	913
737-300_CFM56-3B2	580,178	6.3%	593	5.8%	978
737-400_CFM56-3B2	279,567	3.1%	282	2.8%	991
737-300QC_QC_CFM56-3C1	2,998	0.0%	9	0.1%	477

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Boeing 737-600/700/800	1,047,151	1.5%	171	1.1%	1,357
737-800 CFM56-7B26	418.237	39.9%	260	33.7%	1,611
737-700 CFM56-7822	281,044	26.8%	208	26.9%	1,352
737-700 CEM56-7B24	274.064	26.2%	203	26.3%	1,351
737-600 CFM56-7B20	62,655	6.0%	67	12.5%	648
737-800_CFM56-7B24	11,150	1.1%	4	0.6%	2,518
Boeing 747-100/200/300	2,573,174	3.7%	570	0.8%	4,517
747-200B JT9D-7Q	410,087	15.9%	75	13.2%	5,447
747-200SF FRT CF6-50E2	289,007	11.2%	64	11.2%	4,516
747-200F FRT CF6-50E2	244,817	9.5%	54	9.4%	4,570
747-200F FRT JT9D-7Q	220,206	8.6%	51	8.9%	4,354
747-100F FRT JT9D-7A	150,102	5.8%	43	7.6%	3,491
747-300 RB211-524D4	124,189	4.8%	27	4.7%	4,600
747-200B CMB CF6-50E2	115,260	4.5%	16	2.9%	7,016
747-200B CF6-50E2	92,295	3.6%	15	2.6%	6,212
747-300 JT9D-7R4G2	89,993	3.5%	17	2.9%	5,431
747-200B JT9D-7J	80,322	3.1%	22	3.9%	3,627
747-300 CF6-50E2	75,833	3.0%	11	2.0%	6,806
747-200F_FRT_JT9D-7J	65,191	2.5%	16	2.8%	4,038
747-100_JT9D-7A	65,143	2.5%	17	3.0%	3,832
747-200B RB211-524D4	61,008	2.4%	12	2.1%	5,024
747-300 CF6-80C2B1	56,156	2.2%	æ	1.4%	6,896
747-200F FRT RB211-524D4	51,559	2.0%	13	2.3%	4,010
747-200B JT9D-7R4G2	48,806	1.9%	7	1.3%	6,570
747-200B JT9D-7A	39,446	1.5%	12	2.1%	3,327
747-100 JT9D-7	33,445	1.3%	9	1.0%	5,853
747-200SF FRT RB211-524D4	28,566	1.1%	9	1.1%	4,444
747-SP_RB211-524D4	25,712	1.0%	9	1.0%	4,500
747-300_CMB_CF6-50E2	25,654	1.0%	9	1.1%	4,081

Generic OAG Airplane/Engine	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)	
30eing 747-100/200/300 (Continued)						
/4/-300_CMB_JT9D-7R4G2	22,234	0.9%	4	0.7%	5 986	
747-SP_JT9D-7F	19,752	0.8%	9	1 1%	3 1 4 0	
747-200C_F_FRT_CF6-50E2	15,744	0.6%	4	0.8%	0, 14C	
747-100B_SR_JT9D-7A	14,599	0.6%	16	0.0% 0.8%	0,0/4	
747-200SF_FRT_JT9D-7J	12,610	0.5%	? e.	0.5%	312	
747-300_RB211-524C2	12.268	0.5%	οα	0.0.0 4 Fe/	4,203	
747-100B_RB211-524C2	12.124	0.5%	c (%C.I	1,481	
747-SP JT9D-7J	10.410	7.0.0	2 4	0.0%	3,536	_
747-200F FBT JIT90-7R4G2	0 720	0.4% 2.4%	n o	0.9%	2,082	_
	9,139	0.4%	N	0.4%	4,010	-
	8,388	0.3%	2	0.4%	4.194	-
/4/-2008_CMB_CF6-50E	7,756	0.3%	2	0.3%	4 176	_
747-200B_JT9D-7Q3	6,956	0.3%	-	0.2%	8115	
747-SH-100B_CF6-45A2	6,465	0.3%	F	0.2%	6.465	
747-200B_CMB_JT9D-7Q	6,128	0.2%	2	0.4%	0.860	-
747-SP_JT9D-7A	4.929	0.2%	¢	0.60/	5,000	_
747-200C QC CF6-50F2	4 500	2000	,	0.0.0	11,917	
747-2008 IT00-75		0.2.0		0.1%	7,876	_
717 200 CMB OF5 20005	2,328	0.1%	•	0.1%	4,074	_
	2,152	0.1%	-	0.2%	2,511	-
/4/-2008_JI9D-/0A	1,293	0.1%	-	0.1%	2.262	

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Boeing 747-400	5,664,264	8.1%	1,006	1.4%	5,632
747-400 CF6-80C2B1F	1,924,604	34.0%	398	39.6%	4,830
747-400 PW4000-4056	1,474,135	26.0%	246	24.5%	5,982
747-400 BB211-524H2	1,072,744	18.9%	158	15.7%	6,783
747-400 CMB CF6-80C2B1F	601,789	10.6%	102	10.2%	5,883
747-400 BB211-524G	242,152	4.3%	32	3.2%	7,567
747-400F FRT PW4000-4056	125,433	2.2%	25	2.5%	4,933
747-400 CMB PW4000-4056	118,220	2.1%	24	2.4%	4,897
747-400F FRT CF6-80C2B1F	79,428	1.4%	14	1.4%	5,673
747-400F_FRT_RB211-524H2	25,760	0.5%	5	0.5%	5,304
Boeing 757-200	4,828,701	6.9%	2,741	3.9%	1,762
757-200 PW2000-2037	2.130.837	44.1%	1,241	45.3%	1,717
757-200 RB211-535E4B	1,051,066	21.8%	405	14.8%	2,593
757-200 RB211-535E4	977,170	20.2%	562	20.5%	1,740
757-200 PW2000-2040	264,613	5.5%	134	4.9%	1,968
757-200PF FRT RB211-535E4	217,355	4.5%	174	6.4%	1,249
757-200 RB211-535C	177,641	3.7%	222	8.1%	266
757-200PF FRT PW2000-2040	10,018	0.2%	ო	0.1%	3,896

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Boeing 767-200	1,417,564	2.0%	492	0.7%	2884
767-200 JT9D-2B4D	373 000	76, 40/			
	000,000	CO.4.0	2	24.2%	3,150
	267,474	18.9%	61	12.5%	4.354
767-200ER_CF6-80C2B2	173,046	12.2%	39	7.9%	4 470
767-200_CF6-80A	118,609	8.4%	110	22.4%	1 077
767-200EM_JT9D-7R4D	114,484	8.1%	23	4.7%	4 078
767-200ER_PW4000-4056	67,773	4.8%	12	2.4%	7,010 5,785
767-200ER_CF6-80C2B4	59,372	4.2%	10	2 0%	0, 00 6 003
767-200ER_JT9D-7R4E	51,047	3.6%	48	%0 6	0,023
767-200ER_JT9D-7R4E4	51,015	3.6%	92	5.0%	1 020
767-200ERM_JT9D-7R4E	39,616	2.8%	12	0.4%	0.00
767-200_CF6-80C2B2F	32,646	2.3%	19	3 2%	0,424
767-200EM_CF6-80A2	24,814	1.8%	4	0.8%	2,009 A 202
767-200PC_FRT_CF6-80A	23,122	1.6%	· თ	1 8%	0,200
767-200ER_CF6-80C2B4F	20,559	1.5%	ന	0.6%	7 106
					0011
Boeing 767-300	4,043,356	5.8%	1,533	2.2%	2,638
767-300ER_PW4000-4060	1,686,367	41.7%	477	31 1%	9 E26
767-300ER_CF6-80C2B6	809,403	20.0%	191	12.4%	0,000
767-300ER_CF6-80C2B6F	496,144	12.3%	124	8 1%	3 007
767-300_CF6-80C2B2	279,758	6.9%	312	20.4%	ROF.
767-300ER_RB211-524H3	166,978	4.1%	66	6.4%	1 694
767-300ERF_FRT_CF6-80C2B6F	123,009	3.0%	60	3.9%	2,050
767-300ER_CF6-80C2B4	111,343	2.8%	42	2.8%	2 633
767-300_JT9D-7R4D	92,559	2.3%	101	6.6%	918
767-300ER_PW4000-4056	69,406	1.7%	22	1.5%	3.095
767-300_CF6-80C2B2F	60,661	1.5%	49	3.2%	1 242
767-300ER_CF6-80C2B7F	43,500	1.1%	11	0.7%	3.854
767-300ER_CF6-80C2B2	42,449	1.1%	12	0.8%	3.496

Appendix E – Departure	e and Distan	ice Summarie	es for May 199	39 Scheduled A	ir Traffic
Generic OAG Airplane/Engine	Distance	% of Global	Daily	% of Global	Average Route Distance (km)
Type	(km/day)	Distance	Departures	Departures	
Boeing 767-300 (Continued)					
767-300ER PW4000-4062	19,138	0.5%	ۍ ا	0.4%	3,525
767-300ER RB211-524H2	15,996	0.4%	ი	0.6%	1,750
767-300 CF6-80C2B4F	8,989	0.2%	7	0.5%	1,284
767-300 PW4000-4056	8,950	0.2%	80	0.5%	1,119
767-300ERF_FRT_CF6-80C2B7F	8,706	0.2%	ю	0.2%	2,902
Boeing 777-200	1,583,564	2.3%	473	0.7%	3,345
777-200EB PW4000-4090	452,251	28.6%	63	19.7%	4,848
777-200ER GE90-92B	371,319	23.5%	112	23.6%	3,324
777-200ER Trent-892	290,345	18.3%	60	12.8%	4,805
777-200ER GE90-85B	204,362	12.9%	42	8.8%	4,899
777-200ER Trent-884	94,872	6.0%	27	5.6%	3,551
777-200 PW4000-4074	80,207	5.1%	80	16.9%	1,004
777-200 Trent-875	49,713	3.1%	27	5.6%	1,871
777-200_PW4000-4077	40,495	2.6%	33	7.0%	1,222
	121 672	7%C U	82	0.1%	1.614
	10,101	2 4 5	\$		
777-300 Trent-892	93,513	71.0%	38	46.1%	2,489
777-300_PW4000-4090	38,160	29.0%	44	53.9%	867

raff	
ir T	
Å Å	
dule	
che	
S S	
196	
May	
for	
ies	
mar	
Sum	
Se	
stan	
ö	
anc	
ture	
part	
- De	
ц Ш	
Ĝ	

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
DC-10	1,523,344	2.2%	379	0.5%	4,022
DC-10-30_CF6-50C2	570,817	37.5%	110	29.1%	5 183
DC-10-40_JT9D-20	312,347	20.5%	62	20.8%	3 968
DC-10-10_CF6-6K	160,953	10.6%	40	10.6%	3.995
DC-10-30_CF6-50C	112,142	7.4%	31	8.2%	3.634
DC-10-10F_FRT_CF6-6D	84,340	5.5%	32	8.4%	2,659
DC-10-10_CF6-6D	74,985	4.9%	27	7.2%	2 763
DC-10-30CF_CF6-50C2	65,741	4.3%	17	4.5%	006 6
DC-10-401_JT9D-59A	65,671	4.3%	28	7.3%	2382
DC-10-30F_FRT_CF6-50C2	61,993	4.1%	13	3.6%	4.616
DC-10-30_CF6-50C2R	12,227	0.8%	2	0.5%	7,133
DC-10-30_CF6-50C1	2,126	0.1%	0	0.1%	7,440
DC-8	451,733	0.6%	266	0.4%	1,699
DC-8-71F_FRT_CFM56-2C1	182,142	40.3%	107	40.2%	1,705
DC-8-73CF_FRT_CFM56-2C1	90,719	20.1%	62	23.2%	1.473
DC-8-63_FRT_JT3D-7	82,442	18.3%	51	19.1%	1.621
DC-8-73F_FRT_CFM56-2C1	31,639	7.0%	11	4.3%	2,803
DC-8-61C_FRT_JT3D-3B	21,294	4.7%	13	5.1%	1.586
DC-8-54CF_FRT_JT3D-3B	19,964	4.4%	13	4.7%	1.588
DC-8-63CF_FRT_JT3D-7	14,112	3.1%	9	2.4%	2.195
DC-8-62CF_FRT_JT3D-3B	9,420	2.1%	ო	1.1%	3,297

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
6-DQ	2,379,550	3.4%	3,346	4.8%	711
DC-9-31_JT8D-7B	669,058	28.1%	965	28.9%	693
DC-9-32_JT8D-9A	472,957	19.9%	557	16.7%	849
DC-9-31_JT8D-9A	328,957	13.8%	530	15.8%	621
DC-9-51_JT8D-17	232,402	9.8%	441	13.2%	526
DC-9-41_FRT_JT8D-11	132,692	5.6%	167	5.0%	796
DC-9-15_JT8D-7A	110,330	4.6%	121	3.6%	915
DC-9-41_JT8D-11	73,398	3.1%	113	3.4%	651
DC-9-32_JT8D-7A	70,219	3.0%	84	2.5%	836
DC-9-32_JT8D-7B	67,205	2.8%	92	2.7%	734
DC-9-32_JT8D-17	57,120	2.4%	66	2.0%	865
DC-9-31_JT8D-7A	51,878	2.2%	44	1.3%	. 1,171
DC-9-51_JT8D-17A	32,469	1.4%	62	1.9%	522
DC-9-21_JT8D-11	18,449	0.8%	21	0.6%	879
DC-9-41_JT8D-15	16,761	0.7%	18	0.5%	924
DC-9-15_JT8D-7	13,024	0.6%	20	0.6%	651
DC-9-32_JT8D-11	10,691	0.5%	15	0.5%	693
DC-9-32_JT8D-9	8,819	0.4%	15	0.5%	588
DC-9-31CF_JT8D-17	6,950	0.3%	9	0.2%	1,081
DC-9-15RC_FRT_JT8D-7B	3,126	0.1%	4	0.1%	729
DC-9-33CF_JT8D-9A	3,045	0.1%	4	0.1%	688
Fokker 100	1,079,091	1.5%	1,697	2.4%	636
100-*_RB.183-650-15	963,270	89.3% 40.7%	1,499	88.4% 44.6%	643
		101 / 2/0		1 0//0	

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Fokker 28	358,254	0.5%	626		572
F.28-4000_Spey-555-15P	299,518	83.6%	495	%0.67	605
F.28-1000_Spey-555-15	29,868	8.3%	69	11.0%	434
F.28-3000_Spey-555-15H	15,862	4.4%	23	3.6%	698
F.28-2000_Spey-555-15	10,042	2.8%	29	4.6%	348
F.28-4000_Spey-555-15H	2,964	0.8%	11	1.7%	273
Fokker 70	149,699	0.2%	198	0.3%	756
70-*_RB.183-620-15	149,699	100.0%	198	100.0%	756
Lockheed L-1011	288,761	0.4%	140		2,058
L-1011-1_RB211-22B	197,439	68.4%	106	75.8%	1.858
L-1011-500_RB211-524B4	60,864	21.1%	22	15.5%	2.803
L-1011-200_FRT_RB211-524B	13,561	4.7%	9	4.1%	2,373
L-1011-50_RB211-22B	13,309	4.6%	S	3.4%	2,823
L-1011-200_FRT_RB211-524B4	2,647	0.9%	2	1.1%	1,685
L11_Blank-Blank	940	0.3%	0	0.2%	3,289
MD-11	1,541,979	2.2%	308	0.4%	5,006
MD-11-Passenger_CF6-80C2D1F	555,776	36.0%	105	34.2%	5,279
MD-11-Freighter_FRT_CF6-80C2D1F	337,791	21.9%	82	26.5%	4,141
MD-11-Passenger PW4000-4460	317,609	20.6%	99	21 5%	C07 N

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
MD-11 (Continued)					
MD-11-Passenger PW4000-4462	224,607	14.6%	38	12.2%	5,955
MD-11-Combi CMB CF6-80C2D1F	59,034	3.8%	8	2.6%	7,513
MD-11-Freighter FRT PW4000-44	60 37,810	2.5%	8	2.5%	4,994
MD-11-CF QC PW4000-4460	4,701	0.3%	-	0.4%	4,114
MD-11-CF_QC_PW4000-4462	4,651	0.3%	-	0.2%	8,139
MD-80	5,619,233	8.0%	5,397	7.7%	1,041
MD-80-01780-2176	2.223.295	39.6%	1,907	35.3%	1,166
MD_80_82_0100 E110 MD_80_83_1T8D-210	1.284.164	22.9%	1,174	21.8%	1,094
MD-80-000 000 000 000 000 000 000 000 000	918,618	16.4%	1,008	18.7%	912
MD-80-82 JT8D-217A	478,447	8.5%	426	7.9%	1,123
MD-80-87 JT8D-217C	207,137	3.7%	234	4.3%	887
MD-80-81 JT8D-217C	199,394	3.6%	338	6.3%	590
MD-80-81 JT8D-217	163,056	2.9%	171	3.2%	954
MD-80-82 JT8D-217	91,286	1.6%	75	1.4%	1,213
MD-80-87 JT8D-219	46,861	0.8%	50	0.9%	937
MD-80-83_JT8D-217C	6,976	0.1%	15	0.3%	461
06-OW	331,624	0.5%	442	0.6%	750
	168 010	50 7%	188	42.4%	895
MD-90-30_V2500-2525-D5	163,605	49.3%	255	57.6%	643
Miscellaneous	3,013	0.00%	5	0.01%	659
DFL Blank-Blank	2,146	71.2%	n	68.8%	683
I Blank-Blank	866	28.8%	-	31.3%	606

. _____.

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Regional Jets	2,096,416	3.0%	3,198	4.6%	656
CRJ-100ER_CF34-3A1	931,379	44.4%	1_417	44.3%	GE7
EMJ_Blank-Blank	309,117	14.8%	465	14 5%	03/
RJ-RJ85_LF507-1F	258,052	12.3%	434	13.6%	003 505
CRJ-100LR_CF34-3A1	151,954	7.3%	202	6.3%	750
CRJ-200LR_CF34-3B1	123,117	5.9%	166	5.2%	740
RJ-RJ100_LF507-1F	97,273	4.6%	162	5.1%	enn enn
ERJ-145-ER_AE-A	73,519	3.5%	145	4.5%	
CRJ-200ER_CF34-3B1	52,196	2.5%	73	2.3%	711
RJ-RJ70_LF507-1F	45,163	2.2%	61	1.9%	746
ERJ-145-EP_AE-A	37,098	1.8%	48	1.5%	775
ERJ-145-EP_AE-A1_1	13,370	0.6%	19	0.6%	
ERJ-145-LR_AE-A1	4,178	0.2%	9	0.2%	665
Russian Aircraft	1,266,310	1.8%	701	1.0%	1.806
Tu-154-B NK-8-2U	375 777	/02 UC	CC T		
II-62-M D-30-KU	100 667	15 00/	196	21.4%	1,959
TI-154-M D-30-KI1-154-II	100,001	0.0%	15	5.3%	5,334
TI-134-A D-30-3	192,101	%2.01	411 201	16.5%	1,665
	101,909	12.8%	129	18.4%	1,253
	80,838	6.4%	33	4.7%	2,482
11-76-1_FH1_D-30-KP-2	55,117	4.4%	20	2.8%	2,776
1 u-134-A_D-30-2	42,909	3.4%	37	5.2%	1.173
II-96-300_PS-90-A	29,432	2.3%	5	0.7%	6.438
Yak-42-*_D-36	25,717	2.0%	23	3.3%	1 1 1 1
Yak-40-*_AI-25	25,391	2.0%	41	5.9%	615
Yak-42-0_0-36	18,436	1.5%	19	2.7%	666

6 1 1 1 1 6 1 1 1 6 1 1 1 1 1 1 1 1 1 1	4.1% 1.5% 0.4% 0.2% 0.1% 0.0%	523 1,417 3,489 3,563 3,446 1,178 3,287 2,433 2,433
2% 2% 5% 6 7 29 2% 6 6 6 6	4.1% 1.5% 0.4% 0.2% 0.1% 0.0% 0.01%	523 1,417 3,489 3,563 3,446 1,178 3,287 2,433 2,433
2% 60 14% 52% 52% 02% 01 44% 03 3 11 14% 03 3 3 03 4% 03 3 3 04 4% 05 4% 05 4% 05 4% 05 4% 05 4% 05 6% 05 6%	1.5% 0.4% 0.2% 0.1% 0.0% 0.0%	1,417 3,489 3,563 3,446 1,178 3,287 2,433 5,648
6 0 - + 4 2 2 3 3 2 %	0.4% 0.2% 0.6% 0.1% 0.0%	3,489 3,563 3,446 1,178 3,287 2,433 5,648
6 0 - + 4 2 2 0 0 0 - 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2% 0.2% 0.1% 0.0% 0.01%	3,563 3,446 1,178 3,287 2,433 5,648
6 6 6 6 6 6 6 6 6 6	0.2% 0.6% 0.1% 0.0%	3,446 1,178 3,287 2,433 5,648
05% 6 0	0.6% 0.1% 0.0% 0.01%	1,178 3,287 2,433 5,648
6 0 01 05% 6	0.1% 0.0% 0.01%	3,287 2,433 5,648
0 05% 6 05%	0.0% 0.01%	2,433 5,648
05%	0.01%	5,648
0.U%	100.0%	5,648
.4% 21,296	30.6%	310
1.2% 2,688	12.6%	348
).4% 2,270	10.7%	302
.9% 2,247	10.6%	290
.6% 1,927	9.1%	329
.2% 1,610	7.6%	335
.4% 1,097	5.2%	324
.4% 1,078	5.1%	330
.6% 1,127	5.3%	270
1.8% 761	3.6%	333
.6% 753	3.5%	317
.3% 424	2.0%	508
100/ 231	2.5%	405
4% 21,296 4% 21,296 1,2% 2,270 9% 2,270 9% 2,247 1,927 2,247 1,927 1,927 2% 1,610 1,927 1,927 1,927 1,097 1,4% 1,097 1,4% 1,097 1,8% 761 1,670 1,127		0.0% 6% 0.7% 0.6% 1% 1.1% 1.1% 1.1% 1.5% 2.0%

Generic OAG Airplane/Engine Type	Distance (km/day)	% of Global Distance	Daily Departures	% of Global Departures	Average Route Distance (km)
Turboprops (Continued)					
S20_LGTURB	173,530	2.6%	333	1 6%	C
DH3_MDTURB	158,280	2.4%	492	2.3%	220
DHT_SMTURB	129,414	2.0%	1,080	5.1%	120
AT4_LGTURB	125,453	1.9%	407	1.9%	308
EMB_SMTURB	76,313	1.2%	384	1.8%	000
ATP_LGTURB	71,950	1.1%	285	1.3%	020 020
AN4_LGTURB	64,815	1.0%	116	0.5%	
BEH_SMTURB	63,492	1.0%	216	1.0%	200
F27_LGTURB	61,075	0.9%	205	1.0%	862
SH6_MDTURB	59,446	0.9%	345	1.6%	172
D28_SMTURB	40,021	0.6%	216	1.0%	186
DH7_LGTURB	34,387	0.5%	127	0.6%	272
HS7_LGTURB	31,414	0.5%	100	0.5%	
BE9_SMTURB	26,645	0.4%	68	0.4%	301
YS1_LGTURB	23,575	0.4%	113	0.5%	209
	20,111	0.3%	103	0.5%	194
	17,525	0.3%	43	0.2%	404
BES_SMIUHB	8,784	0.1%	21	0.1%	410
LOF_LGTURB	6,600	0.1%	4	0.0%	1 711
CVF_LGTURB	6,304	0.1%	16	0.1%	304

Generic OAG Airplane/Engine	Distance	% of Global	Daily Denartures	% of Globat Denartures	Average Route Distance (Km)
Type	(KIII/Udy)	Distance			
Turboprops (Continued)					
	5 469	0.1%	ۍ ۲	0.0%	1,196
	4 310	0 1%	9	0.0%	774
	3 755	0.1%	16	0.1%	239
	3 154	0.1%	ى ا	0.0%	649
	2 944	0.0%	n	0.0%	859
	2 100	0.0%	15	0.1%	139
	1 593	0.0%	6	0.0%	186
	1 488	0.0%	18	0.1%	85
	1 044	0.0%	ი	0.0%	112
	766	0.0%	2	0.0%	435
	446	0.0%	-	0.0%	312

CO CO
÷.
Ŧ
, a
<u></u>
~
σ
Ð
ž
5
σ
<u>ں</u>
2
<u>с</u>
(Ā)
Ō
Ō.
6

-
2
<u>0</u>
Σ
5
1 1 1
S.
<u>.</u>
<u> </u>
3
2
E
3
ភ
e O
U U
2
ā
-
S
5
ъ
ē
JE
e O
-
2
5
õ
۵ ۵
ň
-
1
ш
×
<u> </u>
σ
_
0
Ó
ā
-

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188 -----

AGENCY USE ONLY (Leave blar	nk) 2. REPORT DATE	3. REPORT TYPE	AND DATES COVERED
_	October 2001		Final Contractor Report
TITLE AND SUBTITLE			5. FUNDING NUMBERS
Scheduled Civil Aircraft E Database Development an	Emission Inventories for 1999 ad Analysis	:	
AUTHOR(S)			WU-714-01-20-00
			NAS1-20341
Donald J. Sutkus, Jr., Stev	en L. Baughcum, and Dougla	s P. DuBois	Task 19
PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Boeing Commercial Airnh	ane Group		REPORT NUMBER
P.O. Box 3707	une oroup		F-13068
Seattle, Washington 98124	Ļ		L=15000
SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(E	S)	10. SPONSORING/MONITORING
National Aeronautics and S	Space Administration		AGENCY REPORT NUMBER
Washington, DC 20546–0	001		NASA CR-2001-211216
SUPPLEMENTARY NOTES			
This report prepared for an Manager, Chowen Wey, Ae	d managed by Glenn Researc eronautics Directorate, NASA	h Center as a task of Lan Glenn Research Center,	gley Contract NAS1–20341. Project organziation code 0300. 216–433–83
This report prepared for an Manager, Chowen Wey, Ae	nd managed by Glenn Researc eronautics Directorate, NASA STATEMENT	h Center as a task of Lan Glenn Research Center,	gley Contract NAS1–20341. Project organziation code 0300, 216–433–83.
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited	ed managed by Glenn Researc eronautics Directorate, NASA STATEMENT	h Center as a task of Lan Glenn Research Center,	gley Contract NAS1–20341. Project organziation code 0300, 216–433–83.
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Categories: 01 and	ad managed by Glenn Researc eronautics Directorate, NASA STATEMENT 45 Dist	h Center as a task of Lan Glenn Research Center, ribution: Nonstandard	gley Contract NAS1–20341. Project organziation code 0300, 216–433–83.
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Categories: 01 and Available electronically at http://	ad managed by Glenn Researc eronautics Directorate, NASA STATEMENT 45 Dist //gltrs.grc.nasa.gov/GLTRS	h Center as a task of Lan Glenn Research Center, ribution: Nonstandard	gley Contract NAS1–20341. Project organziation code 0300, 216–433–83 12b. DISTRIBUTION CODE
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Categories: 01 and Available electronically at http:// This publication is available fro ABSTRACT (Maximum 200 word	ad managed by Glenn Researc eronautics Directorate, NASA STATEMENT 45 Dist //gltrs.grc.nasa.gov/GLTRS m the NASA Center for AeroSpace	h Center as a task of Lan Glenn Research Center, ribution: Nonstandard	gley Contract NAS1–20341. Project organziation code 0300, 216–433–83.
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Categories: 01 and Available electronically at http:// This publication is available fro ABSTRACT (Maximum 200 word This report describes the de CO, and hydrocarbons) for emissions and fuel burn for departure and distance total accuracy of the calculations and this information was us Differences in the calculation	ad managed by Glenn Researc eronautics Directorate, NASA STATEMENT 45 Dist //gltrs.grc.nasa.gov/GLTRS m the NASA Center for AeroSpace the scheduled commercial air 1999 are compared to global is for selected airlines are com s. DOT Form T–100 data were ted to model freighter aircraft on methodology used to create ous work are described and eva	h Center as a task of Lan, Glenn Research Center, ribution: Nonstandard Information, 301–621–0390 onal database of aircraft : craft fleet for each month totals from 1992 and 201 pared to data reported on e used to determine typica more accurately by using the 1999 fuel burn and e aluated.	gley Contract NAS1–20341. Project organziation code 0300, 216–433–83 12b. DISTRIBUTION CODE fuel burn and emissions (NOx, a of 1999. Global totals of 5 databases. 1999 fuel burn, a DOT Form 41 to evaluate the al payloads for freighter aircraft more realistic payloads. emissions database from the
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Categories: 01 and Available electronically at http:// This publication is available fro ABSTRACT (Maximum 200 word This report describes the de CO, and hydrocarbons) for emissions and fuel burn for departure and distance total accuracy of the calculations and this information was us Differences in the calculation methodology used in previous SUBJECT TERMS Aircraft emissions; Emission	ad managed by Glenn Researc eronautics Directorate, NASA STATEMENT 45 Dist //gltrs.grc.nasa.gov/GLTRS m the NASA Center for AeroSpace the scheduled commercial air 1999 are compared to global ls for selected airlines are com s. DOT Form T–100 data were bed to model freighter aircraft on methodology used to created bus work are described and eva ms inventory; Atmospheric im	h Center as a task of Lan, Glenn Research Center, ribution: Nonstandard Information, 301–621–0390 onal database of aircraft : craft fleet for each month totals from 1992 and 201 pared to data reported on used to determine typica more accurately by using the 1999 fuel burn and e aluated.	gley Contract NAS1–20341. Project organziation code 0300, 216–433–83. 12b. DISTRIBUTION CODE fuel burn and emissions (NOx, of 1999. Global totals of 5 databases. 1999 fuel burn, DOT Form 41 to evaluate the al payloads for freighter aircraft more realistic payloads. emissions database from the 15. NUMBER OF PAGES 131 16. PRICE CODE
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Categories: 01 and Available electronically at http:// This publication is available fro ABSTRACT (Maximum 200 word This report describes the de CO, and hydrocarbons) for emissions and fuel burn for departure and distance total accuracy of the calculations and this information was us Differences in the calculation methodology used in previous SUBJECT TERMS Aircraft emissions; Emission	ad managed by Glenn Researc eronautics Directorate, NASA STATEMENT 45 Dist //gltrs.grc.nasa.gov/GLTRS m the NASA Center for AeroSpace the scheduled commercial air 1999 are compared to global is for selected airlines are com s. DOT Form T–100 data were ted to model freighter aircraft on methodology used to created bus work are described and evan ns inventory; Atmospheric im	h Center as a task of Lan, Glenn Research Center, ribution: Nonstandard Information, 301–621–0390 onal database of aircraft craft fleet for each month totals from 1992 and 201 pared to data reported on used to determine typica more accurately by using the 1999 fuel burn and e aluated.	gley Contract NAS1-20341. Project organziation code 0300, 216-433-83 12b. DISTRIBUTION CODE fuel burn and emissions (NOx, 1001 Form 41 to evaluate the 11 payloads for freighter aircraft 12 more realistic payloads. emissions database from the 15. NUMBER OF PAGES 131 16. PRICE CODE
This report prepared for an Manager, Chowen Wey, Ae DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Categories: 01 and Available electronically at http:// This publication is available fro ABSTRACT (Maximum 200 word This report describes the de CO, and hydrocarbons) for emissions and fuel burn for departure and distance total accuracy of the calculations and this information was us Differences in the calculation methodology used in previor SUBJECT TERMS Aircraft emissions; Emission SECURITY CLASSIFICATION OF REPORT	ad managed by Glenn Researc eronautics Directorate, NASA STATEMENT 45 Dist //gltrs.grc.nasa.gov/GLTRS m the NASA Center for AeroSpace the scheduled commercial air 1999 are compared to global ls for selected airlines are com s. DOT Form T–100 data were bed to model freighter aircraft on methodology used to created bus work are described and evan ms inventory; Atmospheric im 18. SECURITY CLASSIFICATION OF THIS PAGE	h Center as a task of Lan, Glenn Research Center, ribution: Nonstandard Information. 301–621–0390 onal database of aircraft craft fleet for each month totals from 1992 and 201 pared to data reported on used to determine typica more accurately by using the 1999 fuel burn and e aluated.	gley Contract NAS1-20341. Project organziation code 0300, 216-433-83 12b. DISTRIBUTION CODE fuel burn and emissions (NOx, of 1999. Global totals of 5 databases. 1999 fuel burn, DOT Form 41 to evaluate the al payloads for freighter aircraft more realistic payloads. emissions database from the 15. NUMBER OF PAGES 131 16. PRICE CODE ATION 20. LIMITATION OF ABSTRAC